PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / media / platform / marvell-ccic / mcam-core.c
blob32fab30a910590ba290ef987aaad8ed1df78e74f
1 /*
2 * The Marvell camera core. This device appears in a number of settings,
3 * so it needs platform-specific support outside of the core.
5 * Copyright 2011 Jonathan Corbet corbet@lwn.net
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 #include <linux/device.h>
16 #include <linux/wait.h>
17 #include <linux/list.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/delay.h>
20 #include <linux/vmalloc.h>
21 #include <linux/io.h>
22 #include <linux/clk.h>
23 #include <linux/videodev2.h>
24 #include <media/v4l2-device.h>
25 #include <media/v4l2-ioctl.h>
26 #include <media/v4l2-ctrls.h>
27 #include <media/ov7670.h>
28 #include <media/videobuf2-vmalloc.h>
29 #include <media/videobuf2-dma-contig.h>
30 #include <media/videobuf2-dma-sg.h>
32 #include "mcam-core.h"
34 #ifdef MCAM_MODE_VMALLOC
36 * Internal DMA buffer management. Since the controller cannot do S/G I/O,
37 * we must have physically contiguous buffers to bring frames into.
38 * These parameters control how many buffers we use, whether we
39 * allocate them at load time (better chance of success, but nails down
40 * memory) or when somebody tries to use the camera (riskier), and,
41 * for load-time allocation, how big they should be.
43 * The controller can cycle through three buffers. We could use
44 * more by flipping pointers around, but it probably makes little
45 * sense.
48 static bool alloc_bufs_at_read;
49 module_param(alloc_bufs_at_read, bool, 0444);
50 MODULE_PARM_DESC(alloc_bufs_at_read,
51 "Non-zero value causes DMA buffers to be allocated when the "
52 "video capture device is read, rather than at module load "
53 "time. This saves memory, but decreases the chances of "
54 "successfully getting those buffers. This parameter is "
55 "only used in the vmalloc buffer mode");
57 static int n_dma_bufs = 3;
58 module_param(n_dma_bufs, uint, 0644);
59 MODULE_PARM_DESC(n_dma_bufs,
60 "The number of DMA buffers to allocate. Can be either two "
61 "(saves memory, makes timing tighter) or three.");
63 static int dma_buf_size = VGA_WIDTH * VGA_HEIGHT * 2; /* Worst case */
64 module_param(dma_buf_size, uint, 0444);
65 MODULE_PARM_DESC(dma_buf_size,
66 "The size of the allocated DMA buffers. If actual operating "
67 "parameters require larger buffers, an attempt to reallocate "
68 "will be made.");
69 #else /* MCAM_MODE_VMALLOC */
70 static const bool alloc_bufs_at_read = 0;
71 static const int n_dma_bufs = 3; /* Used by S/G_PARM */
72 #endif /* MCAM_MODE_VMALLOC */
74 static bool flip;
75 module_param(flip, bool, 0444);
76 MODULE_PARM_DESC(flip,
77 "If set, the sensor will be instructed to flip the image "
78 "vertically.");
80 static int buffer_mode = -1;
81 module_param(buffer_mode, int, 0444);
82 MODULE_PARM_DESC(buffer_mode,
83 "Set the buffer mode to be used; default is to go with what "
84 "the platform driver asks for. Set to 0 for vmalloc, 1 for "
85 "DMA contiguous.");
88 * Status flags. Always manipulated with bit operations.
90 #define CF_BUF0_VALID 0 /* Buffers valid - first three */
91 #define CF_BUF1_VALID 1
92 #define CF_BUF2_VALID 2
93 #define CF_DMA_ACTIVE 3 /* A frame is incoming */
94 #define CF_CONFIG_NEEDED 4 /* Must configure hardware */
95 #define CF_SINGLE_BUFFER 5 /* Running with a single buffer */
96 #define CF_SG_RESTART 6 /* SG restart needed */
97 #define CF_FRAME_SOF0 7 /* Frame 0 started */
98 #define CF_FRAME_SOF1 8
99 #define CF_FRAME_SOF2 9
101 #define sensor_call(cam, o, f, args...) \
102 v4l2_subdev_call(cam->sensor, o, f, ##args)
104 static struct mcam_format_struct {
105 __u8 *desc;
106 __u32 pixelformat;
107 int bpp; /* Bytes per pixel */
108 bool planar;
109 enum v4l2_mbus_pixelcode mbus_code;
110 } mcam_formats[] = {
112 .desc = "YUYV 4:2:2",
113 .pixelformat = V4L2_PIX_FMT_YUYV,
114 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
115 .bpp = 2,
116 .planar = false,
119 .desc = "UYVY 4:2:2",
120 .pixelformat = V4L2_PIX_FMT_UYVY,
121 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
122 .bpp = 2,
123 .planar = false,
126 .desc = "YUV 4:2:2 PLANAR",
127 .pixelformat = V4L2_PIX_FMT_YUV422P,
128 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
129 .bpp = 2,
130 .planar = true,
133 .desc = "YUV 4:2:0 PLANAR",
134 .pixelformat = V4L2_PIX_FMT_YUV420,
135 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
136 .bpp = 2,
137 .planar = true,
140 .desc = "YVU 4:2:0 PLANAR",
141 .pixelformat = V4L2_PIX_FMT_YVU420,
142 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
143 .bpp = 2,
144 .planar = true,
147 .desc = "RGB 444",
148 .pixelformat = V4L2_PIX_FMT_RGB444,
149 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
150 .bpp = 2,
151 .planar = false,
154 .desc = "RGB 565",
155 .pixelformat = V4L2_PIX_FMT_RGB565,
156 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
157 .bpp = 2,
158 .planar = false,
161 .desc = "Raw RGB Bayer",
162 .pixelformat = V4L2_PIX_FMT_SBGGR8,
163 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
164 .bpp = 1,
165 .planar = false,
168 #define N_MCAM_FMTS ARRAY_SIZE(mcam_formats)
170 static struct mcam_format_struct *mcam_find_format(u32 pixelformat)
172 unsigned i;
174 for (i = 0; i < N_MCAM_FMTS; i++)
175 if (mcam_formats[i].pixelformat == pixelformat)
176 return mcam_formats + i;
177 /* Not found? Then return the first format. */
178 return mcam_formats;
182 * The default format we use until somebody says otherwise.
184 static const struct v4l2_pix_format mcam_def_pix_format = {
185 .width = VGA_WIDTH,
186 .height = VGA_HEIGHT,
187 .pixelformat = V4L2_PIX_FMT_YUYV,
188 .field = V4L2_FIELD_NONE,
189 .bytesperline = VGA_WIDTH*2,
190 .sizeimage = VGA_WIDTH*VGA_HEIGHT*2,
193 static const enum v4l2_mbus_pixelcode mcam_def_mbus_code =
194 V4L2_MBUS_FMT_YUYV8_2X8;
198 * The two-word DMA descriptor format used by the Armada 610 and like. There
199 * Is a three-word format as well (set C1_DESC_3WORD) where the third
200 * word is a pointer to the next descriptor, but we don't use it. Two-word
201 * descriptors have to be contiguous in memory.
203 struct mcam_dma_desc {
204 u32 dma_addr;
205 u32 segment_len;
208 struct yuv_pointer_t {
209 dma_addr_t y;
210 dma_addr_t u;
211 dma_addr_t v;
215 * Our buffer type for working with videobuf2. Note that the vb2
216 * developers have decreed that struct vb2_buffer must be at the
217 * beginning of this structure.
219 struct mcam_vb_buffer {
220 struct vb2_buffer vb_buf;
221 struct list_head queue;
222 struct mcam_dma_desc *dma_desc; /* Descriptor virtual address */
223 dma_addr_t dma_desc_pa; /* Descriptor physical address */
224 int dma_desc_nent; /* Number of mapped descriptors */
225 struct yuv_pointer_t yuv_p;
228 static inline struct mcam_vb_buffer *vb_to_mvb(struct vb2_buffer *vb)
230 return container_of(vb, struct mcam_vb_buffer, vb_buf);
234 * Hand a completed buffer back to user space.
236 static void mcam_buffer_done(struct mcam_camera *cam, int frame,
237 struct vb2_buffer *vbuf)
239 vbuf->v4l2_buf.bytesused = cam->pix_format.sizeimage;
240 vbuf->v4l2_buf.sequence = cam->buf_seq[frame];
241 vb2_set_plane_payload(vbuf, 0, cam->pix_format.sizeimage);
242 vb2_buffer_done(vbuf, VB2_BUF_STATE_DONE);
248 * Debugging and related.
