PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / media / i2c / mt9v011.c
blobf74698cf14c94d343e8ae1861bc7d730ff139b60
1 /*
2 * mt9v011 -Micron 1/4-Inch VGA Digital Image Sensor
4 * Copyright (c) 2009 Mauro Carvalho Chehab (mchehab@redhat.com)
5 * This code is placed under the terms of the GNU General Public License v2
6 */
8 #include <linux/i2c.h>
9 #include <linux/slab.h>
10 #include <linux/videodev2.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <asm/div64.h>
14 #include <media/v4l2-device.h>
15 #include <media/v4l2-ctrls.h>
16 #include <media/mt9v011.h>
18 MODULE_DESCRIPTION("Micron mt9v011 sensor driver");
19 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
20 MODULE_LICENSE("GPL");
22 static int debug;
23 module_param(debug, int, 0);
24 MODULE_PARM_DESC(debug, "Debug level (0-2)");
26 #define R00_MT9V011_CHIP_VERSION 0x00
27 #define R01_MT9V011_ROWSTART 0x01
28 #define R02_MT9V011_COLSTART 0x02
29 #define R03_MT9V011_HEIGHT 0x03
30 #define R04_MT9V011_WIDTH 0x04
31 #define R05_MT9V011_HBLANK 0x05
32 #define R06_MT9V011_VBLANK 0x06
33 #define R07_MT9V011_OUT_CTRL 0x07
34 #define R09_MT9V011_SHUTTER_WIDTH 0x09
35 #define R0A_MT9V011_CLK_SPEED 0x0a
36 #define R0B_MT9V011_RESTART 0x0b
37 #define R0C_MT9V011_SHUTTER_DELAY 0x0c
38 #define R0D_MT9V011_RESET 0x0d
39 #define R1E_MT9V011_DIGITAL_ZOOM 0x1e
40 #define R20_MT9V011_READ_MODE 0x20
41 #define R2B_MT9V011_GREEN_1_GAIN 0x2b
42 #define R2C_MT9V011_BLUE_GAIN 0x2c
43 #define R2D_MT9V011_RED_GAIN 0x2d
44 #define R2E_MT9V011_GREEN_2_GAIN 0x2e
45 #define R35_MT9V011_GLOBAL_GAIN 0x35
46 #define RF1_MT9V011_CHIP_ENABLE 0xf1
48 #define MT9V011_VERSION 0x8232
49 #define MT9V011_REV_B_VERSION 0x8243
51 struct mt9v011 {
52 struct v4l2_subdev sd;
53 struct v4l2_ctrl_handler ctrls;
54 unsigned width, height;
55 unsigned xtal;
56 unsigned hflip:1;
57 unsigned vflip:1;
59 u16 global_gain, exposure;
60 s16 red_bal, blue_bal;
63 static inline struct mt9v011 *to_mt9v011(struct v4l2_subdev *sd)
65 return container_of(sd, struct mt9v011, sd);
68 static int mt9v011_read(struct v4l2_subdev *sd, unsigned char addr)
70 struct i2c_client *c = v4l2_get_subdevdata(sd);
71 __be16 buffer;
72 int rc, val;
74 rc = i2c_master_send(c, &addr, 1);
75 if (rc != 1)
76 v4l2_dbg(0, debug, sd,
77 "i2c i/o error: rc == %d (should be 1)\n", rc);
79 msleep(10);
81 rc = i2c_master_recv(c, (char *)&buffer, 2);
82 if (rc != 2)
83 v4l2_dbg(0, debug, sd,
84 "i2c i/o error: rc == %d (should be 2)\n", rc);
86 val = be16_to_cpu(buffer);
88 v4l2_dbg(2, debug, sd, "mt9v011: read 0x%02x = 0x%04x\n", addr, val);
90 return val;
93 static void mt9v011_write(struct v4l2_subdev *sd, unsigned char addr,
94 u16 value)
96 struct i2c_client *c = v4l2_get_subdevdata(sd);
97 unsigned char buffer[3];
98 int rc;
100 buffer[0] = addr;
101 buffer[1] = value >> 8;
102 buffer[2] = value & 0xff;
104 v4l2_dbg(2, debug, sd,
105 "mt9v011: writing 0x%02x 0x%04x\n", buffer[0], value);
106 rc = i2c_master_send(c, buffer, 3);
107 if (rc != 3)
108 v4l2_dbg(0, debug, sd,
109 "i2c i/o error: rc == %d (should be 3)\n", rc);
113 struct i2c_reg_value {
