PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / media / radio / wl128x / fmdrv_common.c
blob4b2e9e8298e1f6e962a468eeb1fba4b91b5c68bd
1 /*
2 * FM Driver for Connectivity chip of Texas Instruments.
4 * This sub-module of FM driver is common for FM RX and TX
5 * functionality. This module is responsible for:
6 * 1) Forming group of Channel-8 commands to perform particular
7 * functionality (eg., frequency set require more than
8 * one Channel-8 command to be sent to the chip).
9 * 2) Sending each Channel-8 command to the chip and reading
10 * response back over Shared Transport.
11 * 3) Managing TX and RX Queues and Tasklets.
12 * 4) Handling FM Interrupt packet and taking appropriate action.
13 * 5) Loading FM firmware to the chip (common, FM TX, and FM RX
14 * firmware files based on mode selection)
16 * Copyright (C) 2011 Texas Instruments
17 * Author: Raja Mani <raja_mani@ti.com>
18 * Author: Manjunatha Halli <manjunatha_halli@ti.com>
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2 as
22 * published by the Free Software Foundation.
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
35 #include <linux/module.h>
36 #include <linux/firmware.h>
37 #include <linux/delay.h>
38 #include "fmdrv.h"
39 #include "fmdrv_v4l2.h"
40 #include "fmdrv_common.h"
41 #include <linux/ti_wilink_st.h>
42 #include "fmdrv_rx.h"
43 #include "fmdrv_tx.h"
45 /* Region info */
46 static struct region_info region_configs[] = {
47 /* Europe/US */
49 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
50 .bot_freq = 87500, /* 87.5 MHz */
51 .top_freq = 108000, /* 108 MHz */
52 .fm_band = 0,
54 /* Japan */
56 .chanl_space = FM_CHANNEL_SPACING_200KHZ * FM_FREQ_MUL,
57 .bot_freq = 76000, /* 76 MHz */
58 .top_freq = 90000, /* 90 MHz */
59 .fm_band = 1,
63 /* Band selection */
64 static u8 default_radio_region; /* Europe/US */
65 module_param(default_radio_region, byte, 0);
66 MODULE_PARM_DESC(default_radio_region, "Region: 0=Europe/US, 1=Japan");
68 /* RDS buffer blocks */
69 static u32 default_rds_buf = 300;
70 module_param(default_rds_buf, uint, 0444);
71 MODULE_PARM_DESC(rds_buf, "RDS buffer entries");
73 /* Radio Nr */
74 static u32 radio_nr = -1;
75 module_param(radio_nr, int, 0444);
76 MODULE_PARM_DESC(radio_nr, "Radio Nr");
78 /* FM irq handlers forward declaration */
79 static void fm_irq_send_flag_getcmd(struct fmdev *);
80 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *);
81 static void fm_irq_handle_hw_malfunction(struct fmdev *);
82 static void fm_irq_handle_rds_start(struct fmdev *);
83 static void fm_irq_send_rdsdata_getcmd(struct fmdev *);
84 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *);
85 static void fm_irq_handle_rds_finish(struct fmdev *);
86 static void fm_irq_handle_tune_op_ended(struct fmdev *);
87 static void fm_irq_handle_power_enb(struct fmdev *);
88 static void fm_irq_handle_low_rssi_start(struct fmdev *);
89 static void fm_irq_afjump_set_pi(struct fmdev *);
90 static void fm_irq_handle_set_pi_resp(struct fmdev *);
91 static void fm_irq_afjump_set_pimask(struct fmdev *);
92 static void fm_irq_handle_set_pimask_resp(struct fmdev *);
93 static void fm_irq_afjump_setfreq(struct fmdev *);
94 static void fm_irq_handle_setfreq_resp(struct fmdev *);
95 static void fm_irq_afjump_enableint(struct fmdev *);
96 static void fm_irq_afjump_enableint_resp(struct fmdev *);
97 static void fm_irq_start_afjump(struct fmdev *);
98 static void fm_irq_handle_start_afjump_resp(struct fmdev *);
99 static void fm_irq_afjump_rd_freq(struct fmdev *);
100 static void fm_irq_afjump_rd_freq_resp(struct fmdev *);
101 static void fm_irq_handle_low_rssi_finish(struct fmdev *);
102 static void fm_irq_send_intmsk_cmd(struct fmdev *);
103 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *);
106 * When FM common module receives interrupt packet, following handlers
107 * will be executed one after another to service the interrupt(s)
109 enum fmc_irq_handler_index {
110 FM_SEND_FLAG_GETCMD_IDX,
111 FM_HANDLE_FLAG_GETCMD_RESP_IDX,
113 /* HW malfunction irq handler */
114 FM_HW_MAL_FUNC_IDX,
116 /* RDS threshold reached irq handler */
117 FM_RDS_START_IDX,
118 FM_RDS_SEND_RDS_GETCMD_IDX,
119 FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX,
120 FM_RDS_FINISH_IDX,
122 /* Tune operation ended irq handler */
123 FM_HW_TUNE_OP_ENDED_IDX,
125 /* TX power enable irq handler */
126 FM_HW_POWER_ENB_IDX,
128 /* Low RSSI irq handler */
129 FM_LOW_RSSI_START_IDX,
130 FM_AF_JUMP_SETPI_IDX,
131 FM_AF_JUMP_HANDLE_SETPI_RESP_IDX,
132 FM_AF_JUMP_SETPI_MASK_IDX,
133 FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX,
134 FM_AF_JUMP_SET_AF_FREQ_IDX,
135 FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX,
136 FM_AF_JUMP_ENABLE_INT_IDX,
137 FM_AF_JUMP_ENABLE_INT_RESP_IDX,
138 FM_AF_JUMP_START_AFJUMP_IDX,
139 FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX,
140 FM_AF_JUMP_RD_FREQ_IDX,
141 FM_AF_JUMP_RD_FREQ_RESP_IDX,
142 FM_LOW_RSSI_FINISH_IDX,
144 /* Interrupt process post action */
145 FM_SEND_INTMSK_CMD_IDX,
146 FM_HANDLE_INTMSK_CMD_RESP_IDX,
149 /* FM interrupt handler table */
150 static int_handler_prototype int_handler_table[] = {
151 fm_irq_send_flag_getcmd,
152 fm_irq_handle_flag_getcmd_resp,
153 fm_irq_handle_hw_malfunction,
154 fm_irq_handle_rds_start, /* RDS threshold reached irq handler */
155 fm_irq_send_rdsdata_getcmd,
156 fm_irq_handle_rdsdata_getcmd_resp,
157 fm_irq_handle_rds_finish,
158 fm_irq_handle_tune_op_ended,
159 fm_irq_handle_power_enb, /* TX power enable irq handler */
160 fm_irq_handle_low_rssi_start,
161 fm_irq_afjump_set_pi,
162 fm_irq_handle_set_pi_resp,
163 fm_irq_afjump_set_pimask,
164 fm_irq_handle_set_pimask_resp,
165 fm_irq_afjump_setfreq,
166 fm_irq_handle_setfreq_resp,
167 fm_irq_afjump_enableint,
168 fm_irq_afjump_enableint_resp,
169 fm_irq_start_afjump,
170 fm_irq_handle_start_afjump_resp,
171 fm_irq_afjump_rd_freq,
172 fm_irq_afjump_rd_freq_resp,
173 fm_irq_handle_low_rssi_finish,
174 fm_irq_send_intmsk_cmd, /* Interrupt process post action */
175 fm_irq_handle_intmsk_cmd_resp
178 static long (*g_st_write) (struct sk_buff *skb);
179 static struct completion wait_for_fmdrv_reg_comp;
181 static inline void fm_irq_call(struct fmdev *fmdev)
183 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
186 /* Continue next function in interrupt handler table */
187 static inline void fm_irq_call_stage(struct fmdev *fmdev, u8 stage)
189 fmdev->irq_info.stage = stage;