250 #define cam_err(cam, fmt, arg...) \
251 dev_err((cam)->dev, fmt, ##arg);
252 #define cam_warn(cam, fmt, arg...) \
253 dev_warn((cam)->dev, fmt, ##arg);
254 #define cam_dbg(cam, fmt, arg...) \
255 dev_dbg((cam)->dev, fmt, ##arg);
259 * Flag manipulation helpers
261 static void mcam_reset_buffers(struct mcam_camera *cam)
263 int i;
265 cam->next_buf = -1;
266 for (i = 0; i < cam->nbufs; i++) {
267 clear_bit(i, &cam->flags);
268 clear_bit(CF_FRAME_SOF0 + i, &cam->flags);
272 static inline int mcam_needs_config(struct mcam_camera *cam)
274 return test_bit(CF_CONFIG_NEEDED, &cam->flags);
277 static void mcam_set_config_needed(struct mcam_camera *cam, int needed)
279 if (needed)
280 set_bit(CF_CONFIG_NEEDED, &cam->flags);
281 else
282 clear_bit(CF_CONFIG_NEEDED, &cam->flags);
285 /* ------------------------------------------------------------------- */
287 * Make the controller start grabbing images. Everything must
288 * be set up before doing this.
290 static void mcam_ctlr_start(struct mcam_camera *cam)
292 /* set_bit performs a read, so no other barrier should be
293 needed here */
294 mcam_reg_set_bit(cam, REG_CTRL0, C0_ENABLE);
297 static void mcam_ctlr_stop(struct mcam_camera *cam)
299 mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
302 static void mcam_enable_mipi(struct mcam_camera *mcam)
304 /* Using MIPI mode and enable MIPI */
305 cam_dbg(mcam, "camera: DPHY3=0x%x, DPHY5=0x%x, DPHY6=0x%x\n",
306 mcam->dphy[0], mcam->dphy[1], mcam->dphy[2]);
307 mcam_reg_write(mcam, REG_CSI2_DPHY3, mcam->dphy[0]);
308 mcam_reg_write(mcam, REG_CSI2_DPHY5, mcam->dphy[1]);
309 mcam_reg_write(mcam, REG_CSI2_DPHY6, mcam->dphy[2]);
311 if (!mcam->mipi_enabled) {
312 if (mcam->lane > 4 || mcam->lane <= 0) {
313 cam_warn(mcam, "lane number error\n");
314 mcam->lane = 1; /* set the default value */
317 * 0x41 actives 1 lane
318 * 0x43 actives 2 lanes
319 * 0x45 actives 3 lanes (never happen)
320 * 0x47 actives 4 lanes
322 mcam_reg_write(mcam, REG_CSI2_CTRL0,
323 CSI2_C0_MIPI_EN | CSI2_C0_ACT_LANE(mcam->lane));
324 mcam_reg_write(mcam, REG_CLKCTRL,
325 (mcam->mclk_src << 29) | mcam->mclk_div);
327 mcam->mipi_enabled = true;
331 static void mcam_disable_mipi(struct mcam_camera *mcam)
333 /* Using Parallel mode or disable MIPI */
334 mcam_reg_write(mcam, REG_CSI2_CTRL0, 0x0);
335 mcam_reg_write(mcam, REG_CSI2_DPHY3, 0x0);
336 mcam_reg_write(mcam, REG_CSI2_DPHY5, 0x0);
337 mcam_reg_write(mcam, REG_CSI2_DPHY6, 0x0);
338 mcam->mipi_enabled = false;
341 /* ------------------------------------------------------------------- */
343 #ifdef MCAM_MODE_VMALLOC
345 * Code specific to the vmalloc buffer mode.
349 * Allocate in-kernel DMA buffers for vmalloc mode.
351 static int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
353 int i;
355 mcam_set_config_needed(cam, 1);
356 if (loadtime)
357 cam->dma_buf_size = dma_buf_size;
358 else
359 cam->dma_buf_size = cam->pix_format.sizeimage;
360 if (n_dma_bufs > 3)
361 n_dma_bufs = 3;
363 cam->nbufs = 0;
364 for (i = 0; i < n_dma_bufs; i++) {
365 cam->dma_bufs[i] = dma_alloc_coherent(cam->dev,
366 cam->dma_buf_size, cam->dma_handles + i,
367 GFP_KERNEL);
368 if (cam->dma_bufs[i] == NULL) {
369 cam_warn(cam, "Failed to allocate DMA buffer\n");
370 break;
372 (cam->nbufs)++;
375 switch (cam->nbufs) {
376 case 1:
377 dma_free_coherent(cam->dev, cam->dma_buf_size,
378 cam->dma_bufs[0], cam->dma_handles[0]);
379 cam->nbufs = 0;
380 case 0:
381 cam_err(cam, "Insufficient DMA buffers, cannot operate\n");
382 return -ENOMEM;
384 case 2:
385 if (n_dma_bufs > 2)
386 cam_warn(cam, "Will limp along with only 2 buffers\n");
387 break;
389 return 0;
392 static void mcam_free_dma_bufs(struct mcam_camera *cam)
394 int i;
396 for (i = 0; i < cam->nbufs; i++) {
397 dma_free_coherent(cam->dev, cam->dma_buf_size,
398 cam->dma_bufs[i], cam->dma_handles[i]);
399 cam->dma_bufs[i] = NULL;
401 cam->nbufs = 0;
406 * Set up DMA buffers when operating in vmalloc mode
408 static void mcam_ctlr_dma_vmalloc(struct mcam_camera *cam)
411 * Store the first two Y buffers (we aren't supporting
412 * planar formats for now, so no UV bufs). Then either
413 * set the third if it exists, or tell the controller
414 * to just use two.
416 mcam_reg_write(cam, REG_Y0BAR, cam->dma_handles[0]);
417 mcam_reg_write(cam, REG_Y1BAR, cam->dma_handles[1]);
418 if (cam->nbufs > 2) {
419 mcam_reg_write(cam, REG_Y2BAR, cam->dma_handles[2]);
420 mcam_reg_clear_bit(cam, REG_CTRL1, C1_TWOBUFS);
421 } else
422 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
423 if (cam->chip_id == MCAM_CAFE)
424 mcam_reg_write(cam, REG_UBAR, 0); /* 32 bits only */
428 * Copy data out to user space in the vmalloc case
430 static void mcam_frame_tasklet(unsigned long data)
432 struct mcam_camera *cam = (struct mcam_camera *) data;
433 int i;
434 unsigned long flags;
435 struct mcam_vb_buffer *buf;
437 spin_lock_irqsave(&cam->dev_lock, flags);
438 for (i = 0; i < cam->nbufs; i++) {
439 int bufno = cam->next_buf;
441 if (cam->state != S_STREAMING || bufno < 0)
442 break; /* I/O got stopped */
443 if (++(cam->next_buf) >= cam->nbufs)
444 cam->next_buf = 0;
445 if (!test_bit(bufno, &cam->flags))
446 continue;
447 if (list_empty(&cam->buffers)) {
448 cam->frame_state.singles++;
449 break; /* Leave it valid, hope for better later */
451 cam->frame_state.delivered++;
452 clear_bit(bufno, &cam->flags);
453 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
454 queue);
455 list_del_init(&buf->queue);
457 * Drop the lock during the big copy. This *should* be safe...
459 spin_unlock_irqrestore(&cam->dev_lock, flags);
460 memcpy(vb2_plane_vaddr(&buf->vb_buf, 0), cam->dma_bufs[bufno],
461 cam->pix_format.sizeimage);
462 mcam_buffer_done(cam, bufno, &buf->vb_buf);
463 spin_lock_irqsave(&cam->dev_lock, flags);
465 spin_unlock_irqrestore(&cam->dev_lock, flags);
470 * Make sure our allocated buffers are up to the task.
472 static int mcam_check_dma_buffers(struct mcam_camera *cam)
474 if (cam->nbufs > 0 && cam->dma_buf_size < cam->pix_format.sizeimage)
475 mcam_free_dma_bufs(cam);
476 if (cam->nbufs == 0)
477 return mcam_alloc_dma_bufs(cam, 0);
478 return 0;
481 static void mcam_vmalloc_done(struct mcam_camera *cam, int frame)
483 tasklet_schedule(&cam->s_tasklet);
486 #else /* MCAM_MODE_VMALLOC */
488 static inline int mcam_alloc_dma_bufs(struct mcam_camera *cam, int loadtime)
490 return 0;
493 static inline void mcam_free_dma_bufs(struct mcam_camera *cam)
495 return;
498 static inline int mcam_check_dma_buffers(struct mcam_camera *cam)
500 return 0;
505 #endif /* MCAM_MODE_VMALLOC */
508 #ifdef MCAM_MODE_DMA_CONTIG
509 /* ---------------------------------------------------------------------- */
511 * DMA-contiguous code.
