2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
39 #include <asm/div64.h>
41 #include <asm/sizes.h>
45 #define DRIVER_NAME "mmci-pl18x"
47 static unsigned int fmax
= 515633;
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
69 unsigned int clkreg_enable
;
70 unsigned int datalength_bits
;
71 unsigned int fifosize
;
72 unsigned int fifohalfsize
;
75 bool blksz_datactrl16
;
77 bool signal_direction
;
83 static struct variant_data variant_arm
= {
85 .fifohalfsize
= 8 * 4,
86 .datalength_bits
= 16,
87 .pwrreg_powerup
= MCI_PWR_UP
,
90 static struct variant_data variant_arm_extended_fifo
= {
92 .fifohalfsize
= 64 * 4,
93 .datalength_bits
= 16,
94 .pwrreg_powerup
= MCI_PWR_UP
,
97 static struct variant_data variant_arm_extended_fifo_hwfc
= {
99 .fifohalfsize
= 64 * 4,
100 .clkreg_enable
= MCI_ARM_HWFCEN
,
101 .datalength_bits
= 16,
102 .pwrreg_powerup
= MCI_PWR_UP
,
105 static struct variant_data variant_u300
= {
107 .fifohalfsize
= 8 * 4,
108 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
109 .datalength_bits
= 16,
111 .pwrreg_powerup
= MCI_PWR_ON
,
112 .signal_direction
= true,
113 .pwrreg_clkgate
= true,
114 .pwrreg_nopower
= true,
117 static struct variant_data variant_nomadik
= {
119 .fifohalfsize
= 8 * 4,
120 .clkreg
= MCI_CLK_ENABLE
,
121 .datalength_bits
= 24,
124 .pwrreg_powerup
= MCI_PWR_ON
,
125 .signal_direction
= true,
126 .pwrreg_clkgate
= true,
127 .pwrreg_nopower
= true,
130 static struct variant_data variant_ux500
= {
132 .fifohalfsize
= 8 * 4,
133 .clkreg
= MCI_CLK_ENABLE
,
134 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
135 .datalength_bits
= 24,
138 .pwrreg_powerup
= MCI_PWR_ON
,
139 .signal_direction
= true,
140 .pwrreg_clkgate
= true,
142 .pwrreg_nopower
= true,
145 static struct variant_data variant_ux500v2
= {
147 .fifohalfsize
= 8 * 4,
148 .clkreg
= MCI_CLK_ENABLE
,
149 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
150 .datalength_bits
= 24,
153 .blksz_datactrl16
= true,
154 .pwrreg_powerup
= MCI_PWR_ON
,
155 .signal_direction
= true,
156 .pwrreg_clkgate
= true,
158 .pwrreg_nopower
= true,
161 static int mmci_card_busy(struct mmc_host
*mmc
)
163 struct mmci_host
*host
= mmc_priv(mmc
);
167 pm_runtime_get_sync(mmc_dev(mmc
));
169 spin_lock_irqsave(&host
->lock
, flags
);
170 if (readl(host
->base
+ MMCISTATUS
) & MCI_ST_CARDBUSY
)
172 spin_unlock_irqrestore(&host
->lock
, flags
);
174 pm_runtime_mark_last_busy(mmc_dev(mmc
));
175 pm_runtime_put_autosuspend(mmc_dev(mmc
));
181 * Validate mmc prerequisites
183 static int mmci_validate_data(struct mmci_host
*host
,
184 struct mmc_data
*data
)
189 if (!is_power_of_2(data
->blksz
)) {
190 dev_err(mmc_dev(host
->mmc
),
191 "unsupported block size (%d bytes)\n", data
->blksz
);
198 static void mmci_reg_delay(struct mmci_host
*host
)
201 * According to the spec, at least three feedback clock cycles
202 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204 * Worst delay time during card init is at 100 kHz => 30 us.
205 * Worst delay time when up and running is at 25 MHz => 120 ns.
