PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mmc / card / block.c
blob7b5424f398ace049d0a6c4be9724a191c7ad4f54
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
71 static DEFINE_MUTEX(block_mutex);
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
80 * We've only got one major, so number of mmcblk devices is
81 * limited to 256 / number of minors per device.
83 static int max_devices;
85 /* 256 minors, so at most 256 separate devices */
86 static DECLARE_BITMAP(dev_use, 256);
87 static DECLARE_BITMAP(name_use, 256);
90 * There is one mmc_blk_data per slot.
92 struct mmc_blk_data {
93 spinlock_t lock;
94 struct gendisk *disk;
95 struct mmc_queue queue;
96 struct list_head part;
98 unsigned int flags;
99 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
100 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
101 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
103 unsigned int usage;
104 unsigned int read_only;
105 unsigned int part_type;
106 unsigned int name_idx;
107 unsigned int reset_done;
108 #define MMC_BLK_READ BIT(0)
109 #define MMC_BLK_WRITE BIT(1)
110 #define MMC_BLK_DISCARD BIT(2)
111 #define MMC_BLK_SECDISCARD BIT(3)
114 * Only set in main mmc_blk_data associated
115 * with mmc_card with mmc_set_drvdata, and keeps
116 * track of the current selected device partition.
118 unsigned int part_curr;
119 struct device_attribute force_ro;
120 struct device_attribute power_ro_lock;
121 int area_type;
124 static DEFINE_MUTEX(open_lock);
126 enum {
127 MMC_PACKED_NR_IDX = -1,
128 MMC_PACKED_NR_ZERO,
129 MMC_PACKED_NR_SINGLE,
132 module_param(perdev_minors, int, 0444);
133 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
135 static inline int mmc_blk_part_switch(struct mmc_card *card,
136 struct mmc_blk_data *md);
137 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
139 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
141 struct mmc_packed *packed = mqrq->packed;
143 BUG_ON(!packed);
145 mqrq->cmd_type = MMC_PACKED_NONE;
146 packed->nr_entries = MMC_PACKED_NR_ZERO;
147 packed->idx_failure = MMC_PACKED_NR_IDX;
148 packed->retries = 0;
149 packed->blocks = 0;
152 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
154 struct mmc_blk_data *md;
156 mutex_lock(&open_lock);
157 md = disk->private_data;
158 if (md && md->usage == 0)
159 md = NULL;
160 if (md)
161 md->usage++;
162 mutex_unlock(&open_lock);
164 return md;
167 static inline int mmc_get_devidx(struct gendisk *disk)
169 int devmaj = MAJOR(disk_devt(disk));
170 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
172 if (!devmaj)
173 devidx = disk->first_minor / perdev_minors;
174 return devidx;
177 static void mmc_blk_put(struct mmc_blk_data *md)
179 mutex_lock(&open_lock);
180 md->usage--;
181 if (md->usage == 0) {
182 int devidx = mmc_get_devidx(md->disk);
183 blk_cleanup_queue(md->queue.queue);
185 __clear_bit(devidx, dev_use);
187 put_disk(md->disk);
188 kfree(md);
190 mutex_unlock(&open_lock);
193 static ssize_t power_ro_lock_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
196 int ret;
197 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
198 struct mmc_card *card = md->queue.card;
199 int locked = 0;
201 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
202 locked = 2;
203 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
204 locked = 1;
206 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
208 return ret;
211 static ssize_t power_ro_lock_store(struct device *dev,
212 struct device_attribute *attr, const char *buf, size_t count)
214 int ret;
215 struct mmc_blk_data *md, *part_md;
216 struct mmc_card *card;
217 unsigned long set;
219 if (kstrtoul(buf, 0, &set))
220 return -EINVAL;
222 if (set != 1)
223 return count;
225 md = mmc_blk_get(dev_to_disk(dev));
226 card = md->queue.card;
228 mmc_get_card(card);
230 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
231 card->ext_csd.boot_ro_lock |
232 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
233 card->ext_csd.part_time);
234 if (ret)
235 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
236 else
237 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
239 mmc_put_card(card);
241 if (!ret) {
242 pr_info("%s: Locking boot partition ro until next power on\n",
243 md->disk->disk_name);
244 set_disk_ro(md->disk, 1);
246 list_for_each_entry(part_md, &md->part, part)
247 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
248 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
249 set_disk_ro(part_md->disk, 1);
253 mmc_blk_put(md);
254 return count;
257 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
258 char *buf)
260 int ret;
261 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
263 ret = snprintf(buf, PAGE_SIZE, "%d",
264 get_disk_ro(dev_to_disk(dev)) ^
265 md->read_only);
266 mmc_blk_put(md);
267 return ret;
270 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
271 const char *buf, size_t count)
273 int ret;
274 char *end;
275 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 unsigned long set = simple_strtoul(buf, &end, 0);
277 if (end == buf) {
278 ret = -EINVAL;
279 goto out;
282 set_disk_ro(dev_to_disk(dev), set || md->read_only);
283 ret = count;
284 out:
285 mmc_blk_put(md);
286 return ret;
289 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
291 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
292 int ret = -ENXIO;
294 mutex_lock(&block_mutex);
295 if (md) {
296 if (md->usage == 2)
297 check_disk_change(bdev);
298 ret = 0;
300 if ((mode & FMODE_WRITE) && md->read_only) {
301 mmc_blk_put(md);
302 ret = -EROFS;
305 mutex_unlock(&block_mutex);
307 return ret;
310 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
312 struct mmc_blk_data *md = disk->private_data;
314 mutex_lock(&block_mutex);
315 mmc_blk_put(md);
316 mutex_unlock(&block_mutex);
319 static int
320 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
322 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
323 geo->heads = 4;
324 geo->sectors = 16;
325 return 0;
328 struct mmc_blk_ioc_data {
329 struct mmc_ioc_cmd ic;
330 unsigned char *buf;
331 u64 buf_bytes;
334 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
335 struct mmc_ioc_cmd __user *user)
337 struct mmc_blk_ioc_data *idata;
338 int err;
340 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
341 if (!idata) {
342 err = -ENOMEM;
343 goto out;
346 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
347 err = -EFAULT;
348 goto idata_err;
351 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
352 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
353 err = -EOVERFLOW;
354 goto idata_err;
357 if (!idata->buf_bytes)
358 return idata;
360 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
361 if (!idata->buf) {
362 err = -ENOMEM;
363 goto idata_err;
366 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
367 idata->ic.data_ptr, idata->buf_bytes)) {
368 err = -EFAULT;
369 goto copy_err;
372 return idata;
374 copy_err:
375 kfree(idata->buf);
376 idata_err:
377 kfree(idata);
378 out:
379 return ERR_PTR(err);
382 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
383 u32 retries_max)
385 int err;
386 u32 retry_count = 0;
388 if (!status || !retries_max)
389 return -EINVAL;
391 do {
392 err = get_card_status(card, status, 5);
393 if (err)
394 break;
396 if (!R1_STATUS(*status) &&
397 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
398 break; /* RPMB programming operation complete */
401 * Rechedule to give the MMC device a chance to continue
402 * processing the previous command without being polled too
403 * frequently.
405 usleep_range(1000, 5000);
406 } while (++retry_count < retries_max);
408 if (retry_count == retries_max)
409 err = -EPERM;
411 return err;
414 static int ioctl_do_sanitize(struct mmc_card *card)
416 int err;
418 if (!(mmc_can_sanitize(card) &&
419 (card->host->caps2 & MMC_CAP2_SANITIZE))) {
420 pr_warn("%s: %s - SANITIZE is not supported\n",
421 mmc_hostname(card->host), __func__);
422 err = -EOPNOTSUPP;
423 goto out;
426 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
427 mmc_hostname(card->host), __func__);
429 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
430 EXT_CSD_SANITIZE_START, 1,
431 MMC_SANITIZE_REQ_TIMEOUT);
433 if (err)
434 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
435 mmc_hostname(card->host), __func__, err);
437 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
438 __func__);
439 out:
440 return err;
443 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
444 struct mmc_ioc_cmd __user *ic_ptr)
446 struct mmc_blk_ioc_data *idata;
447 struct mmc_blk_data *md;
448 struct mmc_card *card;
449 struct mmc_command cmd = {0};
450 struct mmc_data data = {0};
451 struct mmc_request mrq = {NULL};
452 struct scatterlist sg;
453 int err;
454 int is_rpmb = false;
455 u32 status = 0;
458 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
459 * whole block device, not on a partition. This prevents overspray
460 * between sibling partitions.
