PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mfd / db8500-prcmu.c
blobe43e6e821117a01aac56b8e4086fe783056977cd
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/uaccess.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/dbx500-prcmu.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/regulator/db8500-prcmu.h>
34 #include <linux/regulator/machine.h>
35 #include <linux/cpufreq.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE 0x2FC
42 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56 #define PRCM_AVS_VOLTAGE 0
57 #define PRCM_AVS_VOLTAGE_MASK 0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP 6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE 7
61 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63 #define PRCM_BOOT_STATUS 0xFFF
64 #define PRCM_ROMCODE_A2P 0xFFE
65 #define PRCM_ROMCODE_P2A 0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS 0
97 #define MB0H_CONFIG_WAKEUPS_EXE 1
98 #define MB0H_READ_WAKEUP_ACK 3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF 0x1
134 #define PLL_SOC0_ON 0x2
135 #define PLL_SOC1_OFF 0x4
136 #define PLL_SOC1_ON 0x8
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144 /* Mailbox 2 headers */
145 #define MB2H_DPS 0x0
146 #define MB2H_AUTO_PWR 0x1
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
164 /* Mailbox 3 headers */
165 #define MB3H_ANC 0x0
166 #define MB3H_SIDETONE 0x1
167 #define MB3H_SYSCLK 0xE
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT 0x0
180 #define MB4H_MEM_ST 0x1
181 #define MB4H_HOTDOG 0x12
182 #define MB4H_HOTMON 0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN 0x17
186 #define MB4H_A9WDOG_DIS 0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW BIT(0)
200 #define HOTMON_CONFIG_HIGH BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS 0
207 #define A9WDOG_ID_MASK 0xf
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN BIT(3)
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
229 * Wakeups/IRQs
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
262 static struct {
263 bool valid;
264 struct prcmu_fw_version version;
265 } fw_info;
267 static struct irq_domain *db8500_irq_domain;
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306 IRQ_ENTRY(RTC),
307 IRQ_ENTRY(RTT0),
308 IRQ_ENTRY(RTT1),
309 IRQ_ENTRY(HSI0),
310 IRQ_ENTRY(HSI1),
311 IRQ_ENTRY(CA_WAKE),
312 IRQ_ENTRY(USB),
313 IRQ_ENTRY(ABB),
314 IRQ_ENTRY(ABB_FIFO),
315 IRQ_ENTRY(CA_SLEEP),
316 IRQ_ENTRY(ARM),
317 IRQ_ENTRY(HOTMON_LOW),
318 IRQ_ENTRY(HOTMON_HIGH),
319 IRQ_ENTRY(MODEM_SW_RESET_REQ),
320 IRQ_ENTRY(GPIO0),
321 IRQ_ENTRY(GPIO1),
322 IRQ_ENTRY(GPIO2),
323 IRQ_ENTRY(GPIO3),
324 IRQ_ENTRY(GPIO4),
325 IRQ_ENTRY(GPIO5),
326 IRQ_ENTRY(GPIO6),
327 IRQ_ENTRY(GPIO7),
328 IRQ_ENTRY(GPIO8)
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334 WAKEUP_ENTRY(RTC),
335 WAKEUP_ENTRY(RTT0),
336 WAKEUP_ENTRY(RTT1),
337 WAKEUP_ENTRY(HSI0),
338 WAKEUP_ENTRY(HSI1),
339 WAKEUP_ENTRY(USB),
340 WAKEUP_ENTRY(ABB),
341 WAKEUP_ENTRY(ABB_FIFO),
342 WAKEUP_ENTRY(ARM)
346 * mb0_transfer - state needed for mailbox 0 communication.
347 * @lock: The transaction lock.
348 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
349 * the request data.
350 * @mask_work: Work structure used for (un)masking wakeup interrupts.
351 * @req: Request data that need to persist between requests.
353 static struct {
354 spinlock_t lock;
355 spinlock_t dbb_irqs_lock;
356 struct work_struct mask_work;
357 struct mutex ac_wake_lock;
358 struct completion ac_wake_work;
359 struct {
360 u32 dbb_irqs;
361 u32 dbb_wakeups;
362 u32 abb_events;
363 } req;
364 } mb0_transfer;
367 * mb1_transfer - state needed for mailbox 1 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @ape_opp: The current APE OPP.
371 * @ack: Reply ("acknowledge") data.
373 static struct {
374 struct mutex lock;
375 struct completion work;
376 u8 ape_opp;
377 struct {
378 u8 header;
379 u8 arm_opp;
380 u8 ape_opp;
381 u8 ape_voltage_status;
382 } ack;
383 } mb1_transfer;
386 * mb2_transfer - state needed for mailbox 2 communication.
387 * @lock: The transaction lock.
388 * @work: The transaction completion structure.
389 * @auto_pm_lock: The autonomous power management configuration lock.
390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391 * @req: Request data that need to persist between requests.
392 * @ack: Reply ("acknowledge") data.
394 static struct {
395 struct mutex lock;
396 struct completion work;
397 spinlock_t auto_pm_lock;
398 bool auto_pm_enabled;
399 struct {
400 u8 status;
401 } ack;
402 } mb2_transfer;
405 * mb3_transfer - state needed for mailbox 3 communication.
406 * @lock: The request lock.
407 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
408 * @sysclk_work: Work structure used for sysclk requests.
410 static struct {
411 spinlock_t lock;
412 struct mutex sysclk_lock;
413 struct completion sysclk_work;
414 } mb3_transfer;
417 * mb4_transfer - state needed for mailbox 4 communication.
418 * @lock: The transaction lock.
419 * @work: The transaction completion structure.
421 static struct {
422 struct mutex lock;
423 struct completion work;
424 } mb4_transfer;
427 * mb5_transfer - state needed for mailbox 5 communication.
428 * @lock: The transaction lock.
429 * @work: The transaction completion structure.
430 * @ack: Reply ("acknowledge") data.
432 static struct {
433 struct mutex lock;
434 struct completion work;
435 struct {
436 u8 status;
437 u8 value;
438 } ack;
439 } mb5_transfer;
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
451 struct clk_mgt {
452 u32 offset;
453 u32 pllsw;
454 int branch;
455 bool clk38div;
458 enum {
459 PLL_RAW,
460 PLL_FIX,
461 PLL_DIV
464 static DEFINE_SPINLOCK(clk_mgt_lock);
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
500 struct dsiclk {
501 u32 divsel_mask;
502 u32 divsel_shift;
503 u32 divsel;
506 static struct dsiclk dsiclk[2] = {
508 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
513 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
519 struct dsiescclk {
520 u32 en;
521 u32 div_mask;
522 u32 div_shift;
525 static struct dsiescclk dsiescclk[3] = {
527 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
532 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
537 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
545 * Used by MCDE to setup all necessary PRCMU registers
547 #define PRCMU_RESET_DSIPLL 0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
550 #define PRCMU_CLK_PLL_DIV_SHIFT 0
551 #define PRCMU_CLK_PLL_SW_SHIFT 5
552 #define PRCMU_CLK_38 (1 << 9)
553 #define PRCMU_CLK_38_SRC (1 << 10)
554 #define PRCMU_CLK_38_DIV (1 << 11)
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567 #define PRCMU_ENABLE_PLLDSI 0x00000001
568 #define PRCMU_DISABLE_PLLDSI 0x00000000
569 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
574 #define PRCMU_DSI_RESET_SW 0x00000007
576 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578 int db8500_prcmu_enable_dsipll(void)
580 int i;
582 /* Clear DSIPLL_RESETN */
583 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584 /* Unclamp DSIPLL in/out */
585 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 /* Set DSI PLL FREQ */
588 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590 /* Enable Escape clocks */
591 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 /* Start DSI PLL */
594 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595 /* Reset DSI PLL */
596 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597 for (i = 0; i < 10; i++) {
598 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599 == PRCMU_PLLDSI_LOCKP_LOCKED)
600 break;
601 udelay(100);
603 /* Set DSIPLL_RESETN */
604 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605 return 0;
608 int db8500_prcmu_disable_dsipll(void)
610 /* Disable dsi pll */
611 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612 /* Disable escapeclock */
613 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614 return 0;
617 int db8500_prcmu_set_display_clocks(void)
619 unsigned long flags;
621 spin_lock_irqsave(&clk_mgt_lock, flags);
623 /* Grab the HW semaphore. */
624 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625 cpu_relax();
627 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 /* Release the HW semaphore. */
632 writel(0, PRCM_SEM);
634 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636 return 0;
639 u32 db8500_prcmu_read(unsigned int reg)
641 return readl(prcmu_base + reg);
644 void db8500_prcmu_write(unsigned int reg, u32 value)
646 unsigned long flags;
648 spin_lock_irqsave(&prcmu_lock, flags);
649 writel(value, (prcmu_base + reg));
650 spin_unlock_irqrestore(&prcmu_lock, flags);
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 u32 val;
656 unsigned long flags;
658 spin_lock_irqsave(&prcmu_lock, flags);
659 val = readl(prcmu_base + reg);
660 val = ((val & ~mask) | (value & mask));
661 writel(val, (prcmu_base + reg));
662 spin_unlock_irqrestore(&prcmu_lock, flags);
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 return fw_info.valid ? &fw_info.version : NULL;
670 bool prcmu_has_arm_maxopp(void)
672 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
677 * prcmu_get_boot_status - PRCMU boot status checking
678 * Returns: the current PRCMU boot status
680 int prcmu_get_boot_status(void)
682 return readb(tcdm_base + PRCM_BOOT_STATUS);
686 * prcmu_set_rc_a2p - This function is used to run few power state sequences
687 * @val: Value to be set, i.e. transition requested
688 * Returns: 0 on success, -EINVAL on invalid argument
690 * This function is used to run the following power state sequences -
691 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
693 int prcmu_set_rc_a2p(enum romcode_write val)
695 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
696 return -EINVAL;
697 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
698 return 0;
702 * prcmu_get_rc_p2a - This function is used to get power state sequences
703 * Returns: the power transition that has last happened
705 * This function can return the following transitions-
706 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
708 enum romcode_read prcmu_get_rc_p2a(void)
710 return readb(tcdm_base + PRCM_ROMCODE_P2A);
714 * prcmu_get_current_mode - Return the current XP70 power mode
715 * Returns: Returns the current AP(ARM) power mode: init,
716 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
718 enum ap_pwrst prcmu_get_xp70_current_state(void)
720 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
724 * prcmu_config_clkout - Configure one of the programmable clock outputs.