514 static bool mcam_fmt_is_planar(__u32 pfmt)
516 struct mcam_format_struct *f;
518 f = mcam_find_format(pfmt);
519 return f->planar;
523 * Set up a contiguous buffer for the given frame. Here also is where
524 * the underrun strategy is set: if there is no buffer available, reuse
525 * the buffer from the other BAR and set the CF_SINGLE_BUFFER flag to
526 * keep the interrupt handler from giving that buffer back to user
527 * space. In this way, we always have a buffer to DMA to and don't
528 * have to try to play games stopping and restarting the controller.
530 static void mcam_set_contig_buffer(struct mcam_camera *cam, int frame)
532 struct mcam_vb_buffer *buf;
533 struct v4l2_pix_format *fmt = &cam->pix_format;
534 dma_addr_t dma_handle;
535 u32 pixel_count = fmt->width * fmt->height;
536 struct vb2_buffer *vb;
539 * If there are no available buffers, go into single mode
541 if (list_empty(&cam->buffers)) {
542 buf = cam->vb_bufs[frame ^ 0x1];
543 set_bit(CF_SINGLE_BUFFER, &cam->flags);
544 cam->frame_state.singles++;
545 } else {
547 * OK, we have a buffer we can use.
549 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer,
550 queue);
551 list_del_init(&buf->queue);
552 clear_bit(CF_SINGLE_BUFFER, &cam->flags);
555 cam->vb_bufs[frame] = buf;
556 vb = &buf->vb_buf;
558 dma_handle = vb2_dma_contig_plane_dma_addr(vb, 0);
559 buf->yuv_p.y = dma_handle;
561 switch (cam->pix_format.pixelformat) {
562 case V4L2_PIX_FMT_YUV422P:
563 buf->yuv_p.u = buf->yuv_p.y + pixel_count;
564 buf->yuv_p.v = buf->yuv_p.u + pixel_count / 2;
565 break;
566 case V4L2_PIX_FMT_YUV420:
567 buf->yuv_p.u = buf->yuv_p.y + pixel_count;
568 buf->yuv_p.v = buf->yuv_p.u + pixel_count / 4;
569 break;
570 case V4L2_PIX_FMT_YVU420:
571 buf->yuv_p.v = buf->yuv_p.y + pixel_count;
572 buf->yuv_p.u = buf->yuv_p.v + pixel_count / 4;
573 break;
574 default:
575 break;
578 mcam_reg_write(cam, frame == 0 ? REG_Y0BAR : REG_Y1BAR, buf->yuv_p.y);
579 if (mcam_fmt_is_planar(fmt->pixelformat)) {
580 mcam_reg_write(cam, frame == 0 ?
581 REG_U0BAR : REG_U1BAR, buf->yuv_p.u);
582 mcam_reg_write(cam, frame == 0 ?
583 REG_V0BAR : REG_V1BAR, buf->yuv_p.v);
588 * Initial B_DMA_contig setup.
590 static void mcam_ctlr_dma_contig(struct mcam_camera *cam)
592 mcam_reg_set_bit(cam, REG_CTRL1, C1_TWOBUFS);
593 cam->nbufs = 2;
594 mcam_set_contig_buffer(cam, 0);
595 mcam_set_contig_buffer(cam, 1);
599 * Frame completion handling.
601 static void mcam_dma_contig_done(struct mcam_camera *cam, int frame)
603 struct mcam_vb_buffer *buf = cam->vb_bufs[frame];
605 if (!test_bit(CF_SINGLE_BUFFER, &cam->flags)) {
606 cam->frame_state.delivered++;
607 mcam_buffer_done(cam, frame, &buf->vb_buf);
609 mcam_set_contig_buffer(cam, frame);
612 #endif /* MCAM_MODE_DMA_CONTIG */
614 #ifdef MCAM_MODE_DMA_SG
615 /* ---------------------------------------------------------------------- */
617 * Scatter/gather-specific code.
621 * Set up the next buffer for S/G I/O; caller should be sure that
622 * the controller is stopped and a buffer is available.
624 static void mcam_sg_next_buffer(struct mcam_camera *cam)
626 struct mcam_vb_buffer *buf;
628 buf = list_first_entry(&cam->buffers, struct mcam_vb_buffer, queue);
629 list_del_init(&buf->queue);
631 * Very Bad Not Good Things happen if you don't clear
632 * C1_DESC_ENA before making any descriptor changes.
634 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_ENA);
635 mcam_reg_write(cam, REG_DMA_DESC_Y, buf->dma_desc_pa);
636 mcam_reg_write(cam, REG_DESC_LEN_Y,
637 buf->dma_desc_nent*sizeof(struct mcam_dma_desc));
638 mcam_reg_write(cam, REG_DESC_LEN_U, 0);
639 mcam_reg_write(cam, REG_DESC_LEN_V, 0);
640 mcam_reg_set_bit(cam, REG_CTRL1, C1_DESC_ENA);
641 cam->vb_bufs[0] = buf;
645 * Initial B_DMA_sg setup
647 static void mcam_ctlr_dma_sg(struct mcam_camera *cam)
650 * The list-empty condition can hit us at resume time
651 * if the buffer list was empty when the system was suspended.
653 if (list_empty(&cam->buffers)) {
654 set_bit(CF_SG_RESTART, &cam->flags);
655 return;
658 mcam_reg_clear_bit(cam, REG_CTRL1, C1_DESC_3WORD);
659 mcam_sg_next_buffer(cam);
660 cam->nbufs = 3;
665 * Frame completion with S/G is trickier. We can't muck with
666 * a descriptor chain on the fly, since the controller buffers it
667 * internally. So we have to actually stop and restart; Marvell
668 * says this is the way to do it.
670 * Of course, stopping is easier said than done; experience shows
671 * that the controller can start a frame *after* C0_ENABLE has been
672 * cleared. So when running in S/G mode, the controller is "stopped"
673 * on receipt of the start-of-frame interrupt. That means we can
674 * safely change the DMA descriptor array here and restart things
675 * (assuming there's another buffer waiting to go).
677 static void mcam_dma_sg_done(struct mcam_camera *cam, int frame)
679 struct mcam_vb_buffer *buf = cam->vb_bufs[0];
682 * If we're no longer supposed to be streaming, don't do anything.
684 if (cam->state != S_STREAMING)
685 return;
687 * If we have another buffer available, put it in and
688 * restart the engine.
690 if (!list_empty(&cam->buffers)) {
691 mcam_sg_next_buffer(cam);
692 mcam_ctlr_start(cam);
694 * Otherwise set CF_SG_RESTART and the controller will
695 * be restarted once another buffer shows up.
697 } else {
698 set_bit(CF_SG_RESTART, &cam->flags);
699 cam->frame_state.singles++;
700 cam->vb_bufs[0] = NULL;
703 * Now we can give the completed frame back to user space.
705 cam->frame_state.delivered++;
706 mcam_buffer_done(cam, frame, &buf->vb_buf);
711 * Scatter/gather mode requires stopping the controller between
712 * frames so we can put in a new DMA descriptor array. If no new
713 * buffer exists at frame completion, the controller is left stopped;
714 * this function is charged with gettig things going again.
716 static void mcam_sg_restart(struct mcam_camera *cam)
718 mcam_ctlr_dma_sg(cam);
719 mcam_ctlr_start(cam);
720 clear_bit(CF_SG_RESTART, &cam->flags);
723 #else /* MCAM_MODE_DMA_SG */
725 static inline void mcam_sg_restart(struct mcam_camera *cam)
727 return;
730 #endif /* MCAM_MODE_DMA_SG */
732 /* ---------------------------------------------------------------------- */
734 * Buffer-mode-independent controller code.
738 * Image format setup
740 static void mcam_ctlr_image(struct mcam_camera *cam)
742 struct v4l2_pix_format *fmt = &cam->pix_format;
743 u32 widthy = 0, widthuv = 0, imgsz_h, imgsz_w;
745 cam_dbg(cam, "camera: bytesperline = %d; height = %d\n",
746 fmt->bytesperline, fmt->sizeimage / fmt->bytesperline);
747 imgsz_h = (fmt->height << IMGSZ_V_SHIFT) & IMGSZ_V_MASK;
748 imgsz_w = (fmt->width * 2) & IMGSZ_H_MASK;
750 switch (fmt->pixelformat) {
751 case V4L2_PIX_FMT_YUYV:
752 case V4L2_PIX_FMT_UYVY:
753 widthy = fmt->width * 2;
754 widthuv = 0;
755 break;
756 case V4L2_PIX_FMT_JPEG:
757 imgsz_h = (fmt->sizeimage / fmt->bytesperline) << IMGSZ_V_SHIFT;
758 widthy = fmt->bytesperline;
759 widthuv = 0;
760 break;
761 case V4L2_PIX_FMT_YUV422P:
762 case V4L2_PIX_FMT_YUV420:
763 case V4L2_PIX_FMT_YVU420:
764 widthy = fmt->width;
765 widthuv = fmt->width / 2;
766 break;
767 default:
768 widthy = fmt->bytesperline;
769 widthuv = 0;
772 mcam_reg_write_mask(cam, REG_IMGPITCH, widthuv << 16 | widthy,
773 IMGP_YP_MASK | IMGP_UVP_MASK);
774 mcam_reg_write(cam, REG_IMGSIZE, imgsz_h | imgsz_w);
775 mcam_reg_write(cam, REG_IMGOFFSET, 0x0);
778 * Tell the controller about the image format we are using.