462 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
463 return -EPERM;
465 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
466 if (IS_ERR(idata))
467 return PTR_ERR(idata);
469 md = mmc_blk_get(bdev->bd_disk);
470 if (!md) {
471 err = -EINVAL;
472 goto cmd_err;
475 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
476 is_rpmb = true;
478 card = md->queue.card;
479 if (IS_ERR(card)) {
480 err = PTR_ERR(card);
481 goto cmd_done;
484 cmd.opcode = idata->ic.opcode;
485 cmd.arg = idata->ic.arg;
486 cmd.flags = idata->ic.flags;
488 if (idata->buf_bytes) {
489 data.sg = &sg;
490 data.sg_len = 1;
491 data.blksz = idata->ic.blksz;
492 data.blocks = idata->ic.blocks;
494 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
496 if (idata->ic.write_flag)
497 data.flags = MMC_DATA_WRITE;
498 else
499 data.flags = MMC_DATA_READ;
501 /* data.flags must already be set before doing this. */
502 mmc_set_data_timeout(&data, card);
504 /* Allow overriding the timeout_ns for empirical tuning. */
505 if (idata->ic.data_timeout_ns)
506 data.timeout_ns = idata->ic.data_timeout_ns;
508 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
510 * Pretend this is a data transfer and rely on the
511 * host driver to compute timeout. When all host
512 * drivers support cmd.cmd_timeout for R1B, this
513 * can be changed to:
515 * mrq.data = NULL;
516 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
518 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
521 mrq.data = &data;
524 mrq.cmd = &cmd;
526 mmc_get_card(card);
528 err = mmc_blk_part_switch(card, md);
529 if (err)
530 goto cmd_rel_host;
532 if (idata->ic.is_acmd) {
533 err = mmc_app_cmd(card->host, card);
534 if (err)
535 goto cmd_rel_host;
538 if (is_rpmb) {
539 err = mmc_set_blockcount(card, data.blocks,
540 idata->ic.write_flag & (1 << 31));
541 if (err)
542 goto cmd_rel_host;
545 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
546 (cmd.opcode == MMC_SWITCH)) {
547 err = ioctl_do_sanitize(card);
549 if (err)
550 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
551 __func__, err);
553 goto cmd_rel_host;
556 mmc_wait_for_req(card->host, &mrq);
558 if (cmd.error) {
559 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
560 __func__, cmd.error);
561 err = cmd.error;
562 goto cmd_rel_host;
564 if (data.error) {
565 dev_err(mmc_dev(card->host), "%s: data error %d\n",
566 __func__, data.error);
567 err = data.error;
568 goto cmd_rel_host;
572 * According to the SD specs, some commands require a delay after
573 * issuing the command.
575 if (idata->ic.postsleep_min_us)
576 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
578 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
579 err = -EFAULT;
580 goto cmd_rel_host;
583 if (!idata->ic.write_flag) {
584 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
585 idata->buf, idata->buf_bytes)) {
586 err = -EFAULT;
587 goto cmd_rel_host;
591 if (is_rpmb) {
593 * Ensure RPMB command has completed by polling CMD13
594 * "Send Status".
596 err = ioctl_rpmb_card_status_poll(card, &status, 5);
597 if (err)
598 dev_err(mmc_dev(card->host),
599 "%s: Card Status=0x%08X, error %d\n",
600 __func__, status, err);
603 cmd_rel_host:
604 mmc_put_card(card);
606 cmd_done:
607 mmc_blk_put(md);
608 cmd_err:
609 kfree(idata->buf);
610 kfree(idata);
611 return err;
614 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
615 unsigned int cmd, unsigned long arg)
617 int ret = -EINVAL;
618 if (cmd == MMC_IOC_CMD)
619 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
620 return ret;
623 #ifdef CONFIG_COMPAT
624 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
625 unsigned int cmd, unsigned long arg)
627 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
629 #endif
631 static const struct block_device_operations mmc_bdops = {
632 .open = mmc_blk_open,
633 .release = mmc_blk_release,
634 .getgeo = mmc_blk_getgeo,
635 .owner = THIS_MODULE,
636 .ioctl = mmc_blk_ioctl,
637 #ifdef CONFIG_COMPAT
638 .compat_ioctl = mmc_blk_compat_ioctl,
639 #endif
642 static inline int mmc_blk_part_switch(struct mmc_card *card,
643 struct mmc_blk_data *md)
645 int ret;
646 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
648 if (main_md->part_curr == md->part_type)
649 return 0;
651 if (mmc_card_mmc(card)) {
652 u8 part_config = card->ext_csd.part_config;
654 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
655 part_config |= md->part_type;
657 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
658 EXT_CSD_PART_CONFIG, part_config,
659 card->ext_csd.part_time);
660 if (ret)
661 return ret;
663 card->ext_csd.part_config = part_config;
666 main_md->part_curr = md->part_type;
667 return 0;
670 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
672 int err;
673 u32 result;
674 __be32 *blocks;
676 struct mmc_request mrq = {NULL};
677 struct mmc_command cmd = {0};
678 struct mmc_data data = {0};
680 struct scatterlist sg;
682 cmd.opcode = MMC_APP_CMD;
683 cmd.arg = card->rca << 16;
684 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
686 err = mmc_wait_for_cmd(card->host, &cmd, 0);
687 if (err)
688 return (u32)-1;
689 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
690 return (u32)-1;
692 memset(&cmd, 0, sizeof(struct mmc_command));
694 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
695 cmd.arg = 0;
696 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
698 data.blksz = 4;
699 data.blocks = 1;
700 data.flags = MMC_DATA_READ;
701 data.sg = &sg;
702 data.sg_len = 1;
703 mmc_set_data_timeout(&data, card);
705 mrq.cmd = &cmd;
706 mrq.data = &data;
708 blocks = kmalloc(4, GFP_KERNEL);
709 if (!blocks)
710 return (u32)-1;
712 sg_init_one(&sg, blocks, 4);
714 mmc_wait_for_req(card->host, &mrq);
716 result = ntohl(*blocks);
717 kfree(blocks);
719 if (cmd.error || data.error)
720 result = (u32)-1;
722 return result;
725 static int send_stop(struct mmc_card *card, u32 *status)
727 struct mmc_command cmd = {0};
728 int err;
730 cmd.opcode = MMC_STOP_TRANSMISSION;
731 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
732 err = mmc_wait_for_cmd(card->host, &cmd, 5);
733 if (err == 0)
734 *status = cmd.resp[0];
735 return err;
738 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
740 struct mmc_command cmd = {0};
741 int err;
743 cmd.opcode = MMC_SEND_STATUS;
744 if (!mmc_host_is_spi(card->host))
745 cmd.arg = card->rca << 16;
746 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
747 err = mmc_wait_for_cmd(card->host, &cmd, retries);
748 if (err == 0)
749 *status = cmd.resp[0];
750 return err;
753 #define ERR_NOMEDIUM 3
754 #define ERR_RETRY 2
755 #define ERR_ABORT 1
756 #define ERR_CONTINUE 0
758 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
759 bool status_valid, u32 status)
761 switch (error) {
762 case -EILSEQ:
763 /* response crc error, retry the r/w cmd */
764 pr_err("%s: %s sending %s command, card status %#x\n",
765 req->rq_disk->disk_name, "response CRC error",
766 name, status);
767 return ERR_RETRY;
769 case -ETIMEDOUT:
770 pr_err("%s: %s sending %s command, card status %#x\n",
771 req->rq_disk->disk_name, "timed out", name, status);
773 /* If the status cmd initially failed, retry the r/w cmd */
774 if (!status_valid)
775 return ERR_RETRY;
778 * If it was a r/w cmd crc error, or illegal command
779 * (eg, issued in wrong state) then retry - we should
780 * have corrected the state problem above.
782 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
783 return ERR_RETRY;
785 /* Otherwise abort the command */
786 return ERR_ABORT;
788 default:
789 /* We don't understand the error code the driver gave us */
790 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
791 req->rq_disk->disk_name, error, status);
792 return ERR_ABORT;
797 * Initial r/w and stop cmd error recovery.