725 * @clkout: The CLKOUT number (0 or 1).
726 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
727 * @div: The divider to be applied.
729 * Configures one of the programmable clock outputs (CLKOUTs).
730 * @div should be in the range [1,63] to request a configuration, or 0 to
731 * inform that the configuration is no longer requested.
733 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
735 static int requests[2];
736 int r = 0;
737 unsigned long flags;
738 u32 val;
739 u32 bits;
740 u32 mask;
741 u32 div_mask;
743 BUG_ON(clkout > 1);
744 BUG_ON(div > 63);
745 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
747 if (!div && !requests[clkout])
748 return -EINVAL;
750 switch (clkout) {
751 case 0:
752 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
753 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
754 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
755 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
756 break;
757 case 1:
758 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
759 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
760 PRCM_CLKOCR_CLK1TYPE);
761 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
762 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
763 break;
765 bits &= mask;
767 spin_lock_irqsave(&clkout_lock, flags);
769 val = readl(PRCM_CLKOCR);
770 if (val & div_mask) {
771 if (div) {
772 if ((val & mask) != bits) {
773 r = -EBUSY;
774 goto unlock_and_return;
776 } else {
777 if ((val & mask & ~div_mask) != bits) {
778 r = -EINVAL;
779 goto unlock_and_return;
783 writel((bits | (val & ~mask)), PRCM_CLKOCR);
784 requests[clkout] += (div ? 1 : -1);
786 unlock_and_return:
787 spin_unlock_irqrestore(&clkout_lock, flags);
789 return r;
792 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
794 unsigned long flags;
796 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
798 spin_lock_irqsave(&mb0_transfer.lock, flags);
800 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
801 cpu_relax();
803 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
804 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
805 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
806 writeb((keep_ulp_clk ? 1 : 0),
807 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
808 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
809 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
811 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813 return 0;
816 u8 db8500_prcmu_get_power_state_result(void)
818 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
821 /* This function should only be called while mb0_transfer.lock is held. */
822 static void config_wakeups(void)
824 const u8 header[2] = {
825 MB0H_CONFIG_WAKEUPS_EXE,
826 MB0H_CONFIG_WAKEUPS_SLEEP
828 static u32 last_dbb_events;
829 static u32 last_abb_events;
830 u32 dbb_events;
831 u32 abb_events;
832 unsigned int i;
834 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
835 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
837 abb_events = mb0_transfer.req.abb_events;
839 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
840 return;
842 for (i = 0; i < 2; i++) {
843 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
844 cpu_relax();
845 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
846 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
847 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
848 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
850 last_dbb_events = dbb_events;
851 last_abb_events = abb_events;
854 void db8500_prcmu_enable_wakeups(u32 wakeups)
856 unsigned long flags;
857 u32 bits;
858 int i;
860 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
862 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
863 if (wakeups & BIT(i))
864 bits |= prcmu_wakeup_bit[i];
867 spin_lock_irqsave(&mb0_transfer.lock, flags);
869 mb0_transfer.req.dbb_wakeups = bits;
870 config_wakeups();
872 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
875 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
877 unsigned long flags;
879 spin_lock_irqsave(&mb0_transfer.lock, flags);
881 mb0_transfer.req.abb_events = abb_events;
882 config_wakeups();
884 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
887 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
889 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
890 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
891 else
892 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
896 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
897 * @opp: The new ARM operating point to which transition is to be made
898 * Returns: 0 on success, non-zero on failure
900 * This function sets the the operating point of the ARM.
902 int db8500_prcmu_set_arm_opp(u8 opp)
904 int r;
906 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
907 return -EINVAL;
909 r = 0;
911 mutex_lock(&mb1_transfer.lock);
913 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
914 cpu_relax();
916 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
917 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
918 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
920 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
921 wait_for_completion(&mb1_transfer.work);
923 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
924 (mb1_transfer.ack.arm_opp != opp))
925 r = -EIO;
927 mutex_unlock(&mb1_transfer.lock);
929 return r;
933 * db8500_prcmu_get_arm_opp - get the current ARM OPP
935 * Returns: the current ARM OPP
937 int db8500_prcmu_get_arm_opp(void)
939 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
943 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
945 * Returns: the current DDR OPP
947 int db8500_prcmu_get_ddr_opp(void)
949 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
953 * db8500_set_ddr_opp - set the appropriate DDR OPP
954 * @opp: The new DDR operating point to which transition is to be made
955 * Returns: 0 on success, non-zero on failure
957 * This function sets the operating point of the DDR.
959 static bool enable_set_ddr_opp;
960 int db8500_prcmu_set_ddr_opp(u8 opp)
962 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
963 return -EINVAL;
964 /* Changing the DDR OPP can hang the hardware pre-v21 */
965 if (enable_set_ddr_opp)
966 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
968 return 0;
971 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
972 static void request_even_slower_clocks(bool enable)
974 u32 clock_reg[] = {
975 PRCM_ACLK_MGT,
976 PRCM_DMACLK_MGT
978 unsigned long flags;
979 unsigned int i;
981 spin_lock_irqsave(&clk_mgt_lock, flags);
983 /* Grab the HW semaphore. */
984 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
985 cpu_relax();
987 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
988 u32 val;
989 u32 div;
991 val = readl(prcmu_base + clock_reg[i]);
992 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
993 if (enable) {
994 if ((div <= 1) || (div > 15)) {
995 pr_err("prcmu: Bad clock divider %d in %s\n",
996 div, __func__);
997 goto unlock_and_return;
999 div <<= 1;
1000 } else {
1001 if (div <= 2)
1002 goto unlock_and_return;
1003 div >>= 1;
1005 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1006 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1007 writel(val, prcmu_base + clock_reg[i]);
1010 unlock_and_return:
1011 /* Release the HW semaphore. */
1012 writel(0, PRCM_SEM);
1014 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1018 * db8500_set_ape_opp - set the appropriate APE OPP
1019 * @opp: The new APE operating point to which transition is to be made
1020 * Returns: 0 on success, non-zero on failure
1022 * This function sets the operating point of the APE.
