2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE 0x2FC
42 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56 #define PRCM_AVS_VOLTAGE 0
57 #define PRCM_AVS_VOLTAGE_MASK 0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP 6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE 7
61 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63 #define PRCM_BOOT_STATUS 0xFFF
64 #define PRCM_ROMCODE_A2P 0xFFE
65 #define PRCM_ROMCODE_P2A 0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS 0
97 #define MB0H_CONFIG_WAKEUPS_EXE 1
98 #define MB0H_READ_WAKEUP_ACK 3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
105 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF 0x1
134 #define PLL_SOC0_ON 0x2
135 #define PLL_SOC1_OFF 0x4
136 #define PLL_SOC1_ON 0x8
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144 /* Mailbox 2 headers */
146 #define MB2H_AUTO_PWR 0x1
149 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
164 /* Mailbox 3 headers */
166 #define MB3H_SIDETONE 0x1
167 #define MB3H_SYSCLK 0xE
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT 0x0
180 #define MB4H_MEM_ST 0x1
181 #define MB4H_HOTDOG 0x12
182 #define MB4H_HOTMON 0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN 0x17
186 #define MB4H_A9WDOG_DIS 0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW BIT(0)
200 #define HOTMON_CONFIG_HIGH BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS 0
207 #define A9WDOG_ID_MASK 0xf
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN BIT(3)
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
264 struct prcmu_fw_version version
;
267 static struct irq_domain
*db8500_irq_domain
;
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
305 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
317 IRQ_ENTRY(HOTMON_LOW
),
318 IRQ_ENTRY(HOTMON_HIGH
),
319 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
341 WAKEUP_ENTRY(ABB_FIFO
),
346 * mb0_transfer - state needed for mailbox 0 communication.
347 * @lock: The transaction lock.
348 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * @mask_work: Work structure used for (un)masking wakeup interrupts.
351 * @req: Request data that need to persist between requests.
355 spinlock_t dbb_irqs_lock
;
356 struct work_struct mask_work
;
357 struct mutex ac_wake_lock
;
358 struct completion ac_wake_work
;
367 * mb1_transfer - state needed for mailbox 1 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @ape_opp: The current APE OPP.
371 * @ack: Reply ("acknowledge") data.
375 struct completion work
;
381 u8 ape_voltage_status
;
386 * mb2_transfer - state needed for mailbox 2 communication.
387 * @lock: The transaction lock.
388 * @work: The transaction completion structure.
389 * @auto_pm_lock: The autonomous power management configuration lock.
390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391 * @req: Request data that need to persist between requests.
392 * @ack: Reply ("acknowledge") data.
396 struct completion work
;
397 spinlock_t auto_pm_lock
;
398 bool auto_pm_enabled
;
405 * mb3_transfer - state needed for mailbox 3 communication.
406 * @lock: The request lock.
407 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
408 * @sysclk_work: Work structure used for sysclk requests.
412 struct mutex sysclk_lock
;
413 struct completion sysclk_work
;
417 * mb4_transfer - state needed for mailbox 4 communication.
418 * @lock: The transaction lock.
419 * @work: The transaction completion structure.
423 struct completion work
;
427 * mb5_transfer - state needed for mailbox 5 communication.
428 * @lock: The transaction lock.
429 * @work: The transaction completion structure.
430 * @ack: Reply ("acknowledge") data.
434 struct completion work
;
441 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
444 static DEFINE_SPINLOCK(prcmu_lock
);
445 static DEFINE_SPINLOCK(clkout_lock
);
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem
void *tcdm_base
;
449 static __iomem
void *prcmu_base
;
464 static DEFINE_SPINLOCK(clk_mgt_lock
);
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
469 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
470 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
471 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
475 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
476 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
477 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
478 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
483 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
484 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
485 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
487 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
488 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
489 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
491 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
492 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
493 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
494 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
495 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
496 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
506 static struct dsiclk dsiclk
[2] = {
508 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
509 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
510 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
513 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
514 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
515 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
525 static struct dsiescclk dsiescclk
[3] = {
527 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
528 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
529 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
532 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
533 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
534 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
537 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
538 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
539 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
545 * Used by MCDE to setup all necessary PRCMU registers
547 #define PRCMU_RESET_DSIPLL 0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
550 #define PRCMU_CLK_PLL_DIV_SHIFT 0
551 #define PRCMU_CLK_PLL_SW_SHIFT 5
552 #define PRCMU_CLK_38 (1 << 9)
553 #define PRCMU_CLK_38_SRC (1 << 10)
554 #define PRCMU_CLK_38_DIV (1 << 11)
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567 #define PRCMU_ENABLE_PLLDSI 0x00000001
568 #define PRCMU_DISABLE_PLLDSI 0x00000000
569 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
574 #define PRCMU_DSI_RESET_SW 0x00000007
576 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578 int db8500_prcmu_enable_dsipll(void)
582 /* Clear DSIPLL_RESETN */
583 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
584 /* Unclamp DSIPLL in/out */
585 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
587 /* Set DSI PLL FREQ */
588 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
589 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
590 /* Enable Escape clocks */
591 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
594 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
596 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
597 for (i
= 0; i
< 10; i
++) {
598 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
599 == PRCMU_PLLDSI_LOCKP_LOCKED
)
603 /* Set DSIPLL_RESETN */
604 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
608 int db8500_prcmu_disable_dsipll(void)
610 /* Disable dsi pll */
611 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
612 /* Disable escapeclock */
613 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
617 int db8500_prcmu_set_display_clocks(void)
621 spin_lock_irqsave(&clk_mgt_lock
, flags
);
623 /* Grab the HW semaphore. */
624 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
627 writel(PRCMU_DSI_CLOCK_SETTING
, prcmu_base
+ PRCM_HDMICLK_MGT
);
628 writel(PRCMU_DSI_LP_CLOCK_SETTING
, prcmu_base
+ PRCM_TVCLK_MGT
);
629 writel(PRCMU_DPI_CLOCK_SETTING
, prcmu_base
+ PRCM_LCDCLK_MGT
);
631 /* Release the HW semaphore. */
634 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
639 u32
db8500_prcmu_read(unsigned int reg
)
641 return readl(prcmu_base
+ reg
);
644 void db8500_prcmu_write(unsigned int reg
, u32 value
)
648 spin_lock_irqsave(&prcmu_lock
, flags
);
649 writel(value
, (prcmu_base
+ reg
));
650 spin_unlock_irqrestore(&prcmu_lock
, flags
);
653 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
658 spin_lock_irqsave(&prcmu_lock
, flags
);
659 val
= readl(prcmu_base
+ reg
);
660 val
= ((val
& ~mask
) | (value
& mask
));
661 writel(val
, (prcmu_base
+ reg
));
662 spin_unlock_irqrestore(&prcmu_lock
, flags
);
665 struct prcmu_fw_version
*prcmu_get_fw_version(void)
667 return fw_info
.valid
? &fw_info
.version
: NULL
;
670 bool prcmu_has_arm_maxopp(void)
672 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
673 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
677 * prcmu_get_boot_status - PRCMU boot status checking
678 * Returns: the current PRCMU boot status
680 int prcmu_get_boot_status(void)
682 return readb(tcdm_base
+ PRCM_BOOT_STATUS
);
686 * prcmu_set_rc_a2p - This function is used to run few power state sequences
687 * @val: Value to be set, i.e. transition requested
688 * Returns: 0 on success, -EINVAL on invalid argument
690 * This function is used to run the following power state sequences -
691 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693 int prcmu_set_rc_a2p(enum romcode_write val
)
695 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
697 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
702 * prcmu_get_rc_p2a - This function is used to get power state sequences
703 * Returns: the power transition that has last happened
705 * This function can return the following transitions-
706 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708 enum romcode_read
prcmu_get_rc_p2a(void)
710 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
714 * prcmu_get_current_mode - Return the current XP70 power mode
715 * Returns: Returns the current AP(ARM) power mode: init,
716 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718 enum ap_pwrst
prcmu_get_xp70_current_state(void)
720 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
724 * prcmu_config_clkout - Configure one of the programmable clock outputs.