190 fm_irq_call(fmdev);
193 static inline void fm_irq_timeout_stage(struct fmdev *fmdev, u8 stage)
195 fmdev->irq_info.stage = stage;
196 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
199 #ifdef FM_DUMP_TXRX_PKT
200 /* To dump outgoing FM Channel-8 packets */
201 inline void dump_tx_skb_data(struct sk_buff *skb)
203 int len, len_org;
204 u8 index;
205 struct fm_cmd_msg_hdr *cmd_hdr;
207 cmd_hdr = (struct fm_cmd_msg_hdr *)skb->data;
208 printk(KERN_INFO "<<%shdr:%02x len:%02x opcode:%02x type:%s dlen:%02x",
209 fm_cb(skb)->completion ? " " : "*", cmd_hdr->hdr,
210 cmd_hdr->len, cmd_hdr->op,
211 cmd_hdr->rd_wr ? "RD" : "WR", cmd_hdr->dlen);
213 len_org = skb->len - FM_CMD_MSG_HDR_SIZE;
214 if (len_org > 0) {
215 printk("\n data(%d): ", cmd_hdr->dlen);
216 len = min(len_org, 14);
217 for (index = 0; index < len; index++)
218 printk("%x ",
219 skb->data[FM_CMD_MSG_HDR_SIZE + index]);
220 printk("%s", (len_org > 14) ? ".." : "");
222 printk("\n");
225 /* To dump incoming FM Channel-8 packets */
226 inline void dump_rx_skb_data(struct sk_buff *skb)
228 int len, len_org;
229 u8 index;
230 struct fm_event_msg_hdr *evt_hdr;
232 evt_hdr = (struct fm_event_msg_hdr *)skb->data;
233 printk(KERN_INFO ">> hdr:%02x len:%02x sts:%02x numhci:%02x "
234 "opcode:%02x type:%s dlen:%02x", evt_hdr->hdr, evt_hdr->len,
235 evt_hdr->status, evt_hdr->num_fm_hci_cmds, evt_hdr->op,
236 (evt_hdr->rd_wr) ? "RD" : "WR", evt_hdr->dlen);
238 len_org = skb->len - FM_EVT_MSG_HDR_SIZE;
239 if (len_org > 0) {
240 printk("\n data(%d): ", evt_hdr->dlen);
241 len = min(len_org, 14);
242 for (index = 0; index < len; index++)
243 printk("%x ",
244 skb->data[FM_EVT_MSG_HDR_SIZE + index]);
245 printk("%s", (len_org > 14) ? ".." : "");
247 printk("\n");
249 #endif
251 void fmc_update_region_info(struct fmdev *fmdev, u8 region_to_set)
253 fmdev->rx.region = region_configs[region_to_set];
257 * FM common sub-module will schedule this tasklet whenever it receives
258 * FM packet from ST driver.
260 static void recv_tasklet(unsigned long arg)
262 struct fmdev *fmdev;
263 struct fm_irq *irq_info;
264 struct fm_event_msg_hdr *evt_hdr;
265 struct sk_buff *skb;
266 u8 num_fm_hci_cmds;
267 unsigned long flags;
269 fmdev = (struct fmdev *)arg;
270 irq_info = &fmdev->irq_info;
271 /* Process all packets in the RX queue */
272 while ((skb = skb_dequeue(&fmdev->rx_q))) {
273 if (skb->len < sizeof(struct fm_event_msg_hdr)) {
274 fmerr("skb(%p) has only %d bytes, "
275 "at least need %zu bytes to decode\n", skb,
276 skb->len, sizeof(struct fm_event_msg_hdr));
277 kfree_skb(skb);
278 continue;
281 evt_hdr = (void *)skb->data;
282 num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds;
284 /* FM interrupt packet? */
285 if (evt_hdr->op == FM_INTERRUPT) {
286 /* FM interrupt handler started already? */
287 if (!test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
288 set_bit(FM_INTTASK_RUNNING, &fmdev->flag);
289 if (irq_info->stage != 0) {
290 fmerr("Inval stage resetting to zero\n");
291 irq_info->stage = 0;
295 * Execute first function in interrupt handler
296 * table.
298 irq_info->handlers[irq_info->stage](fmdev);
299 } else {
300 set_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag);
302 kfree_skb(skb);
304 /* Anyone waiting for this with completion handler? */
305 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp != NULL) {
307 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
308 fmdev->resp_skb = skb;
309 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
310 complete(fmdev->resp_comp);
312 fmdev->resp_comp = NULL;
313 atomic_set(&fmdev->tx_cnt, 1);
315 /* Is this for interrupt handler? */
316 else if (evt_hdr->op == fmdev->pre_op && fmdev->resp_comp == NULL) {
317 if (fmdev->resp_skb != NULL)
318 fmerr("Response SKB ptr not NULL\n");
320 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
321 fmdev->resp_skb = skb;
322 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
324 /* Execute interrupt handler where state index points */
325 irq_info->handlers[irq_info->stage](fmdev);
327 kfree_skb(skb);
328 atomic_set(&fmdev->tx_cnt, 1);
329 } else {
330 fmerr("Nobody claimed SKB(%p),purging\n", skb);
334 * Check flow control field. If Num_FM_HCI_Commands field is
335 * not zero, schedule FM TX tasklet.
337 if (num_fm_hci_cmds && atomic_read(&fmdev->tx_cnt))
338 if (!skb_queue_empty(&fmdev->tx_q))
339 tasklet_schedule(&fmdev->tx_task);
343 /* FM send tasklet: is scheduled when FM packet has to be sent to chip */
344 static void send_tasklet(unsigned long arg)
346 struct fmdev *fmdev;
347 struct sk_buff *skb;
348 int len;
350 fmdev = (struct fmdev *)arg;
352 if (!atomic_read(&fmdev->tx_cnt))
353 return;
355 /* Check, is there any timeout happened to last transmitted packet */
356 if ((jiffies - fmdev->last_tx_jiffies) > FM_DRV_TX_TIMEOUT) {
357 fmerr("TX timeout occurred\n");
358 atomic_set(&fmdev->tx_cnt, 1);
361 /* Send queued FM TX packets */
362 skb = skb_dequeue(&fmdev->tx_q);
363 if (!skb)
364 return;
366 atomic_dec(&fmdev->tx_cnt);
367 fmdev->pre_op = fm_cb(skb)->fm_op;
369 if (fmdev->resp_comp != NULL)
370 fmerr("Response completion handler is not NULL\n");
372 fmdev->resp_comp = fm_cb(skb)->completion;
374 /* Write FM packet to ST driver */
375 len = g_st_write(skb);
376 if (len < 0) {
377 kfree_skb(skb);
378 fmdev->resp_comp = NULL;
379 fmerr("TX tasklet failed to send skb(%p)\n", skb);
380 atomic_set(&fmdev->tx_cnt, 1);
381 } else {
382 fmdev->last_tx_jiffies = jiffies;
387 * Queues FM Channel-8 packet to FM TX queue and schedules FM TX tasklet for
388 * transmission
390 static int fm_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
391 int payload_len, struct completion *wait_completion)
393 struct sk_buff *skb;
394 struct fm_cmd_msg_hdr *hdr;
395 int size;
397 if (fm_op >= FM_INTERRUPT) {
398 fmerr("Invalid fm opcode - %d\n", fm_op);
399 return -EINVAL;
401 if (test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) && payload == NULL) {
402 fmerr("Payload data is NULL during fw download\n");
403 return -EINVAL;
405 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag))
406 size =
407 FM_CMD_MSG_HDR_SIZE + ((payload == NULL) ? 0 : payload_len);
408 else
409 size = payload_len;
411 skb = alloc_skb(size, GFP_ATOMIC);
412 if (!skb) {
413 fmerr("No memory to create new SKB\n");
414 return -ENOMEM;
417 * Don't fill FM header info for the commands which come from
418 * FM firmware file.