1024 int db8500_prcmu_set_ape_opp(u8 opp)
1026 int r = 0;
1028 if (opp == mb1_transfer.ape_opp)
1029 return 0;
1031 mutex_lock(&mb1_transfer.lock);
1033 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1034 request_even_slower_clocks(false);
1036 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1037 goto skip_message;
1039 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1040 cpu_relax();
1042 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1043 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1044 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1045 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1047 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1048 wait_for_completion(&mb1_transfer.work);
1050 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1051 (mb1_transfer.ack.ape_opp != opp))
1052 r = -EIO;
1054 skip_message:
1055 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1056 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1057 request_even_slower_clocks(true);
1058 if (!r)
1059 mb1_transfer.ape_opp = opp;
1061 mutex_unlock(&mb1_transfer.lock);
1063 return r;
1067 * db8500_prcmu_get_ape_opp - get the current APE OPP
1069 * Returns: the current APE OPP
1071 int db8500_prcmu_get_ape_opp(void)
1073 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1077 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1078 * @enable: true to request the higher voltage, false to drop a request.
1080 * Calls to this function to enable and disable requests must be balanced.
1082 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1084 int r = 0;
1085 u8 header;
1086 static unsigned int requests;
1088 mutex_lock(&mb1_transfer.lock);
1090 if (enable) {
1091 if (0 != requests++)
1092 goto unlock_and_return;
1093 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1094 } else {
1095 if (requests == 0) {
1096 r = -EIO;
1097 goto unlock_and_return;
1098 } else if (1 != requests--) {
1099 goto unlock_and_return;
1101 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1104 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1105 cpu_relax();
1107 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 wait_for_completion(&mb1_transfer.work);
1112 if ((mb1_transfer.ack.header != header) ||
1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 r = -EIO;
1116 unlock_and_return:
1117 mutex_unlock(&mb1_transfer.lock);
1119 return r;
1123 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1125 * This function releases the power state requirements of a USB wakeup.
1127 int prcmu_release_usb_wakeup_state(void)
1129 int r = 0;
1131 mutex_lock(&mb1_transfer.lock);
1133 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134 cpu_relax();
1136 writeb(MB1H_RELEASE_USB_WAKEUP,
1137 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 wait_for_completion(&mb1_transfer.work);
1142 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1143 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1144 r = -EIO;
1146 mutex_unlock(&mb1_transfer.lock);
1148 return r;
1151 static int request_pll(u8 clock, bool enable)
1153 int r = 0;
1155 if (clock == PRCMU_PLLSOC0)
1156 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1157 else if (clock == PRCMU_PLLSOC1)
1158 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1159 else
1160 return -EINVAL;
1162 mutex_lock(&mb1_transfer.lock);
1164 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1165 cpu_relax();
1167 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1168 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1170 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1171 wait_for_completion(&mb1_transfer.work);
1173 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1174 r = -EIO;
1176 mutex_unlock(&mb1_transfer.lock);
1178 return r;
1182 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1183 * @epod_id: The EPOD to set
1184 * @epod_state: The new EPOD state
1186 * This function sets the state of a EPOD (power domain). It may not be called
1187 * from interrupt context.
1189 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1191 int r = 0;
1192 bool ram_retention = false;
1193 int i;
1195 /* check argument */
1196 BUG_ON(epod_id >= NUM_EPOD_ID);
1198 /* set flag if retention is possible */
1199 switch (epod_id) {
1200 case EPOD_ID_SVAMMDSP:
1201 case EPOD_ID_SIAMMDSP:
1202 case EPOD_ID_ESRAM12:
1203 case EPOD_ID_ESRAM34:
1204 ram_retention = true;
1205 break;
1208 /* check argument */
1209 BUG_ON(epod_state > EPOD_STATE_ON);
1210 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1212 /* get lock */
1213 mutex_lock(&mb2_transfer.lock);
1215 /* wait for mailbox */
1216 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1217 cpu_relax();
1219 /* fill in mailbox */
1220 for (i = 0; i < NUM_EPOD_ID; i++)
1221 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1222 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1224 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1226 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1229 * The current firmware version does not handle errors correctly,
1230 * and we cannot recover if there is an error.
1231 * This is expected to change when the firmware is updated.
1233 if (!wait_for_completion_timeout(&mb2_transfer.work,
1234 msecs_to_jiffies(20000))) {
1235 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1236 __func__);
1237 r = -EIO;
1238 goto unlock_and_return;
1241 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1242 r = -EIO;
1244 unlock_and_return:
1245 mutex_unlock(&mb2_transfer.lock);
1246 return r;
1250 * prcmu_configure_auto_pm - Configure autonomous power management.
1251 * @sleep: Configuration for ApSleep.
1252 * @idle: Configuration for ApIdle.
1254 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1255 struct prcmu_auto_pm_config *idle)
1257 u32 sleep_cfg;
1258 u32 idle_cfg;
1259 unsigned long flags;
1261 BUG_ON((sleep == NULL) || (idle == NULL));
1263 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1264 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1265 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1266 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1267 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1268 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1270 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1271 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1272 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1273 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1274 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1275 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1277 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1280 * The autonomous power management configuration is done through
1281 * fields in mailbox 2, but these fields are only used as shared
1282 * variables - i.e. there is no need to send a message.
1284 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1285 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1287 mb2_transfer.auto_pm_enabled =
1288 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1289 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1290 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1291 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1293 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1295 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1297 bool prcmu_is_auto_pm_enabled(void)
1299 return mb2_transfer.auto_pm_enabled;
1302 static int request_sysclk(bool enable)
1304 int r;
1305 unsigned long flags;
1307 r = 0;
1309 mutex_lock(&mb3_transfer.sysclk_lock);
1311 spin_lock_irqsave(&mb3_transfer.lock, flags);
1313 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1314 cpu_relax();
1316 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1318 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1319 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1321 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1324 * The firmware only sends an ACK if we want to enable the
1325 * SysClk, and it succeeds.
1327 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1328 msecs_to_jiffies(20000))) {
1329 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1330 __func__);
1331 r = -EIO;
1334 mutex_unlock(&mb3_transfer.sysclk_lock);
1336 return r;
1339 static int request_timclk(bool enable)
1341 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1343 if (!enable)
1344 val |= PRCM_TCR_STOP_TIMERS;
1345 writel(val, PRCM_TCR);
1347 return 0;
1350 static int request_clock(u8 clock, bool enable)
1352 u32 val;
1353 unsigned long flags;
1355 spin_lock_irqsave(&clk_mgt_lock, flags);
1357 /* Grab the HW semaphore. */
1358 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1359 cpu_relax();
1361 val = readl(prcmu_base + clk_mgt[clock].offset);
1362 if (enable) {
1363 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1364 } else {
1365 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1366 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1368 writel(val, prcmu_base + clk_mgt[clock].offset);
1370 /* Release the HW semaphore. */
1371 writel(0, PRCM_SEM);
1373 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1375 return 0;
1378 static int request_sga_clock(u8 clock, bool enable)
1380 u32 val;
1381 int ret;
1383 if (enable) {
1384 val = readl(PRCM_CGATING_BYPASS);
1385 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1388 ret = request_clock(clock, enable);
1390 if (!ret && !enable) {
1391 val = readl(PRCM_CGATING_BYPASS);
1392 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1395 return ret;
1398 static inline bool plldsi_locked(void)
1400 return (readl(PRCM_PLLDSI_LOCKP) &
1401 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1402 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1403 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1404 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1407 static int request_plldsi(bool enable)
1409 int r = 0;
1410 u32 val;
1412 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1413 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1414 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1416 val = readl(PRCM_PLLDSI_ENABLE);
1417 if (enable)
1418 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1419 else
1420 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1421 writel(val, PRCM_PLLDSI_ENABLE);
1423 if (enable) {
1424 unsigned int i;
1425 bool locked = plldsi_locked();
1427 for (i = 10; !locked && (i > 0); --i) {
1428 udelay(100);
1429 locked = plldsi_locked();
1431 if (locked) {
1432 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1433 PRCM_APE_RESETN_SET);
1434 } else {
1435 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1436 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1437 PRCM_MMIP_LS_CLAMP_SET);
1438 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1439 writel(val, PRCM_PLLDSI_ENABLE);
1440 r = -EAGAIN;
1442 } else {
1443 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1445 return r;
1448 static int request_dsiclk(u8 n, bool enable)
1450 u32 val;
1452 val = readl(PRCM_DSI_PLLOUT_SEL);
1453 val &= ~dsiclk[n].divsel_mask;
1454 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1455 dsiclk[n].divsel_shift);
1456 writel(val, PRCM_DSI_PLLOUT_SEL);
1457 return 0;
1460 static int request_dsiescclk(u8 n, bool enable)
1462 u32 val;
1464 val = readl(PRCM_DSITVCLK_DIV);
1465 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1466 writel(val, PRCM_DSITVCLK_DIV);
1467 return 0;
1471 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1472 * @clock: The clock for which the request is made.