114 unsigned char reg;
115 u16 value;
119 * Values used at the original driver
120 * Some values are marked as Reserved at the datasheet
122 static const struct i2c_reg_value mt9v011_init_default[] = {
123 { R0D_MT9V011_RESET, 0x0001 },
124 { R0D_MT9V011_RESET, 0x0000 },
126 { R0C_MT9V011_SHUTTER_DELAY, 0x0000 },
127 { R09_MT9V011_SHUTTER_WIDTH, 0x1fc },
129 { R0A_MT9V011_CLK_SPEED, 0x0000 },
130 { R1E_MT9V011_DIGITAL_ZOOM, 0x0000 },
132 { R07_MT9V011_OUT_CTRL, 0x0002 }, /* chip enable */
136 static u16 calc_mt9v011_gain(s16 lineargain)
139 u16 digitalgain = 0;
140 u16 analogmult = 0;
141 u16 analoginit = 0;
143 if (lineargain < 0)
144 lineargain = 0;
146 /* recommended minimum */
147 lineargain += 0x0020;
149 if (lineargain > 2047)
150 lineargain = 2047;
152 if (lineargain > 1023) {
153 digitalgain = 3;
154 analogmult = 3;
155 analoginit = lineargain / 16;
156 } else if (lineargain > 511) {
157 digitalgain = 1;
158 analogmult = 3;
159 analoginit = lineargain / 8;
160 } else if (lineargain > 255) {
161 analogmult = 3;
162 analoginit = lineargain / 4;
163 } else if (lineargain > 127) {
164 analogmult = 1;
165 analoginit = lineargain / 2;
166 } else
167 analoginit = lineargain;
169 return analoginit + (analogmult << 7) + (digitalgain << 9);
173 static void set_balance(struct v4l2_subdev *sd)
175 struct mt9v011 *core = to_mt9v011(sd);
176 u16 green_gain, blue_gain, red_gain;
177 u16 exposure;
178 s16 bal;
180 exposure = core->exposure;
182 green_gain = calc_mt9v011_gain(core->global_gain);
184 bal = core->global_gain;
185 bal += (core->blue_bal * core->global_gain / (1 << 7));
186 blue_gain = calc_mt9v011_gain(bal);
188 bal = core->global_gain;
189 bal += (core->red_bal * core->global_gain / (1 << 7));
190 red_gain = calc_mt9v011_gain(bal);
192 mt9v011_write(sd, R2B_MT9V011_GREEN_1_GAIN, green_gain);
193 mt9v011_write(sd, R2E_MT9V011_GREEN_2_GAIN, green_gain);
194 mt9v011_write(sd, R2C_MT9V011_BLUE_GAIN, blue_gain);
195 mt9v011_write(sd, R2D_MT9V011_RED_GAIN, red_gain);
196 mt9v011_write(sd, R09_MT9V011_SHUTTER_WIDTH, exposure);
199 static void calc_fps(struct v4l2_subdev *sd, u32 *numerator, u32 *denominator)
201 struct mt9v011 *core = to_mt9v011(sd);
202 unsigned height, width, hblank, vblank, speed;
203 unsigned row_time, t_time;
204 u64 frames_per_ms;
205 unsigned tmp;
207 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
208 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
209 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
210 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
211 speed = mt9v011_read(sd, R0A_MT9V011_CLK_SPEED);
213 row_time = (width + 113 + hblank) * (speed + 2);
214 t_time = row_time * (height + vblank + 1);
216 frames_per_ms = core->xtal * 1000l;
217 do_div(frames_per_ms, t_time);
218 tmp = frames_per_ms;
220 v4l2_dbg(1, debug, sd, "Programmed to %u.%03u fps (%d pixel clcks)\n",
221 tmp / 1000, tmp % 1000, t_time);
223 if (numerator && denominator) {
224 *numerator = 1000;
225 *denominator = (u32)frames_per_ms;
229 static u16 calc_speed(struct v4l2_subdev *sd, u32 numerator, u32 denominator)
231 struct mt9v011 *core = to_mt9v011(sd);