420 if (!test_bit(FM_FW_DW_INPROGRESS, &fmdev->flag) ||
421 test_bit(FM_INTTASK_RUNNING, &fmdev->flag)) {
422 /* Fill command header info */
423 hdr = (struct fm_cmd_msg_hdr *)skb_put(skb, FM_CMD_MSG_HDR_SIZE);
424 hdr->hdr = FM_PKT_LOGICAL_CHAN_NUMBER; /* 0x08 */
426 /* 3 (fm_opcode,rd_wr,dlen) + payload len) */
427 hdr->len = ((payload == NULL) ? 0 : payload_len) + 3;
429 /* FM opcode */
430 hdr->op = fm_op;
432 /* read/write type */
433 hdr->rd_wr = type;
434 hdr->dlen = payload_len;
435 fm_cb(skb)->fm_op = fm_op;
438 * If firmware download has finished and the command is
439 * not a read command then payload is != NULL - a write
440 * command with u16 payload - convert to be16
442 if (payload != NULL)
443 *(u16 *)payload = cpu_to_be16(*(u16 *)payload);
445 } else if (payload != NULL) {
446 fm_cb(skb)->fm_op = *((u8 *)payload + 2);
448 if (payload != NULL)
449 memcpy(skb_put(skb, payload_len), payload, payload_len);
451 fm_cb(skb)->completion = wait_completion;
452 skb_queue_tail(&fmdev->tx_q, skb);
453 tasklet_schedule(&fmdev->tx_task);
455 return 0;
458 /* Sends FM Channel-8 command to the chip and waits for the response */
459 int fmc_send_cmd(struct fmdev *fmdev, u8 fm_op, u16 type, void *payload,
460 unsigned int payload_len, void *response, int *response_len)
462 struct sk_buff *skb;
463 struct fm_event_msg_hdr *evt_hdr;
464 unsigned long flags;
465 int ret;
467 init_completion(&fmdev->maintask_comp);
468 ret = fm_send_cmd(fmdev, fm_op, type, payload, payload_len,
469 &fmdev->maintask_comp);
470 if (ret)
471 return ret;
473 if (!wait_for_completion_timeout(&fmdev->maintask_comp,
474 FM_DRV_TX_TIMEOUT)) {
475 fmerr("Timeout(%d sec),didn't get reg"
476 "completion signal from RX tasklet\n",
477 jiffies_to_msecs(FM_DRV_TX_TIMEOUT) / 1000);
478 return -ETIMEDOUT;
480 if (!fmdev->resp_skb) {
481 fmerr("Response SKB is missing\n");
482 return -EFAULT;
484 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
485 skb = fmdev->resp_skb;
486 fmdev->resp_skb = NULL;
487 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
489 evt_hdr = (void *)skb->data;
490 if (evt_hdr->status != 0) {
491 fmerr("Received event pkt status(%d) is not zero\n",
492 evt_hdr->status);
493 kfree_skb(skb);
494 return -EIO;
496 /* Send response data to caller */
497 if (response != NULL && response_len != NULL && evt_hdr->dlen) {
498 /* Skip header info and copy only response data */
499 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
500 memcpy(response, skb->data, evt_hdr->dlen);
501 *response_len = evt_hdr->dlen;
502 } else if (response_len != NULL && evt_hdr->dlen == 0) {
503 *response_len = 0;
505 kfree_skb(skb);
507 return 0;
510 /* --- Helper functions used in FM interrupt handlers ---*/
511 static inline int check_cmdresp_status(struct fmdev *fmdev,
512 struct sk_buff **skb)
514 struct fm_event_msg_hdr *fm_evt_hdr;
515 unsigned long flags;
517 del_timer(&fmdev->irq_info.timer);
519 spin_lock_irqsave(&fmdev->resp_skb_lock, flags);
520 *skb = fmdev->resp_skb;
521 fmdev->resp_skb = NULL;
522 spin_unlock_irqrestore(&fmdev->resp_skb_lock, flags);
524 fm_evt_hdr = (void *)(*skb)->data;
525 if (fm_evt_hdr->status != 0) {
526 fmerr("irq: opcode %x response status is not zero "
527 "Initiating irq recovery process\n",
528 fm_evt_hdr->op);
530 mod_timer(&fmdev->irq_info.timer, jiffies + FM_DRV_TX_TIMEOUT);
531 return -1;
534 return 0;
537 static inline void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev, u8 stage)
539 struct sk_buff *skb;
541 if (!check_cmdresp_status(fmdev, &skb))
542 fm_irq_call_stage(fmdev, stage);
546 * Interrupt process timeout handler.
547 * One of the irq handler did not get proper response from the chip. So take
548 * recovery action here. FM interrupts are disabled in the beginning of
549 * interrupt process. Therefore reset stage index to re-enable default
550 * interrupts. So that next interrupt will be processed as usual.