780 switch (fmt->pixelformat) {
781 case V4L2_PIX_FMT_YUV422P:
782 mcam_reg_write_mask(cam, REG_CTRL0,
783 C0_DF_YUV | C0_YUV_PLANAR | C0_YUVE_YVYU, C0_DF_MASK);
784 break;
785 case V4L2_PIX_FMT_YUV420:
786 case V4L2_PIX_FMT_YVU420:
787 mcam_reg_write_mask(cam, REG_CTRL0,
788 C0_DF_YUV | C0_YUV_420PL | C0_YUVE_YVYU, C0_DF_MASK);
789 break;
790 case V4L2_PIX_FMT_YUYV:
791 mcam_reg_write_mask(cam, REG_CTRL0,
792 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_UYVY, C0_DF_MASK);
793 break;
794 case V4L2_PIX_FMT_UYVY:
795 mcam_reg_write_mask(cam, REG_CTRL0,
796 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
797 break;
798 case V4L2_PIX_FMT_JPEG:
799 mcam_reg_write_mask(cam, REG_CTRL0,
800 C0_DF_YUV | C0_YUV_PACKED | C0_YUVE_YUYV, C0_DF_MASK);
801 break;
802 case V4L2_PIX_FMT_RGB444:
803 mcam_reg_write_mask(cam, REG_CTRL0,
804 C0_DF_RGB | C0_RGBF_444 | C0_RGB4_XRGB, C0_DF_MASK);
805 /* Alpha value? */
806 break;
807 case V4L2_PIX_FMT_RGB565:
808 mcam_reg_write_mask(cam, REG_CTRL0,
809 C0_DF_RGB | C0_RGBF_565 | C0_RGB5_BGGR, C0_DF_MASK);
810 break;
811 default:
812 cam_err(cam, "camera: unknown format: %#x\n", fmt->pixelformat);
813 break;
817 * Make sure it knows we want to use hsync/vsync.
819 mcam_reg_write_mask(cam, REG_CTRL0, C0_SIF_HVSYNC, C0_SIFM_MASK);
821 * This field controls the generation of EOF(DVP only)
823 if (cam->bus_type != V4L2_MBUS_CSI2)
824 mcam_reg_set_bit(cam, REG_CTRL0,
825 C0_EOF_VSYNC | C0_VEDGE_CTRL);
830 * Configure the controller for operation; caller holds the
831 * device mutex.
833 static int mcam_ctlr_configure(struct mcam_camera *cam)
835 unsigned long flags;
837 spin_lock_irqsave(&cam->dev_lock, flags);
838 clear_bit(CF_SG_RESTART, &cam->flags);
839 cam->dma_setup(cam);
840 mcam_ctlr_image(cam);
841 mcam_set_config_needed(cam, 0);
842 spin_unlock_irqrestore(&cam->dev_lock, flags);
843 return 0;
846 static void mcam_ctlr_irq_enable(struct mcam_camera *cam)
849 * Clear any pending interrupts, since we do not
850 * expect to have I/O active prior to enabling.
852 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS);
853 mcam_reg_set_bit(cam, REG_IRQMASK, FRAMEIRQS);
856 static void mcam_ctlr_irq_disable(struct mcam_camera *cam)
858 mcam_reg_clear_bit(cam, REG_IRQMASK, FRAMEIRQS);
863 static void mcam_ctlr_init(struct mcam_camera *cam)
865 unsigned long flags;
867 spin_lock_irqsave(&cam->dev_lock, flags);
869 * Make sure it's not powered down.
871 mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
873 * Turn off the enable bit. It sure should be off anyway,
874 * but it's good to be sure.
876 mcam_reg_clear_bit(cam, REG_CTRL0, C0_ENABLE);
878 * Clock the sensor appropriately. Controller clock should
879 * be 48MHz, sensor "typical" value is half that.
881 mcam_reg_write_mask(cam, REG_CLKCTRL, 2, CLK_DIV_MASK);
882 spin_unlock_irqrestore(&cam->dev_lock, flags);
887 * Stop the controller, and don't return until we're really sure that no
888 * further DMA is going on.
890 static void mcam_ctlr_stop_dma(struct mcam_camera *cam)
892 unsigned long flags;
895 * Theory: stop the camera controller (whether it is operating
896 * or not). Delay briefly just in case we race with the SOF
897 * interrupt, then wait until no DMA is active.
899 spin_lock_irqsave(&cam->dev_lock, flags);
900 clear_bit(CF_SG_RESTART, &cam->flags);
901 mcam_ctlr_stop(cam);
902 cam->state = S_IDLE;
903 spin_unlock_irqrestore(&cam->dev_lock, flags);
905 * This is a brutally long sleep, but experience shows that
906 * it can take the controller a while to get the message that
907 * it needs to stop grabbing frames. In particular, we can
908 * sometimes (on mmp) get a frame at the end WITHOUT the
909 * start-of-frame indication.
911 msleep(150);
912 if (test_bit(CF_DMA_ACTIVE, &cam->flags))
913 cam_err(cam, "Timeout waiting for DMA to end\n");
914 /* This would be bad news - what now? */
915 spin_lock_irqsave(&cam->dev_lock, flags);
916 mcam_ctlr_irq_disable(cam);
917 spin_unlock_irqrestore(&cam->dev_lock, flags);
921 * Power up and down.
923 static int mcam_ctlr_power_up(struct mcam_camera *cam)
925 unsigned long flags;
926 int ret;
928 spin_lock_irqsave(&cam->dev_lock, flags);
929 ret = cam->plat_power_up(cam);
930 if (ret) {
931 spin_unlock_irqrestore(&cam->dev_lock, flags);
932 return ret;
934 mcam_reg_clear_bit(cam, REG_CTRL1, C1_PWRDWN);
935 spin_unlock_irqrestore(&cam->dev_lock, flags);
936 msleep(5); /* Just to be sure */
937 return 0;
940 static void mcam_ctlr_power_down(struct mcam_camera *cam)
942 unsigned long flags;
944 spin_lock_irqsave(&cam->dev_lock, flags);
946 * School of hard knocks department: be sure we do any register
947 * twiddling on the controller *before* calling the platform
948 * power down routine.
950 mcam_reg_set_bit(cam, REG_CTRL1, C1_PWRDWN);
951 cam->plat_power_down(cam);
952 spin_unlock_irqrestore(&cam->dev_lock, flags);
955 /* -------------------------------------------------------------------- */
957 * Communications with the sensor.
960 static int __mcam_cam_reset(struct mcam_camera *cam)
962 return sensor_call(cam, core, reset, 0);
966 * We have found the sensor on the i2c. Let's try to have a
967 * conversation.
969 static int mcam_cam_init(struct mcam_camera *cam)
971 int ret;
973 mutex_lock(&cam->s_mutex);
974 if (cam->state != S_NOTREADY)
975 cam_warn(cam, "Cam init with device in funky state %d",
976 cam->state);
977 ret = __mcam_cam_reset(cam);
978 /* Get/set parameters? */
979 cam->state = S_IDLE;
980 mcam_ctlr_power_down(cam);
981 mutex_unlock(&cam->s_mutex);
982 return ret;
986 * Configure the sensor to match the parameters we have. Caller should
987 * hold s_mutex
989 static int mcam_cam_set_flip(struct mcam_camera *cam)
991 struct v4l2_control ctrl;
993 memset(&ctrl, 0, sizeof(ctrl));
994 ctrl.id = V4L2_CID_VFLIP;
995 ctrl.value = flip;
996 return sensor_call(cam, core, s_ctrl, &ctrl);
1000 static int mcam_cam_configure(struct mcam_camera *cam)
1002 struct v4l2_mbus_framefmt mbus_fmt;
1003 int ret;
1005 v4l2_fill_mbus_format(&mbus_fmt, &cam->pix_format, cam->mbus_code);
1006 ret = sensor_call(cam, core, init, 0);
1007 if (ret == 0)
1008 ret = sensor_call(cam, video, s_mbus_fmt, &mbus_fmt);
1010 * OV7670 does weird things if flip is set *before* format...
1012 ret += mcam_cam_set_flip(cam);
1013 return ret;
1017 * Get everything ready, and start grabbing frames.
1019 static int mcam_read_setup(struct mcam_camera *cam)
1021 int ret;
1022 unsigned long flags;
1025 * Configuration. If we still don't have DMA buffers,
1026 * make one last, desperate attempt.