207 if (host
->cclk
< 25000000)
214 * This must be called with host->lock held
216 static void mmci_write_clkreg(struct mmci_host
*host
, u32 clk
)
218 if (host
->clk_reg
!= clk
) {
220 writel(clk
, host
->base
+ MMCICLOCK
);
225 * This must be called with host->lock held
227 static void mmci_write_pwrreg(struct mmci_host
*host
, u32 pwr
)
229 if (host
->pwr_reg
!= pwr
) {
231 writel(pwr
, host
->base
+ MMCIPOWER
);
236 * This must be called with host->lock held
238 static void mmci_write_datactrlreg(struct mmci_host
*host
, u32 datactrl
)
240 /* Keep ST Micro busy mode if enabled */
241 datactrl
|= host
->datactrl_reg
& MCI_ST_DPSM_BUSYMODE
;
243 if (host
->datactrl_reg
!= datactrl
) {
244 host
->datactrl_reg
= datactrl
;
245 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
250 * This must be called with host->lock held
252 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
254 struct variant_data
*variant
= host
->variant
;
255 u32 clk
= variant
->clkreg
;
257 /* Make sure cclk reflects the current calculated clock */
261 if (desired
>= host
->mclk
) {
262 clk
= MCI_CLK_BYPASS
;
263 if (variant
->st_clkdiv
)
264 clk
|= MCI_ST_UX500_NEG_EDGE
;
265 host
->cclk
= host
->mclk
;
266 } else if (variant
->st_clkdiv
) {
268 * DB8500 TRM says f = mclk / (clkdiv + 2)
269 * => clkdiv = (mclk / f) - 2
270 * Round the divider up so we don't exceed the max
273 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
276 host
->cclk
= host
->mclk
/ (clk
+ 2);
279 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280 * => clkdiv = mclk / (2 * f) - 1
282 clk
= host
->mclk
/ (2 * desired
) - 1;
285 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
288 clk
|= variant
->clkreg_enable
;
289 clk
|= MCI_CLK_ENABLE
;
290 /* This hasn't proven to be worthwhile */
291 /* clk |= MCI_CLK_PWRSAVE; */
294 /* Set actual clock for debug */
295 host
->mmc
->actual_clock
= host
->cclk
;
297 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
299 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
300 clk
|= MCI_ST_8BIT_BUS
;
302 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
)
303 clk
|= MCI_ST_UX500_NEG_EDGE
;
305 mmci_write_clkreg(host
, clk
);
309 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
311 writel(0, host
->base
+ MMCICOMMAND
);
318 mmc_request_done(host
->mmc
, mrq
);
320 pm_runtime_mark_last_busy(mmc_dev(host
->mmc
));
321 pm_runtime_put_autosuspend(mmc_dev(host
->mmc
));
324 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
326 void __iomem
*base
= host
->base
;
328 if (host
->singleirq
) {
329 unsigned int mask0
= readl(base
+ MMCIMASK0
);
331 mask0
&= ~MCI_IRQ1MASK
;
334 writel(mask0
, base
+ MMCIMASK0
);
337 writel(mask
, base
+ MMCIMASK1
);
340 static void mmci_stop_data(struct mmci_host
*host
)
342 mmci_write_datactrlreg(host
, 0);
343 mmci_set_mask1(host
, 0);
347 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
349 unsigned int flags
= SG_MITER_ATOMIC
;
351 if (data
->flags
& MMC_DATA_READ
)
352 flags
|= SG_MITER_TO_SG
;
354 flags
|= SG_MITER_FROM_SG
;
356 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
364 #ifdef CONFIG_DMA_ENGINE
365 static void mmci_dma_setup(struct mmci_host
*host
)
367 struct mmci_platform_data
*plat
= host
->plat
;
368 const char *rxname
, *txname
;
371 host
->dma_rx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "rx");
372 host
->dma_tx_channel
= dma_request_slave_channel(mmc_dev(host
->mmc
), "tx");
374 /* initialize pre request cookie */
375 host
->next_data
.cookie
= 1;
377 /* Try to acquire a generic DMA engine slave channel */
379 dma_cap_set(DMA_SLAVE
, mask
);
381 if (plat
&& plat
->dma_filter
) {
382 if (!host
->dma_rx_channel
&& plat
->dma_rx_param
) {
383 host
->dma_rx_channel
= dma_request_channel(mask
,
386 /* E.g if no DMA hardware is present */
387 if (!host
->dma_rx_channel
)
388 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
391 if (!host
->dma_tx_channel
&& plat
->dma_tx_param
) {
392 host
->dma_tx_channel
= dma_request_channel(mask
,
395 if (!host
->dma_tx_channel
)
396 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
401 * If only an RX channel is specified, the driver will
402 * attempt to use it bidirectionally, however if it is
403 * is specified but cannot be located, DMA will be disabled.
405 if (host
->dma_rx_channel
&& !host
->dma_tx_channel
)
406 host
->dma_tx_channel
= host
->dma_rx_channel
;
408 if (host
->dma_rx_channel
)
409 rxname
= dma_chan_name(host
->dma_rx_channel
);
413 if (host
->dma_tx_channel
)
414 txname
= dma_chan_name(host
->dma_tx_channel
);
418 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
422 * Limit the maximum segment size in any SG entry according to
423 * the parameters of the DMA engine device.
425 if (host
->dma_tx_channel
) {
426 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
427 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
429 if (max_seg_size
< host
->mmc
->max_seg_size
)
430 host
->mmc
->max_seg_size
= max_seg_size
;
432 if (host
->dma_rx_channel
) {
433 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
434 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
436 if (max_seg_size
< host
->mmc
->max_seg_size
)
437 host
->mmc
->max_seg_size
= max_seg_size
;
442 * This is used in or so inline it
443 * so it can be discarded.