552 static void int_timeout_handler(unsigned long data)
554 struct fmdev *fmdev;
555 struct fm_irq *fmirq;
557 fmdbg("irq: timeout,trying to re-enable fm interrupts\n");
558 fmdev = (struct fmdev *)data;
559 fmirq = &fmdev->irq_info;
560 fmirq->retry++;
562 if (fmirq->retry > FM_IRQ_TIMEOUT_RETRY_MAX) {
563 /* Stop recovery action (interrupt reenable process) and
564 * reset stage index & retry count values */
565 fmirq->stage = 0;
566 fmirq->retry = 0;
567 fmerr("Recovery action failed during"
568 "irq processing, max retry reached\n");
569 return;
571 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
574 /* --------- FM interrupt handlers ------------*/
575 static void fm_irq_send_flag_getcmd(struct fmdev *fmdev)
577 u16 flag;
579 /* Send FLAG_GET command , to know the source of interrupt */
580 if (!fm_send_cmd(fmdev, FLAG_GET, REG_RD, NULL, sizeof(flag), NULL))
581 fm_irq_timeout_stage(fmdev, FM_HANDLE_FLAG_GETCMD_RESP_IDX);
584 static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev)
586 struct sk_buff *skb;
587 struct fm_event_msg_hdr *fm_evt_hdr;
589 if (check_cmdresp_status(fmdev, &skb))
590 return;
592 fm_evt_hdr = (void *)skb->data;
594 /* Skip header info and copy only response data */
595 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
596 memcpy(&fmdev->irq_info.flag, skb->data, fm_evt_hdr->dlen);
598 fmdev->irq_info.flag = be16_to_cpu(fmdev->irq_info.flag);
599 fmdbg("irq: flag register(0x%x)\n", fmdev->irq_info.flag);
601 /* Continue next function in interrupt handler table */
602 fm_irq_call_stage(fmdev, FM_HW_MAL_FUNC_IDX);
605 static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev)
607 if (fmdev->irq_info.flag & FM_MAL_EVENT & fmdev->irq_info.mask)
608 fmerr("irq: HW MAL int received - do nothing\n");
610 /* Continue next function in interrupt handler table */
611 fm_irq_call_stage(fmdev, FM_RDS_START_IDX);
614 static void fm_irq_handle_rds_start(struct fmdev *fmdev)
616 if (fmdev->irq_info.flag & FM_RDS_EVENT & fmdev->irq_info.mask) {
617 fmdbg("irq: rds threshold reached\n");
618 fmdev->irq_info.stage = FM_RDS_SEND_RDS_GETCMD_IDX;
619 } else {
620 /* Continue next function in interrupt handler table */
621 fmdev->irq_info.stage = FM_HW_TUNE_OP_ENDED_IDX;
624 fm_irq_call(fmdev);
627 static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev)
629 /* Send the command to read RDS data from the chip */
630 if (!fm_send_cmd(fmdev, RDS_DATA_GET, REG_RD, NULL,
631 (FM_RX_RDS_FIFO_THRESHOLD * 3), NULL))
632 fm_irq_timeout_stage(fmdev, FM_RDS_HANDLE_RDS_GETCMD_RESP_IDX);
635 /* Keeps track of current RX channel AF (Alternate Frequency) */
636 static void fm_rx_update_af_cache(struct fmdev *fmdev, u8 af)
638 struct tuned_station_info *stat_info = &fmdev->rx.stat_info;
639 u8 reg_idx = fmdev->rx.region.fm_band;
640 u8 index;
641 u32 freq;
643 /* First AF indicates the number of AF follows. Reset the list */
644 if ((af >= FM_RDS_1_AF_FOLLOWS) && (af <= FM_RDS_25_AF_FOLLOWS)) {
645 fmdev->rx.stat_info.af_list_max = (af - FM_RDS_1_AF_FOLLOWS + 1);
646 fmdev->rx.stat_info.afcache_size = 0;
647 fmdbg("No of expected AF : %d\n", fmdev->rx.stat_info.af_list_max);
648 return;
651 if (af < FM_RDS_MIN_AF)
652 return;
653 if (reg_idx == FM_BAND_EUROPE_US && af > FM_RDS_MAX_AF)
654 return;
655 if (reg_idx == FM_BAND_JAPAN && af > FM_RDS_MAX_AF_JAPAN)
656 return;
658 freq = fmdev->rx.region.bot_freq + (af * 100);
659 if (freq == fmdev->rx.freq) {
660 fmdbg("Current freq(%d) is matching with received AF(%d)\n",
661 fmdev->rx.freq, freq);
662 return;
664 /* Do check in AF cache */
665 for (index = 0; index < stat_info->afcache_size; index++) {
666 if (stat_info->af_cache[index] == freq)
667 break;
669 /* Reached the limit of the list - ignore the next AF */
670 if (index == stat_info->af_list_max) {
671 fmdbg("AF cache is full\n");
672 return;
675 * If we reached the end of the list then this AF is not
676 * in the list - add it.
678 if (index == stat_info->afcache_size) {
679 fmdbg("Storing AF %d to cache index %d\n", freq, index);
680 stat_info->af_cache[index] = freq;
681 stat_info->afcache_size++;
686 * Converts RDS buffer data from big endian format
687 * to little endian format.
689 static void fm_rdsparse_swapbytes(struct fmdev *fmdev,
690 struct fm_rdsdata_format *rds_format)
692 u8 byte1;
693 u8 index = 0;
694 u8 *rds_buff;
697 * Since in Orca the 2 RDS Data bytes are in little endian and
698 * in Dolphin they are in big endian, the parsing of the RDS data
699 * is chip dependent
701 if (fmdev->asci_id != 0x6350) {
702 rds_buff = &rds_format->data.groupdatabuff.buff[0];
703 while (index + 1 < FM_RX_RDS_INFO_FIELD_MAX) {
704 byte1 = rds_buff[index];
705 rds_buff[index] = rds_buff[index + 1];
706 rds_buff[index + 1] = byte1;
707 index += 2;
712 static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev)
714 struct sk_buff *skb;
715 struct fm_rdsdata_format rds_fmt;
716 struct fm_rds *rds = &fmdev->rx.rds;
717 unsigned long group_idx, flags;
718 u8 *rds_data, meta_data, tmpbuf[FM_RDS_BLK_SIZE];
719 u8 type, blk_idx;
720 u16 cur_picode;
721 u32 rds_len;
723 if (check_cmdresp_status(fmdev, &skb))
724 return;
726 /* Skip header info */
727 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
728 rds_data = skb->data;
729 rds_len = skb->len;
731 /* Parse the RDS data */
732 while (rds_len >= FM_RDS_BLK_SIZE) {
733 meta_data = rds_data[2];
734 /* Get the type: 0=A, 1=B, 2=C, 3=C', 4=D, 5=E */
735 type = (meta_data & 0x07);
737 /* Transform the blk type into index sequence (0, 1, 2, 3, 4) */
738 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
739 fmdbg("Block index:%d(%s)\n", blk_idx,
740 (meta_data & FM_RDS_STATUS_ERR_MASK) ? "Bad" : "Ok");
742 if ((meta_data & FM_RDS_STATUS_ERR_MASK) != 0)
743 break;
745 if (blk_idx > FM_RDS_BLK_IDX_D) {
746 fmdbg("Block sequence mismatch\n");
747 rds->last_blk_idx = -1;
748 break;
751 /* Skip checkword (control) byte and copy only data byte */
752 memcpy(&rds_fmt.data.groupdatabuff.
753 buff[blk_idx * (FM_RDS_BLK_SIZE - 1)],
754 rds_data, (FM_RDS_BLK_SIZE - 1));
756 rds->last_blk_idx = blk_idx;
758 /* If completed a whole group then handle it */
759 if (blk_idx == FM_RDS_BLK_IDX_D) {
760 fmdbg("Good block received\n");
761 fm_rdsparse_swapbytes(fmdev, &rds_fmt);
764 * Extract PI code and store in local cache.
765 * We need this during AF switch processing.
767 cur_picode = be16_to_cpu(rds_fmt.data.groupgeneral.pidata);
768 if (fmdev->rx.stat_info.picode != cur_picode)
769 fmdev->rx.stat_info.picode = cur_picode;
771 fmdbg("picode:%d\n", cur_picode);
773 group_idx = (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
774 fmdbg("(fmdrv):Group:%ld%s\n", group_idx/2,
775 (group_idx % 2) ? "B" : "A");
777 group_idx = 1 << (rds_fmt.data.groupgeneral.blk_b[0] >> 3);
778 if (group_idx == FM_RDS_GROUP_TYPE_MASK_0A) {
779 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[0]);
780 fm_rx_update_af_cache(fmdev, rds_fmt.data.group0A.af[1]);
783 rds_len -= FM_RDS_BLK_SIZE;
784 rds_data += FM_RDS_BLK_SIZE;
787 /* Copy raw rds data to internal rds buffer */
788 rds_data = skb->data;
789 rds_len = skb->len;
791 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
792 while (rds_len > 0) {
794 * Fill RDS buffer as per V4L2 specification.