1028 if (cam->buffer_mode == B_vmalloc && cam->nbufs == 0 &&
1029 mcam_alloc_dma_bufs(cam, 0))
1030 return -ENOMEM;
1032 if (mcam_needs_config(cam)) {
1033 mcam_cam_configure(cam);
1034 ret = mcam_ctlr_configure(cam);
1035 if (ret)
1036 return ret;
1040 * Turn it loose.
1042 spin_lock_irqsave(&cam->dev_lock, flags);
1043 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1044 mcam_reset_buffers(cam);
1046 * Update CSI2_DPHY value
1048 if (cam->calc_dphy)
1049 cam->calc_dphy(cam);
1050 cam_dbg(cam, "camera: DPHY sets: dphy3=0x%x, dphy5=0x%x, dphy6=0x%x\n",
1051 cam->dphy[0], cam->dphy[1], cam->dphy[2]);
1052 if (cam->bus_type == V4L2_MBUS_CSI2)
1053 mcam_enable_mipi(cam);
1054 else
1055 mcam_disable_mipi(cam);
1056 mcam_ctlr_irq_enable(cam);
1057 cam->state = S_STREAMING;
1058 if (!test_bit(CF_SG_RESTART, &cam->flags))
1059 mcam_ctlr_start(cam);
1060 spin_unlock_irqrestore(&cam->dev_lock, flags);
1061 return 0;
1064 /* ----------------------------------------------------------------------- */
1066 * Videobuf2 interface code.
1069 static int mcam_vb_queue_setup(struct vb2_queue *vq,
1070 const struct v4l2_format *fmt, unsigned int *nbufs,
1071 unsigned int *num_planes, unsigned int sizes[],
1072 void *alloc_ctxs[])
1074 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1075 int minbufs = (cam->buffer_mode == B_DMA_contig) ? 3 : 2;
1077 sizes[0] = cam->pix_format.sizeimage;
1078 *num_planes = 1; /* Someday we have to support planar formats... */
1079 if (*nbufs < minbufs)
1080 *nbufs = minbufs;
1081 if (cam->buffer_mode == B_DMA_contig)
1082 alloc_ctxs[0] = cam->vb_alloc_ctx;
1083 return 0;
1087 static void mcam_vb_buf_queue(struct vb2_buffer *vb)
1089 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1090 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1091 unsigned long flags;
1092 int start;
1094 spin_lock_irqsave(&cam->dev_lock, flags);
1095 start = (cam->state == S_BUFWAIT) && !list_empty(&cam->buffers);
1096 list_add(&mvb->queue, &cam->buffers);
1097 if (cam->state == S_STREAMING && test_bit(CF_SG_RESTART, &cam->flags))
1098 mcam_sg_restart(cam);
1099 spin_unlock_irqrestore(&cam->dev_lock, flags);
1100 if (start)
1101 mcam_read_setup(cam);
1106 * vb2 uses these to release the mutex when waiting in dqbuf. I'm
1107 * not actually sure we need to do this (I'm not sure that vb2_dqbuf() needs
1108 * to be called with the mutex held), but better safe than sorry.
1110 static void mcam_vb_wait_prepare(struct vb2_queue *vq)
1112 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1114 mutex_unlock(&cam->s_mutex);
1117 static void mcam_vb_wait_finish(struct vb2_queue *vq)
1119 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1121 mutex_lock(&cam->s_mutex);
1125 * These need to be called with the mutex held from vb2
1127 static int mcam_vb_start_streaming(struct vb2_queue *vq, unsigned int count)
1129 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1130 unsigned int frame;
1132 if (cam->state != S_IDLE) {
1133 INIT_LIST_HEAD(&cam->buffers);
1134 return -EINVAL;
1136 cam->sequence = 0;
1138 * Videobuf2 sneakily hoards all the buffers and won't
1139 * give them to us until *after* streaming starts. But
1140 * we can't actually start streaming until we have a
1141 * destination. So go into a wait state and hope they
1142 * give us buffers soon.
1144 if (cam->buffer_mode != B_vmalloc && list_empty(&cam->buffers)) {
1145 cam->state = S_BUFWAIT;
1146 return 0;
1150 * Ensure clear the left over frame flags
1151 * before every really start streaming
1153 for (frame = 0; frame < cam->nbufs; frame++)
1154 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1156 return mcam_read_setup(cam);
1159 static int mcam_vb_stop_streaming(struct vb2_queue *vq)
1161 struct mcam_camera *cam = vb2_get_drv_priv(vq);
1162 unsigned long flags;
1164 if (cam->state == S_BUFWAIT) {
1165 /* They never gave us buffers */
1166 cam->state = S_IDLE;
1167 return 0;
1169 if (cam->state != S_STREAMING)
1170 return -EINVAL;
1171 mcam_ctlr_stop_dma(cam);
1173 * Reset the CCIC PHY after stopping streaming,
1174 * otherwise, the CCIC may be unstable.
1176 if (cam->ctlr_reset)
1177 cam->ctlr_reset(cam);
1179 * VB2 reclaims the buffers, so we need to forget
1180 * about them.
1182 spin_lock_irqsave(&cam->dev_lock, flags);
1183 INIT_LIST_HEAD(&cam->buffers);
1184 spin_unlock_irqrestore(&cam->dev_lock, flags);
1185 return 0;
1189 static const struct vb2_ops mcam_vb2_ops = {
1190 .queue_setup = mcam_vb_queue_setup,
1191 .buf_queue = mcam_vb_buf_queue,
1192 .start_streaming = mcam_vb_start_streaming,
1193 .stop_streaming = mcam_vb_stop_streaming,
1194 .wait_prepare = mcam_vb_wait_prepare,
1195 .wait_finish = mcam_vb_wait_finish,
1199 #ifdef MCAM_MODE_DMA_SG
1201 * Scatter/gather mode uses all of the above functions plus a
1202 * few extras to deal with DMA mapping.
1204 static int mcam_vb_sg_buf_init(struct vb2_buffer *vb)
1206 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1207 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1208 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1210 mvb->dma_desc = dma_alloc_coherent(cam->dev,
1211 ndesc * sizeof(struct mcam_dma_desc),
1212 &mvb->dma_desc_pa, GFP_KERNEL);
1213 if (mvb->dma_desc == NULL) {
1214 cam_err(cam, "Unable to get DMA descriptor array\n");
1215 return -ENOMEM;
1217 return 0;
1220 static int mcam_vb_sg_buf_prepare(struct vb2_buffer *vb)
1222 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1223 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1224 struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1225 struct mcam_dma_desc *desc = mvb->dma_desc;
1226 struct scatterlist *sg;
1227 int i;
1229 mvb->dma_desc_nent = dma_map_sg(cam->dev, sg_table->sgl,
1230 sg_table->nents, DMA_FROM_DEVICE);
1231 if (mvb->dma_desc_nent <= 0)
1232 return -EIO; /* Not sure what's right here */
1233 for_each_sg(sg_table->sgl, sg, mvb->dma_desc_nent, i) {
1234 desc->dma_addr = sg_dma_address(sg);
1235 desc->segment_len = sg_dma_len(sg);
1236 desc++;
1238 return 0;
1241 static int mcam_vb_sg_buf_finish(struct vb2_buffer *vb)
1243 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1244 struct sg_table *sg_table = vb2_dma_sg_plane_desc(vb, 0);
1246 if (sg_table)
1247 dma_unmap_sg(cam->dev, sg_table->sgl,
1248 sg_table->nents, DMA_FROM_DEVICE);
1249 return 0;
1252 static void mcam_vb_sg_buf_cleanup(struct vb2_buffer *vb)
1254 struct mcam_camera *cam = vb2_get_drv_priv(vb->vb2_queue);
1255 struct mcam_vb_buffer *mvb = vb_to_mvb(vb);
1256 int ndesc = cam->pix_format.sizeimage/PAGE_SIZE + 1;
1258 dma_free_coherent(cam->dev, ndesc * sizeof(struct mcam_dma_desc),
1259 mvb->dma_desc, mvb->dma_desc_pa);
1263 static const struct vb2_ops mcam_vb2_sg_ops = {
1264 .queue_setup = mcam_vb_queue_setup,
1265 .buf_init = mcam_vb_sg_buf_init,
1266 .buf_prepare = mcam_vb_sg_buf_prepare,
1267 .buf_queue = mcam_vb_buf_queue,
1268 .buf_finish = mcam_vb_sg_buf_finish,
1269 .buf_cleanup = mcam_vb_sg_buf_cleanup,
1270 .start_streaming = mcam_vb_start_streaming,
1271 .stop_streaming = mcam_vb_stop_streaming,
1272 .wait_prepare = mcam_vb_wait_prepare,
1273 .wait_finish = mcam_vb_wait_finish,
1276 #endif /* MCAM_MODE_DMA_SG */
1278 static int mcam_setup_vb2(struct mcam_camera *cam)
1280 struct vb2_queue *vq = &cam->vb_queue;
1282 memset(vq, 0, sizeof(*vq));
1283 vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
1284 vq->drv_priv = cam;
1285 INIT_LIST_HEAD(&cam->buffers);
1286 switch (cam->buffer_mode) {
1287 case B_DMA_contig:
1288 #ifdef MCAM_MODE_DMA_CONTIG
1289 vq->ops = &mcam_vb2_ops;
1290 vq->mem_ops = &vb2_dma_contig_memops;
1291 vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1292 cam->vb_alloc_ctx = vb2_dma_contig_init_ctx(cam->dev);
1293 vq->io_modes = VB2_MMAP | VB2_USERPTR;
1294 cam->dma_setup = mcam_ctlr_dma_contig;
1295 cam->frame_complete = mcam_dma_contig_done;
1296 #endif
1297 break;
1298 case B_DMA_sg:
1299 #ifdef MCAM_MODE_DMA_SG
1300 vq->ops = &mcam_vb2_sg_ops;
1301 vq->mem_ops = &vb2_dma_sg_memops;
1302 vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1303 vq->io_modes = VB2_MMAP | VB2_USERPTR;
1304 cam->dma_setup = mcam_ctlr_dma_sg;
1305 cam->frame_complete = mcam_dma_sg_done;
1306 #endif
1307 break;
1308 case B_vmalloc:
1309 #ifdef MCAM_MODE_VMALLOC
1310 tasklet_init(&cam->s_tasklet, mcam_frame_tasklet,
1311 (unsigned long) cam);
1312 vq->ops = &mcam_vb2_ops;
1313 vq->mem_ops = &vb2_vmalloc_memops;
1314 vq->buf_struct_size = sizeof(struct mcam_vb_buffer);
1315 vq->io_modes = VB2_MMAP;
1316 cam->dma_setup = mcam_ctlr_dma_vmalloc;
1317 cam->frame_complete = mcam_vmalloc_done;
1318 #endif
1319 break;
1321 return vb2_queue_init(vq);
1324 static void mcam_cleanup_vb2(struct mcam_camera *cam)
1326 vb2_queue_release(&cam->vb_queue);
1327 #ifdef MCAM_MODE_DMA_CONTIG
1328 if (cam->buffer_mode == B_DMA_contig)
1329 vb2_dma_contig_cleanup_ctx(cam->vb_alloc_ctx);
1330 #endif
1334 /* ---------------------------------------------------------------------- */
1336 * The long list of V4L2 ioctl() operations.