725 * @clkout: The CLKOUT number (0 or 1).
726 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
727 * @div: The divider to be applied.
729 * Configures one of the programmable clock outputs (CLKOUTs).
730 * @div should be in the range [1,63] to request a configuration, or 0 to
731 * inform that the configuration is no longer requested.
733 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
735 static int requests
[2];
745 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
747 if (!div
&& !requests
[clkout
])
752 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
753 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
754 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
755 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
758 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
759 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
760 PRCM_CLKOCR_CLK1TYPE
);
761 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
762 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
767 spin_lock_irqsave(&clkout_lock
, flags
);
769 val
= readl(PRCM_CLKOCR
);
770 if (val
& div_mask
) {
772 if ((val
& mask
) != bits
) {
774 goto unlock_and_return
;
777 if ((val
& mask
& ~div_mask
) != bits
) {
779 goto unlock_and_return
;
783 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
784 requests
[clkout
] += (div
? 1 : -1);
787 spin_unlock_irqrestore(&clkout_lock
, flags
);
792 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
796 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
798 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
800 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
803 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
804 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
805 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
806 writeb((keep_ulp_clk
? 1 : 0),
807 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
808 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
809 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
811 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
816 u8
db8500_prcmu_get_power_state_result(void)
818 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
821 /* This function should only be called while mb0_transfer.lock is held. */
822 static void config_wakeups(void)
824 const u8 header
[2] = {
825 MB0H_CONFIG_WAKEUPS_EXE
,
826 MB0H_CONFIG_WAKEUPS_SLEEP
828 static u32 last_dbb_events
;
829 static u32 last_abb_events
;
834 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
835 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
837 abb_events
= mb0_transfer
.req
.abb_events
;
839 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
842 for (i
= 0; i
< 2; i
++) {
843 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
845 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
846 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
847 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
848 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
850 last_dbb_events
= dbb_events
;
851 last_abb_events
= abb_events
;
854 void db8500_prcmu_enable_wakeups(u32 wakeups
)
860 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
862 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
863 if (wakeups
& BIT(i
))
864 bits
|= prcmu_wakeup_bit
[i
];
867 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
869 mb0_transfer
.req
.dbb_wakeups
= bits
;
872 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
875 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
879 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
881 mb0_transfer
.req
.abb_events
= abb_events
;
884 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
887 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
889 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
890 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
892 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
896 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
897 * @opp: The new ARM operating point to which transition is to be made
898 * Returns: 0 on success, non-zero on failure
900 * This function sets the the operating point of the ARM.
902 int db8500_prcmu_set_arm_opp(u8 opp
)
906 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
911 mutex_lock(&mb1_transfer
.lock
);
913 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
916 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
917 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
918 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
920 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
921 wait_for_completion(&mb1_transfer
.work
);
923 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
924 (mb1_transfer
.ack
.arm_opp
!= opp
))
927 mutex_unlock(&mb1_transfer
.lock
);
933 * db8500_prcmu_get_arm_opp - get the current ARM OPP
935 * Returns: the current ARM OPP
937 int db8500_prcmu_get_arm_opp(void)
939 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
943 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
945 * Returns: the current DDR OPP
947 int db8500_prcmu_get_ddr_opp(void)
949 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
953 * db8500_set_ddr_opp - set the appropriate DDR OPP
954 * @opp: The new DDR operating point to which transition is to be made
955 * Returns: 0 on success, non-zero on failure
957 * This function sets the operating point of the DDR.
959 static bool enable_set_ddr_opp
;
960 int db8500_prcmu_set_ddr_opp(u8 opp
)
962 if (opp
< DDR_100_OPP
|| opp
> DDR_25_OPP
)
964 /* Changing the DDR OPP can hang the hardware pre-v21 */
965 if (enable_set_ddr_opp
)
966 writeb(opp
, PRCM_DDR_SUBSYS_APE_MINBW
);
971 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
972 static void request_even_slower_clocks(bool enable
)
981 spin_lock_irqsave(&clk_mgt_lock
, flags
);
983 /* Grab the HW semaphore. */
984 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
987 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
991 val
= readl(prcmu_base
+ clock_reg
[i
]);
992 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
994 if ((div
<= 1) || (div
> 15)) {
995 pr_err("prcmu: Bad clock divider %d in %s\n",
997 goto unlock_and_return
;
1002 goto unlock_and_return
;
1005 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
1006 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
1007 writel(val
, prcmu_base
+ clock_reg
[i
]);
1011 /* Release the HW semaphore. */
1012 writel(0, PRCM_SEM
);
1014 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1018 * db8500_set_ape_opp - set the appropriate APE OPP
1019 * @opp: The new APE operating point to which transition is to be made
1020 * Returns: 0 on success, non-zero on failure
1022 * This function sets the operating point of the APE.
1024 int db8500_prcmu_set_ape_opp(u8 opp
)
1028 if (opp
== mb1_transfer
.ape_opp
)
1031 mutex_lock(&mb1_transfer
.lock
);
1033 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1034 request_even_slower_clocks(false);
1036 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1039 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1042 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1043 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1044 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1045 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1047 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1048 wait_for_completion(&mb1_transfer
.work
);
1050 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1051 (mb1_transfer
.ack
.ape_opp
!= opp
))
1055 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1056 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1057 request_even_slower_clocks(true);
1059 mb1_transfer
.ape_opp
= opp
;
1061 mutex_unlock(&mb1_transfer
.lock
);
1067 * db8500_prcmu_get_ape_opp - get the current APE OPP
1069 * Returns: the current APE OPP
1071 int db8500_prcmu_get_ape_opp(void)
1073 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1077 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1078 * @enable: true to request the higher voltage, false to drop a request.