232 unsigned height, width, hblank, vblank;
233 unsigned row_time, line_time;
234 u64 t_time, speed;
236 /* Avoid bogus calculus */
237 if (!numerator || !denominator)
238 return 0;
240 height = mt9v011_read(sd, R03_MT9V011_HEIGHT);
241 width = mt9v011_read(sd, R04_MT9V011_WIDTH);
242 hblank = mt9v011_read(sd, R05_MT9V011_HBLANK);
243 vblank = mt9v011_read(sd, R06_MT9V011_VBLANK);
245 row_time = width + 113 + hblank;
246 line_time = height + vblank + 1;
248 t_time = core->xtal * ((u64)numerator);
249 /* round to the closest value */
250 t_time += denominator / 2;
251 do_div(t_time, denominator);
253 speed = t_time;
254 do_div(speed, row_time * line_time);
256 /* Avoid having a negative value for speed */
257 if (speed < 2)
258 speed = 0;
259 else
260 speed -= 2;
262 /* Avoid speed overflow */
263 if (speed > 15)
264 return 15;
266 return (u16)speed;
269 static void set_res(struct v4l2_subdev *sd)
271 struct mt9v011 *core = to_mt9v011(sd);
272 unsigned vstart, hstart;
275 * The mt9v011 doesn't have scaling. So, in order to select the desired
276 * resolution, we're cropping at the middle of the sensor.
277 * hblank and vblank should be adjusted, in order to warrant that
278 * we'll preserve the line timings for 30 fps, no matter what resolution
279 * is selected.
280 * NOTE: datasheet says that width (and height) should be filled with
281 * width-1. However, this doesn't work, since one pixel per line will
282 * be missing.
285 hstart = 20 + (640 - core->width) / 2;
286 mt9v011_write(sd, R02_MT9V011_COLSTART, hstart);
287 mt9v011_write(sd, R04_MT9V011_WIDTH, core->width);
288 mt9v011_write(sd, R05_MT9V011_HBLANK, 771 - core->width);
290 vstart = 8 + (480 - core->height) / 2;
291 mt9v011_write(sd, R01_MT9V011_ROWSTART, vstart);
292 mt9v011_write(sd, R03_MT9V011_HEIGHT, core->height);
293 mt9v011_write(sd, R06_MT9V011_VBLANK, 508 - core->height);
295 calc_fps(sd, NULL, NULL);
298 static void set_read_mode(struct v4l2_subdev *sd)
300 struct mt9v011 *core = to_mt9v011(sd);
301 unsigned mode = 0x1000;
303 if (core->hflip)
304 mode |= 0x4000;
306 if (core->vflip)
307 mode |= 0x8000;
309 mt9v011_write(sd, R20_MT9V011_READ_MODE, mode);
312 static int mt9v011_reset(struct v4l2_subdev *sd, u32 val)
314 int i;
316 for (i = 0; i < ARRAY_SIZE(mt9v011_init_default); i++)
317 mt9v011_write(sd, mt9v011_init_default[i].reg,
318 mt9v011_init_default[i].value);
320 set_balance(sd);
321 set_res(sd);
322 set_read_mode(sd);
324 return 0;
327 static int mt9v011_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
328 enum v4l2_mbus_pixelcode *code)
330 if (index > 0)
331 return -EINVAL;
333 *code = V4L2_MBUS_FMT_SGRBG8_1X8;
334 return 0;
337 static int mt9v011_try_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
339 if (fmt->code != V4L2_MBUS_FMT_SGRBG8_1X8)
340 return -EINVAL;
342 v4l_bound_align_image(&fmt->width, 48, 639, 1,
343 &fmt->height, 32, 480, 1, 0);
344 fmt->field = V4L2_FIELD_NONE;
345 fmt->colorspace = V4L2_COLORSPACE_SRGB;
347 return 0;
350 static int mt9v011_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
352 struct v4l2_captureparm *cp = &parms->parm.capture;
