PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / media / platform / ti-vpe / sc.c
blob93f0af546b769b14604e6d5a6fcb9aa68a20f68d
1 /*
2 * Scaler library
4 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
20 #include "sc.h"
21 #include "sc_coeff.h"
23 void sc_dump_regs(struct sc_data *sc)
25 struct device *dev = &sc->pdev->dev;
27 u32 read_reg(struct sc_data *sc, int offset)
29 return ioread32(sc->base + offset);
32 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(sc, CFG_##r))
34 DUMPREG(SC0);
35 DUMPREG(SC1);
36 DUMPREG(SC2);
37 DUMPREG(SC3);
38 DUMPREG(SC4);
39 DUMPREG(SC5);
40 DUMPREG(SC6);
41 DUMPREG(SC8);
42 DUMPREG(SC9);
43 DUMPREG(SC10);
44 DUMPREG(SC11);
45 DUMPREG(SC12);
46 DUMPREG(SC13);
47 DUMPREG(SC17);
48 DUMPREG(SC18);
49 DUMPREG(SC19);
50 DUMPREG(SC20);
51 DUMPREG(SC21);
52 DUMPREG(SC22);
53 DUMPREG(SC23);
54 DUMPREG(SC24);
55 DUMPREG(SC25);
57 #undef DUMPREG
61 * set the horizontal scaler coefficients according to the ratio of output to
62 * input widths, after accounting for up to two levels of decimation
64 void sc_set_hs_coeffs(struct sc_data *sc, void *addr, unsigned int src_w,
65 unsigned int dst_w)
67 int sixteenths;
68 int idx;
69 int i, j;
70 u16 *coeff_h = addr;
71 const u16 *cp;
73 if (dst_w > src_w) {
74 idx = HS_UP_SCALE;
75 } else {
76 if ((dst_w << 1) < src_w)
77 dst_w <<= 1; /* first level decimation */
78 if ((dst_w << 1) < src_w)
79 dst_w <<= 1; /* second level decimation */
81 if (dst_w == src_w) {
82 idx = HS_LE_16_16_SCALE;
83 } else {
84 sixteenths = (dst_w << 4) / src_w;
85 if (sixteenths < 8)
86 sixteenths = 8;
87 idx = HS_LT_9_16_SCALE + sixteenths - 8;
91 if (idx == sc->hs_index)
92 return;
94 cp = scaler_hs_coeffs[idx];
96 for (i = 0; i < SC_NUM_PHASES * 2; i++) {
97 for (j = 0; j < SC_H_NUM_TAPS; j++)
98 *coeff_h++ = *cp++;
100 * for each phase, the scaler expects space for 8 coefficients
101 * in it's memory. For the horizontal scaler, we copy the first
102 * 7 coefficients and skip the last slot to move to the next
103 * row to hold coefficients for the next phase
105 coeff_h += SC_NUM_TAPS_MEM_ALIGN - SC_H_NUM_TAPS;
108 sc->hs_index = idx;
110 sc->load_coeff_h = true;
114 * set the vertical scaler coefficients according to the ratio of output to
115 * input heights
117 void sc_set_vs_coeffs(struct sc_data *sc, void *addr, unsigned int src_h,
118 unsigned int dst_h)
120 int sixteenths;
121 int idx;
122 int i, j;
123 u16 *coeff_v = addr;
124 const u16 *cp;
126 if (dst_h > src_h) {
127 idx = VS_UP_SCALE;
128 } else if (dst_h == src_h) {
129 idx = VS_1_TO_1_SCALE;
130 } else {
131 sixteenths = (dst_h << 4) / src_h;
132 if (sixteenths < 8)
133 sixteenths = 8;
134 idx = VS_LT_9_16_SCALE + sixteenths - 8;
137 if (idx == sc->vs_index)
138 return;
140 cp = scaler_vs_coeffs[idx];
142 for (i = 0; i < SC_NUM_PHASES * 2; i++) {
143 for (j = 0; j < SC_V_NUM_TAPS; j++)
144 *coeff_v++ = *cp++;
146 * for the vertical scaler, we copy the first 5 coefficients and
147 * skip the last 3 slots to move to the next row to hold
148 * coefficients for the next phase
150 coeff_v += SC_NUM_TAPS_MEM_ALIGN - SC_V_NUM_TAPS;
153 sc->vs_index = idx;
154 sc->load_coeff_v = true;
157 void sc_config_scaler(struct sc_data *sc, u32 *sc_reg0, u32 *sc_reg8,
158 u32 *sc_reg17, unsigned int src_w, unsigned int src_h,
159 unsigned int dst_w, unsigned int dst_h)
161 struct device *dev = &sc->pdev->dev;
162 u32 val;
163 int dcm_x, dcm_shift;
164 bool use_rav;
165 unsigned long lltmp;
166 u32 lin_acc_inc, lin_acc_inc_u;
167 u32 col_acc_offset;
168 u16 factor = 0;
169 int row_acc_init_rav = 0, row_acc_init_rav_b = 0;
170 u32 row_acc_inc = 0, row_acc_offset = 0, row_acc_offset_b = 0;