1080 * Calls to this function to enable and disable requests must be balanced.
1082 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
1086 static unsigned int requests
;
1088 mutex_lock(&mb1_transfer
.lock
);
1091 if (0 != requests
++)
1092 goto unlock_and_return
;
1093 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1095 if (requests
== 0) {
1097 goto unlock_and_return
;
1098 } else if (1 != requests
--) {
1099 goto unlock_and_return
;
1101 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1104 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1107 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1110 wait_for_completion(&mb1_transfer
.work
);
1112 if ((mb1_transfer
.ack
.header
!= header
) ||
1113 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1117 mutex_unlock(&mb1_transfer
.lock
);
1123 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125 * This function releases the power state requirements of a USB wakeup.
1127 int prcmu_release_usb_wakeup_state(void)
1131 mutex_lock(&mb1_transfer
.lock
);
1133 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1136 writeb(MB1H_RELEASE_USB_WAKEUP
,
1137 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1140 wait_for_completion(&mb1_transfer
.work
);
1142 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1143 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1146 mutex_unlock(&mb1_transfer
.lock
);
1151 static int request_pll(u8 clock
, bool enable
)
1155 if (clock
== PRCMU_PLLSOC0
)
1156 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1157 else if (clock
== PRCMU_PLLSOC1
)
1158 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1162 mutex_lock(&mb1_transfer
.lock
);
1164 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1167 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1168 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1170 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1171 wait_for_completion(&mb1_transfer
.work
);
1173 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1176 mutex_unlock(&mb1_transfer
.lock
);
1182 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1183 * @epod_id: The EPOD to set
1184 * @epod_state: The new EPOD state
1186 * This function sets the state of a EPOD (power domain). It may not be called
1187 * from interrupt context.
1189 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1192 bool ram_retention
= false;
1195 /* check argument */
1196 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1198 /* set flag if retention is possible */
1200 case EPOD_ID_SVAMMDSP
:
1201 case EPOD_ID_SIAMMDSP
:
1202 case EPOD_ID_ESRAM12
:
1203 case EPOD_ID_ESRAM34
:
1204 ram_retention
= true;
1208 /* check argument */
1209 BUG_ON(epod_state
> EPOD_STATE_ON
);
1210 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1213 mutex_lock(&mb2_transfer
.lock
);
1215 /* wait for mailbox */
1216 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1219 /* fill in mailbox */
1220 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1221 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1222 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1224 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1226 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1229 * The current firmware version does not handle errors correctly,
1230 * and we cannot recover if there is an error.
1231 * This is expected to change when the firmware is updated.
1233 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1234 msecs_to_jiffies(20000))) {
1235 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1238 goto unlock_and_return
;
1241 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1245 mutex_unlock(&mb2_transfer
.lock
);
1250 * prcmu_configure_auto_pm - Configure autonomous power management.
1251 * @sleep: Configuration for ApSleep.
1252 * @idle: Configuration for ApIdle.
1254 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1255 struct prcmu_auto_pm_config
*idle
)
1259 unsigned long flags
;
1261 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1263 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1264 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1265 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1266 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1267 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1268 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1270 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1271 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1272 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1273 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1274 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1275 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1277 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1280 * The autonomous power management configuration is done through
1281 * fields in mailbox 2, but these fields are only used as shared
1282 * variables - i.e. there is no need to send a message.
1284 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1285 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1287 mb2_transfer
.auto_pm_enabled
=
1288 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1289 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1290 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1291 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1293 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1295 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1297 bool prcmu_is_auto_pm_enabled(void)
1299 return mb2_transfer
.auto_pm_enabled
;
1302 static int request_sysclk(bool enable
)
1305 unsigned long flags
;
1309 mutex_lock(&mb3_transfer
.sysclk_lock
);
1311 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1313 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1316 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1318 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1319 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1321 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1324 * The firmware only sends an ACK if we want to enable the
1325 * SysClk, and it succeeds.
1327 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1328 msecs_to_jiffies(20000))) {
1329 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1334 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1339 static int request_timclk(bool enable
)
1341 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1344 val
|= PRCM_TCR_STOP_TIMERS
;
1345 writel(val
, PRCM_TCR
);
1350 static int request_clock(u8 clock
, bool enable
)
1353 unsigned long flags
;
1355 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1357 /* Grab the HW semaphore. */
1358 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1361 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1363 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1365 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1366 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1368 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1370 /* Release the HW semaphore. */
1371 writel(0, PRCM_SEM
);
1373 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1378 static int request_sga_clock(u8 clock
, bool enable
)
1384 val
= readl(PRCM_CGATING_BYPASS
);
1385 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1388 ret
= request_clock(clock
, enable
);
1390 if (!ret
&& !enable
) {
1391 val
= readl(PRCM_CGATING_BYPASS
);
1392 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1398 static inline bool plldsi_locked(void)
1400 return (readl(PRCM_PLLDSI_LOCKP
) &
1401 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1402 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1403 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1404 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1407 static int request_plldsi(bool enable
)
1412 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1413 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1414 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1416 val
= readl(PRCM_PLLDSI_ENABLE
);
1418 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1420 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1421 writel(val
, PRCM_PLLDSI_ENABLE
);
1425 bool locked
= plldsi_locked();
1427 for (i
= 10; !locked
&& (i
> 0); --i
) {
1429 locked
= plldsi_locked();
1432 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1433 PRCM_APE_RESETN_SET
);
1435 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1436 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1437 PRCM_MMIP_LS_CLAMP_SET
);
1438 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1439 writel(val
, PRCM_PLLDSI_ENABLE
);
1443 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1448 static int request_dsiclk(u8 n
, bool enable
)
1452 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1453 val
&= ~dsiclk
[n
].divsel_mask
;
1454 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1455 dsiclk
[n
].divsel_shift
);
1456 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1460 static int request_dsiescclk(u8 n
, bool enable
)
1464 val
= readl(PRCM_DSITVCLK_DIV
);
1465 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1466 writel(val
, PRCM_DSITVCLK_DIV
);
1471 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1472 * @clock: The clock for which the request is made.
1473 * @enable: Whether the clock should be enabled (true) or disabled (false).
1475 * This function should only be used by the clock implementation.
1476 * Do not use it from any other place!