795 * Store control byte
797 type = (rds_data[2] & 0x07);
798 blk_idx = (type <= FM_RDS_BLOCK_C ? type : (type - 1));
799 tmpbuf[2] = blk_idx; /* Offset name */
800 tmpbuf[2] |= blk_idx << 3; /* Received offset */
802 /* Store data byte */
803 tmpbuf[0] = rds_data[0];
804 tmpbuf[1] = rds_data[1];
806 memcpy(&rds->buff[rds->wr_idx], &tmpbuf, FM_RDS_BLK_SIZE);
807 rds->wr_idx = (rds->wr_idx + FM_RDS_BLK_SIZE) % rds->buf_size;
809 /* Check for overflow & start over */
810 if (rds->wr_idx == rds->rd_idx) {
811 fmdbg("RDS buffer overflow\n");
812 rds->wr_idx = 0;
813 rds->rd_idx = 0;
814 break;
816 rds_len -= FM_RDS_BLK_SIZE;
817 rds_data += FM_RDS_BLK_SIZE;
819 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
821 /* Wakeup read queue */
822 if (rds->wr_idx != rds->rd_idx)
823 wake_up_interruptible(&rds->read_queue);
825 fm_irq_call_stage(fmdev, FM_RDS_FINISH_IDX);
828 static void fm_irq_handle_rds_finish(struct fmdev *fmdev)
830 fm_irq_call_stage(fmdev, FM_HW_TUNE_OP_ENDED_IDX);
833 static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev)
835 if (fmdev->irq_info.flag & (FM_FR_EVENT | FM_BL_EVENT) & fmdev->
836 irq_info.mask) {
837 fmdbg("irq: tune ended/bandlimit reached\n");
838 if (test_and_clear_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag)) {
839 fmdev->irq_info.stage = FM_AF_JUMP_RD_FREQ_IDX;
840 } else {
841 complete(&fmdev->maintask_comp);
842 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
844 } else
845 fmdev->irq_info.stage = FM_HW_POWER_ENB_IDX;
847 fm_irq_call(fmdev);
850 static void fm_irq_handle_power_enb(struct fmdev *fmdev)
852 if (fmdev->irq_info.flag & FM_POW_ENB_EVENT) {
853 fmdbg("irq: Power Enabled/Disabled\n");
854 complete(&fmdev->maintask_comp);
857 fm_irq_call_stage(fmdev, FM_LOW_RSSI_START_IDX);
860 static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev)
862 if ((fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON) &&
863 (fmdev->irq_info.flag & FM_LEV_EVENT & fmdev->irq_info.mask) &&
864 (fmdev->rx.freq != FM_UNDEFINED_FREQ) &&
865 (fmdev->rx.stat_info.afcache_size != 0)) {
866 fmdbg("irq: rssi level has fallen below threshold level\n");
868 /* Disable further low RSSI interrupts */
869 fmdev->irq_info.mask &= ~FM_LEV_EVENT;
871 fmdev->rx.afjump_idx = 0;
872 fmdev->rx.freq_before_jump = fmdev->rx.freq;
873 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
874 } else {
875 /* Continue next function in interrupt handler table */
876 fmdev->irq_info.stage = FM_SEND_INTMSK_CMD_IDX;
879 fm_irq_call(fmdev);
882 static void fm_irq_afjump_set_pi(struct fmdev *fmdev)
884 u16 payload;
886 /* Set PI code - must be updated if the AF list is not empty */
887 payload = fmdev->rx.stat_info.picode;
888 if (!fm_send_cmd(fmdev, RDS_PI_SET, REG_WR, &payload, sizeof(payload), NULL))
889 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_RESP_IDX);
892 static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev)
894 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SETPI_MASK_IDX);
898 * Set PI mask.
899 * 0xFFFF = Enable PI code matching
900 * 0x0000 = Disable PI code matching
902 static void fm_irq_afjump_set_pimask(struct fmdev *fmdev)
904 u16 payload;
906 payload = 0x0000;
907 if (!fm_send_cmd(fmdev, RDS_PI_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
908 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SETPI_MASK_RESP_IDX);
911 static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev)
913 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_SET_AF_FREQ_IDX);
916 static void fm_irq_afjump_setfreq(struct fmdev *fmdev)
918 u16 frq_index;
919 u16 payload;
921 fmdbg("Swtich to %d KHz\n", fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx]);
922 frq_index = (fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx] -
923 fmdev->rx.region.bot_freq) / FM_FREQ_MUL;
925 payload = frq_index;
926 if (!fm_send_cmd(fmdev, AF_FREQ_SET, REG_WR, &payload, sizeof(payload), NULL))
927 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_SET_AFFREQ_RESP_IDX);
930 static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev)
932 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_ENABLE_INT_IDX);
935 static void fm_irq_afjump_enableint(struct fmdev *fmdev)
937 u16 payload;
939 /* Enable FR (tuning operation ended) interrupt */
940 payload = FM_FR_EVENT;
941 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload, sizeof(payload), NULL))
942 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_ENABLE_INT_RESP_IDX);
945 static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev)
947 fm_irq_common_cmd_resp_helper(fmdev, FM_AF_JUMP_START_AFJUMP_IDX);
950 static void fm_irq_start_afjump(struct fmdev *fmdev)
952 u16 payload;
954 payload = FM_TUNER_AF_JUMP_MODE;
955 if (!fm_send_cmd(fmdev, TUNER_MODE_SET, REG_WR, &payload,
956 sizeof(payload), NULL))
957 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_HANDLE_START_AFJUMP_RESP_IDX);
960 static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev)
962 struct sk_buff *skb;
964 if (check_cmdresp_status(fmdev, &skb))
965 return;
967 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
968 set_bit(FM_AF_SWITCH_INPROGRESS, &fmdev->flag);
969 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
972 static void fm_irq_afjump_rd_freq(struct fmdev *fmdev)
974 u16 payload;
976 if (!fm_send_cmd(fmdev, FREQ_SET, REG_RD, NULL, sizeof(payload), NULL))
977 fm_irq_timeout_stage(fmdev, FM_AF_JUMP_RD_FREQ_RESP_IDX);
980 static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev)
982 struct sk_buff *skb;
983 u16 read_freq;
984 u32 curr_freq, jumped_freq;
986 if (check_cmdresp_status(fmdev, &skb))
987 return;
989 /* Skip header info and copy only response data */
990 skb_pull(skb, sizeof(struct fm_event_msg_hdr));
991 memcpy(&read_freq, skb->data, sizeof(read_freq));
992 read_freq = be16_to_cpu(read_freq);
993 curr_freq = fmdev->rx.region.bot_freq + ((u32)read_freq * FM_FREQ_MUL);
995 jumped_freq = fmdev->rx.stat_info.af_cache[fmdev->rx.afjump_idx];
997 /* If the frequency was changed the jump succeeded */
998 if ((curr_freq != fmdev->rx.freq_before_jump) && (curr_freq == jumped_freq)) {
999 fmdbg("Successfully switched to alternate freq %d\n", curr_freq);
1000 fmdev->rx.freq = curr_freq;
1001 fm_rx_reset_rds_cache(fmdev);
1003 /* AF feature is on, enable low level RSSI interrupt */
1004 if (fmdev->rx.af_mode == FM_RX_RDS_AF_SWITCH_MODE_ON)
1005 fmdev->irq_info.mask |= FM_LEV_EVENT;
1007 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1008 } else { /* jump to the next freq in the AF list */
1009 fmdev->rx.afjump_idx++;
1011 /* If we reached the end of the list - stop searching */
1012 if (fmdev->rx.afjump_idx >= fmdev->rx.stat_info.afcache_size) {
1013 fmdbg("AF switch processing failed\n");
1014 fmdev->irq_info.stage = FM_LOW_RSSI_FINISH_IDX;
1015 } else { /* AF List is not over - try next one */
1017 fmdbg("Trying next freq in AF cache\n");
1018 fmdev->irq_info.stage = FM_AF_JUMP_SETPI_IDX;
1021 fm_irq_call(fmdev);
1024 static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev)
1026 fm_irq_call_stage(fmdev, FM_SEND_INTMSK_CMD_IDX);
1029 static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev)
1031 u16 payload;
1033 /* Re-enable FM interrupts */
1034 payload = fmdev->irq_info.mask;
1036 if (!fm_send_cmd(fmdev, INT_MASK_SET, REG_WR, &payload,
1037 sizeof(payload), NULL))
1038 fm_irq_timeout_stage(fmdev, FM_HANDLE_INTMSK_CMD_RESP_IDX);
1041 static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev)
1043 struct sk_buff *skb;
1045 if (check_cmdresp_status(fmdev, &skb))
1046 return;
1048 * This is last function in interrupt table to be executed.