354 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
355 return -EINVAL;
357 memset(cp, 0, sizeof(struct v4l2_captureparm));
358 cp->capability = V4L2_CAP_TIMEPERFRAME;
359 calc_fps(sd,
360 &cp->timeperframe.numerator,
361 &cp->timeperframe.denominator);
363 return 0;
366 static int mt9v011_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
368 struct v4l2_captureparm *cp = &parms->parm.capture;
369 struct v4l2_fract *tpf = &cp->timeperframe;
370 u16 speed;
372 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
373 return -EINVAL;
374 if (cp->extendedmode != 0)
375 return -EINVAL;
377 speed = calc_speed(sd, tpf->numerator, tpf->denominator);
379 mt9v011_write(sd, R0A_MT9V011_CLK_SPEED, speed);
380 v4l2_dbg(1, debug, sd, "Setting speed to %d\n", speed);
382 /* Recalculate and update fps info */
383 calc_fps(sd, &tpf->numerator, &tpf->denominator);
385 return 0;
388 static int mt9v011_s_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt)
390 struct mt9v011 *core = to_mt9v011(sd);
391 int rc;
393 rc = mt9v011_try_mbus_fmt(sd, fmt);
394 if (rc < 0)
395 return -EINVAL;
397 core->width = fmt->width;
398 core->height = fmt->height;
400 set_res(sd);
402 return 0;
405 #ifdef CONFIG_VIDEO_ADV_DEBUG
406 static int mt9v011_g_register(struct v4l2_subdev *sd,
407 struct v4l2_dbg_register *reg)
409 reg->val = mt9v011_read(sd, reg->reg & 0xff);
410 reg->size = 2;
412 return 0;
415 static int mt9v011_s_register(struct v4l2_subdev *sd,
416 const struct v4l2_dbg_register *reg)
418 mt9v011_write(sd, reg->reg & 0xff, reg->val & 0xffff);
420 return 0;
422 #endif
424 static int mt9v011_s_ctrl(struct v4l2_ctrl *ctrl)
426 struct mt9v011 *core =
427 container_of(ctrl->handler, struct mt9v011, ctrls);
428 struct v4l2_subdev *sd = &core->sd;
430 switch (ctrl->id) {
431 case V4L2_CID_GAIN:
432 core->global_gain = ctrl->val;
433 break;
434 case V4L2_CID_EXPOSURE:
435 core->exposure = ctrl->val;
436 break;
437 case V4L2_CID_RED_BALANCE:
438 core->red_bal = ctrl->val;
439 break;
440 case V4L2_CID_BLUE_BALANCE:
441 core->blue_bal = ctrl->val;
442 break;
443 case V4L2_CID_HFLIP:
444 core->hflip = ctrl->val;
445 set_read_mode(sd);
446 return 0;
447 case V4L2_CID_VFLIP:
448 core->vflip = ctrl->val;
449 set_read_mode(sd);
450 return 0;
451 default:
452 return -EINVAL;
455 set_balance(sd);
456 return 0;
459 static struct v4l2_ctrl_ops mt9v011_ctrl_ops = {
460 .s_ctrl = mt9v011_s_ctrl,
463 static const struct v4l2_subdev_core_ops mt9v011_core_ops = {
464 .reset = mt9v011_reset,
465 #ifdef CONFIG_VIDEO_ADV_DEBUG
466 .g_register = mt9v011_g_register,
467 .s_register = mt9v011_s_register,
468 #endif
471 static const struct v4l2_subdev_video_ops mt9v011_video_ops = {
472 .enum_mbus_fmt = mt9v011_enum_mbus_fmt,
473 .try_mbus_fmt = mt9v011_try_mbus_fmt,
474 .s_mbus_fmt = mt9v011_s_mbus_fmt,
475 .g_parm = mt9v011_g_parm,
476 .s_parm = mt9v011_s_parm,
479 static const struct v4l2_subdev_ops mt9v011_ops = {
480 .core = &mt9v011_core_ops,
481 .video = &mt9v011_video_ops,
485 /****************************************************************************