1478 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1480 if (clock
== PRCMU_SGACLK
)
1481 return request_sga_clock(clock
, enable
);
1482 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1483 return request_clock(clock
, enable
);
1484 else if (clock
== PRCMU_TIMCLK
)
1485 return request_timclk(enable
);
1486 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1487 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1488 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1489 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1490 else if (clock
== PRCMU_PLLDSI
)
1491 return request_plldsi(enable
);
1492 else if (clock
== PRCMU_SYSCLK
)
1493 return request_sysclk(enable
);
1494 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1495 return request_pll(clock
, enable
);
1500 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1511 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1513 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1517 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1521 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1524 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1525 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1526 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1527 (reg
== PRCM_PLLARM_FREQ
) ||
1528 (reg
== PRCM_PLLDDR_FREQ
))))
1531 (void)do_div(rate
, div
);
1533 return (unsigned long)rate
;
1536 #define ROOT_CLOCK_RATE 38400000
1538 static unsigned long clock_rate(u8 clock
)
1542 unsigned long rate
= ROOT_CLOCK_RATE
;
1544 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1546 if (val
& PRCM_CLK_MGT_CLK38
) {
1547 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1552 val
|= clk_mgt
[clock
].pllsw
;
1553 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1555 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1556 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1557 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1558 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1559 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1560 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1564 if ((clock
== PRCMU_SGACLK
) &&
1565 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1566 u64 r
= (rate
* 10);
1568 (void)do_div(r
, 25);
1569 return (unsigned long)r
;
1571 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1578 static unsigned long armss_rate(void)
1583 r
= readl(PRCM_ARM_CHGCLKREQ
);
1585 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1586 /* External ARMCLKFIX clock */
1588 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1590 /* Check PRCM_ARM_CHGCLKREQ divider */
1591 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1594 /* Check PRCM_ARMCLKFIX_MGT divider */
1595 r
= readl(PRCM_ARMCLKFIX_MGT
);
1596 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1599 } else {/* ARM PLL */
1600 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1606 static unsigned long dsiclk_rate(u8 n
)
1611 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1612 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1614 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1615 divsel
= dsiclk
[n
].divsel
;
1617 dsiclk
[n
].divsel
= divsel
;
1620 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1622 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1624 case PRCM_DSI_PLLOUT_SEL_PHI
:
1625 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1632 static unsigned long dsiescclk_rate(u8 n
)
1636 div
= readl(PRCM_DSITVCLK_DIV
);
1637 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1638 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1641 unsigned long prcmu_clock_rate(u8 clock
)
1643 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1644 return clock_rate(clock
);
1645 else if (clock
== PRCMU_TIMCLK
)
1646 return ROOT_CLOCK_RATE
/ 16;
1647 else if (clock
== PRCMU_SYSCLK
)
1648 return ROOT_CLOCK_RATE
;
1649 else if (clock
== PRCMU_PLLSOC0
)
1650 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1651 else if (clock
== PRCMU_PLLSOC1
)
1652 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1653 else if (clock
== PRCMU_ARMSS
)
1654 return armss_rate();
1655 else if (clock
== PRCMU_PLLDDR
)
1656 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1657 else if (clock
== PRCMU_PLLDSI
)
1658 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1660 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1661 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1662 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1663 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1668 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1670 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1671 return ROOT_CLOCK_RATE
;
1672 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1673 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1674 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1675 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1676 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1677 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1678 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1683 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1687 div
= (src_rate
/ rate
);
1690 if (rate
< (src_rate
/ div
))
1695 static long round_clock_rate(u8 clock
, unsigned long rate
)
1699 unsigned long src_rate
;
1702 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1703 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1704 clk_mgt
[clock
].branch
);
1705 div
= clock_divider(src_rate
, rate
);
1706 if (val
& PRCM_CLK_MGT_CLK38
) {
1707 if (clk_mgt
[clock
].clk38div
) {
1713 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1714 u64 r
= (src_rate
* 10);
1716 (void)do_div(r
, 25);
1718 return (unsigned long)r
;
1720 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1722 return rounded_rate
;
1725 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1726 static struct cpufreq_frequency_table db8500_cpufreq_table
[] = {
1727 { .frequency
= 200000, .driver_data
= ARM_EXTCLK
,},
1728 { .frequency
= 400000, .driver_data
= ARM_50_OPP
,},
1729 { .frequency
= 800000, .driver_data
= ARM_100_OPP
,},
1730 { .frequency
= CPUFREQ_TABLE_END
,}, /* To be used for MAX_OPP. */
1731 { .frequency
= CPUFREQ_TABLE_END
,},
1734 static long round_armss_rate(unsigned long rate
)
1739 /* cpufreq table frequencies is in KHz. */
1742 /* Find the corresponding arm opp from the cpufreq table. */
1743 while (db8500_cpufreq_table
[i
].frequency
!= CPUFREQ_TABLE_END
) {
1744 freq
= db8500_cpufreq_table
[i
].frequency
;
1750 /* Return the last valid value, even if a match was not found. */
1754 #define MIN_PLL_VCO_RATE 600000000ULL
1755 #define MAX_PLL_VCO_RATE 1680640000ULL
1757 static long round_plldsi_rate(unsigned long rate
)
1759 long rounded_rate
= 0;
1760 unsigned long src_rate
;
1764 src_rate
= clock_rate(PRCMU_HDMICLK
);
1767 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1771 (void)do_div(d
, src_rate
);
1777 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1778 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1782 if (rounded_rate
== 0)
1783 rounded_rate
= (long)d
;
1786 if ((rate
- d
) < rem
) {
1788 rounded_rate
= (long)d
;
1791 return rounded_rate
;
1794 static long round_dsiclk_rate(unsigned long rate
)
1797 unsigned long src_rate
;
1800 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1802 div
= clock_divider(src_rate
, rate
);
1803 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1805 return rounded_rate
;
1808 static long round_dsiescclk_rate(unsigned long rate
)
1811 unsigned long src_rate
;
1814 src_rate
= clock_rate(PRCMU_TVCLK
);
1815 div
= clock_divider(src_rate
, rate
);
1816 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1818 return rounded_rate
;
1821 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1823 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1824 return round_clock_rate(clock
, rate
);
1825 else if (clock
== PRCMU_ARMSS
)
1826 return round_armss_rate(rate
);
1827 else if (clock
== PRCMU_PLLDSI
)
1828 return round_plldsi_rate(rate
);
1829 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1830 return round_dsiclk_rate(rate
);
1831 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1832 return round_dsiescclk_rate(rate
);
1834 return (long)prcmu_clock_rate(clock
);
1837 static void set_clock_rate(u8 clock
, unsigned long rate
)
1841 unsigned long src_rate
;
1842 unsigned long flags
;
1844 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1846 /* Grab the HW semaphore. */
1847 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1850 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1851 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1852 clk_mgt
[clock
].branch
);
1853 div
= clock_divider(src_rate
, rate
);
1854 if (val
& PRCM_CLK_MGT_CLK38
) {
1855 if (clk_mgt
[clock
].clk38div
) {
1857 val
|= PRCM_CLK_MGT_CLK38DIV
;
1859 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1861 } else if (clock
== PRCMU_SGACLK
) {
1862 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1863 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1865 u64 r
= (src_rate
* 10);
1867 (void)do_div(r
, 25);
1869 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1873 val
|= min(div
, (u32
)31);
1875 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1876 val
|= min(div
, (u32
)31);
1878 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1880 /* Release the HW semaphore. */
1881 writel(0, PRCM_SEM
);
1883 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1886 static int set_armss_rate(unsigned long rate