1049 * So, reset stage index to 0.
1051 fmdev->irq_info.stage = FM_SEND_FLAG_GETCMD_IDX;
1053 /* Start processing any pending interrupt */
1054 if (test_and_clear_bit(FM_INTTASK_SCHEDULE_PENDING, &fmdev->flag))
1055 fmdev->irq_info.handlers[fmdev->irq_info.stage](fmdev);
1056 else
1057 clear_bit(FM_INTTASK_RUNNING, &fmdev->flag);
1060 /* Returns availability of RDS data in internel buffer */
1061 int fmc_is_rds_data_available(struct fmdev *fmdev, struct file *file,
1062 struct poll_table_struct *pts)
1064 poll_wait(file, &fmdev->rx.rds.read_queue, pts);
1065 if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx)
1066 return 0;
1068 return -EAGAIN;
1071 /* Copies RDS data from internal buffer to user buffer */
1072 int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev, struct file *file,
1073 u8 __user *buf, size_t count)
1075 u32 block_count;
1076 u8 tmpbuf[FM_RDS_BLK_SIZE];
1077 unsigned long flags;
1078 int ret;
1080 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1081 if (file->f_flags & O_NONBLOCK)
1082 return -EWOULDBLOCK;
1084 ret = wait_event_interruptible(fmdev->rx.rds.read_queue,
1085 (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx));
1086 if (ret)
1087 return -EINTR;
1090 /* Calculate block count from byte count */
1091 count /= FM_RDS_BLK_SIZE;
1092 block_count = 0;
1093 ret = 0;
1095 while (block_count < count) {
1096 spin_lock_irqsave(&fmdev->rds_buff_lock, flags);
1098 if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) {
1099 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1100 break;
1102 memcpy(tmpbuf, &fmdev->rx.rds.buff[fmdev->rx.rds.rd_idx],
1103 FM_RDS_BLK_SIZE);
1104 fmdev->rx.rds.rd_idx += FM_RDS_BLK_SIZE;
1105 if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size)
1106 fmdev->rx.rds.rd_idx = 0;
1108 spin_unlock_irqrestore(&fmdev->rds_buff_lock, flags);
1110 if (copy_to_user(buf, tmpbuf, FM_RDS_BLK_SIZE))
1111 break;
1113 block_count++;
1114 buf += FM_RDS_BLK_SIZE;
1115 ret += FM_RDS_BLK_SIZE;
1117 return ret;
1120 int fmc_set_freq(struct fmdev *fmdev, u32 freq_to_set)
1122 switch (fmdev->curr_fmmode) {
1123 case FM_MODE_RX:
1124 return fm_rx_set_freq(fmdev, freq_to_set);
1126 case FM_MODE_TX:
1127 return fm_tx_set_freq(fmdev, freq_to_set);
1129 default:
1130 return -EINVAL;
1134 int fmc_get_freq(struct fmdev *fmdev, u32 *cur_tuned_frq)
1136 if (fmdev->rx.freq == FM_UNDEFINED_FREQ) {
1137 fmerr("RX frequency is not set\n");
1138 return -EPERM;
1140 if (cur_tuned_frq == NULL) {
1141 fmerr("Invalid memory\n");
1142 return -ENOMEM;
1145 switch (fmdev->curr_fmmode) {
1146 case FM_MODE_RX:
1147 *cur_tuned_frq = fmdev->rx.freq;
1148 return 0;
1150 case FM_MODE_TX:
1151 *cur_tuned_frq = 0; /* TODO : Change this later */
1152 return 0;
1154 default:
1155 return -EINVAL;
1160 int fmc_set_region(struct fmdev *fmdev, u8 region_to_set)
1162 switch (fmdev->curr_fmmode) {
1163 case FM_MODE_RX:
1164 return fm_rx_set_region(fmdev, region_to_set);
1166 case FM_MODE_TX:
1167 return fm_tx_set_region(fmdev, region_to_set);
1169 default:
1170 return -EINVAL;
1174 int fmc_set_mute_mode(struct fmdev *fmdev, u8 mute_mode_toset)
1176 switch (fmdev->curr_fmmode) {
1177 case FM_MODE_RX:
1178 return fm_rx_set_mute_mode(fmdev, mute_mode_toset);
1180 case FM_MODE_TX:
1181 return fm_tx_set_mute_mode(fmdev, mute_mode_toset);
1183 default:
1184 return -EINVAL;
1188 int fmc_set_stereo_mono(struct fmdev *fmdev, u16 mode)
1190 switch (fmdev->curr_fmmode) {
1191 case FM_MODE_RX:
1192 return fm_rx_set_stereo_mono(fmdev, mode);
1194 case FM_MODE_TX:
1195 return fm_tx_set_stereo_mono(fmdev, mode);
1197 default:
1198 return -EINVAL;
1202 int fmc_set_rds_mode(struct fmdev *fmdev, u8 rds_en_dis)
1204 switch (fmdev->curr_fmmode) {
1205 case FM_MODE_RX:
1206 return fm_rx_set_rds_mode(fmdev, rds_en_dis);
1208 case FM_MODE_TX:
1209 return fm_tx_set_rds_mode(fmdev, rds_en_dis);
1211 default:
1212 return -EINVAL;
1216 /* Sends power off command to the chip */
1217 static int fm_power_down(struct fmdev *fmdev)
1219 u16 payload;
1220 int ret;
1222 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1223 fmerr("FM core is not ready\n");
1224 return -EPERM;
1226 if (fmdev->curr_fmmode == FM_MODE_OFF) {
1227 fmdbg("FM chip is already in OFF state\n");
1228 return 0;
1231 payload = 0x0;
1232 ret = fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1233 sizeof(payload), NULL, NULL);
1234 if (ret < 0)
1235 return ret;
1237 return fmc_release(fmdev);
1240 /* Reads init command from FM firmware file and loads to the chip */
1241 static int fm_download_firmware(struct fmdev *fmdev, const u8 *fw_name)
1243 const struct firmware *fw_entry;
1244 struct bts_header *fw_header;
1245 struct bts_action *action;
1246 struct bts_action_delay *delay;
1247 u8 *fw_data;
1248 int ret, fw_len, cmd_cnt;
1250 cmd_cnt = 0;
1251 set_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1253 ret = request_firmware(&fw_entry, fw_name,
1254 &fmdev->radio_dev->dev);
1255 if (ret < 0) {
1256 fmerr("Unable to read firmware(%s) content\n", fw_name);
1257 return ret;
1259 fmdbg("Firmware(%s) length : %d bytes\n", fw_name, fw_entry->size);
1261 fw_data = (void *)fw_entry->data;
1262 fw_len = fw_entry->size;
1264 fw_header = (struct bts_header *)fw_data;
1265 if (fw_header->magic != FM_FW_FILE_HEADER_MAGIC) {
1266 fmerr("%s not a legal TI firmware file\n", fw_name);
1267 ret = -EINVAL;
1268 goto rel_fw;
1270 fmdbg("FW(%s) magic number : 0x%x\n", fw_name, fw_header->magic);
1272 /* Skip file header info , we already verified it */
1273 fw_data += sizeof(struct bts_header);
1274 fw_len -= sizeof(struct bts_header);
1276 while (fw_data && fw_len > 0) {
1277 action = (struct bts_action *)fw_data;
1279 switch (action->type) {
1280 case ACTION_SEND_COMMAND: /* Send */
1281 if (fmc_send_cmd(fmdev, 0, 0, action->data,
1282 action->size, NULL, NULL))
1283 goto rel_fw;
1285 cmd_cnt++;
1286 break;
1288 case ACTION_DELAY: /* Delay */
1289 delay = (struct bts_action_delay *)action->data;
1290 mdelay(delay->msec);
1291 break;
1294 fw_data += (sizeof(struct bts_action) + (action->size));
1295 fw_len -= (sizeof(struct bts_action) + (action->size));
1297 fmdbg("Firmware commands(%d) loaded to chip\n", cmd_cnt);
1298 rel_fw:
1299 release_firmware(fw_entry);
1300 clear_bit(FM_FW_DW_INPROGRESS, &fmdev->flag);
1302 return ret;
1305 /* Loads default RX configuration to the chip */
1306 static int load_default_rx_configuration(struct fmdev *fmdev)
1308 int ret;
1310 ret = fm_rx_set_volume(fmdev, FM_DEFAULT_RX_VOLUME);
1311 if (ret < 0)
1312 return ret;
1314 return fm_rx_set_rssi_threshold(fmdev, FM_DEFAULT_RSSI_THRESHOLD);
1317 /* Does FM power on sequence */
1318 static int fm_power_up(struct fmdev *fmdev, u8 mode)
1320 u16 payload, asic_id, asic_ver;
1321 int resp_len, ret;
1322 u8 fw_name[50];
1324 if (mode >= FM_MODE_ENTRY_MAX) {
1325 fmerr("Invalid firmware download option\n");
1326 return -EINVAL;
1330 * Initialize FM common module. FM GPIO toggling is
1331 * taken care in Shared Transport driver.