445 static inline void mmci_dma_release(struct mmci_host
*host
)
447 struct mmci_platform_data
*plat
= host
->plat
;
449 if (host
->dma_rx_channel
)
450 dma_release_channel(host
->dma_rx_channel
);
451 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
452 dma_release_channel(host
->dma_tx_channel
);
453 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
456 static void mmci_dma_data_error(struct mmci_host
*host
)
458 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
459 dmaengine_terminate_all(host
->dma_current
);
460 host
->dma_current
= NULL
;
461 host
->dma_desc_current
= NULL
;
462 host
->data
->host_cookie
= 0;
465 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
467 struct dma_chan
*chan
;
468 enum dma_data_direction dir
;
470 if (data
->flags
& MMC_DATA_READ
) {
471 dir
= DMA_FROM_DEVICE
;
472 chan
= host
->dma_rx_channel
;
475 chan
= host
->dma_tx_channel
;
478 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
481 static void mmci_dma_finalize(struct mmci_host
*host
, struct mmc_data
*data
)
486 /* Wait up to 1ms for the DMA to complete */
488 status
= readl(host
->base
+ MMCISTATUS
);
489 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
495 * Check to see whether we still have some data left in the FIFO -
496 * this catches DMA controllers which are unable to monitor the
497 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498 * contiguous buffers. On TX, we'll get a FIFO underrun error.
500 if (status
& MCI_RXDATAAVLBLMASK
) {
501 mmci_dma_data_error(host
);
506 if (!data
->host_cookie
)
507 mmci_dma_unmap(host
, data
);
510 * Use of DMA with scatter-gather is impossible.
511 * Give up with DMA and switch back to PIO mode.
513 if (status
& MCI_RXDATAAVLBLMASK
) {
514 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
515 mmci_dma_release(host
);
518 host
->dma_current
= NULL
;
519 host
->dma_desc_current
= NULL
;
522 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523 static int __mmci_dma_prep_data(struct mmci_host
*host
, struct mmc_data
*data
,
524 struct dma_chan
**dma_chan
,
525 struct dma_async_tx_descriptor
**dma_desc
)
527 struct variant_data
*variant
= host
->variant
;
528 struct dma_slave_config conf
= {
529 .src_addr
= host
->phybase
+ MMCIFIFO
,
530 .dst_addr
= host
->phybase
+ MMCIFIFO
,
531 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
532 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
533 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
534 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
537 struct dma_chan
*chan
;
538 struct dma_device
*device
;
539 struct dma_async_tx_descriptor
*desc
;
540 enum dma_data_direction buffer_dirn
;
543 if (data
->flags
& MMC_DATA_READ
) {
544 conf
.direction
= DMA_DEV_TO_MEM
;
545 buffer_dirn
= DMA_FROM_DEVICE
;
546 chan
= host
->dma_rx_channel
;
548 conf
.direction
= DMA_MEM_TO_DEV
;
549 buffer_dirn
= DMA_TO_DEVICE
;
550 chan
= host
->dma_tx_channel
;
553 /* If there's no DMA channel, fall back to PIO */
557 /* If less than or equal to the fifo size, don't bother with DMA */
558 if (data
->blksz
* data
->blocks
<= variant
->fifosize
)
561 device
= chan
->device
;
562 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
566 dmaengine_slave_config(chan
, &conf
);
567 desc
= dmaengine_prep_slave_sg(chan
, data
->sg
, nr_sg
,
568 conf
.direction
, DMA_CTRL_ACK
);
578 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, buffer_dirn
);
582 static inline int mmci_dma_prep_data(struct mmci_host
*host
,
583 struct mmc_data
*data
)
585 /* Check if next job is already prepared. */
586 if (host
->dma_current
&& host
->dma_desc_current
)
589 /* No job were prepared thus do it now. */
590 return __mmci_dma_prep_data(host
, data
, &host
->dma_current
,
591 &host
->dma_desc_current
);
594 static inline int mmci_dma_prep_next(struct mmci_host
*host
,
595 struct mmc_data
*data
)
597 struct mmci_host_next
*nd
= &host
->next_data
;
598 return __mmci_dma_prep_data(host
, data
, &nd
->dma_chan
, &nd
->dma_desc
);
601 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
604 struct mmc_data
*data
= host
->data
;
606 ret
= mmci_dma_prep_data(host
, host
->data
);
610 /* Okay, go for it. */
611 dev_vdbg(mmc_dev(host
->mmc
),
612 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
614 dmaengine_submit(host
->dma_desc_current
);
615 dma_async_issue_pending(host
->dma_current
);
617 datactrl
|= MCI_DPSM_DMAENABLE
;
619 /* Trigger the DMA transfer */
620 mmci_write_datactrlreg(host
, datactrl
);