798 * We don't know whether the card received the r/w cmd or not, so try to
799 * restore things back to a sane state. Essentially, we do this as follows:
800 * - Obtain card status. If the first attempt to obtain card status fails,
801 * the status word will reflect the failed status cmd, not the failed
802 * r/w cmd. If we fail to obtain card status, it suggests we can no
803 * longer communicate with the card.
804 * - Check the card state. If the card received the cmd but there was a
805 * transient problem with the response, it might still be in a data transfer
806 * mode. Try to send it a stop command. If this fails, we can't recover.
807 * - If the r/w cmd failed due to a response CRC error, it was probably
808 * transient, so retry the cmd.
809 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
810 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
811 * illegal cmd, retry.
812 * Otherwise we don't understand what happened, so abort.
814 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
815 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
817 bool prev_cmd_status_valid = true;
818 u32 status, stop_status = 0;
819 int err, retry;
821 if (mmc_card_removed(card))
822 return ERR_NOMEDIUM;
825 * Try to get card status which indicates both the card state
826 * and why there was no response. If the first attempt fails,
827 * we can't be sure the returned status is for the r/w command.
829 for (retry = 2; retry >= 0; retry--) {
830 err = get_card_status(card, &status, 0);
831 if (!err)
832 break;
834 prev_cmd_status_valid = false;
835 pr_err("%s: error %d sending status command, %sing\n",
836 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
839 /* We couldn't get a response from the card. Give up. */
840 if (err) {
841 /* Check if the card is removed */
842 if (mmc_detect_card_removed(card->host))
843 return ERR_NOMEDIUM;
844 return ERR_ABORT;
847 /* Flag ECC errors */
848 if ((status & R1_CARD_ECC_FAILED) ||
849 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
850 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
851 *ecc_err = 1;
853 /* Flag General errors */
854 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
855 if ((status & R1_ERROR) ||
856 (brq->stop.resp[0] & R1_ERROR)) {
857 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
858 req->rq_disk->disk_name, __func__,
859 brq->stop.resp[0], status);
860 *gen_err = 1;
864 * Check the current card state. If it is in some data transfer
865 * mode, tell it to stop (and hopefully transition back to TRAN.)
867 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
868 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
869 err = send_stop(card, &stop_status);
870 if (err)
871 pr_err("%s: error %d sending stop command\n",
872 req->rq_disk->disk_name, err);
875 * If the stop cmd also timed out, the card is probably
876 * not present, so abort. Other errors are bad news too.
878 if (err)
879 return ERR_ABORT;
880 if (stop_status & R1_CARD_ECC_FAILED)
881 *ecc_err = 1;
882 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
883 if (stop_status & R1_ERROR) {
884 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
885 req->rq_disk->disk_name, __func__,
886 stop_status);
887 *gen_err = 1;
891 /* Check for set block count errors */
892 if (brq->sbc.error)
893 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
894 prev_cmd_status_valid, status);
896 /* Check for r/w command errors */
897 if (brq->cmd.error)
898 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
899 prev_cmd_status_valid, status);
901 /* Data errors */
902 if (!brq->stop.error)
903 return ERR_CONTINUE;
905 /* Now for stop errors. These aren't fatal to the transfer. */
906 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
907 req->rq_disk->disk_name, brq->stop.error,
908 brq->cmd.resp[0], status);
911 * Subsitute in our own stop status as this will give the error
912 * state which happened during the execution of the r/w command.
914 if (stop_status) {
915 brq->stop.resp[0] = stop_status;
916 brq->stop.error = 0;
918 return ERR_CONTINUE;
921 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
922 int type)
924 int err;
926 if (md->reset_done & type)
927 return -EEXIST;
929 md->reset_done |= type;
930 err = mmc_hw_reset(host);
931 /* Ensure we switch back to the correct partition */
932 if (err != -EOPNOTSUPP) {
933 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
934 int part_err;
936 main_md->part_curr = main_md->part_type;
937 part_err = mmc_blk_part_switch(host->card, md);
938 if (part_err) {
940 * We have failed to get back into the correct
941 * partition, so we need to abort the whole request.
943 return -ENODEV;
946 return err;
949 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
951 md->reset_done &= ~type;
954 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
956 struct mmc_blk_data *md = mq->data;
957 struct mmc_card *card = md->queue.card;
958 unsigned int from, nr, arg;
959 int err = 0, type = MMC_BLK_DISCARD;
961 if (!mmc_can_erase(card)) {
962 err = -EOPNOTSUPP;
963 goto out;
966 from = blk_rq_pos(req);
967 nr = blk_rq_sectors(req);
969 if (mmc_can_discard(card))
970 arg = MMC_DISCARD_ARG;
971 else if (mmc_can_trim(card))
972 arg = MMC_TRIM_ARG;
973 else
974 arg = MMC_ERASE_ARG;
975 retry:
976 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
977 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
978 INAND_CMD38_ARG_EXT_CSD,
979 arg == MMC_TRIM_ARG ?
980 INAND_CMD38_ARG_TRIM :
981 INAND_CMD38_ARG_ERASE,
983 if (err)
984 goto out;
986 err = mmc_erase(card, from, nr, arg);
987 out:
988 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
989 goto retry;
990 if (!err)
991 mmc_blk_reset_success(md, type);
992 blk_end_request(req, err, blk_rq_bytes(req));
994 return err ? 0 : 1;
997 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
998 struct request *req)
1000 struct mmc_blk_data *md = mq->data;
1001 struct mmc_card *card = md->queue.card;
1002 unsigned int from, nr, arg;
1003 int err = 0, type = MMC_BLK_SECDISCARD;
1005 if (!(mmc_can_secure_erase_trim(card))) {
1006 err = -EOPNOTSUPP;
1007 goto out;
1010 from = blk_rq_pos(req);
1011 nr = blk_rq_sectors(req);
1013 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1014 arg = MMC_SECURE_TRIM1_ARG;
1015 else
1016 arg = MMC_SECURE_ERASE_ARG;
1018 retry:
1019 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 INAND_CMD38_ARG_EXT_CSD,
1022 arg == MMC_SECURE_TRIM1_ARG ?
1023 INAND_CMD38_ARG_SECTRIM1 :
1024 INAND_CMD38_ARG_SECERASE,
1026 if (err)
1027 goto out_retry;
1030 err = mmc_erase(card, from, nr, arg);
1031 if (err == -EIO)
1032 goto out_retry;
1033 if (err)
1034 goto out;
1036 if (arg == MMC_SECURE_TRIM1_ARG) {
1037 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1038 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1039 INAND_CMD38_ARG_EXT_CSD,
1040 INAND_CMD38_ARG_SECTRIM2,
1042 if (err)
1043 goto out_retry;
1046 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1047 if (err == -EIO)
1048 goto out_retry;
1049 if (err)
1050 goto out;
1053 out_retry:
1054 if (err && !mmc_blk_reset(md, card->host, type))
1055 goto retry;
1056 if (!err)
1057 mmc_blk_reset_success(md, type);
1058 out:
1059 blk_end_request(req, err, blk_rq_bytes(req));
1061 return err ? 0 : 1;
1064 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1066 struct mmc_blk_data *md = mq->data;
1067 struct mmc_card *card = md->queue.card;
1068 int ret = 0;
1070 ret = mmc_flush_cache(card);
1071 if (ret)
1072 ret = -EIO;
1074 blk_end_request_all(req, ret);
1076 return ret ? 0 : 1;
1080 * Reformat current write as a reliable write, supporting
1081 * both legacy and the enhanced reliable write MMC cards.
1082 * In each transfer we'll handle only as much as a single
1083 * reliable write can handle, thus finish the request in
1084 * partial completions.
1086 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1087 struct mmc_card *card,
1088 struct request *req)
1090 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1091 /* Legacy mode imposes restrictions on transfers. */
1092 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1093 brq->data.blocks = 1;
1095 if (brq->data.blocks > card->ext_csd.rel_sectors)
1096 brq->data.blocks = card->ext_csd.rel_sectors;
1097 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1098 brq->data.blocks = 1;
1102 #define CMD_ERRORS \
1103 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1104 R1_ADDRESS_ERROR | /* Misaligned address */ \
1105 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1106 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1107 R1_CC_ERROR | /* Card controller error */ \
1108 R1_ERROR) /* General/unknown error */
1110 static int mmc_blk_err_check(struct mmc_card *card,
1111 struct mmc_async_req *areq)
1113 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1114 mmc_active);
1115 struct mmc_blk_request *brq = &mq_mrq->brq;
1116 struct request *req = mq_mrq->req;
1117 int ecc_err = 0, gen_err = 0;
1120 * sbc.error indicates a problem with the set block count
1121 * command. No data will have been transferred.