)
1890 /* cpufreq table frequencies is in KHz. */
1893 /* Find the corresponding arm opp from the cpufreq table. */
1894 while (db8500_cpufreq_table
[i
].frequency
!= CPUFREQ_TABLE_END
) {
1895 if (db8500_cpufreq_table
[i
].frequency
== rate
)
1900 if (db8500_cpufreq_table
[i
].frequency
!= rate
)
1903 /* Set the new arm opp. */
1904 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table
[i
].driver_data
);
1907 static int set_plldsi_rate(unsigned long rate
)
1909 unsigned long src_rate
;
1914 src_rate
= clock_rate(PRCMU_HDMICLK
);
1917 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1922 (void)do_div(d
, src_rate
);
1927 hwrate
= (d
* src_rate
);
1928 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1929 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1931 (void)do_div(hwrate
, r
);
1932 if (rate
< hwrate
) {
1934 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1935 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1938 if ((rate
- hwrate
) < rem
) {
1939 rem
= (rate
- hwrate
);
1940 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1941 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1947 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1948 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1953 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1958 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1959 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1961 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1962 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1963 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1965 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1966 val
&= ~dsiclk
[n
].divsel_mask
;
1967 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1968 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1971 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1976 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1977 val
= readl(PRCM_DSITVCLK_DIV
);
1978 val
&= ~dsiescclk
[n
].div_mask
;
1979 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1980 writel(val
, PRCM_DSITVCLK_DIV
);
1983 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1985 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1986 set_clock_rate(clock
, rate
);
1987 else if (clock
== PRCMU_ARMSS
)
1988 return set_armss_rate(rate
);
1989 else if (clock
== PRCMU_PLLDSI
)
1990 return set_plldsi_rate(rate
);
1991 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1992 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1993 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1994 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1998 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
2000 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
2001 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
2004 mutex_lock(&mb4_transfer
.lock
);
2006 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2009 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2010 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
2011 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
2012 writeb(DDR_PWR_STATE_ON
,
2013 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
2014 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
2016 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2017 wait_for_completion(&mb4_transfer
.work
);
2019 mutex_unlock(&mb4_transfer
.lock
);
2024 int db8500_prcmu_config_hotdog(u8 threshold
)
2026 mutex_lock(&mb4_transfer
.lock
);
2028 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2031 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
2032 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2034 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2035 wait_for_completion(&mb4_transfer
.work
);
2037 mutex_unlock(&mb4_transfer
.lock
);
2042 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2044 mutex_lock(&mb4_transfer
.lock
);
2046 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2049 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2050 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2051 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2052 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2053 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2055 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2056 wait_for_completion(&mb4_transfer
.work
);
2058 mutex_unlock(&mb4_transfer
.lock
);
2063 static int config_hot_period(u16 val
)
2065 mutex_lock(&mb4_transfer
.lock
);
2067 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2070 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2071 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2073 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2074 wait_for_completion(&mb4_transfer
.work
);
2076 mutex_unlock(&mb4_transfer
.lock
);
2081 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2083 if (cycles32k
== 0xFFFF)
2086 return config_hot_period(cycles32k
);
2089 int db8500_prcmu_stop_temp_sense(void)
2091 return config_hot_period(0xFFFF);
2094 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2097 mutex_lock(&mb4_transfer
.lock
);
2099 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2102 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2103 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2104 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2105 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2107 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2109 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2110 wait_for_completion(&mb4_transfer
.work
);
2112 mutex_unlock(&mb4_transfer
.lock
);
2118 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2120 BUG_ON(num
== 0 || num
> 0xf);
2121 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2122 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2123 A9WDOG_AUTO_OFF_DIS
);
2125 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2127 int db8500_prcmu_enable_a9wdog(u8 id
)
2129 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2131 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2133 int db8500_prcmu_disable_a9wdog(u8 id
)
2135 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2137 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2139 int db8500_prcmu_kick_a9wdog(u8 id
)
2141 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2143 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2146 * timeout is 28 bit, in ms.
2148 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2150 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2151 (id
& A9WDOG_ID_MASK
) |
2153 * Put the lowest 28 bits of timeout at
2154 * offset 4. Four first bits are used for id.
2156 (u8
)((timeout
<< 4) & 0xf0),
2157 (u8
)((timeout
>> 4) & 0xff),
2158 (u8
)((timeout
>> 12) & 0xff),
2159 (u8
)((timeout
>> 20) & 0xff));
2161 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2164 * prcmu_abb_read() - Read register value(s) from the ABB.
2165 * @slave: The I2C slave address.
2166 * @reg: The (start) register address.
2167 * @value: The read out value(s).
2168 * @size: The number of registers to read.
2170 * Reads register value(s) from the ABB.
2171 * @size has to be 1 for the current firmware version.
2173 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2180 mutex_lock(&mb5_transfer
.lock
);
2182 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2185 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2186 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2187 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2188 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2189 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2191 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2193 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2194 msecs_to_jiffies(20000))) {
2195 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2199 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2203 *value
= mb5_transfer
.ack
.value
;
2205 mutex_unlock(&mb5_transfer
.lock
);
2211 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2212 * @slave: The I2C slave address.
2213 * @reg: The (start) register address.
2214 * @value: The value(s) to write.
2215 * @mask: The mask(s) to use.
2216 * @size: The number of registers to write.
2218 * Writes masked register value(s) to the ABB.
2219 * For each @value, only the bits set to 1 in the corresponding @mask
2220 * will be written. The other bits are not changed.
2221 * @size has to be 1 for the current firmware version.
2223 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2230 mutex_lock(&mb5_transfer
.lock
);
2232 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2235 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2236 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2237 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2238 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2239 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2241 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2243 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2244 msecs_to_jiffies(20000))) {
2245 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2249 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2252 mutex_unlock(&mb5_transfer
.lock
);
2258 * prcmu_abb_write() - Write register value(s) to the ABB.
2259 * @slave: The I2C slave address.
2260 * @reg: The (start) register address.
2261 * @value: The value(s) to write.
2262 * @size: The number of registers to write.
2264 * Writes register value(s) to the ABB.
2265 * @size has to be 1 for the current firmware version.