1339 static int mcam_vidioc_streamon(struct file *filp, void *priv,
1340 enum v4l2_buf_type type)
1342 struct mcam_camera *cam = filp->private_data;
1343 int ret;
1345 mutex_lock(&cam->s_mutex);
1346 ret = vb2_streamon(&cam->vb_queue, type);
1347 mutex_unlock(&cam->s_mutex);
1348 return ret;
1352 static int mcam_vidioc_streamoff(struct file *filp, void *priv,
1353 enum v4l2_buf_type type)
1355 struct mcam_camera *cam = filp->private_data;
1356 int ret;
1358 mutex_lock(&cam->s_mutex);
1359 ret = vb2_streamoff(&cam->vb_queue, type);
1360 mutex_unlock(&cam->s_mutex);
1361 return ret;
1365 static int mcam_vidioc_reqbufs(struct file *filp, void *priv,
1366 struct v4l2_requestbuffers *req)
1368 struct mcam_camera *cam = filp->private_data;
1369 int ret;
1371 mutex_lock(&cam->s_mutex);
1372 ret = vb2_reqbufs(&cam->vb_queue, req);
1373 mutex_unlock(&cam->s_mutex);
1374 return ret;
1378 static int mcam_vidioc_querybuf(struct file *filp, void *priv,
1379 struct v4l2_buffer *buf)
1381 struct mcam_camera *cam = filp->private_data;
1382 int ret;
1384 mutex_lock(&cam->s_mutex);
1385 ret = vb2_querybuf(&cam->vb_queue, buf);
1386 mutex_unlock(&cam->s_mutex);
1387 return ret;
1390 static int mcam_vidioc_qbuf(struct file *filp, void *priv,
1391 struct v4l2_buffer *buf)
1393 struct mcam_camera *cam = filp->private_data;
1394 int ret;
1396 mutex_lock(&cam->s_mutex);
1397 ret = vb2_qbuf(&cam->vb_queue, buf);
1398 mutex_unlock(&cam->s_mutex);
1399 return ret;
1402 static int mcam_vidioc_dqbuf(struct file *filp, void *priv,
1403 struct v4l2_buffer *buf)
1405 struct mcam_camera *cam = filp->private_data;
1406 int ret;
1408 mutex_lock(&cam->s_mutex);
1409 ret = vb2_dqbuf(&cam->vb_queue, buf, filp->f_flags & O_NONBLOCK);
1410 mutex_unlock(&cam->s_mutex);
1411 return ret;
1414 static int mcam_vidioc_querycap(struct file *file, void *priv,
1415 struct v4l2_capability *cap)
1417 strcpy(cap->driver, "marvell_ccic");
1418 strcpy(cap->card, "marvell_ccic");
1419 cap->version = 1;
1420 cap->capabilities = V4L2_CAP_VIDEO_CAPTURE |
1421 V4L2_CAP_READWRITE | V4L2_CAP_STREAMING;
1422 return 0;
1426 static int mcam_vidioc_enum_fmt_vid_cap(struct file *filp,
1427 void *priv, struct v4l2_fmtdesc *fmt)
1429 if (fmt->index >= N_MCAM_FMTS)
1430 return -EINVAL;
1431 strlcpy(fmt->description, mcam_formats[fmt->index].desc,
1432 sizeof(fmt->description));
1433 fmt->pixelformat = mcam_formats[fmt->index].pixelformat;
1434 return 0;
1437 static int mcam_vidioc_try_fmt_vid_cap(struct file *filp, void *priv,
1438 struct v4l2_format *fmt)
1440 struct mcam_camera *cam = priv;
1441 struct mcam_format_struct *f;
1442 struct v4l2_pix_format *pix = &fmt->fmt.pix;
1443 struct v4l2_mbus_framefmt mbus_fmt;
1444 int ret;
1446 f = mcam_find_format(pix->pixelformat);
1447 pix->pixelformat = f->pixelformat;
1448 v4l2_fill_mbus_format(&mbus_fmt, pix, f->mbus_code);
1449 mutex_lock(&cam->s_mutex);
1450 ret = sensor_call(cam, video, try_mbus_fmt, &mbus_fmt);
1451 mutex_unlock(&cam->s_mutex);
1452 v4l2_fill_pix_format(pix, &mbus_fmt);
1453 switch (f->pixelformat) {
1454 case V4L2_PIX_FMT_YUV420:
1455 case V4L2_PIX_FMT_YVU420:
1456 pix->bytesperline = pix->width * 3 / 2;
1457 break;
1458 default:
1459 pix->bytesperline = pix->width * f->bpp;
1460 break;
1462 pix->sizeimage = pix->height * pix->bytesperline;
1463 return ret;
1466 static int mcam_vidioc_s_fmt_vid_cap(struct file *filp, void *priv,
1467 struct v4l2_format *fmt)
1469 struct mcam_camera *cam = priv;
1470 struct mcam_format_struct *f;
1471 int ret;
1474 * Can't do anything if the device is not idle
1475 * Also can't if there are streaming buffers in place.
1477 if (cam->state != S_IDLE || cam->vb_queue.num_buffers > 0)
1478 return -EBUSY;
1480 f = mcam_find_format(fmt->fmt.pix.pixelformat);
1483 * See if the formatting works in principle.
1485 ret = mcam_vidioc_try_fmt_vid_cap(filp, priv, fmt);
1486 if (ret)
1487 return ret;
1489 * Now we start to change things for real, so let's do it
1490 * under lock.
1492 mutex_lock(&cam->s_mutex);
1493 cam->pix_format = fmt->fmt.pix;
1494 cam->mbus_code = f->mbus_code;
1497 * Make sure we have appropriate DMA buffers.
1499 if (cam->buffer_mode == B_vmalloc) {
1500 ret = mcam_check_dma_buffers(cam);
1501 if (ret)
1502 goto out;
1504 mcam_set_config_needed(cam, 1);
1505 out:
1506 mutex_unlock(&cam->s_mutex);
1507 return ret;
1511 * Return our stored notion of how the camera is/should be configured.
1512 * The V4l2 spec wants us to be smarter, and actually get this from
1513 * the camera (and not mess with it at open time). Someday.
1515 static int mcam_vidioc_g_fmt_vid_cap(struct file *filp, void *priv,
1516 struct v4l2_format *f)
1518 struct mcam_camera *cam = priv;
1520 f->fmt.pix = cam->pix_format;
1521 return 0;
1525 * We only have one input - the sensor - so minimize the nonsense here.