623 * Let the MMCI say when the data is ended and it's time
624 * to fire next DMA request. When that happens, MMCI will
625 * call mmci_data_end()
627 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
628 host
->base
+ MMCIMASK0
);
632 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
634 struct mmci_host_next
*next
= &host
->next_data
;
636 WARN_ON(data
->host_cookie
&& data
->host_cookie
!= next
->cookie
);
637 WARN_ON(!data
->host_cookie
&& (next
->dma_desc
|| next
->dma_chan
));
639 host
->dma_desc_current
= next
->dma_desc
;
640 host
->dma_current
= next
->dma_chan
;
641 next
->dma_desc
= NULL
;
642 next
->dma_chan
= NULL
;
645 static void mmci_pre_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
648 struct mmci_host
*host
= mmc_priv(mmc
);
649 struct mmc_data
*data
= mrq
->data
;
650 struct mmci_host_next
*nd
= &host
->next_data
;
655 BUG_ON(data
->host_cookie
);
657 if (mmci_validate_data(host
, data
))
660 if (!mmci_dma_prep_next(host
, data
))
661 data
->host_cookie
= ++nd
->cookie
< 0 ? 1 : nd
->cookie
;
664 static void mmci_post_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
,
667 struct mmci_host
*host
= mmc_priv(mmc
);
668 struct mmc_data
*data
= mrq
->data
;
670 if (!data
|| !data
->host_cookie
)
673 mmci_dma_unmap(host
, data
);
676 struct mmci_host_next
*next
= &host
->next_data
;
677 struct dma_chan
*chan
;
678 if (data
->flags
& MMC_DATA_READ
)
679 chan
= host
->dma_rx_channel
;
681 chan
= host
->dma_tx_channel
;
682 dmaengine_terminate_all(chan
);
684 next
->dma_desc
= NULL
;
685 next
->dma_chan
= NULL
;
690 /* Blank functions if the DMA engine is not available */
691 static void mmci_get_next_data(struct mmci_host
*host
, struct mmc_data
*data
)
694 static inline void mmci_dma_setup(struct mmci_host
*host
)
698 static inline void mmci_dma_release(struct mmci_host
*host
)
702 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
706 static inline void mmci_dma_finalize(struct mmci_host
*host
,
707 struct mmc_data
*data
)
711 static inline void mmci_dma_data_error(struct mmci_host
*host
)
715 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
720 #define mmci_pre_request NULL
721 #define mmci_post_request NULL
725 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
727 struct variant_data
*variant
= host
->variant
;
728 unsigned int datactrl
, timeout
, irqmask
;
729 unsigned long long clks
;
733 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
734 data
->blksz
, data
->blocks
, data
->flags
);
737 host
->size
= data
->blksz
* data
->blocks
;
738 data
->bytes_xfered
= 0;
740 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
741 do_div(clks
, 1000000000UL);
743 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
746 writel(timeout
, base
+ MMCIDATATIMER
);
747 writel(host
->size
, base
+ MMCIDATALENGTH
);
749 blksz_bits
= ffs(data
->blksz
) - 1;
750 BUG_ON(1 << blksz_bits
!= data
->blksz
);
752 if (variant
->blksz_datactrl16
)
753 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
755 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
757 if (data
->flags
& MMC_DATA_READ
)
758 datactrl
|= MCI_DPSM_DIRECTION
;
760 /* The ST Micro variants has a special bit to enable SDIO */
761 if (variant
->sdio
&& host
->mmc
->card
)
762 if (mmc_card_sdio(host
->mmc
->card
)) {
764 * The ST Micro variants has a special bit
769 datactrl
|= MCI_ST_DPSM_SDIOEN
;
772 * The ST Micro variant for SDIO small write transfers
773 * needs to have clock H/W flow control disabled,
774 * otherwise the transfer will not start. The threshold
775 * depends on the rate of MCLK.
777 if (data
->flags
& MMC_DATA_WRITE
&&
779 (host
->size
<= 8 && host
->mclk
> 50000000)))
780 clk
= host
->clk_reg
& ~variant
->clkreg_enable
;
782 clk
= host
->clk_reg
| variant
->clkreg_enable
;
784 mmci_write_clkreg(host
, clk
);
787 if (host
->mmc
->ios
.timing
== MMC_TIMING_UHS_DDR50
)
788 datactrl
|= MCI_ST_DPSM_DDRMODE
;
791 * Attempt to use DMA operation mode, if this
792 * should fail, fall back to PIO mode
794 if (!mmci_dma_start_data(host
, datactrl
))
797 /* IRQ mode, map the SG list for CPU reading/writing */
798 mmci_init_sg(host
, data
);
800 if (data
->flags
& MMC_DATA_READ
) {
801 irqmask
= MCI_RXFIFOHALFFULLMASK
;
804 * If we have less than the fifo 'half-full' threshold to
805 * transfer, trigger a PIO interrupt as soon as any data
808 if (host
->size
< variant
->fifohalfsize
)
809 irqmask
|= MCI_RXDATAAVLBLMASK
;
812 * We don't actually need to include "FIFO empty" here
813 * since its implicit in "FIFO half empty".