2267 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2271 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2275 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2277 int prcmu_ac_wake_req(void)
2282 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2284 val
= readl(PRCM_HOSTACCESS_REQ
);
2285 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2286 goto unlock_and_return
;
2288 atomic_set(&ac_wake_req_state
, 1);
2291 * Force Modem Wake-up before hostaccess_req ping-pong.
2292 * It prevents Modem to enter in Sleep while acking the hostaccess
2293 * request. The 31us delay has been calculated by HWI.
2295 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2296 writel(val
, PRCM_HOSTACCESS_REQ
);
2300 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2301 writel(val
, PRCM_HOSTACCESS_REQ
);
2303 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2304 msecs_to_jiffies(5000))) {
2305 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2306 db8500_prcmu_debug_dump(__func__
, true, true);
2308 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2314 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2319 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2321 void prcmu_ac_sleep_req(void)
2325 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2327 val
= readl(PRCM_HOSTACCESS_REQ
);
2328 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2329 goto unlock_and_return
;
2331 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2332 PRCM_HOSTACCESS_REQ
);
2334 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2335 msecs_to_jiffies(5000))) {
2336 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2340 atomic_set(&ac_wake_req_state
, 0);
2343 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2346 bool db8500_prcmu_is_ac_wake_requested(void)
2348 return (atomic_read(&ac_wake_req_state
) != 0);
2352 * db8500_prcmu_system_reset - System reset
2354 * Saves the reset reason code and then sets the APE_SOFTRST register which
2355 * fires interrupt to fw
2357 void db8500_prcmu_system_reset(u16 reset_code
)
2359 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2360 writel(1, PRCM_APE_SOFTRST
);
2364 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2366 * Retrieves the reset reason code stored by prcmu_system_reset() before
2369 u16
db8500_prcmu_get_reset_code(void)
2371 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2375 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2377 void db8500_prcmu_modem_reset(void)
2379 mutex_lock(&mb1_transfer
.lock
);
2381 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2384 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2385 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2386 wait_for_completion(&mb1_transfer
.work
);
2389 * No need to check return from PRCMU as modem should go in reset state
2390 * This state is already managed by upper layer
2393 mutex_unlock(&mb1_transfer
.lock
);
2396 static void ack_dbb_wakeup(void)
2398 unsigned long flags
;
2400 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2402 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2405 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2406 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2408 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2411 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2413 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2417 static bool read_mailbox_0(void)
2424 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2426 case MB0H_WAKEUP_EXE
:
2427 case MB0H_WAKEUP_SLEEP
:
2428 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2429 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2431 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2433 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2434 complete(&mb0_transfer
.ac_wake_work
);
2435 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2436 complete(&mb3_transfer
.sysclk_work
);
2438 ev
&= mb0_transfer
.req
.dbb_irqs
;
2440 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2441 if (ev
& prcmu_irq_bit
[n
])
2442 generic_handle_irq(irq_find_mapping(db8500_irq_domain
, n
));
2447 print_unknown_header_warning(0, header
);
2451 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2455 static bool read_mailbox_1(void)
2457 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2458 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2459 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2460 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2461 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2462 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2463 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2464 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2465 complete(&mb1_transfer
.work
);
2469 static bool read_mailbox_2(void)
2471 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2472 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2473 complete(&mb2_transfer
.work
);
2477 static bool read_mailbox_3(void)
2479 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2483 static bool read_mailbox_4(void)
2486 bool do_complete
= true;
2488 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2493 case MB4H_HOT_PERIOD
:
2494 case MB4H_A9WDOG_CONF
:
2495 case MB4H_A9WDOG_EN
:
2496 case MB4H_A9WDOG_DIS
:
2497 case MB4H_A9WDOG_LOAD
:
2498 case MB4H_A9WDOG_KICK
:
2501 print_unknown_header_warning(4, header
);
2502 do_complete
= false;
2506 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2509 complete(&mb4_transfer
.work
);
2514 static bool read_mailbox_5(void)
2516 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2517 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2518 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2519 complete(&mb5_transfer
.work
);
2523 static bool read_mailbox_6(void)
2525 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2529 static bool read_mailbox_7(void)
2531 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2535 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2546 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2552 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2553 if (unlikely(!bits
))
2557 for (n
= 0; bits
; n
++) {
2558 if (bits
& MBOX_BIT(n
)) {
2559 bits
-= MBOX_BIT(n
);
2560 if (read_mailbox
[n
]())
2561 r
= IRQ_WAKE_THREAD
;
2567 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2573 static void prcmu_mask_work(struct work_struct
*work
)
2575 unsigned long flags
;
2577 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2581 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2584 static void prcmu_irq_mask(struct irq_data
*d
)
2586 unsigned long flags
;
2588 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2590 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2592 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2594 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2595 schedule_work(&mb0_transfer
.mask_work
);
2598 static void prcmu_irq_unmask(struct irq_data
*d
)
2600 unsigned long flags
;
2602 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2604 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2606 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2608 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2609 schedule_work(&mb0_transfer
.mask_work
);
2612 static void noop(struct irq_data
*d
)
2616 static struct irq_chip prcmu_irq_chip
= {
2618 .irq_disable
= prcmu_irq_mask
,
2620 .irq_mask
= prcmu_irq_mask
,
2621 .irq_unmask
= prcmu_irq_unmask
,
2624 static __init
char *fw_project_name(u32 project
)
2627 case PRCMU_FW_PROJECT_U8500
:
2629 case PRCMU_FW_PROJECT_U8400
:
2631 case PRCMU_FW_PROJECT_U9500
:
2633 case PRCMU_FW_PROJECT_U8500_MBB
:
2635 case PRCMU_FW_PROJECT_U8500_C1
:
2637 case PRCMU_FW_PROJECT_U8500_C2
:
2639 case PRCMU_FW_PROJECT_U8500_C3
:
2641 case PRCMU_FW_PROJECT_U8500_C4
:
2643 case PRCMU_FW_PROJECT_U9500_MBL
:
2645 case PRCMU_FW_PROJECT_U8500_MBL
:
2647 case PRCMU_FW_PROJECT_U8500_MBL2
:
2648 return "U8500 MBL2";
2649 case PRCMU_FW_PROJECT_U8520
:
2651 case PRCMU_FW_PROJECT_U8420
:
2653 case PRCMU_FW_PROJECT_U9540
:
2655 case PRCMU_FW_PROJECT_A9420
:
2657 case PRCMU_FW_PROJECT_L8540
:
2659 case PRCMU_FW_PROJECT_L8580
:
2666 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2667 irq_hw_number_t hwirq
)
2669 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2671 set_irq_flags(virq
, IRQF_VALID
);
2676 static struct irq_domain_ops db8500_irq_ops
= {
2677 .map
= db8500_irq_map
,
2678 .xlate
= irq_domain_xlate_twocell
,
2681 static int db8500_irq_init(struct device_node
*np
, int irq_base
)
2685 /* In the device tree case, just take some IRQs */
2689 db8500_irq_domain
= irq_domain_add_simple(
2690 np
, NUM_PRCMU_WAKEUPS
, irq_base
,
2691 &db8500_irq_ops
, NULL
);
2693 if (!db8500_irq_domain
) {
2694 pr_err("Failed to create irqdomain\n");
2698 /* All wakeups will be used, so create mappings for all */
2699 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2700 irq_create_mapping(db8500_irq_domain
, i
);
2705 static void dbx500_fw_version_init(struct platform_device
*pdev
,
2708 struct resource
*res
;
2709 void __iomem
*tcpm_base
;
2712 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2716 "Error: no prcmu tcpm memory region provided\n");
2719 tcpm_base
= ioremap(res
->start
, resource_size(res
));
2721 dev_err(&pdev
->dev
, "no prcmu tcpm mem region provided\n");
2725 version
= readl(tcpm_base
+ version_offset
);
2726 fw_info
.version
.project
= (version
& 0xFF);
2727 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2728 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2729 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2730 strncpy(fw_info
.version
.project_name
,
2731 fw_project_name(fw_info
.version
.project
),
2732 PRCMU_FW_PROJECT_NAME_LEN
);
2733 fw_info
.valid
= true;
2734 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2735 fw_info
.version
.project_name
,
2736 fw_info
.version
.project
,
2737 fw_info
.version
.api_version
,
2738 fw_info
.version
.func_version
,
2739 fw_info
.version
.errata
);
2743 void __init
db8500_prcmu_early_init(u32 phy_base
, u32 size
)
2746 * This is a temporary remap to bring up the clocks. It is
2747 * subsequently replaces with a real remap. After the merge of
2748 * the mailbox subsystem all of this early code goes away, and the
2749 * clock driver can probe independently. An early initcall will
2750 * still be needed, but it can be diverted into drivers/clk/ux500.