172 * location of SC register in payload memory with respect to the first
173 * register in the mmr address data block
175 u32 *sc_reg9 = sc_reg8 + 1;
176 u32 *sc_reg12 = sc_reg8 + 4;
177 u32 *sc_reg13 = sc_reg8 + 5;
178 u32 *sc_reg24 = sc_reg17 + 7;
180 val = sc_reg0[0];
182 /* clear all the features(they may get enabled elsewhere later) */
183 val &= ~(CFG_SELFGEN_FID | CFG_TRIM | CFG_ENABLE_SIN2_VER_INTP |
184 CFG_INTERLACE_I | CFG_DCM_4X | CFG_DCM_2X | CFG_AUTO_HS |
185 CFG_ENABLE_EV | CFG_USE_RAV | CFG_INVT_FID | CFG_SC_BYPASS |
186 CFG_INTERLACE_O | CFG_Y_PK_EN | CFG_HP_BYPASS | CFG_LINEAR);
188 if (src_w == dst_w && src_h == dst_h) {
189 val |= CFG_SC_BYPASS;
190 sc_reg0[0] = val;
191 return;
194 /* we only support linear scaling for now */
195 val |= CFG_LINEAR;
197 /* configure horizontal scaler */
199 /* enable 2X or 4X decimation */
200 dcm_x = src_w / dst_w;
201 if (dcm_x > 4) {
202 val |= CFG_DCM_4X;
203 dcm_shift = 2;
204 } else if (dcm_x > 2) {
205 val |= CFG_DCM_2X;
206 dcm_shift = 1;
207 } else {
208 dcm_shift = 0;
211 lltmp = dst_w - 1;
212 lin_acc_inc = div64_u64(((u64)(src_w >> dcm_shift) - 1) << 24, lltmp);
213 lin_acc_inc_u = 0;
214 col_acc_offset = 0;
216 dev_dbg(dev, "hs config: src_w = %d, dst_w = %d, decimation = %s, lin_acc_inc = %08x\n",
217 src_w, dst_w, dcm_shift == 2 ? "4x" :
218 (dcm_shift == 1 ? "2x" : "none"), lin_acc_inc);
220 /* configure vertical scaler */
222 /* use RAV for vertical scaler if vertical downscaling is > 4x */
223 if (dst_h < (src_h >> 2)) {
224 use_rav = true;
225 val |= CFG_USE_RAV;
226 } else {
227 use_rav = false;
230 if (use_rav) {
231 /* use RAV */
232 factor = (u16) ((dst_h << 10) / src_h);
234 row_acc_init_rav = factor + ((1 + factor) >> 1);
235 if (row_acc_init_rav >= 1024)
236 row_acc_init_rav -= 1024;
238 row_acc_init_rav_b = row_acc_init_rav +
239 (1 + (row_acc_init_rav >> 1)) -
240 (1024 >> 1);
242 if (row_acc_init_rav_b < 0) {
243 row_acc_init_rav_b += row_acc_init_rav;
244 row_acc_init_rav *= 2;
247 dev_dbg(dev, "vs config(RAV): src_h = %d, dst_h = %d, factor = %d, acc_init = %08x, acc_init_b = %08x\n",
248 src_h, dst_h, factor, row_acc_init_rav,
249 row_acc_init_rav_b);
250 } else {
251 /* use polyphase */
252 row_acc_inc = ((src_h - 1) << 16) / (dst_h - 1);
253 row_acc_offset = 0;
254 row_acc_offset_b = 0;
256 dev_dbg(dev, "vs config(POLY): src_h = %d, dst_h = %d,row_acc_inc = %08x\n",
257 src_h, dst_h, row_acc_inc);
261 sc_reg0[0] = val;
262 sc_reg0[1] = row_acc_inc;
263 sc_reg0[2] = row_acc_offset;
264 sc_reg0[3] = row_acc_offset_b;
266 sc_reg0[4] = ((lin_acc_inc_u & CFG_LIN_ACC_INC_U_MASK) <<
267 CFG_LIN_ACC_INC_U_SHIFT) | (dst_w << CFG_TAR_W_SHIFT) |
268 (dst_h << CFG_TAR_H_SHIFT);
270 sc_reg0[5] = (src_w << CFG_SRC_W_SHIFT) | (src_h << CFG_SRC_H_SHIFT);
272 sc_reg0[6] = (row_acc_init_rav_b << CFG_ROW_ACC_INIT_RAV_B_SHIFT) |
273 (row_acc_init_rav << CFG_ROW_ACC_INIT_RAV_SHIFT);
275 *sc_reg9 = lin_acc_inc;
277 *sc_reg12 = col_acc_offset << CFG_COL_ACC_OFFSET_SHIFT;
279 *sc_reg13 = factor;
281 *sc_reg24 = (src_w << CFG_ORG_W_SHIFT) | (src_h << CFG_ORG_H_SHIFT);
284 struct sc_data *sc_create(struct platform_device *pdev)
286 struct sc_data *sc;
288 dev_dbg(&pdev->dev, "sc_create\n");
290 sc = devm_kzalloc(&pdev->dev, sizeof(*sc), GFP_KERNEL);
291 if (!sc) {
292 dev_err(&pdev->dev, "couldn't alloc sc_data\n");
293 return ERR_PTR(-ENOMEM);
296 sc->pdev = pdev;
298 sc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sc");
299 if (!sc->res) {
300 dev_err(&pdev->dev, "missing platform resources data\n");
301 return ERR_PTR(-ENODEV);
304 sc->base = devm_ioremap_resource(&pdev->dev, sc->res);
305 if (!sc->base) {
306 dev_err(&pdev->dev, "failed to ioremap\n");
307 return ERR_PTR(-ENOMEM);
310 return sc;