1473 * @enable: Whether the clock should be enabled (true) or disabled (false).
1475 * This function should only be used by the clock implementation.
1476 * Do not use it from any other place!
1478 int db8500_prcmu_request_clock(u8 clock, bool enable)
1480 if (clock == PRCMU_SGACLK)
1481 return request_sga_clock(clock, enable);
1482 else if (clock < PRCMU_NUM_REG_CLOCKS)
1483 return request_clock(clock, enable);
1484 else if (clock == PRCMU_TIMCLK)
1485 return request_timclk(enable);
1486 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1487 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1488 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1489 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1490 else if (clock == PRCMU_PLLDSI)
1491 return request_plldsi(enable);
1492 else if (clock == PRCMU_SYSCLK)
1493 return request_sysclk(enable);
1494 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1495 return request_pll(clock, enable);
1496 else
1497 return -EINVAL;
1500 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1501 int branch)
1503 u64 rate;
1504 u32 val;
1505 u32 d;
1506 u32 div = 1;
1508 val = readl(reg);
1510 rate = src_rate;
1511 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1513 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1514 if (d > 1)
1515 div *= d;
1517 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1518 if (d > 1)
1519 div *= d;
1521 if (val & PRCM_PLL_FREQ_SELDIV2)
1522 div *= 2;
1524 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1525 (val & PRCM_PLL_FREQ_DIV2EN) &&
1526 ((reg == PRCM_PLLSOC0_FREQ) ||
1527 (reg == PRCM_PLLARM_FREQ) ||
1528 (reg == PRCM_PLLDDR_FREQ))))
1529 div *= 2;
1531 (void)do_div(rate, div);
1533 return (unsigned long)rate;
1536 #define ROOT_CLOCK_RATE 38400000
1538 static unsigned long clock_rate(u8 clock)
1540 u32 val;
1541 u32 pllsw;
1542 unsigned long rate = ROOT_CLOCK_RATE;
1544 val = readl(prcmu_base + clk_mgt[clock].offset);
1546 if (val & PRCM_CLK_MGT_CLK38) {
1547 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1548 rate /= 2;
1549 return rate;
1552 val |= clk_mgt[clock].pllsw;
1553 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1555 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1556 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1557 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1558 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1559 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1560 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1561 else
1562 return 0;
1564 if ((clock == PRCMU_SGACLK) &&
1565 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1566 u64 r = (rate * 10);
1568 (void)do_div(r, 25);
1569 return (unsigned long)r;
1571 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1572 if (val)
1573 return rate / val;
1574 else
1575 return 0;
1578 static unsigned long armss_rate(void)
1580 u32 r;
1581 unsigned long rate;
1583 r = readl(PRCM_ARM_CHGCLKREQ);
1585 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1586 /* External ARMCLKFIX clock */
1588 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1590 /* Check PRCM_ARM_CHGCLKREQ divider */
1591 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1592 rate /= 2;
1594 /* Check PRCM_ARMCLKFIX_MGT divider */
1595 r = readl(PRCM_ARMCLKFIX_MGT);
1596 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1597 rate /= r;
1599 } else {/* ARM PLL */
1600 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1603 return rate;
1606 static unsigned long dsiclk_rate(u8 n)
1608 u32 divsel;
1609 u32 div = 1;
1611 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1612 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1614 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1615 divsel = dsiclk[n].divsel;
1616 else
1617 dsiclk[n].divsel = divsel;
1619 switch (divsel) {
1620 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1621 div *= 2;
1622 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1623 div *= 2;
1624 case PRCM_DSI_PLLOUT_SEL_PHI:
1625 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1626 PLL_RAW) / div;
1627 default:
1628 return 0;
1632 static unsigned long dsiescclk_rate(u8 n)
1634 u32 div;
1636 div = readl(PRCM_DSITVCLK_DIV);
1637 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1638 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1641 unsigned long prcmu_clock_rate(u8 clock)
1643 if (clock < PRCMU_NUM_REG_CLOCKS)
1644 return clock_rate(clock);
1645 else if (clock == PRCMU_TIMCLK)
1646 return ROOT_CLOCK_RATE / 16;
1647 else if (clock == PRCMU_SYSCLK)
1648 return ROOT_CLOCK_RATE;
1649 else if (clock == PRCMU_PLLSOC0)
1650 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1651 else if (clock == PRCMU_PLLSOC1)
1652 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1653 else if (clock == PRCMU_ARMSS)
1654 return armss_rate();
1655 else if (clock == PRCMU_PLLDDR)
1656 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1657 else if (clock == PRCMU_PLLDSI)
1658 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1659 PLL_RAW);
1660 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1661 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1662 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1663 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1664 else
1665 return 0;
1668 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1670 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1671 return ROOT_CLOCK_RATE;
1672 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1673 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1674 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1675 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1676 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1677 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1678 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1679 else
1680 return 0;
1683 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1685 u32 div;
1687 div = (src_rate / rate);
1688 if (div == 0)
1689 return 1;
1690 if (rate < (src_rate / div))
1691 div++;
1692 return div;
1695 static long round_clock_rate(u8 clock, unsigned long rate)
1697 u32 val;
1698 u32 div;
1699 unsigned long src_rate;
1700 long rounded_rate;
1702 val = readl(prcmu_base + clk_mgt[clock].offset);
1703 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1704 clk_mgt[clock].branch);
1705 div = clock_divider(src_rate, rate);
1706 if (val & PRCM_CLK_MGT_CLK38) {
1707 if (clk_mgt[clock].clk38div) {
1708 if (div > 2)
1709 div = 2;
1710 } else {
1711 div = 1;
1713 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1714 u64 r = (src_rate * 10);
1716 (void)do_div(r, 25);
1717 if (r <= rate)
1718 return (unsigned long)r;
1720 rounded_rate = (src_rate / min(div, (u32)31));
1722 return rounded_rate;
1725 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1726 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1727 { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1728 { .frequency = 400000, .driver_data = ARM_50_OPP,},
1729 { .frequency = 800000, .driver_data = ARM_100_OPP,},
1730 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1731 { .frequency = CPUFREQ_TABLE_END,},
1734 static long round_armss_rate(unsigned long rate)
1736 long freq = 0;
1737 int i = 0;
1739 /* cpufreq table frequencies is in KHz. */
1740 rate = rate / 1000;
1742 /* Find the corresponding arm opp from the cpufreq table. */
1743 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1744 freq = db8500_cpufreq_table[i].frequency;
1745 if (freq == rate)
1746 break;
1747 i++;
1750 /* Return the last valid value, even if a match was not found. */
1751 return freq * 1000;
1754 #define MIN_PLL_VCO_RATE 600000000ULL
1755 #define MAX_PLL_VCO_RATE 1680640000ULL
1757 static long round_plldsi_rate(unsigned long rate)
1759 long rounded_rate = 0;
1760 unsigned long src_rate;
1761 unsigned long rem;
1762 u32 r;
1764 src_rate = clock_rate(PRCMU_HDMICLK);
1765 rem = rate;
1767 for (r = 7; (rem > 0) && (r > 0); r--) {
1768 u64 d;
1770 d = (r * rate);
1771 (void)do_div(d, src_rate);
1772 if (d < 6)
1773 d = 6;
1774 else if (d > 255)
1775 d = 255;
1776 d *= src_rate;
1777 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1778 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1779 continue;
1780 (void)do_div(d, r);
1781 if (rate < d) {
1782 if (rounded_rate == 0)
1783 rounded_rate = (long)d;
1784 break;
1786 if ((rate - d) < rem) {
1787 rem = (rate - d);
1788 rounded_rate = (long)d;
1791 return rounded_rate;
1794 static long round_dsiclk_rate(unsigned long rate)
1796 u32 div;
1797 unsigned long src_rate;
1798 long rounded_rate;
1800 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1801 PLL_RAW);
1802 div = clock_divider(src_rate, rate);
1803 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1805 return rounded_rate;
1808 static long round_dsiescclk_rate(unsigned long rate)
1810 u32 div;
1811 unsigned long src_rate;
1812 long rounded_rate;
1814 src_rate = clock_rate(PRCMU_TVCLK);
1815 div = clock_divider(src_rate, rate);
1816 rounded_rate = (src_rate / min(div, (u32)255));
1818 return rounded_rate;
1821 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1823 if (clock < PRCMU_NUM_REG_CLOCKS)
1824 return round_clock_rate(clock, rate);
1825 else if (clock == PRCMU_ARMSS)
1826 return round_armss_rate(rate);
1827 else if (clock == PRCMU_PLLDSI)
1828 return round_plldsi_rate(rate);
1829 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1830 return round_dsiclk_rate(rate);
1831 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1832 return round_dsiescclk_rate(rate);
1833 else
1834 return (long)prcmu_clock_rate(clock);