2752 prcmu_base
= ioremap(phy_base
, size
);
2754 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2756 spin_lock_init(&mb0_transfer
.lock
);
2757 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2758 mutex_init(&mb0_transfer
.ac_wake_lock
);
2759 init_completion(&mb0_transfer
.ac_wake_work
);
2760 mutex_init(&mb1_transfer
.lock
);
2761 init_completion(&mb1_transfer
.work
);
2762 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2763 mutex_init(&mb2_transfer
.lock
);
2764 init_completion(&mb2_transfer
.work
);
2765 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2766 spin_lock_init(&mb3_transfer
.lock
);
2767 mutex_init(&mb3_transfer
.sysclk_lock
);
2768 init_completion(&mb3_transfer
.sysclk_work
);
2769 mutex_init(&mb4_transfer
.lock
);
2770 init_completion(&mb4_transfer
.work
);
2771 mutex_init(&mb5_transfer
.lock
);
2772 init_completion(&mb5_transfer
.work
);
2774 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2777 static void __init
init_prcm_registers(void)
2781 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2782 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2783 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2784 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2788 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2790 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2791 REGULATOR_SUPPLY("v-ape", NULL
),
2792 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2794 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2795 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2796 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2797 /* "v-mmc" changed to "vcore" in the mainline kernel */
2798 REGULATOR_SUPPLY("vcore", "sdi0"),
2799 REGULATOR_SUPPLY("vcore", "sdi1"),
2800 REGULATOR_SUPPLY("vcore", "sdi2"),
2801 REGULATOR_SUPPLY("vcore", "sdi3"),
2802 REGULATOR_SUPPLY("vcore", "sdi4"),
2803 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2804 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2805 /* "v-uart" changed to "vcore" in the mainline kernel */
2806 REGULATOR_SUPPLY("vcore", "uart0"),
2807 REGULATOR_SUPPLY("vcore", "uart1"),
2808 REGULATOR_SUPPLY("vcore", "uart2"),
2809 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2810 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2811 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2814 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2815 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2816 /* AV8100 regulator */
2817 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2820 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2821 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2822 REGULATOR_SUPPLY("vsupply", "mcde"),
2825 /* SVA MMDSP regulator switch */
2826 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2827 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2830 /* SVA pipe regulator switch */
2831 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2832 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2835 /* SIA MMDSP regulator switch */
2836 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2837 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2840 /* SIA pipe regulator switch */
2841 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2842 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2845 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2846 REGULATOR_SUPPLY("v-mali", NULL
),
2849 /* ESRAM1 and 2 regulator switch */
2850 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2851 REGULATOR_SUPPLY("esram12", "cm_control"),
2854 /* ESRAM3 and 4 regulator switch */
2855 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2856 REGULATOR_SUPPLY("v-esram34", "mcde"),
2857 REGULATOR_SUPPLY("esram34", "cm_control"),
2858 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2861 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2862 [DB8500_REGULATOR_VAPE
] = {
2864 .name
= "db8500-vape",
2865 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2868 .consumer_supplies
= db8500_vape_consumers
,
2869 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2871 [DB8500_REGULATOR_VARM
] = {
2873 .name
= "db8500-varm",
2874 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2877 [DB8500_REGULATOR_VMODEM
] = {
2879 .name
= "db8500-vmodem",
2880 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2883 [DB8500_REGULATOR_VPLL
] = {
2885 .name
= "db8500-vpll",
2886 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2889 [DB8500_REGULATOR_VSMPS1
] = {
2891 .name
= "db8500-vsmps1",
2892 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2895 [DB8500_REGULATOR_VSMPS2
] = {
2897 .name
= "db8500-vsmps2",
2898 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2900 .consumer_supplies
= db8500_vsmps2_consumers
,
2901 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2903 [DB8500_REGULATOR_VSMPS3
] = {
2905 .name
= "db8500-vsmps3",
2906 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2909 [DB8500_REGULATOR_VRF1
] = {
2911 .name
= "db8500-vrf1",
2912 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2915 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2916 /* dependency to u8500-vape is handled outside regulator framework */
2918 .name
= "db8500-sva-mmdsp",
2919 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2921 .consumer_supplies
= db8500_svammdsp_consumers
,
2922 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2924 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2926 /* "ret" means "retention" */
2927 .name
= "db8500-sva-mmdsp-ret",
2928 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2931 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2932 /* dependency to u8500-vape is handled outside regulator framework */
2934 .name
= "db8500-sva-pipe",
2935 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2937 .consumer_supplies
= db8500_svapipe_consumers
,
2938 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2940 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2941 /* dependency to u8500-vape is handled outside regulator framework */
2943 .name
= "db8500-sia-mmdsp",
2944 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2946 .consumer_supplies
= db8500_siammdsp_consumers
,
2947 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2949 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2951 .name
= "db8500-sia-mmdsp-ret",
2952 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2955 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2956 /* dependency to u8500-vape is handled outside regulator framework */
2958 .name
= "db8500-sia-pipe",
2959 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2961 .consumer_supplies