815 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
818 mmci_write_datactrlreg(host
, datactrl
);
819 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
820 mmci_set_mask1(host
, irqmask
);
824 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
826 void __iomem
*base
= host
->base
;
828 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
829 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
831 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
832 writel(0, base
+ MMCICOMMAND
);
836 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
837 if (cmd
->flags
& MMC_RSP_PRESENT
) {
838 if (cmd
->flags
& MMC_RSP_136
)
839 c
|= MCI_CPSM_LONGRSP
;
840 c
|= MCI_CPSM_RESPONSE
;
843 c
|= MCI_CPSM_INTERRUPT
;
847 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
848 writel(c
, base
+ MMCICOMMAND
);
852 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
855 /* First check for errors */
856 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
857 MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
860 /* Terminate the DMA transfer */
861 if (dma_inprogress(host
)) {
862 mmci_dma_data_error(host
);
863 mmci_dma_unmap(host
, data
);
867 * Calculate how far we are into the transfer. Note that
868 * the data counter gives the number of bytes transferred
869 * on the MMC bus, not on the host side. On reads, this
870 * can be as much as a FIFO-worth of data ahead. This
871 * matters for FIFO overruns only.
873 remain
= readl(host
->base
+ MMCIDATACNT
);
874 success
= data
->blksz
* data
->blocks
- remain
;
876 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
878 if (status
& MCI_DATACRCFAIL
) {
879 /* Last block was not successful */
881 data
->error
= -EILSEQ
;
882 } else if (status
& MCI_DATATIMEOUT
) {
883 data
->error
= -ETIMEDOUT
;
884 } else if (status
& MCI_STARTBITERR
) {
885 data
->error
= -ECOMM
;
886 } else if (status
& MCI_TXUNDERRUN
) {
888 } else if (status
& MCI_RXOVERRUN
) {
889 if (success
> host
->variant
->fifosize
)
890 success
-= host
->variant
->fifosize
;
895 data
->bytes_xfered
= round_down(success
, data
->blksz
);
898 if (status
& MCI_DATABLOCKEND
)
899 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
901 if (status
& MCI_DATAEND
|| data
->error
) {
902 if (dma_inprogress(host
))
903 mmci_dma_finalize(host
, data
);
904 mmci_stop_data(host
);
907 /* The error clause is handled above, success! */
908 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
910 if (!data
->stop
|| host
->mrq
->sbc
) {
911 mmci_request_end(host
, data
->mrq
);
913 mmci_start_command(host
, data
->stop
, 0);
919 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
922 void __iomem
*base
= host
->base
;
923 bool sbc
= (cmd
== host
->mrq
->sbc
);
927 if (status
& MCI_CMDTIMEOUT
) {
928 cmd
->error
= -ETIMEDOUT
;
929 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
930 cmd
->error
= -EILSEQ
;
932 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
933 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
934 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
935 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
938 if ((!sbc
&& !cmd
->data
) || cmd
->error
) {
940 /* Terminate the DMA transfer */
941 if (dma_inprogress(host
)) {
942 mmci_dma_data_error(host
);
943 mmci_dma_unmap(host
, host
->data
);
945 mmci_stop_data(host
);
947 mmci_request_end(host
, host
->mrq
);
949 mmci_start_command(host
, host
->mrq
->cmd
, 0);
950 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
951 mmci_start_data(host
, cmd
->data
);
955 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
957 void __iomem
*base
= host
->base
;
960 int host_remain
= host
->size
;
963 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
972 * SDIO especially may want to send something that is
973 * not divisible by 4 (as opposed to card sectors
974 * etc). Therefore make sure to always read the last bytes
975 * while only doing full 32-bit reads towards the FIFO.
977 if (unlikely(count
& 0x3)) {
979 unsigned char buf
[4];
980 ioread32_rep(base
+ MMCIFIFO
, buf
, 1);
981 memcpy(ptr
, buf
, count
);
983 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
987 ioread32_rep(base
+ MMCIFIFO
, ptr
, count
>> 2);
992 host_remain
-= count
;
997 status
= readl(base
+ MMCISTATUS
);
998 } while (status
& MCI_RXDATAAVLBL
);
1000 return ptr
- buffer
;
1003 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
1005 struct variant_data
*variant
= host
->variant
;
1006 void __iomem
*base
= host
->base
;
1010 unsigned int count
, maxcnt
;
1012 maxcnt
= status
& MCI_TXFIFOEMPTY
?