1123 * cmd.error indicates a problem with the r/w command. No
1124 * data will have been transferred.
1126 * stop.error indicates a problem with the stop command. Data
1127 * may have been transferred, or may still be transferring.
1129 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1130 brq->data.error) {
1131 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1132 case ERR_RETRY:
1133 return MMC_BLK_RETRY;
1134 case ERR_ABORT:
1135 return MMC_BLK_ABORT;
1136 case ERR_NOMEDIUM:
1137 return MMC_BLK_NOMEDIUM;
1138 case ERR_CONTINUE:
1139 break;
1144 * Check for errors relating to the execution of the
1145 * initial command - such as address errors. No data
1146 * has been transferred.
1148 if (brq->cmd.resp[0] & CMD_ERRORS) {
1149 pr_err("%s: r/w command failed, status = %#x\n",
1150 req->rq_disk->disk_name, brq->cmd.resp[0]);
1151 return MMC_BLK_ABORT;
1155 * Everything else is either success, or a data error of some
1156 * kind. If it was a write, we may have transitioned to
1157 * program mode, which we have to wait for it to complete.
1159 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1160 u32 status;
1161 unsigned long timeout;
1163 /* Check stop command response */
1164 if (brq->stop.resp[0] & R1_ERROR) {
1165 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1166 req->rq_disk->disk_name, __func__,
1167 brq->stop.resp[0]);
1168 gen_err = 1;
1171 timeout = jiffies + msecs_to_jiffies(MMC_BLK_TIMEOUT_MS);
1172 do {
1173 int err = get_card_status(card, &status, 5);
1174 if (err) {
1175 pr_err("%s: error %d requesting status\n",
1176 req->rq_disk->disk_name, err);
1177 return MMC_BLK_CMD_ERR;
1180 if (status & R1_ERROR) {
1181 pr_err("%s: %s: general error sending status command, card status %#x\n",
1182 req->rq_disk->disk_name, __func__,
1183 status);
1184 gen_err = 1;
1187 /* Timeout if the device never becomes ready for data
1188 * and never leaves the program state.
1190 if (time_after(jiffies, timeout)) {
1191 pr_err("%s: Card stuck in programming state!"\
1192 " %s %s\n", mmc_hostname(card->host),
1193 req->rq_disk->disk_name, __func__);
1195 return MMC_BLK_CMD_ERR;
1198 * Some cards mishandle the status bits,
1199 * so make sure to check both the busy
1200 * indication and the card state.
1202 } while (!(status & R1_READY_FOR_DATA) ||
1203 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1206 /* if general error occurs, retry the write operation. */
1207 if (gen_err) {
1208 pr_warn("%s: retrying write for general error\n",
1209 req->rq_disk->disk_name);
1210 return MMC_BLK_RETRY;
1213 if (brq->data.error) {
1214 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1215 req->rq_disk->disk_name, brq->data.error,
1216 (unsigned)blk_rq_pos(req),
1217 (unsigned)blk_rq_sectors(req),
1218 brq->cmd.resp[0], brq->stop.resp[0]);
1220 if (rq_data_dir(req) == READ) {
1221 if (ecc_err)
1222 return MMC_BLK_ECC_ERR;
1223 return MMC_BLK_DATA_ERR;
1224 } else {
1225 return MMC_BLK_CMD_ERR;
1229 if (!brq->data.bytes_xfered)
1230 return MMC_BLK_RETRY;
1232 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1233 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1234 return MMC_BLK_PARTIAL;
1235 else
1236 return MMC_BLK_SUCCESS;
1239 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1240 return MMC_BLK_PARTIAL;
1242 return MMC_BLK_SUCCESS;
1245 static int mmc_blk_packed_err_check(struct mmc_card *card,
1246 struct mmc_async_req *areq)
1248 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1249 mmc_active);
1250 struct request *req = mq_rq->req;
1251 struct mmc_packed *packed = mq_rq->packed;
1252 int err, check, status;
1253 u8 *ext_csd;
1255 BUG_ON(!packed);
1257 packed->retries--;
1258 check = mmc_blk_err_check(card, areq);
1259 err = get_card_status(card, &status, 0);
1260 if (err) {
1261 pr_err("%s: error %d sending status command\n",
1262 req->rq_disk->disk_name, err);
1263 return MMC_BLK_ABORT;
1266 if (status & R1_EXCEPTION_EVENT) {
1267 ext_csd = kzalloc(512, GFP_KERNEL);
1268 if (!ext_csd) {
1269 pr_err("%s: unable to allocate buffer for ext_csd\n",
1270 req->rq_disk->disk_name);
1271 return -ENOMEM;
1274 err = mmc_send_ext_csd(card, ext_csd);
1275 if (err) {
1276 pr_err("%s: error %d sending ext_csd\n",
1277 req->rq_disk->disk_name, err);
1278 check = MMC_BLK_ABORT;
1279 goto free;
1282 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1283 EXT_CSD_PACKED_FAILURE) &&
1284 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1285 EXT_CSD_PACKED_GENERIC_ERROR)) {
1286 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1287 EXT_CSD_PACKED_INDEXED_ERROR) {
1288 packed->idx_failure =
1289 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1290 check = MMC_BLK_PARTIAL;
1292 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1293 "failure index: %d\n",
1294 req->rq_disk->disk_name, packed->nr_entries,
1295 packed->blocks, packed->idx_failure);
1297 free:
1298 kfree(ext_csd);
1301 return check;
1304 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1305 struct mmc_card *card,
1306 int disable_multi,
1307 struct mmc_queue *mq)
1309 u32 readcmd, writecmd;
1310 struct mmc_blk_request *brq = &mqrq->brq;
1311 struct request *req = mqrq->req;
1312 struct mmc_blk_data *md = mq->data;
1313 bool do_data_tag;
1316 * Reliable writes are used to implement Forced Unit Access and
1317 * REQ_META accesses, and are supported only on MMCs.
1319 * XXX: this really needs a good explanation of why REQ_META
1320 * is treated special.
1322 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1323 (req->cmd_flags & REQ_META)) &&
1324 (rq_data_dir(req) == WRITE) &&
1325 (md->flags & MMC_BLK_REL_WR);
1327 memset(brq, 0, sizeof(struct mmc_blk_request));
1328 brq->mrq.cmd = &brq->cmd;
1329 brq->mrq.data = &brq->data;
1331 brq->cmd.arg = blk_rq_pos(req);
1332 if (!mmc_card_blockaddr(card))
1333 brq->cmd.arg <<= 9;
1334 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1335 brq->data.blksz = 512;
1336 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1337 brq->stop.arg = 0;
1338 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1339 brq->data.blocks = blk_rq_sectors(req);
1342 * The block layer doesn't support all sector count
1343 * restrictions, so we need to be prepared for too big
1344 * requests.
1346 if (brq->data.blocks > card->host->max_blk_count)
1347 brq->data.blocks = card->host->max_blk_count;
1349 if (brq->data.blocks > 1) {
1351 * After a read error, we redo the request one sector
1352 * at a time in order to accurately determine which
1353 * sectors can be read successfully.
1355 if (disable_multi)
1356 brq->data.blocks = 1;
1358 /* Some controllers can't do multiblock reads due to hw bugs */
1359 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1360 rq_data_dir(req) == READ)
1361 brq->data.blocks = 1;
1364 if (brq->data.blocks > 1 || do_rel_wr) {
1365 /* SPI multiblock writes terminate using a special
1366 * token, not a STOP_TRANSMISSION request.