= db8500_siapipe_consumers
,
2962 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2964 [DB8500_REGULATOR_SWITCH_SGA
] = {
2965 .supply_regulator
= "db8500-vape",
2967 .name
= "db8500-sga",
2968 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2970 .consumer_supplies
= db8500_sga_consumers
,
2971 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2974 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2975 .supply_regulator
= "db8500-vape",
2977 .name
= "db8500-b2r2-mcde",
2978 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2980 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2981 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2983 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2985 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2986 * no need to hold Vape
2989 .name
= "db8500-esram12",
2990 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2992 .consumer_supplies
= db8500_esram12_consumers
,
2993 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2995 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2997 .name
= "db8500-esram12-ret",
2998 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3001 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
3003 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3004 * no need to hold Vape
3007 .name
= "db8500-esram34",
3008 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3010 .consumer_supplies
= db8500_esram34_consumers
,
3011 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
3013 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
3015 .name
= "db8500-esram34-ret",
3016 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
3021 static struct ux500_wdt_data db8500_wdt_pdata
= {
3022 .timeout
= 600, /* 10 minutes */
3023 .has_28_bits_resolution
= true,
3029 static struct resource db8500_thsens_resources
[] = {
3031 .name
= "IRQ_HOTMON_LOW",
3032 .start
= IRQ_PRCMU_HOTMON_LOW
,
3033 .end
= IRQ_PRCMU_HOTMON_LOW
,
3034 .flags
= IORESOURCE_IRQ
,
3037 .name
= "IRQ_HOTMON_HIGH",
3038 .start
= IRQ_PRCMU_HOTMON_HIGH
,
3039 .end
= IRQ_PRCMU_HOTMON_HIGH
,
3040 .flags
= IORESOURCE_IRQ
,
3044 static struct db8500_thsens_platform_data db8500_thsens_data
= {
3047 .type
= THERMAL_TRIP_ACTIVE
,
3049 [0] = "thermal-cpufreq-0",
3054 .type
= THERMAL_TRIP_ACTIVE
,
3056 [0] = "thermal-cpufreq-0",
3061 .type
= THERMAL_TRIP_ACTIVE
,
3063 [0] = "thermal-cpufreq-0",
3068 .type
= THERMAL_TRIP_CRITICAL
,
3073 static const struct mfd_cell common_prcmu_devs
[] = {
3075 .name
= "ux500_wdt",
3076 .platform_data
= &db8500_wdt_pdata
,
3077 .pdata_size
= sizeof(db8500_wdt_pdata
),
3082 static const struct mfd_cell db8500_prcmu_devs
[] = {
3084 .name
= "db8500-prcmu-regulators",
3085 .of_compatible
= "stericsson,db8500-prcmu-regulator",
3086 .platform_data
= &db8500_regulators
,
3087 .pdata_size
= sizeof(db8500_regulators
),
3090 .name
= "cpufreq-ux500",
3091 .of_compatible
= "stericsson,cpufreq-ux500",
3092 .platform_data
= &db8500_cpufreq_table
,
3093 .pdata_size
= sizeof(db8500_cpufreq_table
),
3096 .name
= "cpuidle-dbx500",
3097 .of_compatible
= "stericsson,cpuidle-dbx500",
3100 .name
= "db8500-thermal",
3101 .num_resources
= ARRAY_SIZE(db8500_thsens_resources
),
3102 .resources
= db8500_thsens_resources
,
3103 .platform_data
= &db8500_thsens_data
,
3104 .pdata_size
= sizeof(db8500_thsens_data
),
3108 static void db8500_prcmu_update_cpufreq(void)
3110 if (prcmu_has_arm_maxopp()) {
3111 db8500_cpufreq_table
[3].frequency
= 1000000;
3112 db8500_cpufreq_table
[3].driver_data
= ARM_MAX_OPP
;
3116 static int db8500_prcmu_register_ab8500(struct device
*parent
,
3117 struct ab8500_platform_data
*pdata
,
3120 struct resource ab8500_resource
= DEFINE_RES_IRQ(irq
);
3121 struct mfd_cell ab8500_cell
= {
3122 .name
= "ab8500-core",
3123 .of_compatible
= "stericsson,ab8500",
3124 .id
= AB8500_VERSION_AB8500
,
3125 .platform_data
= pdata
,
3126 .pdata_size
= sizeof(struct ab8500_platform_data
),
3127 .resources
= &ab8500_resource
,
3131 return mfd_add_devices(parent
, 0, &ab8500_cell
, 1, NULL
, 0, NULL
);
3135 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3138 static int db8500_prcmu_probe(struct platform_device
*pdev
)
3140 struct device_node
*np
= pdev
->dev
.of_node
;
3141 struct prcmu_pdata
*pdata
= dev_get_platdata(&pdev
->dev
);
3142 int irq
= 0, err
= 0;
3143 struct resource
*res
;
3145 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3147 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3150 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3153 "failed to ioremap prcmu register memory\n");
3156 init_prcm_registers();
3157 dbx500_fw_version_init(pdev
, pdata
->version_offset
);
3158 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3160 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3163 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3164 resource_size(res
));
3166 /* Clean up the mailbox interrupts after pre-kernel code. */
3167 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3169 irq
= platform_get_irq(pdev
, 0);
3171 dev_err(&pdev
->dev
, "no prcmu irq provided\n");
3175 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3176 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3178 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3183 db8500_irq_init(np
, pdata
->irq_base
);
3185 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3187 db8500_prcmu_update_cpufreq();
3189 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3190 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3192 pr_err("prcmu: Failed to add subdevices\n");
3196 /* TODO: Remove restriction when clk definitions are available. */
3197 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3199 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3202 mfd_remove_devices(&pdev
->dev
);
3203 pr_err("prcmu: Failed to add subdevices\n");
3208 err
= db8500_prcmu_register_ab8500(&pdev
->dev
, pdata
->ab_platdata
,
3211 mfd_remove_devices(&pdev
->dev
);
3212 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3216 pr_info("DB8500 PRCMU initialized\n");
3221 static const struct of_device_id db8500_prcmu_match
[] = {
3222 { .compatible
= "stericsson,db8500-prcmu"},
3226 static struct platform_driver db8500_prcmu_driver
= {
3228 .name
= "db8500-prcmu",
3229 .owner
= THIS_MODULE
,
3230 .of_match_table
= db8500_prcmu_match
,
3232 .probe
= db8500_prcmu_probe
,
3235 static int __init
db8500_prcmu_init(void)
3237 return platform_driver_register(&db8500_prcmu_driver
);
3240 core_initcall(db8500_prcmu_init
);
3242 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3243 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3244 MODULE_LICENSE("GPL v2");