1013 variant
->fifosize
: variant
->fifohalfsize
;
1014 count
= min(remain
, maxcnt
);
1017 * SDIO especially may want to send something that is
1018 * not divisible by 4 (as opposed to card sectors
1019 * etc), and the FIFO only accept full 32-bit writes.
1020 * So compensate by adding +3 on the count, a single
1021 * byte become a 32bit write, 7 bytes will be two
1024 iowrite32_rep(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
1032 status
= readl(base
+ MMCISTATUS
);
1033 } while (status
& MCI_TXFIFOHALFEMPTY
);
1035 return ptr
- buffer
;
1039 * PIO data transfer IRQ handler.
1041 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
1043 struct mmci_host
*host
= dev_id
;
1044 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
1045 struct variant_data
*variant
= host
->variant
;
1046 void __iomem
*base
= host
->base
;
1047 unsigned long flags
;
1050 status
= readl(base
+ MMCISTATUS
);
1052 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
1054 local_irq_save(flags
);
1057 unsigned int remain
, len
;
1061 * For write, we only need to test the half-empty flag
1062 * here - if the FIFO is completely empty, then by
1063 * definition it is more than half empty.
1065 * For read, check for data available.
1067 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
1070 if (!sg_miter_next(sg_miter
))
1073 buffer
= sg_miter
->addr
;
1074 remain
= sg_miter
->length
;
1077 if (status
& MCI_RXACTIVE
)
1078 len
= mmci_pio_read(host
, buffer
, remain
);
1079 if (status
& MCI_TXACTIVE
)
1080 len
= mmci_pio_write(host
, buffer
, remain
, status
);
1082 sg_miter
->consumed
= len
;
1090 status
= readl(base
+ MMCISTATUS
);
1093 sg_miter_stop(sg_miter
);
1095 local_irq_restore(flags
);
1098 * If we have less than the fifo 'half-full' threshold to transfer,
1099 * trigger a PIO interrupt as soon as any data is available.
1101 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
1102 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
1105 * If we run out of data, disable the data IRQs; this
1106 * prevents a race where the FIFO becomes empty before
1107 * the chip itself has disabled the data path, and
1108 * stops us racing with our data end IRQ.
1110 if (host
->size
== 0) {
1111 mmci_set_mask1(host
, 0);
1112 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
1119 * Handle completion of command and data transfers.
1121 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
1123 struct mmci_host
*host
= dev_id
;
1127 spin_lock(&host
->lock
);
1130 struct mmc_command
*cmd
;
1131 struct mmc_data
*data
;
1133 status
= readl(host
->base
+ MMCISTATUS
);
1135 if (host
->singleirq
) {
1136 if (status
& readl(host
->base
+ MMCIMASK1
))
1137 mmci_pio_irq(irq
, dev_id
);
1139 status
&= ~MCI_IRQ1MASK
;
1142 status
&= readl(host
->base
+ MMCIMASK0
);
1143 writel(status
, host
->base
+ MMCICLEAR
);
1145 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
1148 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_STARTBITERR
|
1149 MCI_TXUNDERRUN
|MCI_RXOVERRUN
|MCI_DATAEND
|
1150 MCI_DATABLOCKEND
) && data
)
1151 mmci_data_irq(host
, data
, status
);
1154 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
1155 mmci_cmd_irq(host
, cmd
, status
);
1160 spin_unlock(&host
->lock
);
1162 return IRQ_RETVAL(ret
);
1165 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
1167 struct mmci_host
*host
= mmc_priv(mmc
);
1168 unsigned long flags
;
1170 WARN_ON(host
->mrq
!= NULL
);
1172 mrq
->cmd
->error
= mmci_validate_data(host
, mrq
->data
);
1173 if (mrq
->cmd
->error
) {
1174 mmc_request_done(mmc
, mrq
);
1178 pm_runtime_get_sync(mmc_dev(mmc
));
1180 spin_lock_irqsave(&host
->lock
, flags
);
1185 mmci_get_next_data(host
, mrq
->data
);
1187 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
1188 mmci_start_data(host
, mrq
->data
);
1191 mmci_start_command(host
, mrq
->sbc
, 0);
1193 mmci_start_command(host
, mrq
->cmd
, 0);
1195 spin_unlock_irqrestore(&host
->lock
, flags
);
1198 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1200 struct mmci_host
*host
= mmc_priv(mmc
);
1201 struct variant_data
*variant
= host
->variant
;
1203 unsigned long flags
;
1206 pm_runtime_get_sync(mmc_dev(mmc
));
1208 if (host
->plat
->ios_handler
&&
1209 host
->plat
->ios_handler(mmc_dev(mmc
), ios
))
1210 dev_err(mmc_dev(mmc
), "platform ios_handler failed\n");
1212 switch (ios
->power_mode
) {
1214 if (!IS_ERR(mmc
->supply
.vmmc
))
1215 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1217 if (!IS_ERR(mmc
->supply
.vqmmc
) && host
->vqmmc_enabled
) {
1218 regulator_disable(mmc
->supply
.vqmmc
);
1219 host
->vqmmc_enabled
= false;
1224 if (!IS_ERR(mmc
->supply
.vmmc
))
1225 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1228 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1229 * and instead uses MCI_PWR_ON so apply whatever value is
1230 * configured in the variant data.