1527 static int mcam_vidioc_enum_input(struct file *filp, void *priv,
1528 struct v4l2_input *input)
1530 if (input->index != 0)
1531 return -EINVAL;
1533 input->type = V4L2_INPUT_TYPE_CAMERA;
1534 input->std = V4L2_STD_ALL; /* Not sure what should go here */
1535 strcpy(input->name, "Camera");
1536 return 0;
1539 static int mcam_vidioc_g_input(struct file *filp, void *priv, unsigned int *i)
1541 *i = 0;
1542 return 0;
1545 static int mcam_vidioc_s_input(struct file *filp, void *priv, unsigned int i)
1547 if (i != 0)
1548 return -EINVAL;
1549 return 0;
1552 /* from vivi.c */
1553 static int mcam_vidioc_s_std(struct file *filp, void *priv, v4l2_std_id a)
1555 return 0;
1558 static int mcam_vidioc_g_std(struct file *filp, void *priv, v4l2_std_id *a)
1560 *a = V4L2_STD_NTSC_M;
1561 return 0;
1565 * G/S_PARM. Most of this is done by the sensor, but we are
1566 * the level which controls the number of read buffers.
1568 static int mcam_vidioc_g_parm(struct file *filp, void *priv,
1569 struct v4l2_streamparm *parms)
1571 struct mcam_camera *cam = priv;
1572 int ret;
1574 mutex_lock(&cam->s_mutex);
1575 ret = sensor_call(cam, video, g_parm, parms);
1576 mutex_unlock(&cam->s_mutex);
1577 parms->parm.capture.readbuffers = n_dma_bufs;
1578 return ret;
1581 static int mcam_vidioc_s_parm(struct file *filp, void *priv,
1582 struct v4l2_streamparm *parms)
1584 struct mcam_camera *cam = priv;
1585 int ret;
1587 mutex_lock(&cam->s_mutex);
1588 ret = sensor_call(cam, video, s_parm, parms);
1589 mutex_unlock(&cam->s_mutex);
1590 parms->parm.capture.readbuffers = n_dma_bufs;
1591 return ret;
1594 static int mcam_vidioc_enum_framesizes(struct file *filp, void *priv,
1595 struct v4l2_frmsizeenum *sizes)
1597 struct mcam_camera *cam = priv;
1598 int ret;
1600 mutex_lock(&cam->s_mutex);
1601 ret = sensor_call(cam, video, enum_framesizes, sizes);
1602 mutex_unlock(&cam->s_mutex);
1603 return ret;
1606 static int mcam_vidioc_enum_frameintervals(struct file *filp, void *priv,
1607 struct v4l2_frmivalenum *interval)
1609 struct mcam_camera *cam = priv;
1610 int ret;
1612 mutex_lock(&cam->s_mutex);
1613 ret = sensor_call(cam, video, enum_frameintervals, interval);
1614 mutex_unlock(&cam->s_mutex);
1615 return ret;
1618 #ifdef CONFIG_VIDEO_ADV_DEBUG
1619 static int mcam_vidioc_g_register(struct file *file, void *priv,
1620 struct v4l2_dbg_register *reg)
1622 struct mcam_camera *cam = priv;
1624 if (reg->reg > cam->regs_size - 4)
1625 return -EINVAL;
1626 reg->val = mcam_reg_read(cam, reg->reg);
1627 reg->size = 4;
1628 return 0;
1631 static int mcam_vidioc_s_register(struct file *file, void *priv,
1632 const struct v4l2_dbg_register *reg)
1634 struct mcam_camera *cam = priv;
1636 if (reg->reg > cam->regs_size - 4)
1637 return -EINVAL;
1638 mcam_reg_write(cam, reg->reg, reg->val);
1639 return 0;
1641 #endif
1643 static const struct v4l2_ioctl_ops mcam_v4l_ioctl_ops = {
1644 .vidioc_querycap = mcam_vidioc_querycap,
1645 .vidioc_enum_fmt_vid_cap = mcam_vidioc_enum_fmt_vid_cap,
1646 .vidioc_try_fmt_vid_cap = mcam_vidioc_try_fmt_vid_cap,
1647 .vidioc_s_fmt_vid_cap = mcam_vidioc_s_fmt_vid_cap,
1648 .vidioc_g_fmt_vid_cap = mcam_vidioc_g_fmt_vid_cap,
1649 .vidioc_enum_input = mcam_vidioc_enum_input,
1650 .vidioc_g_input = mcam_vidioc_g_input,
1651 .vidioc_s_input = mcam_vidioc_s_input,
1652 .vidioc_s_std = mcam_vidioc_s_std,
1653 .vidioc_g_std = mcam_vidioc_g_std,
1654 .vidioc_reqbufs = mcam_vidioc_reqbufs,
1655 .vidioc_querybuf = mcam_vidioc_querybuf,
1656 .vidioc_qbuf = mcam_vidioc_qbuf,
1657 .vidioc_dqbuf = mcam_vidioc_dqbuf,
1658 .vidioc_streamon = mcam_vidioc_streamon,
1659 .vidioc_streamoff = mcam_vidioc_streamoff,
1660 .vidioc_g_parm = mcam_vidioc_g_parm,
1661 .vidioc_s_parm = mcam_vidioc_s_parm,
1662 .vidioc_enum_framesizes = mcam_vidioc_enum_framesizes,
1663 .vidioc_enum_frameintervals = mcam_vidioc_enum_frameintervals,
1664 #ifdef CONFIG_VIDEO_ADV_DEBUG
1665 .vidioc_g_register = mcam_vidioc_g_register,
1666 .vidioc_s_register = mcam_vidioc_s_register,
1667 #endif
1670 /* ---------------------------------------------------------------------- */
1672 * Our various file operations.
1674 static int mcam_v4l_open(struct file *filp)
1676 struct mcam_camera *cam = video_drvdata(filp);
1677 int ret = 0;
1679 filp->private_data = cam;
1681 cam->frame_state.frames = 0;
1682 cam->frame_state.singles = 0;
1683 cam->frame_state.delivered = 0;
1684 mutex_lock(&cam->s_mutex);
1685 if (cam->users == 0) {
1686 ret = mcam_setup_vb2(cam);
1687 if (ret)
1688 goto out;
1689 ret = mcam_ctlr_power_up(cam);
1690 if (ret)
1691 goto out;
1692 __mcam_cam_reset(cam);
1693 mcam_set_config_needed(cam, 1);
1695 (cam->users)++;
1696 out:
1697 mutex_unlock(&cam->s_mutex);
1698 return ret;
1702 static int mcam_v4l_release(struct file *filp)
1704 struct mcam_camera *cam = filp->private_data;
1706 cam_dbg(cam, "Release, %d frames, %d singles, %d delivered\n",
1707 cam->frame_state.frames, cam->frame_state.singles,
1708 cam->frame_state.delivered);
1709 mutex_lock(&cam->s_mutex);
1710 (cam->users)--;
1711 if (cam->users == 0) {
1712 mcam_ctlr_stop_dma(cam);
1713 mcam_cleanup_vb2(cam);
1714 mcam_disable_mipi(cam);
1715 mcam_ctlr_power_down(cam);
1716 if (cam->buffer_mode == B_vmalloc && alloc_bufs_at_read)
1717 mcam_free_dma_bufs(cam);
1720 mutex_unlock(&cam->s_mutex);
1721 return 0;
1724 static ssize_t mcam_v4l_read(struct file *filp,
1725 char __user *buffer, size_t len, loff_t *pos)
1727 struct mcam_camera *cam = filp->private_data;
1728 int ret;
1730 mutex_lock(&cam->s_mutex);
1731 ret = vb2_read(&cam->vb_queue, buffer, len, pos,
1732 filp->f_flags & O_NONBLOCK);
1733 mutex_unlock(&cam->s_mutex);
1734 return ret;
1739 static unsigned int mcam_v4l_poll(struct file *filp,
1740 struct poll_table_struct *pt)
1742 struct mcam_camera *cam = filp->private_data;
1743 int ret;
1745 mutex_lock(&cam->s_mutex);
1746 ret = vb2_poll(&cam->vb_queue, filp, pt);
1747 mutex_unlock(&cam->s_mutex);
1748 return ret;
1752 static int mcam_v4l_mmap(struct file *filp, struct vm_area_struct *vma)
1754 struct mcam_camera *cam = filp->private_data;
1755 int ret;
1757 mutex_lock(&cam->s_mutex);
1758 ret = vb2_mmap(&cam->vb_queue, vma);
1759 mutex_unlock(&cam->s_mutex);
1760 return ret;
1765 static const struct v4l2_file_operations mcam_v4l_fops = {
1766 .owner = THIS_MODULE,
1767 .open = mcam_v4l_open,
1768 .release = mcam_v4l_release,
1769 .read = mcam_v4l_read,
1770 .poll = mcam_v4l_poll,
1771 .mmap = mcam_v4l_mmap,
1772 .unlocked_ioctl = video_ioctl2,
1777 * This template device holds all of those v4l2 methods; we
1778 * clone it for specific real devices.