1837 static void set_clock_rate(u8 clock, unsigned long rate)
1839 u32 val;
1840 u32 div;
1841 unsigned long src_rate;
1842 unsigned long flags;
1844 spin_lock_irqsave(&clk_mgt_lock, flags);
1846 /* Grab the HW semaphore. */
1847 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1848 cpu_relax();
1850 val = readl(prcmu_base + clk_mgt[clock].offset);
1851 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1852 clk_mgt[clock].branch);
1853 div = clock_divider(src_rate, rate);
1854 if (val & PRCM_CLK_MGT_CLK38) {
1855 if (clk_mgt[clock].clk38div) {
1856 if (div > 1)
1857 val |= PRCM_CLK_MGT_CLK38DIV;
1858 else
1859 val &= ~PRCM_CLK_MGT_CLK38DIV;
1861 } else if (clock == PRCMU_SGACLK) {
1862 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1863 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1864 if (div == 3) {
1865 u64 r = (src_rate * 10);
1867 (void)do_div(r, 25);
1868 if (r <= rate) {
1869 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1870 div = 0;
1873 val |= min(div, (u32)31);
1874 } else {
1875 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1876 val |= min(div, (u32)31);
1878 writel(val, prcmu_base + clk_mgt[clock].offset);
1880 /* Release the HW semaphore. */
1881 writel(0, PRCM_SEM);
1883 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1886 static int set_armss_rate(unsigned long rate)
1888 int i = 0;
1890 /* cpufreq table frequencies is in KHz. */
1891 rate = rate / 1000;
1893 /* Find the corresponding arm opp from the cpufreq table. */
1894 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1895 if (db8500_cpufreq_table[i].frequency == rate)
1896 break;
1897 i++;
1900 if (db8500_cpufreq_table[i].frequency != rate)
1901 return -EINVAL;
1903 /* Set the new arm opp. */
1904 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].driver_data);
1907 static int set_plldsi_rate(unsigned long rate)
1909 unsigned long src_rate;
1910 unsigned long rem;
1911 u32 pll_freq = 0;
1912 u32 r;
1914 src_rate = clock_rate(PRCMU_HDMICLK);
1915 rem = rate;
1917 for (r = 7; (rem > 0) && (r > 0); r--) {
1918 u64 d;
1919 u64 hwrate;
1921 d = (r * rate);
1922 (void)do_div(d, src_rate);
1923 if (d < 6)
1924 d = 6;
1925 else if (d > 255)
1926 d = 255;
1927 hwrate = (d * src_rate);
1928 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1929 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1930 continue;
1931 (void)do_div(hwrate, r);
1932 if (rate < hwrate) {
1933 if (pll_freq == 0)
1934 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1935 (r << PRCM_PLL_FREQ_R_SHIFT));
1936 break;
1938 if ((rate - hwrate) < rem) {
1939 rem = (rate - hwrate);
1940 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1941 (r << PRCM_PLL_FREQ_R_SHIFT));
1944 if (pll_freq == 0)
1945 return -EINVAL;
1947 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1948 writel(pll_freq, PRCM_PLLDSI_FREQ);
1950 return 0;
1953 static void set_dsiclk_rate(u8 n, unsigned long rate)
1955 u32 val;
1956 u32 div;
1958 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1959 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1961 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1962 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1963 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1965 val = readl(PRCM_DSI_PLLOUT_SEL);
1966 val &= ~dsiclk[n].divsel_mask;
1967 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1968 writel(val, PRCM_DSI_PLLOUT_SEL);
1971 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1973 u32 val;
1974 u32 div;
1976 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1977 val = readl(PRCM_DSITVCLK_DIV);
1978 val &= ~dsiescclk[n].div_mask;
1979 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1980 writel(val, PRCM_DSITVCLK_DIV);
1983 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1985 if (clock < PRCMU_NUM_REG_CLOCKS)
1986 set_clock_rate(clock, rate);
1987 else if (clock == PRCMU_ARMSS)
1988 return set_armss_rate(rate);
1989 else if (clock == PRCMU_PLLDSI)
1990 return set_plldsi_rate(rate);
1991 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1992 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1993 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1994 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1995 return 0;
1998 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2001 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2002 return -EINVAL;
2004 mutex_lock(&mb4_transfer.lock);
2006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2007 cpu_relax();
2009 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2010 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2011 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2012 writeb(DDR_PWR_STATE_ON,
2013 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2014 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2017 wait_for_completion(&mb4_transfer.work);
2019 mutex_unlock(&mb4_transfer.lock);
2021 return 0;
2024 int db8500_prcmu_config_hotdog(u8 threshold)
2026 mutex_lock(&mb4_transfer.lock);
2028 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2029 cpu_relax();
2031 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2032 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2035 wait_for_completion(&mb4_transfer.work);
2037 mutex_unlock(&mb4_transfer.lock);
2039 return 0;
2042 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 mutex_lock(&mb4_transfer.lock);
2046 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2047 cpu_relax();
2049 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2050 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2051 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2052 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2053 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2056 wait_for_completion(&mb4_transfer.work);
2058 mutex_unlock(&mb4_transfer.lock);
2060 return 0;
2063 static int config_hot_period(u16 val)
2065 mutex_lock(&mb4_transfer.lock);
2067 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2068 cpu_relax();
2070 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2071 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2074 wait_for_completion(&mb4_transfer.work);
2076 mutex_unlock(&mb4_transfer.lock);
2078 return 0;
2081 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 if (cycles32k == 0xFFFF)
2084 return -EINVAL;
2086 return config_hot_period(cycles32k);
2089 int db8500_prcmu_stop_temp_sense(void)
2091 return config_hot_period(0xFFFF);
2094 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2097 mutex_lock(&mb4_transfer.lock);
2099 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2100 cpu_relax();
2102 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2103 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2104 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2105 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2110 wait_for_completion(&mb4_transfer.work);
2112 mutex_unlock(&mb4_transfer.lock);
2114 return 0;
2118 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 BUG_ON(num == 0 || num > 0xf);
2121 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2122 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2123 A9WDOG_AUTO_OFF_DIS);
2125 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2127 int db8500_prcmu_enable_a9wdog(u8 id)
2129 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2131 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2133 int db8500_prcmu_disable_a9wdog(u8 id)
2135 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2137 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2139 int db8500_prcmu_kick_a9wdog(u8 id)
2141 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2143 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2146 * timeout is 28 bit, in ms.
2148 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2150 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2151 (id & A9WDOG_ID_MASK) |
2153 * Put the lowest 28 bits of timeout at
2154 * offset 4. Four first bits are used for id.
2156 (u8)((timeout << 4) & 0xf0),
2157 (u8)((timeout >> 4) & 0xff),
2158 (u8)((timeout >> 12) & 0xff),
2159 (u8)((timeout >> 20) & 0xff));
2161 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2164 * prcmu_abb_read() - Read register value(s) from the ABB.
2165 * @slave: The I2C slave address.
2166 * @reg: The (start) register address.
2167 * @value: The read out value(s).
2168 * @size: The number of registers to read.
2170 * Reads register value(s) from the ABB.
2171 * @size has to be 1 for the current firmware version.
2173 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2175 int r;
2177 if (size != 1)
2178 return -EINVAL;
2180 mutex_lock(&mb5_transfer.lock);
2182 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2183 cpu_relax();
2185 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2186 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2187 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2188 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2189 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2191 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2193 if (!wait_for_completion_timeout(&mb5_transfer.work,
2194 msecs_to_jiffies(20000))) {
2195 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2196 __func__);
2197 r = -EIO;
2198 } else {
2199 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2202 if (!r)
2203 *value = mb5_transfer.ack.value;
2205 mutex_unlock(&mb5_transfer.lock);
2207 return r;
2211 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2212 * @slave: The I2C slave address.
2213 * @reg: The (start) register address.
2214 * @value: The value(s) to write.