1232 pwr
|= variant
->pwrreg_powerup
;
1236 if (!IS_ERR(mmc
->supply
.vqmmc
) && !host
->vqmmc_enabled
) {
1237 ret
= regulator_enable(mmc
->supply
.vqmmc
);
1239 dev_err(mmc_dev(mmc
),
1240 "failed to enable vqmmc regulator\n");
1242 host
->vqmmc_enabled
= true;
1249 if (variant
->signal_direction
&& ios
->power_mode
!= MMC_POWER_OFF
) {
1251 * The ST Micro variant has some additional bits
1252 * indicating signal direction for the signals in
1253 * the SD/MMC bus and feedback-clock usage.
1255 pwr
|= host
->plat
->sigdir
;
1257 if (ios
->bus_width
== MMC_BUS_WIDTH_4
)
1258 pwr
&= ~MCI_ST_DATA74DIREN
;
1259 else if (ios
->bus_width
== MMC_BUS_WIDTH_1
)
1260 pwr
&= (~MCI_ST_DATA74DIREN
&
1261 ~MCI_ST_DATA31DIREN
&
1262 ~MCI_ST_DATA2DIREN
);
1265 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
1266 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
1270 * The ST Micro variant use the ROD bit for something
1271 * else and only has OD (Open Drain).
1278 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1279 * gating the clock, the MCI_PWR_ON bit is cleared.
1281 if (!ios
->clock
&& variant
->pwrreg_clkgate
)
1284 spin_lock_irqsave(&host
->lock
, flags
);
1286 mmci_set_clkreg(host
, ios
->clock
);
1287 mmci_write_pwrreg(host
, pwr
);
1288 mmci_reg_delay(host
);
1290 spin_unlock_irqrestore(&host
->lock
, flags
);
1292 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1293 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1296 static int mmci_get_ro(struct mmc_host
*mmc
)
1298 struct mmci_host
*host
= mmc_priv(mmc
);
1300 if (host
->gpio_wp
== -ENOSYS
)
1303 return gpio_get_value_cansleep(host
->gpio_wp
);
1306 static int mmci_get_cd(struct mmc_host
*mmc
)
1308 struct mmci_host
*host
= mmc_priv(mmc
);
1309 struct mmci_platform_data
*plat
= host
->plat
;
1310 unsigned int status
;
1312 if (host
->gpio_cd
== -ENOSYS
) {
1314 return 1; /* Assume always present */
1316 status
= plat
->status(mmc_dev(host
->mmc
));
1318 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
1322 * Use positive logic throughout - status is zero for no card,
1323 * non-zero for card inserted.
1328 static int mmci_sig_volt_switch(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1332 if (!IS_ERR(mmc
->supply
.vqmmc
)) {
1334 pm_runtime_get_sync(mmc_dev(mmc
));
1336 switch (ios
->signal_voltage
) {
1337 case MMC_SIGNAL_VOLTAGE_330
:
1338 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1341 case MMC_SIGNAL_VOLTAGE_180
:
1342 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1345 case MMC_SIGNAL_VOLTAGE_120
:
1346 ret
= regulator_set_voltage(mmc
->supply
.vqmmc
,
1352 dev_warn(mmc_dev(mmc
), "Voltage switch failed\n");
1354 pm_runtime_mark_last_busy(mmc_dev(mmc
));
1355 pm_runtime_put_autosuspend(mmc_dev(mmc
));
1361 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
1363 struct mmci_host
*host
= dev_id
;
1365 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
1370 static struct mmc_host_ops mmci_ops
= {
1371 .request
= mmci_request
,
1372 .pre_req
= mmci_pre_request
,
1373 .post_req
= mmci_post_request
,
1374 .set_ios
= mmci_set_ios
,
1375 .get_ro
= mmci_get_ro
,
1376 .get_cd
= mmci_get_cd
,
1377 .start_signal_voltage_switch
= mmci_sig_volt_switch
,
1381 static void mmci_dt_populate_generic_pdata(struct device_node
*np
,
1382 struct mmci_platform_data
*pdata
)
1386 pdata
->gpio_wp
= of_get_named_gpio(np
, "wp-gpios", 0);
1387 pdata
->gpio_cd
= of_get_named_gpio(np
, "cd-gpios", 0);
1389 if (of_get_property(np
, "cd-inverted", NULL
))
1390 pdata
->cd_invert
= true;
1392 pdata
->cd_invert
= false;
1394 of_property_read_u32(np
, "max-frequency", &pdata
->f_max
);
1396 pr_warn("%s has no 'max-frequency' property\n", np
->full_name
);
1398 if (of_get_property(np
, "mmc-cap-mmc-highspeed", NULL
))
1399 pdata
->capabilities
|= MMC_CAP_MMC_HIGHSPEED
;
1400 if (of_get_property(np