1333 ret = fmc_prepare(fmdev);
1334 if (ret < 0) {
1335 fmerr("Unable to prepare FM Common\n");
1336 return ret;
1339 payload = FM_ENABLE;
1340 if (fmc_send_cmd(fmdev, FM_POWER_MODE, REG_WR, &payload,
1341 sizeof(payload), NULL, NULL))
1342 goto rel;
1344 /* Allow the chip to settle down in Channel-8 mode */
1345 msleep(20);
1347 if (fmc_send_cmd(fmdev, ASIC_ID_GET, REG_RD, NULL,
1348 sizeof(asic_id), &asic_id, &resp_len))
1349 goto rel;
1351 if (fmc_send_cmd(fmdev, ASIC_VER_GET, REG_RD, NULL,
1352 sizeof(asic_ver), &asic_ver, &resp_len))
1353 goto rel;
1355 fmdbg("ASIC ID: 0x%x , ASIC Version: %d\n",
1356 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1358 sprintf(fw_name, "%s_%x.%d.bts", FM_FMC_FW_FILE_START,
1359 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1361 ret = fm_download_firmware(fmdev, fw_name);
1362 if (ret < 0) {
1363 fmdbg("Failed to download firmware file %s\n", fw_name);
1364 goto rel;
1366 sprintf(fw_name, "%s_%x.%d.bts", (mode == FM_MODE_RX) ?
1367 FM_RX_FW_FILE_START : FM_TX_FW_FILE_START,
1368 be16_to_cpu(asic_id), be16_to_cpu(asic_ver));
1370 ret = fm_download_firmware(fmdev, fw_name);
1371 if (ret < 0) {
1372 fmdbg("Failed to download firmware file %s\n", fw_name);
1373 goto rel;
1374 } else
1375 return ret;
1376 rel:
1377 return fmc_release(fmdev);
1380 /* Set FM Modes(TX, RX, OFF) */
1381 int fmc_set_mode(struct fmdev *fmdev, u8 fm_mode)
1383 int ret = 0;
1385 if (fm_mode >= FM_MODE_ENTRY_MAX) {
1386 fmerr("Invalid FM mode\n");
1387 return -EINVAL;
1389 if (fmdev->curr_fmmode == fm_mode) {
1390 fmdbg("Already fm is in mode(%d)\n", fm_mode);
1391 return ret;
1394 switch (fm_mode) {
1395 case FM_MODE_OFF: /* OFF Mode */
1396 ret = fm_power_down(fmdev);
1397 if (ret < 0) {
1398 fmerr("Failed to set OFF mode\n");
1399 return ret;
1401 break;
1403 case FM_MODE_TX: /* TX Mode */
1404 case FM_MODE_RX: /* RX Mode */
1405 /* Power down before switching to TX or RX mode */
1406 if (fmdev->curr_fmmode != FM_MODE_OFF) {
1407 ret = fm_power_down(fmdev);
1408 if (ret < 0) {
1409 fmerr("Failed to set OFF mode\n");
1410 return ret;
1412 msleep(30);
1414 ret = fm_power_up(fmdev, fm_mode);
1415 if (ret < 0) {
1416 fmerr("Failed to load firmware\n");
1417 return ret;
1420 fmdev->curr_fmmode = fm_mode;
1422 /* Set default configuration */
1423 if (fmdev->curr_fmmode == FM_MODE_RX) {
1424 fmdbg("Loading default rx configuration..\n");
1425 ret = load_default_rx_configuration(fmdev);
1426 if (ret < 0)
1427 fmerr("Failed to load default values\n");
1430 return ret;
1433 /* Returns current FM mode (TX, RX, OFF) */
1434 int fmc_get_mode(struct fmdev *fmdev, u8 *fmmode)
1436 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1437 fmerr("FM core is not ready\n");
1438 return -EPERM;
1440 if (fmmode == NULL) {
1441 fmerr("Invalid memory\n");
1442 return -ENOMEM;
1445 *fmmode = fmdev->curr_fmmode;
1446 return 0;
1449 /* Called by ST layer when FM packet is available */
1450 static long fm_st_receive(void *arg, struct sk_buff *skb)
1452 struct fmdev *fmdev;
1454 fmdev = (struct fmdev *)arg;
1456 if (skb == NULL) {
1457 fmerr("Invalid SKB received from ST\n");
1458 return -EFAULT;
1461 if (skb->cb[0] != FM_PKT_LOGICAL_CHAN_NUMBER) {
1462 fmerr("Received SKB (%p) is not FM Channel 8 pkt\n", skb);
1463 return -EINVAL;
1466 memcpy(skb_push(skb, 1), &skb->cb[0], 1);
1467 skb_queue_tail(&fmdev->rx_q, skb);
1468 tasklet_schedule(&fmdev->rx_task);
1470 return 0;
1474 * Called by ST layer to indicate protocol registration completion
1475 * status.
1477 static void fm_st_reg_comp_cb(void *arg, char data)
1479 struct fmdev *fmdev;
1481 fmdev = (struct fmdev *)arg;
1482 fmdev->streg_cbdata = data;
1483 complete(&wait_for_fmdrv_reg_comp);
1487 * This function will be called from FM V4L2 open function.
1488 * Register with ST driver and initialize driver data.