2215 * @mask: The mask(s) to use.
2216 * @size: The number of registers to write.
2218 * Writes masked register value(s) to the ABB.
2219 * For each @value, only the bits set to 1 in the corresponding @mask
2220 * will be written. The other bits are not changed.
2221 * @size has to be 1 for the current firmware version.
2223 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2225 int r;
2227 if (size != 1)
2228 return -EINVAL;
2230 mutex_lock(&mb5_transfer.lock);
2232 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2233 cpu_relax();
2235 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2236 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2237 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2238 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2239 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2241 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2243 if (!wait_for_completion_timeout(&mb5_transfer.work,
2244 msecs_to_jiffies(20000))) {
2245 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2246 __func__);
2247 r = -EIO;
2248 } else {
2249 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2252 mutex_unlock(&mb5_transfer.lock);
2254 return r;
2258 * prcmu_abb_write() - Write register value(s) to the ABB.
2259 * @slave: The I2C slave address.
2260 * @reg: The (start) register address.
2261 * @value: The value(s) to write.
2262 * @size: The number of registers to write.
2264 * Writes register value(s) to the ABB.
2265 * @size has to be 1 for the current firmware version.
2267 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2269 u8 mask = ~0;
2271 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2275 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2277 int prcmu_ac_wake_req(void)
2279 u32 val;
2280 int ret = 0;
2282 mutex_lock(&mb0_transfer.ac_wake_lock);
2284 val = readl(PRCM_HOSTACCESS_REQ);
2285 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2286 goto unlock_and_return;
2288 atomic_set(&ac_wake_req_state, 1);
2291 * Force Modem Wake-up before hostaccess_req ping-pong.
2292 * It prevents Modem to enter in Sleep while acking the hostaccess
2293 * request. The 31us delay has been calculated by HWI.
2295 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2296 writel(val, PRCM_HOSTACCESS_REQ);
2298 udelay(31);
2300 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2301 writel(val, PRCM_HOSTACCESS_REQ);
2303 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2304 msecs_to_jiffies(5000))) {
2305 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2306 db8500_prcmu_debug_dump(__func__, true, true);
2307 #endif
2308 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2309 __func__);
2310 ret = -EFAULT;
2313 unlock_and_return:
2314 mutex_unlock(&mb0_transfer.ac_wake_lock);
2315 return ret;
2319 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2321 void prcmu_ac_sleep_req(void)
2323 u32 val;
2325 mutex_lock(&mb0_transfer.ac_wake_lock);
2327 val = readl(PRCM_HOSTACCESS_REQ);
2328 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2329 goto unlock_and_return;
2331 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2332 PRCM_HOSTACCESS_REQ);
2334 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2335 msecs_to_jiffies(5000))) {
2336 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2337 __func__);
2340 atomic_set(&ac_wake_req_state, 0);
2342 unlock_and_return:
2343 mutex_unlock(&mb0_transfer.ac_wake_lock);
2346 bool db8500_prcmu_is_ac_wake_requested(void)
2348 return (atomic_read(&ac_wake_req_state) != 0);
2352 * db8500_prcmu_system_reset - System reset
2354 * Saves the reset reason code and then sets the APE_SOFTRST register which
2355 * fires interrupt to fw
2357 void db8500_prcmu_system_reset(u16 reset_code)
2359 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2360 writel(1, PRCM_APE_SOFTRST);
2364 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2366 * Retrieves the reset reason code stored by prcmu_system_reset() before
2367 * last restart.
2369 u16 db8500_prcmu_get_reset_code(void)
2371 return readw(tcdm_base + PRCM_SW_RST_REASON);
2375 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2377 void db8500_prcmu_modem_reset(void)
2379 mutex_lock(&mb1_transfer.lock);
2381 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2382 cpu_relax();
2384 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2385 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2386 wait_for_completion(&mb1_transfer.work);
2389 * No need to check return from PRCMU as modem should go in reset state
2390 * This state is already managed by upper layer
2393 mutex_unlock(&mb1_transfer.lock);
2396 static void ack_dbb_wakeup(void)
2398 unsigned long flags;
2400 spin_lock_irqsave(&mb0_transfer.lock, flags);
2402 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2403 cpu_relax();
2405 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2406 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2408 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2411 static inline void print_unknown_header_warning(u8 n, u8 header)
2413 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2414 header, n);
2417 static bool read_mailbox_0(void)
2419 bool r;
2420 u32 ev;
2421 unsigned int n;
2422 u8 header;
2424 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2425 switch (header) {
2426 case MB0H_WAKEUP_EXE:
2427 case MB0H_WAKEUP_SLEEP:
2428 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2429 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2430 else
2431 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2433 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2434 complete(&mb0_transfer.ac_wake_work);
2435 if (ev & WAKEUP_BIT_SYSCLK_OK)
2436 complete(&mb3_transfer.sysclk_work);
2438 ev &= mb0_transfer.req.dbb_irqs;
2440 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2441 if (ev & prcmu_irq_bit[n])
2442 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2444 r = true;
2445 break;
2446 default:
2447 print_unknown_header_warning(0, header);
2448 r = false;
2449 break;
2451 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2452 return r;
2455 static bool read_mailbox_1(void)
2457 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2458 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2459 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2460 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2461 PRCM_ACK_MB1_CURRENT_APE_OPP);
2462 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2463 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2464 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2465 complete(&mb1_transfer.work);
2466 return false;
2469 static bool read_mailbox_2(void)
2471 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2472 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2473 complete(&mb2_transfer.work);
2474 return false;
2477 static bool read_mailbox_3(void)
2479 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2480 return false;
2483 static bool read_mailbox_4(void)
2485 u8 header;
2486 bool do_complete = true;
2488 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2489 switch (header) {
2490 case MB4H_MEM_ST:
2491 case MB4H_HOTDOG:
2492 case MB4H_HOTMON:
2493 case MB4H_HOT_PERIOD:
2494 case MB4H_A9WDOG_CONF:
2495 case MB4H_A9WDOG_EN:
2496 case MB4H_A9WDOG_DIS:
2497 case MB4H_A9WDOG_LOAD:
2498 case MB4H_A9WDOG_KICK:
2499 break;
2500 default:
2501 print_unknown_header_warning(4, header);
2502 do_complete = false;
2503 break;
2506 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2508 if (do_complete)
2509 complete(&mb4_transfer.work);
2511 return false;
2514 static bool read_mailbox_5(void)
2516 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2517 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2518 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2519 complete(&mb5_transfer.work);
2520 return false;
2523 static bool read_mailbox_6(void)
2525 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2526 return false;
2529 static bool read_mailbox_7(void)
2531 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2532 return false;
2535 static bool (* const read_mailbox[NUM_MB])(void) = {
2536 read_mailbox_0,
2537 read_mailbox_1,
2538 read_mailbox_2,
2539 read_mailbox_3,
2540 read_mailbox_4,
2541 read_mailbox_5,
2542 read_mailbox_6,
2543 read_mailbox_7
2546 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2548 u32 bits;
2549 u8 n;
2550 irqreturn_t r;
2552 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2553 if (unlikely(!bits))
2554 return IRQ_NONE;
2556 r = IRQ_HANDLED;
2557 for (n = 0; bits; n++) {
2558 if (bits & MBOX_BIT(n)) {
2559 bits -= MBOX_BIT(n);
2560 if (read_mailbox[n]())
2561 r = IRQ_WAKE_THREAD;
2564 return r;
2567 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2569 ack_dbb_wakeup();
2570 return IRQ_HANDLED;
2573 static void prcmu_mask_work(struct work_struct *work)
2575 unsigned long flags;
2577 spin_lock_irqsave(&mb0_transfer.lock, flags);
2579 config_wakeups();
2581 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2584 static void prcmu_irq_mask(struct irq_data *d)
2586 unsigned long flags;