1368 if (!mmc_host_is_spi(card->host) ||
1369 rq_data_dir(req) == READ)
1370 brq->mrq.stop = &brq->stop;
1371 readcmd = MMC_READ_MULTIPLE_BLOCK;
1372 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1373 } else {
1374 brq->mrq.stop = NULL;
1375 readcmd = MMC_READ_SINGLE_BLOCK;
1376 writecmd = MMC_WRITE_BLOCK;
1378 if (rq_data_dir(req) == READ) {
1379 brq->cmd.opcode = readcmd;
1380 brq->data.flags |= MMC_DATA_READ;
1381 } else {
1382 brq->cmd.opcode = writecmd;
1383 brq->data.flags |= MMC_DATA_WRITE;
1386 if (do_rel_wr)
1387 mmc_apply_rel_rw(brq, card, req);
1390 * Data tag is used only during writing meta data to speed
1391 * up write and any subsequent read of this meta data
1393 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1394 (req->cmd_flags & REQ_META) &&
1395 (rq_data_dir(req) == WRITE) &&
1396 ((brq->data.blocks * brq->data.blksz) >=
1397 card->ext_csd.data_tag_unit_size);
1400 * Pre-defined multi-block transfers are preferable to
1401 * open ended-ones (and necessary for reliable writes).
1402 * However, it is not sufficient to just send CMD23,
1403 * and avoid the final CMD12, as on an error condition
1404 * CMD12 (stop) needs to be sent anyway. This, coupled
1405 * with Auto-CMD23 enhancements provided by some
1406 * hosts, means that the complexity of dealing
1407 * with this is best left to the host. If CMD23 is
1408 * supported by card and host, we'll fill sbc in and let
1409 * the host deal with handling it correctly. This means
1410 * that for hosts that don't expose MMC_CAP_CMD23, no
1411 * change of behavior will be observed.
1413 * N.B: Some MMC cards experience perf degradation.
1414 * We'll avoid using CMD23-bounded multiblock writes for
1415 * these, while retaining features like reliable writes.
1417 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1418 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1419 do_data_tag)) {
1420 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1421 brq->sbc.arg = brq->data.blocks |
1422 (do_rel_wr ? (1 << 31) : 0) |
1423 (do_data_tag ? (1 << 29) : 0);
1424 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1425 brq->mrq.sbc = &brq->sbc;
1428 mmc_set_data_timeout(&brq->data, card);
1430 brq->data.sg = mqrq->sg;
1431 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1434 * Adjust the sg list so it is the same size as the
1435 * request.
1437 if (brq->data.blocks != blk_rq_sectors(req)) {
1438 int i, data_size = brq->data.blocks << 9;
1439 struct scatterlist *sg;
1441 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1442 data_size -= sg->length;
1443 if (data_size <= 0) {
1444 sg->length += data_size;
1445 i++;
1446 break;
1449 brq->data.sg_len = i;
1452 mqrq->mmc_active.mrq = &brq->mrq;
1453 mqrq->mmc_active.err_check = mmc_blk_err_check;
1455 mmc_queue_bounce_pre(mqrq);
1458 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1459 struct mmc_card *card)
1461 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1462 unsigned int max_seg_sz = queue_max_segment_size(q);
1463 unsigned int len, nr_segs = 0;
1465 do {
1466 len = min(hdr_sz, max_seg_sz);
1467 hdr_sz -= len;
1468 nr_segs++;
1469 } while (hdr_sz);
1471 return nr_segs;
1474 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1476 struct request_queue *q = mq->queue;
1477 struct mmc_card *card = mq->card;
1478 struct request *cur = req, *next = NULL;
1479 struct mmc_blk_data *md = mq->data;
1480 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1481 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1482 unsigned int req_sectors = 0, phys_segments = 0;
1483 unsigned int max_blk_count, max_phys_segs;
1484 bool put_back = true;
1485 u8 max_packed_rw = 0;
1486 u8 reqs = 0;
1488 if (!(md->flags & MMC_BLK_PACKED_CMD))
1489 goto no_packed;
1491 if ((rq_data_dir(cur) == WRITE) &&
1492 mmc_host_packed_wr(card->host))
1493 max_packed_rw = card->ext_csd.max_packed_writes;
1495 if (max_packed_rw == 0)
1496 goto no_packed;
1498 if (mmc_req_rel_wr(cur) &&
1499 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1500 goto no_packed;
1502 if (mmc_large_sector(card) &&
1503 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1504 goto no_packed;
1506 mmc_blk_clear_packed(mqrq);
1508 max_blk_count = min(card->host->max_blk_count,
1509 card->host->max_req_size >> 9);
1510 if (unlikely(max_blk_count > 0xffff))
1511 max_blk_count = 0xffff;
1513 max_phys_segs = queue_max_segments(q);
1514 req_sectors += blk_rq_sectors(cur);
1515 phys_segments += cur->nr_phys_segments;
1517 if (rq_data_dir(cur) == WRITE) {
1518 req_sectors += mmc_large_sector(card) ? 8 : 1;
1519 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1522 do {
1523 if (reqs >= max_packed_rw - 1) {
1524 put_back = false;
1525 break;
1528 spin_lock_irq(q->queue_lock);
1529 next = blk_fetch_request(q);
1530 spin_unlock_irq(q->queue_lock);
1531 if (!next) {
1532 put_back = false;
1533 break;
1536 if (mmc_large_sector(card) &&
1537 !IS_ALIGNED(blk_rq_sectors(next), 8))
1538 break;
1540 if (next->cmd_flags & REQ_DISCARD ||
1541 next->cmd_flags & REQ_FLUSH)
1542 break;
1544 if (rq_data_dir(cur) != rq_data_dir(next))
1545 break;
1547 if (mmc_req_rel_wr(next) &&
1548 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1549 break;
1551 req_sectors += blk_rq_sectors(next);
1552 if (req_sectors > max_blk_count)
1553 break;
1555 phys_segments += next->nr_phys_segments;
1556 if (phys_segments > max_phys_segs)
1557 break;
1559 list_add_tail(&next->queuelist, &mqrq->packed->list);
1560 cur = next;
1561 reqs++;
1562 } while (1);
1564 if (put_back) {
1565 spin_lock_irq(q->queue_lock);
1566 blk_requeue_request(q, next);
1567 spin_unlock_irq(q->queue_lock);
1570 if (reqs > 0) {
1571 list_add(&req->queuelist, &mqrq->packed->list);
1572 mqrq->packed->nr_entries = ++reqs;
1573 mqrq->packed->retries = reqs;
1574 return reqs;
1577 no_packed:
1578 mqrq->cmd_type = MMC_PACKED_NONE;
1579 return 0;
1582 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1583 struct mmc_card *card,
1584 struct mmc_queue *mq)
1586 struct mmc_blk_request *brq = &mqrq->brq;
1587 struct request *req = mqrq->req;
1588 struct request *prq;
1589 struct mmc_blk_data *md = mq->data;
1590 struct mmc_packed *packed = mqrq->packed;
1591 bool do_rel_wr, do_data_tag;
1592 u32 *packed_cmd_hdr;
1593 u8 hdr_blocks;
1594 u8 i = 1;
1596 BUG_ON(!packed);
1598 mqrq->cmd_type = MMC_PACKED_WRITE;
1599 packed->blocks = 0;
1600 packed->idx_failure = MMC_PACKED_NR_IDX;
1602 packed_cmd_hdr = packed->cmd_hdr;
1603 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1604 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1605 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1606 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1609 * Argument for each entry of packed group
1611 list_for_each_entry(prq, &packed->list, queuelist) {
1612 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1613 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1614 (prq->cmd_flags & REQ_META) &&
1615 (rq_data_dir(prq) == WRITE) &&
1616 ((brq->data.blocks * brq->data.blksz) >=
1617 card->ext_csd.data_tag_unit_size);
1618 /* Argument of CMD23 */
1619 packed_cmd_hdr[(i * 2)] =
1620 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1621 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1622 blk_rq_sectors(prq);
1623 /* Argument of CMD18 or CMD25 */
1624 packed_cmd_hdr[((i * 2)) + 1] =
1625 mmc_card_blockaddr(card) ?