1780 static struct video_device mcam_v4l_template = {
1781 .name = "mcam",
1782 .tvnorms = V4L2_STD_NTSC_M,
1784 .fops = &mcam_v4l_fops,
1785 .ioctl_ops = &mcam_v4l_ioctl_ops,
1786 .release = video_device_release_empty,
1789 /* ---------------------------------------------------------------------- */
1791 * Interrupt handler stuff
1793 static void mcam_frame_complete(struct mcam_camera *cam, int frame)
1796 * Basic frame housekeeping.
1798 set_bit(frame, &cam->flags);
1799 clear_bit(CF_DMA_ACTIVE, &cam->flags);
1800 cam->next_buf = frame;
1801 cam->buf_seq[frame] = ++(cam->sequence);
1802 cam->frame_state.frames++;
1804 * "This should never happen"
1806 if (cam->state != S_STREAMING)
1807 return;
1809 * Process the frame and set up the next one.
1811 cam->frame_complete(cam, frame);
1816 * The interrupt handler; this needs to be called from the
1817 * platform irq handler with the lock held.
1819 int mccic_irq(struct mcam_camera *cam, unsigned int irqs)
1821 unsigned int frame, handled = 0;
1823 mcam_reg_write(cam, REG_IRQSTAT, FRAMEIRQS); /* Clear'em all */
1825 * Handle any frame completions. There really should
1826 * not be more than one of these, or we have fallen
1827 * far behind.
1829 * When running in S/G mode, the frame number lacks any
1830 * real meaning - there's only one descriptor array - but
1831 * the controller still picks a different one to signal
1832 * each time.
1834 for (frame = 0; frame < cam->nbufs; frame++)
1835 if (irqs & (IRQ_EOF0 << frame) &&
1836 test_bit(CF_FRAME_SOF0 + frame, &cam->flags)) {
1837 mcam_frame_complete(cam, frame);
1838 handled = 1;
1839 clear_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1840 if (cam->buffer_mode == B_DMA_sg)
1841 break;
1844 * If a frame starts, note that we have DMA active. This
1845 * code assumes that we won't get multiple frame interrupts
1846 * at once; may want to rethink that.
1848 for (frame = 0; frame < cam->nbufs; frame++) {
1849 if (irqs & (IRQ_SOF0 << frame)) {
1850 set_bit(CF_FRAME_SOF0 + frame, &cam->flags);
1851 handled = IRQ_HANDLED;
1855 if (handled == IRQ_HANDLED) {
1856 set_bit(CF_DMA_ACTIVE, &cam->flags);
1857 if (cam->buffer_mode == B_DMA_sg)
1858 mcam_ctlr_stop(cam);
1860 return handled;
1863 /* ---------------------------------------------------------------------- */
1865 * Registration and such.
1867 static struct ov7670_config sensor_cfg = {
1869 * Exclude QCIF mode, because it only captures a tiny portion
1870 * of the sensor FOV
1872 .min_width = 320,
1873 .min_height = 240,
1877 int mccic_register(struct mcam_camera *cam)
1879 struct i2c_board_info ov7670_info = {
1880 .type = "ov7670",
1881 .addr = 0x42 >> 1,
1882 .platform_data = &sensor_cfg,
1884 int ret;
1887 * Validate the requested buffer mode.
1889 if (buffer_mode >= 0)
1890 cam->buffer_mode = buffer_mode;
1891 if (cam->buffer_mode == B_DMA_sg &&
1892 cam->chip_id == MCAM_CAFE) {
1893 printk(KERN_ERR "marvell-cam: Cafe can't do S/G I/O, "
1894 "attempting vmalloc mode instead\n");
1895 cam->buffer_mode = B_vmalloc;
1897 if (!mcam_buffer_mode_supported(cam->buffer_mode)) {
1898 printk(KERN_ERR "marvell-cam: buffer mode %d unsupported\n",
1899 cam->buffer_mode);
1900 return -EINVAL;
1903 * Register with V4L
1905 ret = v4l2_device_register(cam->dev, &cam->v4l2_dev);
1906 if (ret)
1907 return ret;
1909 mutex_init(&cam->s_mutex);
1910 cam->state = S_NOTREADY;
1911 mcam_set_config_needed(cam, 1);
1912 cam->pix_format = mcam_def_pix_format;
1913 cam->mbus_code = mcam_def_mbus_code;
1914 INIT_LIST_HEAD(&cam->buffers);
1915 mcam_ctlr_init(cam);
1918 * Try to find the sensor.
1920 sensor_cfg.clock_speed = cam->clock_speed;
1921 sensor_cfg.use_smbus = cam->use_smbus;
1922 cam->sensor_addr = ov7670_info.addr;
1923 cam->sensor = v4l2_i2c_new_subdev_board(&cam->v4l2_dev,
1924 cam->i2c_adapter, &ov7670_info, NULL);
1925 if (cam->sensor == NULL) {
1926 ret = -ENODEV;
1927 goto out_unregister;
1930 ret = mcam_cam_init(cam);
1931 if (ret)
1932 goto out_unregister;
1934 * Get the v4l2 setup done.
1936 ret = v4l2_ctrl_handler_init(&cam->ctrl_handler, 10);
1937 if (ret)
1938 goto out_unregister;
1939 cam->v4l2_dev.ctrl_handler = &cam->ctrl_handler;
1941 mutex_lock(&cam->s_mutex);
1942 cam->vdev = mcam_v4l_template;
1943 cam->vdev.debug = 0;
1944 cam->vdev.v4l2_dev = &cam->v4l2_dev;
1945 video_set_drvdata(&cam->vdev, cam);
1946 ret = video_register_device(&cam->vdev, VFL_TYPE_GRABBER, -1);
1947 if (ret)
1948 goto out;
1951 * If so requested, try to get our DMA buffers now.
1953 if (cam->buffer_mode == B_vmalloc && !alloc_bufs_at_read) {
1954 if (mcam_alloc_dma_bufs(cam, 1))
1955 cam_warn(cam, "Unable to alloc DMA buffers at load"
1956 " will try again later.");
1959 out:
1960 v4l2_ctrl_handler_free(&cam->ctrl_handler);
1961 mutex_unlock(&cam->s_mutex);
1962 return ret;
1963 out_unregister:
1964 v4l2_device_unregister(&cam->v4l2_dev);
1965 return ret;
1969 void mccic_shutdown(struct mcam_camera *cam)
1972 * If we have no users (and we really, really should have no
1973 * users) the device will already be powered down. Trying to
1974 * take it down again will wedge the machine, which is frowned
1975 * upon.
1977 if (cam->users > 0) {
1978 cam_warn(cam, "Removing a device with users!\n");
1979 mcam_ctlr_power_down(cam);
1981 vb2_queue_release(&cam->vb_queue);
1982 if (cam->buffer_mode == B_vmalloc)
1983 mcam_free_dma_bufs(cam);
1984 video_unregister_device(&cam->vdev);
1985 v4l2_ctrl_handler_free(&cam->ctrl_handler);
1986 v4l2_device_unregister(&cam->v4l2_dev);
1990 * Power management
1992 #ifdef CONFIG_PM
1994 void mccic_suspend(struct mcam_camera *cam)
1996 mutex_lock(&cam->s_mutex);
1997 if (cam->users > 0) {
1998 enum mcam_state cstate = cam->state;
2000 mcam_ctlr_stop_dma(cam);
2001 mcam_ctlr_power_down(cam);
2002 cam->state = cstate;
2004 mutex_unlock(&cam->s_mutex);
2007 int mccic_resume(struct mcam_camera *cam)
2009 int ret = 0;
2011 mutex_lock(&cam->s_mutex);
2012 if (cam->users > 0) {
2013 ret = mcam_ctlr_power_up(cam);
2014 if (ret) {
2015 mutex_unlock(&cam->s_mutex);
2016 return ret;
2018 __mcam_cam_reset(cam);
2019 } else {
2020 mcam_ctlr_power_down(cam);
2022 mutex_unlock(&cam->s_mutex);
2024 set_bit(CF_CONFIG_NEEDED, &cam->flags);
2025 if (cam->state == S_STREAMING) {
2027 * If there was a buffer in the DMA engine at suspend
2028 * time, put it back on the queue or we'll forget about it.
2030 if (cam->buffer_mode == B_DMA_sg && cam->vb_bufs[0])
2031 list_add(&cam->vb_bufs[0]->queue, &cam->buffers);
2032 ret = mcam_read_setup(cam);
2034 return ret;
2036 #endif /* CONFIG_PM */