2588 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2590 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2592 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2594 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595 schedule_work(&mb0_transfer.mask_work);
2598 static void prcmu_irq_unmask(struct irq_data *d)
2600 unsigned long flags;
2602 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2604 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2606 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2608 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2609 schedule_work(&mb0_transfer.mask_work);
2612 static void noop(struct irq_data *d)
2616 static struct irq_chip prcmu_irq_chip = {
2617 .name = "prcmu",
2618 .irq_disable = prcmu_irq_mask,
2619 .irq_ack = noop,
2620 .irq_mask = prcmu_irq_mask,
2621 .irq_unmask = prcmu_irq_unmask,
2624 static __init char *fw_project_name(u32 project)
2626 switch (project) {
2627 case PRCMU_FW_PROJECT_U8500:
2628 return "U8500";
2629 case PRCMU_FW_PROJECT_U8400:
2630 return "U8400";
2631 case PRCMU_FW_PROJECT_U9500:
2632 return "U9500";
2633 case PRCMU_FW_PROJECT_U8500_MBB:
2634 return "U8500 MBB";
2635 case PRCMU_FW_PROJECT_U8500_C1:
2636 return "U8500 C1";
2637 case PRCMU_FW_PROJECT_U8500_C2:
2638 return "U8500 C2";
2639 case PRCMU_FW_PROJECT_U8500_C3:
2640 return "U8500 C3";
2641 case PRCMU_FW_PROJECT_U8500_C4:
2642 return "U8500 C4";
2643 case PRCMU_FW_PROJECT_U9500_MBL:
2644 return "U9500 MBL";
2645 case PRCMU_FW_PROJECT_U8500_MBL:
2646 return "U8500 MBL";
2647 case PRCMU_FW_PROJECT_U8500_MBL2:
2648 return "U8500 MBL2";
2649 case PRCMU_FW_PROJECT_U8520:
2650 return "U8520 MBL";
2651 case PRCMU_FW_PROJECT_U8420:
2652 return "U8420";
2653 case PRCMU_FW_PROJECT_U9540:
2654 return "U9540";
2655 case PRCMU_FW_PROJECT_A9420:
2656 return "A9420";
2657 case PRCMU_FW_PROJECT_L8540:
2658 return "L8540";
2659 case PRCMU_FW_PROJECT_L8580:
2660 return "L8580";
2661 default:
2662 return "Unknown";
2666 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2667 irq_hw_number_t hwirq)
2669 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2670 handle_simple_irq);
2671 set_irq_flags(virq, IRQF_VALID);
2673 return 0;
2676 static struct irq_domain_ops db8500_irq_ops = {
2677 .map = db8500_irq_map,
2678 .xlate = irq_domain_xlate_twocell,
2681 static int db8500_irq_init(struct device_node *np, int irq_base)
2683 int i;
2685 /* In the device tree case, just take some IRQs */
2686 if (np)
2687 irq_base = 0;
2689 db8500_irq_domain = irq_domain_add_simple(
2690 np, NUM_PRCMU_WAKEUPS, irq_base,
2691 &db8500_irq_ops, NULL);
2693 if (!db8500_irq_domain) {
2694 pr_err("Failed to create irqdomain\n");
2695 return -ENOSYS;
2698 /* All wakeups will be used, so create mappings for all */
2699 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2700 irq_create_mapping(db8500_irq_domain, i);
2702 return 0;
2705 static void dbx500_fw_version_init(struct platform_device *pdev,
2706 u32 version_offset)
2708 struct resource *res;
2709 void __iomem *tcpm_base;
2710 u32 version;
2712 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2713 "prcmu-tcpm");
2714 if (!res) {
2715 dev_err(&pdev->dev,
2716 "Error: no prcmu tcpm memory region provided\n");
2717 return;
2719 tcpm_base = ioremap(res->start, resource_size(res));
2720 if (!tcpm_base) {
2721 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2722 return;
2725 version = readl(tcpm_base + version_offset);
2726 fw_info.version.project = (version & 0xFF);
2727 fw_info.version.api_version = (version >> 8) & 0xFF;
2728 fw_info.version.func_version = (version >> 16) & 0xFF;
2729 fw_info.version.errata = (version >> 24) & 0xFF;
2730 strncpy(fw_info.version.project_name,
2731 fw_project_name(fw_info.version.project),
2732 PRCMU_FW_PROJECT_NAME_LEN);
2733 fw_info.valid = true;
2734 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2735 fw_info.version.project_name,
2736 fw_info.version.project,
2737 fw_info.version.api_version,
2738 fw_info.version.func_version,
2739 fw_info.version.errata);
2740 iounmap(tcpm_base);
2743 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2746 * This is a temporary remap to bring up the clocks. It is
2747 * subsequently replaces with a real remap. After the merge of
2748 * the mailbox subsystem all of this early code goes away, and the
2749 * clock driver can probe independently. An early initcall will
2750 * still be needed, but it can be diverted into drivers/clk/ux500.
2752 prcmu_base = ioremap(phy_base, size);
2753 if (!prcmu_base)
2754 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2756 spin_lock_init(&mb0_transfer.lock);
2757 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2758 mutex_init(&mb0_transfer.ac_wake_lock);
2759 init_completion(&mb0_transfer.ac_wake_work);
2760 mutex_init(&mb1_transfer.lock);
2761 init_completion(&mb1_transfer.work);
2762 mb1_transfer.ape_opp = APE_NO_CHANGE;
2763 mutex_init(&mb2_transfer.lock);
2764 init_completion(&mb2_transfer.work);
2765 spin_lock_init(&mb2_transfer.auto_pm_lock);
2766 spin_lock_init(&mb3_transfer.lock);
2767 mutex_init(&mb3_transfer.sysclk_lock);
2768 init_completion(&mb3_transfer.sysclk_work);
2769 mutex_init(&mb4_transfer.lock);
2770 init_completion(&mb4_transfer.work);
2771 mutex_init(&mb5_transfer.lock);
2772 init_completion(&mb5_transfer.work);
2774 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2777 static void __init init_prcm_registers(void)
2779 u32 val;
2781 val = readl(PRCM_A9PL_FORCE_CLKEN);
2782 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2783 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2784 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2788 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2790 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2791 REGULATOR_SUPPLY("v-ape", NULL),
2792 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2793 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2794 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2795 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2796 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2797 /* "v-mmc" changed to "vcore" in the mainline kernel */
2798 REGULATOR_SUPPLY("vcore", "sdi0"),
2799 REGULATOR_SUPPLY("vcore", "sdi1"),
2800 REGULATOR_SUPPLY("vcore", "sdi2"),
2801 REGULATOR_SUPPLY("vcore", "sdi3"),
2802 REGULATOR_SUPPLY("vcore", "sdi4"),
2803 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2804 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2805 /* "v-uart" changed to "vcore" in the mainline kernel */
2806 REGULATOR_SUPPLY("vcore", "uart0"),
2807 REGULATOR_SUPPLY("vcore", "uart1"),
2808 REGULATOR_SUPPLY("vcore", "uart2"),
2809 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2810 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2811 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2814 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2815 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2816 /* AV8100 regulator */
2817 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2820 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2821 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2822 REGULATOR_SUPPLY("vsupply", "mcde"),
2825 /* SVA MMDSP regulator switch */
2826 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2827 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2830 /* SVA pipe regulator switch */
2831 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2832 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2835 /* SIA MMDSP regulator switch */
2836 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2837 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2840 /* SIA pipe regulator switch */
2841 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2842 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2845 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2846 REGULATOR_SUPPLY("v-mali", NULL),
2849 /* ESRAM1 and 2 regulator switch */
2850 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2851 REGULATOR_SUPPLY("esram12", "cm_control"),
2854 /* ESRAM3 and 4 regulator switch */
2855 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2856 REGULATOR_SUPPLY("v-esram34", "mcde"),
2857 REGULATOR_SUPPLY("esram34", "cm_control"),
2858 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2861 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2862 [DB8500_REGULATOR_VAPE] = {
2863 .constraints = {
2864 .name = "db8500-vape",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 .always_on = true,
2868 .consumer_supplies = db8500_vape_consumers,
2869 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2871 [DB8500_REGULATOR_VARM] = {
2872 .constraints = {
2873 .name = "db8500-varm",
2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 [DB8500_REGULATOR_VMODEM] = {
2878 .constraints = {
2879 .name = "db8500-vmodem",
2880 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 [DB8500_REGULATOR_VPLL] = {
2884 .constraints = {
2885 .name = "db8500-vpll",
2886 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889 [DB8500_REGULATOR_VSMPS1] = {
2890 .constraints = {
2891 .name = "db8500-vsmps1",
2892 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2895 [DB8500_REGULATOR_VSMPS2] = {
2896 .constraints = {
2897 .name = "db8500-vsmps2",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 .consumer_supplies = db8500_vsmps2_consumers,