1626 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1627 packed->blocks += blk_rq_sectors(prq);
1628 i++;
1631 memset(brq, 0, sizeof(struct mmc_blk_request));
1632 brq->mrq.cmd = &brq->cmd;
1633 brq->mrq.data = &brq->data;
1634 brq->mrq.sbc = &brq->sbc;
1635 brq->mrq.stop = &brq->stop;
1637 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1638 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1639 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1641 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1642 brq->cmd.arg = blk_rq_pos(req);
1643 if (!mmc_card_blockaddr(card))
1644 brq->cmd.arg <<= 9;
1645 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1647 brq->data.blksz = 512;
1648 brq->data.blocks = packed->blocks + hdr_blocks;
1649 brq->data.flags |= MMC_DATA_WRITE;
1651 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1652 brq->stop.arg = 0;
1653 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1655 mmc_set_data_timeout(&brq->data, card);
1657 brq->data.sg = mqrq->sg;
1658 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1660 mqrq->mmc_active.mrq = &brq->mrq;
1661 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1663 mmc_queue_bounce_pre(mqrq);
1666 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1667 struct mmc_blk_request *brq, struct request *req,
1668 int ret)
1670 struct mmc_queue_req *mq_rq;
1671 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1674 * If this is an SD card and we're writing, we can first
1675 * mark the known good sectors as ok.
1677 * If the card is not SD, we can still ok written sectors
1678 * as reported by the controller (which might be less than
1679 * the real number of written sectors, but never more).
1681 if (mmc_card_sd(card)) {
1682 u32 blocks;
1684 blocks = mmc_sd_num_wr_blocks(card);
1685 if (blocks != (u32)-1) {
1686 ret = blk_end_request(req, 0, blocks << 9);
1688 } else {
1689 if (!mmc_packed_cmd(mq_rq->cmd_type))
1690 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1692 return ret;
1695 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1697 struct request *prq;
1698 struct mmc_packed *packed = mq_rq->packed;
1699 int idx = packed->idx_failure, i = 0;
1700 int ret = 0;
1702 BUG_ON(!packed);
1704 while (!list_empty(&packed->list)) {
1705 prq = list_entry_rq(packed->list.next);
1706 if (idx == i) {
1707 /* retry from error index */
1708 packed->nr_entries -= idx;
1709 mq_rq->req = prq;
1710 ret = 1;
1712 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1713 list_del_init(&prq->queuelist);
1714 mmc_blk_clear_packed(mq_rq);
1716 return ret;
1718 list_del_init(&prq->queuelist);
1719 blk_end_request(prq, 0, blk_rq_bytes(prq));
1720 i++;
1723 mmc_blk_clear_packed(mq_rq);
1724 return ret;
1727 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1729 struct request *prq;
1730 struct mmc_packed *packed = mq_rq->packed;
1732 BUG_ON(!packed);
1734 while (!list_empty(&packed->list)) {
1735 prq = list_entry_rq(packed->list.next);
1736 list_del_init(&prq->queuelist);
1737 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1740 mmc_blk_clear_packed(mq_rq);
1743 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1744 struct mmc_queue_req *mq_rq)
1746 struct request *prq;
1747 struct request_queue *q = mq->queue;
1748 struct mmc_packed *packed = mq_rq->packed;
1750 BUG_ON(!packed);
1752 while (!list_empty(&packed->list)) {
1753 prq = list_entry_rq(packed->list.prev);
1754 if (prq->queuelist.prev != &packed->list) {
1755 list_del_init(&prq->queuelist);
1756 spin_lock_irq(q->queue_lock);
1757 blk_requeue_request(mq->queue, prq);
1758 spin_unlock_irq(q->queue_lock);
1759 } else {
1760 list_del_init(&prq->queuelist);
1764 mmc_blk_clear_packed(mq_rq);
1767 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1769 struct mmc_blk_data *md = mq->data;
1770 struct mmc_card *card = md->queue.card;
1771 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1772 int ret = 1, disable_multi = 0, retry = 0, type;
1773 enum mmc_blk_status status;
1774 struct mmc_queue_req *mq_rq;
1775 struct request *req = rqc;
1776 struct mmc_async_req *areq;
1777 const u8 packed_nr = 2;
1778 u8 reqs = 0;
1780 if (!rqc && !mq->mqrq_prev->req)
1781 return 0;
1783 if (rqc)
1784 reqs = mmc_blk_prep_packed_list(mq, rqc);
1786 do {
1787 if (rqc) {
1789 * When 4KB native sector is enabled, only 8 blocks
1790 * multiple read or write is allowed
1792 if ((brq->data.blocks & 0x07) &&
1793 (card->ext_csd.data_sector_size == 4096)) {
1794 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1795 req->rq_disk->disk_name);
1796 mq_rq = mq->mqrq_cur;
1797 goto cmd_abort;
1800 if (reqs >= packed_nr)
1801 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1802 card, mq);
1803 else
1804 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1805 areq = &mq->mqrq_cur->mmc_active;
1806 } else
1807 areq = NULL;
1808 areq = mmc_start_req(card->host, areq, (int *) &status);
1809 if (!areq) {
1810 if (status == MMC_BLK_NEW_REQUEST)
1811 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1812 return 0;
1815 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1816 brq = &mq_rq->brq;
1817 req = mq_rq->req;
1818 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1819 mmc_queue_bounce_post(mq_rq);
1821 switch (status) {
1822 case MMC_BLK_SUCCESS:
1823 case MMC_BLK_PARTIAL:
1825 * A block was successfully transferred.
1827 mmc_blk_reset_success(md, type);
1829 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1830 ret = mmc_blk_end_packed_req(mq_rq);
1831 break;
1832 } else {
1833 ret = blk_end_request(req, 0,
1834 brq->data.bytes_xfered);
1838 * If the blk_end_request function returns non-zero even
1839 * though all data has been transferred and no errors
1840 * were returned by the host controller, it's a bug.
1842 if (status == MMC_BLK_SUCCESS && ret) {
1843 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1844 __func__, blk_rq_bytes(req),
1845 brq->data.bytes_xfered);
1846 rqc = NULL;
1847 goto cmd_abort;
1849 break;
1850 case MMC_BLK_CMD_ERR:
1851 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1852 if (!mmc_blk_reset(md, card->host, type))
1853 break;
1854 goto cmd_abort;
1855 case MMC_BLK_RETRY:
1856 if (retry++ < 5)
1857 break;
1858 /* Fall through */
1859 case MMC_BLK_ABORT:
1860 if (!mmc_blk_reset(md, card->host, type))
1861 break;
1862 goto cmd_abort;
1863 case MMC_BLK_DATA_ERR: {
1864 int err;
1866 err = mmc_blk_reset(md, card->host, type);
1867 if (!err)
1868 break;
1869 if (err == -ENODEV ||
1870 mmc_packed_cmd(mq_rq->cmd_type))
1871 goto cmd_abort;
1872 /* Fall through */
1874 case MMC_BLK_ECC_ERR:
1875 if (brq->data.blocks > 1) {
1876 /* Redo read one sector at a time */
1877 pr_warning("%s: retrying using single block read\n",
1878 req->rq_disk->disk_name);
1879 disable_multi = 1;
1880 break;
1883 * After an error, we redo I/O one sector at a
1884 * time, so we only reach here after trying to
1885 * read a single sector.
1887 ret = blk_end_request(req, -EIO,
1888 brq->data.blksz);
1889 if (!ret)
1890 goto start_new_req;
1891 break;
1892 case MMC_BLK_NOMEDIUM:
1893 goto cmd_abort;
1894 default:
1895 pr_err("%s: Unhandled return value (%d)",
1896 req->rq_disk->disk_name, status);
1897 goto cmd_abort;
1900 if (ret) {
1901 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1902 if (!mq_rq->packed->retries)
1903 goto cmd_abort;
1904 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1905 mmc_start_req(card->host,
1906 &mq_rq->mmc_active, NULL);
1907 } else {
1910 * In case of a incomplete request
1911 * prepare it again and resend.
1913 mmc_blk_rw_rq_prep(mq_rq, card,
1914 disable_multi, mq);
1915 mmc_start_req(card->host,
1916 &mq_rq->mmc_active, NULL);
1919 } while (ret);
1921 return 1;
1923 cmd_abort:
1924 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1925 mmc_blk_abort_packed_req(mq_rq);
1926 } else {
1927 if (mmc_card_removed(card))
1928 req->cmd_flags |= REQ_QUIET;
1929 while (ret)
1930 ret = blk_end_request(req, -EIO,
1931 blk_rq_cur_bytes(req));
1934 start_new_req:
1935 if (rqc) {
1936 if (mmc_card_removed(card)) {
1937 rqc->cmd_flags |= REQ_QUIET;
1938 blk_end_request_all(rqc, -EIO);
1939 } else {
1941 * If current request is packed, it needs to put back.