1490 int fmc_prepare(struct fmdev *fmdev)
1492 static struct st_proto_s fm_st_proto;
1493 int ret;
1495 if (test_bit(FM_CORE_READY, &fmdev->flag)) {
1496 fmdbg("FM Core is already up\n");
1497 return 0;
1500 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1501 fm_st_proto.recv = fm_st_receive;
1502 fm_st_proto.match_packet = NULL;
1503 fm_st_proto.reg_complete_cb = fm_st_reg_comp_cb;
1504 fm_st_proto.write = NULL; /* TI ST driver will fill write pointer */
1505 fm_st_proto.priv_data = fmdev;
1506 fm_st_proto.chnl_id = 0x08;
1507 fm_st_proto.max_frame_size = 0xff;
1508 fm_st_proto.hdr_len = 1;
1509 fm_st_proto.offset_len_in_hdr = 0;
1510 fm_st_proto.len_size = 1;
1511 fm_st_proto.reserve = 1;
1513 ret = st_register(&fm_st_proto);
1514 if (ret == -EINPROGRESS) {
1515 init_completion(&wait_for_fmdrv_reg_comp);
1516 fmdev->streg_cbdata = -EINPROGRESS;
1517 fmdbg("%s waiting for ST reg completion signal\n", __func__);
1519 if (!wait_for_completion_timeout(&wait_for_fmdrv_reg_comp,
1520 FM_ST_REG_TIMEOUT)) {
1521 fmerr("Timeout(%d sec), didn't get reg "
1522 "completion signal from ST\n",
1523 jiffies_to_msecs(FM_ST_REG_TIMEOUT) / 1000);
1524 return -ETIMEDOUT;
1526 if (fmdev->streg_cbdata != 0) {
1527 fmerr("ST reg comp CB called with error "
1528 "status %d\n", fmdev->streg_cbdata);
1529 return -EAGAIN;
1532 ret = 0;
1533 } else if (ret == -1) {
1534 fmerr("st_register failed %d\n", ret);
1535 return -EAGAIN;
1538 if (fm_st_proto.write != NULL) {
1539 g_st_write = fm_st_proto.write;
1540 } else {
1541 fmerr("Failed to get ST write func pointer\n");
1542 ret = st_unregister(&fm_st_proto);
1543 if (ret < 0)
1544 fmerr("st_unregister failed %d\n", ret);
1545 return -EAGAIN;
1548 spin_lock_init(&fmdev->rds_buff_lock);
1549 spin_lock_init(&fmdev->resp_skb_lock);
1551 /* Initialize TX queue and TX tasklet */
1552 skb_queue_head_init(&fmdev->tx_q);
1553 tasklet_init(&fmdev->tx_task, send_tasklet, (unsigned long)fmdev);
1555 /* Initialize RX Queue and RX tasklet */
1556 skb_queue_head_init(&fmdev->rx_q);
1557 tasklet_init(&fmdev->rx_task, recv_tasklet, (unsigned long)fmdev);
1559 fmdev->irq_info.stage = 0;
1560 atomic_set(&fmdev->tx_cnt, 1);
1561 fmdev->resp_comp = NULL;
1563 init_timer(&fmdev->irq_info.timer);
1564 fmdev->irq_info.timer.function = &int_timeout_handler;
1565 fmdev->irq_info.timer.data = (unsigned long)fmdev;
1566 /*TODO: add FM_STIC_EVENT later */
1567 fmdev->irq_info.mask = FM_MAL_EVENT;
1569 /* Region info */
1570 fmdev->rx.region = region_configs[default_radio_region];
1572 fmdev->rx.mute_mode = FM_MUTE_OFF;
1573 fmdev->rx.rf_depend_mute = FM_RX_RF_DEPENDENT_MUTE_OFF;
1574 fmdev->rx.rds.flag = FM_RDS_DISABLE;
1575 fmdev->rx.freq = FM_UNDEFINED_FREQ;
1576 fmdev->rx.rds_mode = FM_RDS_SYSTEM_RDS;
1577 fmdev->rx.af_mode = FM_RX_RDS_AF_SWITCH_MODE_OFF;
1578 fmdev->irq_info.retry = 0;
1580 fm_rx_reset_rds_cache(fmdev);
1581 init_waitqueue_head(&fmdev->rx.rds.read_queue);
1583 fm_rx_reset_station_info(fmdev);
1584 set_bit(FM_CORE_READY, &fmdev->flag);
1586 return ret;
1590 * This function will be called from FM V4L2 release function.
1591 * Unregister from ST driver.
1593 int fmc_release(struct fmdev *fmdev)
1595 static struct st_proto_s fm_st_proto;
1596 int ret;
1598 if (!test_bit(FM_CORE_READY, &fmdev->flag)) {
1599 fmdbg("FM Core is already down\n");
1600 return 0;
1602 /* Service pending read */
1603 wake_up_interruptible(&fmdev->rx.rds.read_queue);
1605 tasklet_kill(&fmdev->tx_task);
1606 tasklet_kill(&fmdev->rx_task);
1608 skb_queue_purge(&fmdev->tx_q);
1609 skb_queue_purge(&fmdev->rx_q);
1611 fmdev->resp_comp = NULL;
1612 fmdev->rx.freq = 0;
1614 memset(&fm_st_proto, 0, sizeof(fm_st_proto));
1615 fm_st_proto.chnl_id = 0x08;
1617 ret = st_unregister(&fm_st_proto);
1619 if (ret < 0)
1620 fmerr("Failed to de-register FM from ST %d\n", ret);
1621 else
1622 fmdbg("Successfully unregistered from ST\n");
1624 clear_bit(FM_CORE_READY, &fmdev->flag);
1625 return ret;
1629 * Module init function. Ask FM V4L module to register video device.
1630 * Allocate memory for FM driver context and RX RDS buffer.
1632 static int __init fm_drv_init(void)
1634 struct fmdev *fmdev = NULL;
1635 int ret = -ENOMEM;
1637 fmdbg("FM driver version %s\n", FM_DRV_VERSION);
1639 fmdev = kzalloc(sizeof(struct fmdev), GFP_KERNEL);
1640 if (NULL == fmdev) {
1641 fmerr("Can't allocate operation structure memory\n");
1642 return ret;
1644 fmdev->rx.rds.buf_size = default_rds_buf * FM_RDS_BLK_SIZE;
1645 fmdev->rx.rds.buff = kzalloc(fmdev->rx.rds.buf_size, GFP_KERNEL);
1646 if (NULL == fmdev->rx.rds.buff) {
1647 fmerr("Can't allocate rds ring buffer\n");
1648 goto rel_dev;
1651 ret = fm_v4l2_init_video_device(fmdev, radio_nr);
1652 if (ret < 0)
1653 goto rel_rdsbuf;
1655 fmdev->irq_info.handlers = int_handler_table;
1656 fmdev->curr_fmmode = FM_MODE_OFF;
1657 fmdev->tx_data.pwr_lvl = FM_PWR_LVL_DEF;
1658 fmdev->tx_data.preemph = FM_TX_PREEMPH_50US;
1659 return ret;
1661 rel_rdsbuf:
1662 kfree(fmdev->rx.rds.buff);
1663 rel_dev:
1664 kfree(fmdev);
1666 return ret;
1669 /* Module exit function. Ask FM V4L module to unregister video device */
1670 static void __exit fm_drv_exit(void)
1672 struct fmdev *fmdev = NULL;
1674 fmdev = fm_v4l2_deinit_video_device();
1675 if (fmdev != NULL) {
1676 kfree(fmdev->rx.rds.buff);
1677 kfree(fmdev);
1681 module_init(fm_drv_init);
1682 module_exit(fm_drv_exit);
1684 /* ------------- Module Info ------------- */
1685 MODULE_AUTHOR("Manjunatha Halli <manjunatha_halli@ti.com>");
1686 MODULE_DESCRIPTION("FM Driver for TI's Connectivity chip. " FM_DRV_VERSION);
1687 MODULE_VERSION(FM_DRV_VERSION);
1688 MODULE_LICENSE("GPL");