2901 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2903 [DB8500_REGULATOR_VSMPS3] = {
2904 .constraints = {
2905 .name = "db8500-vsmps3",
2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2909 [DB8500_REGULATOR_VRF1] = {
2910 .constraints = {
2911 .name = "db8500-vrf1",
2912 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2916 /* dependency to u8500-vape is handled outside regulator framework */
2917 .constraints = {
2918 .name = "db8500-sva-mmdsp",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921 .consumer_supplies = db8500_svammdsp_consumers,
2922 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2924 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2925 .constraints = {
2926 /* "ret" means "retention" */
2927 .name = "db8500-sva-mmdsp-ret",
2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2932 /* dependency to u8500-vape is handled outside regulator framework */
2933 .constraints = {
2934 .name = "db8500-sva-pipe",
2935 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 .consumer_supplies = db8500_svapipe_consumers,
2938 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2940 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2941 /* dependency to u8500-vape is handled outside regulator framework */
2942 .constraints = {
2943 .name = "db8500-sia-mmdsp",
2944 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2946 .consumer_supplies = db8500_siammdsp_consumers,
2947 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2949 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2950 .constraints = {
2951 .name = "db8500-sia-mmdsp-ret",
2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2955 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2956 /* dependency to u8500-vape is handled outside regulator framework */
2957 .constraints = {
2958 .name = "db8500-sia-pipe",
2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961 .consumer_supplies = db8500_siapipe_consumers,
2962 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2964 [DB8500_REGULATOR_SWITCH_SGA] = {
2965 .supply_regulator = "db8500-vape",
2966 .constraints = {
2967 .name = "db8500-sga",
2968 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 .consumer_supplies = db8500_sga_consumers,
2971 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2974 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2975 .supply_regulator = "db8500-vape",
2976 .constraints = {
2977 .name = "db8500-b2r2-mcde",
2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 .consumer_supplies = db8500_b2r2_mcde_consumers,
2981 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2983 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2985 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2986 * no need to hold Vape
2988 .constraints = {
2989 .name = "db8500-esram12",
2990 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2992 .consumer_supplies = db8500_esram12_consumers,
2993 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2995 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2996 .constraints = {
2997 .name = "db8500-esram12-ret",
2998 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3001 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3003 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3004 * no need to hold Vape
3006 .constraints = {
3007 .name = "db8500-esram34",
3008 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3010 .consumer_supplies = db8500_esram34_consumers,
3011 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3013 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3014 .constraints = {
3015 .name = "db8500-esram34-ret",
3016 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3021 static struct ux500_wdt_data db8500_wdt_pdata = {
3022 .timeout = 600, /* 10 minutes */
3023 .has_28_bits_resolution = true,
3026 * Thermal Sensor
3029 static struct resource db8500_thsens_resources[] = {
3031 .name = "IRQ_HOTMON_LOW",
3032 .start = IRQ_PRCMU_HOTMON_LOW,
3033 .end = IRQ_PRCMU_HOTMON_LOW,
3034 .flags = IORESOURCE_IRQ,
3037 .name = "IRQ_HOTMON_HIGH",
3038 .start = IRQ_PRCMU_HOTMON_HIGH,
3039 .end = IRQ_PRCMU_HOTMON_HIGH,
3040 .flags = IORESOURCE_IRQ,
3044 static struct db8500_thsens_platform_data db8500_thsens_data = {
3045 .trip_points[0] = {
3046 .temp = 70000,
3047 .type = THERMAL_TRIP_ACTIVE,
3048 .cdev_name = {
3049 [0] = "thermal-cpufreq-0",
3052 .trip_points[1] = {
3053 .temp = 75000,
3054 .type = THERMAL_TRIP_ACTIVE,
3055 .cdev_name = {
3056 [0] = "thermal-cpufreq-0",
3059 .trip_points[2] = {
3060 .temp = 80000,
3061 .type = THERMAL_TRIP_ACTIVE,
3062 .cdev_name = {
3063 [0] = "thermal-cpufreq-0",
3066 .trip_points[3] = {
3067 .temp = 85000,
3068 .type = THERMAL_TRIP_CRITICAL,
3070 .num_trips = 4,
3073 static const struct mfd_cell common_prcmu_devs[] = {
3075 .name = "ux500_wdt",
3076 .platform_data = &db8500_wdt_pdata,
3077 .pdata_size = sizeof(db8500_wdt_pdata),
3078 .id = -1,
3082 static const struct mfd_cell db8500_prcmu_devs[] = {
3084 .name = "db8500-prcmu-regulators",
3085 .of_compatible = "stericsson,db8500-prcmu-regulator",
3086 .platform_data = &db8500_regulators,
3087 .pdata_size = sizeof(db8500_regulators),
3090 .name = "cpufreq-ux500",
3091 .of_compatible = "stericsson,cpufreq-ux500",
3092 .platform_data = &db8500_cpufreq_table,
3093 .pdata_size = sizeof(db8500_cpufreq_table),
3096 .name = "cpuidle-dbx500",
3097 .of_compatible = "stericsson,cpuidle-dbx500",
3100 .name = "db8500-thermal",
3101 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3102 .resources = db8500_thsens_resources,
3103 .platform_data = &db8500_thsens_data,
3104 .pdata_size = sizeof(db8500_thsens_data),
3108 static void db8500_prcmu_update_cpufreq(void)
3110 if (prcmu_has_arm_maxopp()) {
3111 db8500_cpufreq_table[3].frequency = 1000000;
3112 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3116 static int db8500_prcmu_register_ab8500(struct device *parent,
3117 struct ab8500_platform_data *pdata,
3118 int irq)
3120 struct resource ab8500_resource = DEFINE_RES_IRQ(irq);
3121 struct mfd_cell ab8500_cell = {
3122 .name = "ab8500-core",
3123 .of_compatible = "stericsson,ab8500",
3124 .id = AB8500_VERSION_AB8500,
3125 .platform_data = pdata,
3126 .pdata_size = sizeof(struct ab8500_platform_data),
3127 .resources = &ab8500_resource,
3128 .num_resources = 1,
3131 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3135 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3138 static int db8500_prcmu_probe(struct platform_device *pdev)
3140 struct device_node *np = pdev->dev.of_node;
3141 struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3142 int irq = 0, err = 0;
3143 struct resource *res;
3145 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3146 if (!res) {
3147 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3148 return -ENOENT;
3150 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3151 if (!prcmu_base) {
3152 dev_err(&pdev->dev,
3153 "failed to ioremap prcmu register memory\n");
3154 return -ENOENT;
3156 init_prcm_registers();
3157 dbx500_fw_version_init(pdev, pdata->version_offset);
3158 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3159 if (!res) {
3160 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3161 return -ENOENT;
3163 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3164 resource_size(res));
3166 /* Clean up the mailbox interrupts after pre-kernel code. */
3167 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3169 irq = platform_get_irq(pdev, 0);
3170 if (irq <= 0) {
3171 dev_err(&pdev->dev, "no prcmu irq provided\n");
3172 return -ENOENT;
3175 err = request_threaded_irq(irq, prcmu_irq_handler,
3176 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 if (err < 0) {
3178 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179 err = -EBUSY;
3180 goto no_irq_return;
3183 db8500_irq_init(np, pdata->irq_base);
3185 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3187 db8500_prcmu_update_cpufreq();
3189 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191 if (err) {
3192 pr_err("prcmu: Failed to add subdevices\n");
3193 return err;
3196 /* TODO: Remove restriction when clk definitions are available. */
3197 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200 db8500_irq_domain);
3201 if (err) {
3202 mfd_remove_devices(&pdev->dev);
3203 pr_err("prcmu: Failed to add subdevices\n");
3204 goto no_irq_return;
3208 err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata,
3209 pdata->ab_irq);
3210 if (err) {
3211 mfd_remove_devices(&pdev->dev);
3212 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3213 goto no_irq_return;
3216 pr_info("DB8500 PRCMU initialized\n");
3218 no_irq_return:
3219 return err;
3221 static const struct of_device_id db8500_prcmu_match[] = {
3222 { .compatible = "stericsson,db8500-prcmu"},
3223 { },
3226 static struct platform_driver db8500_prcmu_driver = {
3227 .driver = {
3228 .name = "db8500-prcmu",
3229 .owner = THIS_MODULE,
3230 .of_match_table = db8500_prcmu_match,
3232 .probe = db8500_prcmu_probe,
3235 static int __init db8500_prcmu_init(void)
3237 return platform_driver_register(&db8500_prcmu_driver);
3240 core_initcall(db8500_prcmu_init);
3242 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3243 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3244 MODULE_LICENSE("GPL v2");