1943 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
1944 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
1946 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1947 mmc_start_req(card->host,
1948 &mq->mqrq_cur->mmc_active, NULL);
1952 return 0;
1955 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1957 int ret;
1958 struct mmc_blk_data *md = mq->data;
1959 struct mmc_card *card = md->queue.card;
1960 struct mmc_host *host = card->host;
1961 unsigned long flags;
1962 unsigned int cmd_flags = req ? req->cmd_flags : 0;
1964 if (req && !mq->mqrq_prev->req)
1965 /* claim host only for the first request */
1966 mmc_get_card(card);
1968 ret = mmc_blk_part_switch(card, md);
1969 if (ret) {
1970 if (req) {
1971 blk_end_request_all(req, -EIO);
1973 ret = 0;
1974 goto out;
1977 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
1978 if (cmd_flags & REQ_DISCARD) {
1979 /* complete ongoing async transfer before issuing discard */
1980 if (card->host->areq)
1981 mmc_blk_issue_rw_rq(mq, NULL);
1982 if (req->cmd_flags & REQ_SECURE &&
1983 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1984 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1985 else
1986 ret = mmc_blk_issue_discard_rq(mq, req);
1987 } else if (cmd_flags & REQ_FLUSH) {
1988 /* complete ongoing async transfer before issuing flush */
1989 if (card->host->areq)
1990 mmc_blk_issue_rw_rq(mq, NULL);
1991 ret = mmc_blk_issue_flush(mq, req);
1992 } else {
1993 if (!req && host->areq) {
1994 spin_lock_irqsave(&host->context_info.lock, flags);
1995 host->context_info.is_waiting_last_req = true;
1996 spin_unlock_irqrestore(&host->context_info.lock, flags);
1998 ret = mmc_blk_issue_rw_rq(mq, req);
2001 out:
2002 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2003 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2005 * Release host when there are no more requests
2006 * and after special request(discard, flush) is done.
2007 * In case sepecial request, there is no reentry to
2008 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2010 mmc_put_card(card);
2011 return ret;
2014 static inline int mmc_blk_readonly(struct mmc_card *card)
2016 return mmc_card_readonly(card) ||
2017 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2020 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2021 struct device *parent,
2022 sector_t size,
2023 bool default_ro,
2024 const char *subname,
2025 int area_type)
2027 struct mmc_blk_data *md;
2028 int devidx, ret;
2030 devidx = find_first_zero_bit(dev_use, max_devices);
2031 if (devidx >= max_devices)
2032 return ERR_PTR(-ENOSPC);
2033 __set_bit(devidx, dev_use);
2035 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2036 if (!md) {
2037 ret = -ENOMEM;
2038 goto out;
2042 * !subname implies we are creating main mmc_blk_data that will be
2043 * associated with mmc_card with mmc_set_drvdata. Due to device
2044 * partitions, devidx will not coincide with a per-physical card
2045 * index anymore so we keep track of a name index.
2047 if (!subname) {
2048 md->name_idx = find_first_zero_bit(name_use, max_devices);
2049 __set_bit(md->name_idx, name_use);
2050 } else
2051 md->name_idx = ((struct mmc_blk_data *)
2052 dev_to_disk(parent)->private_data)->name_idx;
2054 md->area_type = area_type;
2057 * Set the read-only status based on the supported commands
2058 * and the write protect switch.
2060 md->read_only = mmc_blk_readonly(card);
2062 md->disk = alloc_disk(perdev_minors);
2063 if (md->disk == NULL) {
2064 ret = -ENOMEM;
2065 goto err_kfree;
2068 spin_lock_init(&md->lock);
2069 INIT_LIST_HEAD(&md->part);
2070 md->usage = 1;
2072 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2073 if (ret)
2074 goto err_putdisk;
2076 md->queue.issue_fn = mmc_blk_issue_rq;
2077 md->queue.data = md;
2079 md->disk->major = MMC_BLOCK_MAJOR;
2080 md->disk->first_minor = devidx * perdev_minors;
2081 md->disk->fops = &mmc_bdops;
2082 md->disk->private_data = md;
2083 md->disk->queue = md->queue.queue;
2084 md->disk->driverfs_dev = parent;
2085 set_disk_ro(md->disk, md->read_only || default_ro);
2086 if (area_type & MMC_BLK_DATA_AREA_RPMB)
2087 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2090 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2092 * - be set for removable media with permanent block devices
2093 * - be unset for removable block devices with permanent media
2095 * Since MMC block devices clearly fall under the second
2096 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2097 * should use the block device creation/destruction hotplug
2098 * messages to tell when the card is present.
2101 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2102 "mmcblk%d%s", md->name_idx, subname ? subname : "");
2104 if (mmc_card_mmc(card))
2105 blk_queue_logical_block_size(md->queue.queue,
2106 card->ext_csd.data_sector_size);
2107 else
2108 blk_queue_logical_block_size(md->queue.queue, 512);
2110 set_capacity(md->disk, size);
2112 if (mmc_host_cmd23(card->host)) {
2113 if (mmc_card_mmc(card) ||
2114 (mmc_card_sd(card) &&
2115 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2116 md->flags |= MMC_BLK_CMD23;
2119 if (mmc_card_mmc(card) &&
2120 md->flags & MMC_BLK_CMD23 &&
2121 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2122 card->ext_csd.rel_sectors)) {
2123 md->flags |= MMC_BLK_REL_WR;
2124 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2127 if (mmc_card_mmc(card) &&
2128 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2129 (md->flags & MMC_BLK_CMD23) &&
2130 card->ext_csd.packed_event_en) {
2131 if (!mmc_packed_init(&md->queue, card))
2132 md->flags |= MMC_BLK_PACKED_CMD;
2135 return md;
2137 err_putdisk:
2138 put_disk(md->disk);
2139 err_kfree:
2140 kfree(md);
2141 out:
2142 return ERR_PTR(ret);
2145 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2147 sector_t size;
2148 struct mmc_blk_data *md;
2150 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2152 * The EXT_CSD sector count is in number or 512 byte
2153 * sectors.
2155 size = card->ext_csd.sectors;
2156 } else {
2158 * The CSD capacity field is in units of read_blkbits.
2159 * set_capacity takes units of 512 bytes.
2161 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2164 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2165 MMC_BLK_DATA_AREA_MAIN);
2166 return md;
2169 static int mmc_blk_alloc_part(struct mmc_card *card,
2170 struct mmc_blk_data *md,
2171 unsigned int part_type,
2172 sector_t size,
2173 bool default_ro,
2174 const char *subname,
2175 int area_type)
2177 char cap_str[10];
2178 struct mmc_blk_data *part_md;
2180 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2181 subname, area_type);
2182 if (IS_ERR(part_md))
2183 return PTR_ERR(part_md);
2184 part_md->part_type = part_type;
2185 list_add(&part_md->part, &md->part);
2187 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
2188 cap_str, sizeof(cap_str));
2189 pr_info("%s: %s %s partition %u %s\n",
2190 part_md->disk->disk_name, mmc_card_id(card),
2191 mmc_card_name(card), part_md->part_type, cap_str);
2192 return 0;
2195 /* MMC Physical partitions consist of two boot partitions and
2196 * up to four general purpose partitions.
2197 * For each partition enabled in EXT_CSD a block device will be allocatedi
2198 * to provide access to the partition.
2201 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2203 int idx, ret = 0;
2205 if (!mmc_card_mmc(card))
2206 return 0;
2208 for (idx = 0; idx < card->nr_parts; idx++) {
2209 if (card->part[idx].size) {
2210 ret = mmc_blk_alloc_part(card, md,
2211 card->part[idx].part_cfg,
2212 card->part[idx].size >> 9,
2213 card->part[idx].force_ro,
2214 card->part[idx].name,
2215 card->part[idx].area_type);
2216 if (ret)
2217 return ret;
2221 return ret;
2224 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2226 struct mmc_card *card;
2228 if (md) {
2230 * Flush remaining requests and free queues. It
2231 * is freeing the queue that stops new requests
2232 * from being accepted.