486 I2C Client & Driver
487 ****************************************************************************/
489 static int mt9v011_probe(struct i2c_client *c,
490 const struct i2c_device_id *id)
492 u16 version;
493 struct mt9v011 *core;
494 struct v4l2_subdev *sd;
496 /* Check if the adapter supports the needed features */
497 if (!i2c_check_functionality(c->adapter,
498 I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA))
499 return -EIO;
501 core = devm_kzalloc(&c->dev, sizeof(struct mt9v011), GFP_KERNEL);
502 if (!core)
503 return -ENOMEM;
505 sd = &core->sd;
506 v4l2_i2c_subdev_init(sd, c, &mt9v011_ops);
508 /* Check if the sensor is really a MT9V011 */
509 version = mt9v011_read(sd, R00_MT9V011_CHIP_VERSION);
510 if ((version != MT9V011_VERSION) &&
511 (version != MT9V011_REV_B_VERSION)) {
512 v4l2_info(sd, "*** unknown micron chip detected (0x%04x).\n",
513 version);
514 return -EINVAL;
517 v4l2_ctrl_handler_init(&core->ctrls, 5);
518 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
519 V4L2_CID_GAIN, 0, (1 << 12) - 1 - 0x20, 1, 0x20);
520 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
521 V4L2_CID_EXPOSURE, 0, 2047, 1, 0x01fc);
522 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
523 V4L2_CID_RED_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
524 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
525 V4L2_CID_BLUE_BALANCE, -(1 << 9), (1 << 9) - 1, 1, 0);
526 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
527 V4L2_CID_HFLIP, 0, 1, 1, 0);
528 v4l2_ctrl_new_std(&core->ctrls, &mt9v011_ctrl_ops,
529 V4L2_CID_VFLIP, 0, 1, 1, 0);
531 if (core->ctrls.error) {
532 int ret = core->ctrls.error;
534 v4l2_err(sd, "control initialization error %d\n", ret);
535 v4l2_ctrl_handler_free(&core->ctrls);
536 return ret;
538 core->sd.ctrl_handler = &core->ctrls;
540 core->global_gain = 0x0024;
541 core->exposure = 0x01fc;
542 core->width = 640;
543 core->height = 480;
544 core->xtal = 27000000; /* Hz */
546 if (c->dev.platform_data) {
547 struct mt9v011_platform_data *pdata = c->dev.platform_data;
549 core->xtal = pdata->xtal;
550 v4l2_dbg(1, debug, sd, "xtal set to %d.%03d MHz\n",
551 core->xtal / 1000000, (core->xtal / 1000) % 1000);
554 v4l_info(c, "chip found @ 0x%02x (%s - chip version 0x%04x)\n",
555 c->addr << 1, c->adapter->name, version);
557 return 0;
560 static int mt9v011_remove(struct i2c_client *c)
562 struct v4l2_subdev *sd = i2c_get_clientdata(c);
563 struct mt9v011 *core = to_mt9v011(sd);
565 v4l2_dbg(1, debug, sd,
566 "mt9v011.c: removing mt9v011 adapter on address 0x%x\n",
567 c->addr << 1);
569 v4l2_device_unregister_subdev(sd);
570 v4l2_ctrl_handler_free(&core->ctrls);
572 return 0;
575 /* ----------------------------------------------------------------------- */
577 static const struct i2c_device_id mt9v011_id[] = {
578 { "mt9v011", 0 },
581 MODULE_DEVICE_TABLE(i2c, mt9v011_id);
583 static struct i2c_driver mt9v011_driver = {
584 .driver = {
585 .owner = THIS_MODULE,
586 .name = "mt9v011",
588 .probe = mt9v011_probe,
589 .remove = mt9v011_remove,
590 .id_table = mt9v011_id,
593 module_i2c_driver(mt9v011_driver);