2234 card = md->queue.card;
2235 mmc_cleanup_queue(&md->queue);
2236 if (md->flags & MMC_BLK_PACKED_CMD)
2237 mmc_packed_clean(&md->queue);
2238 if (md->disk->flags & GENHD_FL_UP) {
2239 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2240 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2241 card->ext_csd.boot_ro_lockable)
2242 device_remove_file(disk_to_dev(md->disk),
2243 &md->power_ro_lock);
2245 del_gendisk(md->disk);
2247 mmc_blk_put(md);
2251 static void mmc_blk_remove_parts(struct mmc_card *card,
2252 struct mmc_blk_data *md)
2254 struct list_head *pos, *q;
2255 struct mmc_blk_data *part_md;
2257 __clear_bit(md->name_idx, name_use);
2258 list_for_each_safe(pos, q, &md->part) {
2259 part_md = list_entry(pos, struct mmc_blk_data, part);
2260 list_del(pos);
2261 mmc_blk_remove_req(part_md);
2265 static int mmc_add_disk(struct mmc_blk_data *md)
2267 int ret;
2268 struct mmc_card *card = md->queue.card;
2270 add_disk(md->disk);
2271 md->force_ro.show = force_ro_show;
2272 md->force_ro.store = force_ro_store;
2273 sysfs_attr_init(&md->force_ro.attr);
2274 md->force_ro.attr.name = "force_ro";
2275 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2276 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2277 if (ret)
2278 goto force_ro_fail;
2280 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2281 card->ext_csd.boot_ro_lockable) {
2282 umode_t mode;
2284 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2285 mode = S_IRUGO;
2286 else
2287 mode = S_IRUGO | S_IWUSR;
2289 md->power_ro_lock.show = power_ro_lock_show;
2290 md->power_ro_lock.store = power_ro_lock_store;
2291 sysfs_attr_init(&md->power_ro_lock.attr);
2292 md->power_ro_lock.attr.mode = mode;
2293 md->power_ro_lock.attr.name =
2294 "ro_lock_until_next_power_on";
2295 ret = device_create_file(disk_to_dev(md->disk),
2296 &md->power_ro_lock);
2297 if (ret)
2298 goto power_ro_lock_fail;
2300 return ret;
2302 power_ro_lock_fail:
2303 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2304 force_ro_fail:
2305 del_gendisk(md->disk);
2307 return ret;
2310 #define CID_MANFID_SANDISK 0x2
2311 #define CID_MANFID_TOSHIBA 0x11
2312 #define CID_MANFID_MICRON 0x13
2313 #define CID_MANFID_SAMSUNG 0x15
2315 static const struct mmc_fixup blk_fixups[] =
2317 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2318 MMC_QUIRK_INAND_CMD38),
2319 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2320 MMC_QUIRK_INAND_CMD38),
2321 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2322 MMC_QUIRK_INAND_CMD38),
2323 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2324 MMC_QUIRK_INAND_CMD38),
2325 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2326 MMC_QUIRK_INAND_CMD38),
2329 * Some MMC cards experience performance degradation with CMD23
2330 * instead of CMD12-bounded multiblock transfers. For now we'll
2331 * black list what's bad...
2332 * - Certain Toshiba cards.
2334 * N.B. This doesn't affect SD cards.
2336 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2337 MMC_QUIRK_BLK_NO_CMD23),
2338 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2339 MMC_QUIRK_BLK_NO_CMD23),
2340 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2341 MMC_QUIRK_BLK_NO_CMD23),
2344 * Some Micron MMC cards needs longer data read timeout than
2345 * indicated in CSD.
2347 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2348 MMC_QUIRK_LONG_READ_TIME),
2351 * On these Samsung MoviNAND parts, performing secure erase or
2352 * secure trim can result in unrecoverable corruption due to a
2353 * firmware bug.
2355 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2356 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2357 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2358 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2359 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2360 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2361 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2362 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2363 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2364 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2365 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2366 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2367 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2368 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2369 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2370 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2372 END_FIXUP
2375 static int mmc_blk_probe(struct mmc_card *card)
2377 struct mmc_blk_data *md, *part_md;
2378 char cap_str[10];
2381 * Check that the card supports the command class(es) we need.
2383 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2384 return -ENODEV;
2386 md = mmc_blk_alloc(card);
2387 if (IS_ERR(md))
2388 return PTR_ERR(md);
2390 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
2391 cap_str, sizeof(cap_str));
2392 pr_info("%s: %s %s %s %s\n",
2393 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2394 cap_str, md->read_only ? "(ro)" : "");
2396 if (mmc_blk_alloc_parts(card, md))
2397 goto out;
2399 mmc_set_drvdata(card, md);
2400 mmc_fixup_device(card, blk_fixups);
2402 if (mmc_add_disk(md))
2403 goto out;
2405 list_for_each_entry(part_md, &md->part, part) {
2406 if (mmc_add_disk(part_md))
2407 goto out;
2410 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2411 pm_runtime_use_autosuspend(&card->dev);
2414 * Don't enable runtime PM for SD-combo cards here. Leave that
2415 * decision to be taken during the SDIO init sequence instead.
2417 if (card->type != MMC_TYPE_SD_COMBO) {
2418 pm_runtime_set_active(&card->dev);
2419 pm_runtime_enable(&card->dev);
2422 return 0;
2424 out:
2425 mmc_blk_remove_parts(card, md);
2426 mmc_blk_remove_req(md);
2427 return 0;
2430 static void mmc_blk_remove(struct mmc_card *card)
2432 struct mmc_blk_data *md = mmc_get_drvdata(card);
2434 mmc_blk_remove_parts(card, md);
2435 pm_runtime_get_sync(&card->dev);
2436 mmc_claim_host(card->host);
2437 mmc_blk_part_switch(card, md);
2438 mmc_release_host(card->host);
2439 if (card->type != MMC_TYPE_SD_COMBO)
2440 pm_runtime_disable(&card->dev);
2441 pm_runtime_put_noidle(&card->dev);
2442 mmc_blk_remove_req(md);
2443 mmc_set_drvdata(card, NULL);
2446 static int _mmc_blk_suspend(struct mmc_card *card)
2448 struct mmc_blk_data *part_md;
2449 struct mmc_blk_data *md = mmc_get_drvdata(card);
2451 if (md) {
2452 mmc_queue_suspend(&md->queue);
2453 list_for_each_entry(part_md, &md->part, part) {
2454 mmc_queue_suspend(&part_md->queue);
2457 return 0;
2460 static void mmc_blk_shutdown(struct mmc_card *card)
2462 _mmc_blk_suspend(card);
2465 #ifdef CONFIG_PM
2466 static int mmc_blk_suspend(struct mmc_card *card)
2468 return _mmc_blk_suspend(card);
2471 static int mmc_blk_resume(struct mmc_card *card)
2473 struct mmc_blk_data *part_md;
2474 struct mmc_blk_data *md = mmc_get_drvdata(card);
2476 if (md) {
2478 * Resume involves the card going into idle state,
2479 * so current partition is always the main one.
2481 md->part_curr = md->part_type;
2482 mmc_queue_resume(&md->queue);
2483 list_for_each_entry(part_md, &md->part, part) {
2484 mmc_queue_resume(&part_md->queue);
2487 return 0;
2489 #else
2490 #define mmc_blk_suspend NULL
2491 #define mmc_blk_resume NULL
2492 #endif
2494 static struct mmc_driver mmc_driver = {
2495 .drv = {
2496 .name = "mmcblk",
2498 .probe = mmc_blk_probe,
2499 .remove = mmc_blk_remove,
2500 .suspend = mmc_blk_suspend,
2501 .resume = mmc_blk_resume,
2502 .shutdown = mmc_blk_shutdown,
2505 static int __init mmc_blk_init(void)
2507 int res;
2509 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2510 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2512 max_devices = 256 / perdev_minors;
2514 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2515 if (res)
2516 goto out;
2518 res = mmc_register_driver(&mmc_driver);
2519 if (res)
2520 goto out2;
2522 return 0;
2523 out2:
2524 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2525 out:
2526 return res;
2529 static void __exit mmc_blk_exit(void)
2531 mmc_unregister_driver(&mmc_driver);
2532 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2535 module_init(mmc_blk_init);
2536 module_exit(mmc_blk_exit);
2538 MODULE_LICENSE("GPL");
2539 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");