, "mmc-cap-sd-highspeed", NULL
))
1401 pdata
->capabilities
|= MMC_CAP_SD_HIGHSPEED
;
1403 of_property_read_u32(np
, "bus-width", &bus_width
);
1404 switch (bus_width
) {
1406 /* No bus-width supplied. */
1409 pdata
->capabilities
|= MMC_CAP_4_BIT_DATA
;
1412 pdata
->capabilities
|= MMC_CAP_8_BIT_DATA
;
1415 pr_warn("%s: Unsupported bus width\n", np
->full_name
);
1419 static void mmci_dt_populate_generic_pdata(struct device_node
*np
,
1420 struct mmci_platform_data
*pdata
)
1426 static int mmci_probe(struct amba_device
*dev
,
1427 const struct amba_id
*id
)
1429 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
1430 struct device_node
*np
= dev
->dev
.of_node
;
1431 struct variant_data
*variant
= id
->data
;
1432 struct mmci_host
*host
;
1433 struct mmc_host
*mmc
;
1436 /* Must have platform data or Device Tree. */
1438 dev_err(&dev
->dev
, "No plat data or DT found\n");
1443 plat
= devm_kzalloc(&dev
->dev
, sizeof(*plat
), GFP_KERNEL
);
1449 mmci_dt_populate_generic_pdata(np
, plat
);
1451 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1455 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1461 host
= mmc_priv(mmc
);
1464 host
->gpio_wp
= -ENOSYS
;
1465 host
->gpio_cd
= -ENOSYS
;
1466 host
->gpio_cd_irq
= -1;
1468 host
->hw_designer
= amba_manf(dev
);
1469 host
->hw_revision
= amba_rev(dev
);
1470 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1471 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1473 host
->clk
= devm_clk_get(&dev
->dev
, NULL
);
1474 if (IS_ERR(host
->clk
)) {
1475 ret
= PTR_ERR(host
->clk
);
1479 ret
= clk_prepare_enable(host
->clk
);
1484 host
->variant
= variant
;
1485 host
->mclk
= clk_get_rate(host
->clk
);
1487 * According to the spec, mclk is max 100 MHz,
1488 * so we try to adjust the clock down to this,
1491 if (host
->mclk
> 100000000) {
1492 ret
= clk_set_rate(host
->clk
, 100000000);
1495 host
->mclk
= clk_get_rate(host
->clk
);
1496 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1499 host
->phybase
= dev
->res
.start
;
1500 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1506 if (variant
->busy_detect
) {
1507 mmci_ops
.card_busy
= mmci_card_busy
;
1508 mmci_write_datactrlreg(host
, MCI_ST_DPSM_BUSYMODE
);
1511 mmc
->ops
= &mmci_ops
;
1513 * The ARM and ST versions of the block have slightly different
1514 * clock divider equations which means that the minimum divider
1517 if (variant
->st_clkdiv
)
1518 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 257);
1520 mmc
->f_min
= DIV_ROUND_UP(host
->mclk
, 512);
1522 * If the platform data supplies a maximum operating
1523 * frequency, this takes precedence. Else, we fall back
1524 * to using the module parameter, which has a (low)
1525 * default value in case it is not specified. Either
1526 * value must not exceed the clock rate into the block,
1530 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1532 mmc
->f_max
= min(host
->mclk
, fmax
);
1533 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1535 /* Get regulators and the supported OCR mask */
1536 mmc_regulator_get_supply(mmc
);
1537 if (!mmc
->ocr_avail
)
1538 mmc
->ocr_avail
= plat
->ocr_mask
;
1539 else if (plat
->ocr_mask
)
1540 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1542 mmc
->caps
= plat
->capabilities
;
1543 mmc
->caps2
= plat
->capabilities2
;
1545 /* We support these PM capabilities. */
1546 mmc
->pm_caps
= MMC_PM_KEEP_POWER
;
1551 mmc
->max_segs
= NR_SG
;
1554 * Since only a certain number of bits are valid in the data length
1555 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1558 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1561 * Set the maximum segment size. Since we aren't doing DMA
1562 * (yet) we are only limited by the data length register.
1564 mmc
->max_seg_size
= mmc
->max_req_size
;
1567 * Block size can be up to 2048 bytes, but must be a power of two.
1569 mmc
->max_blk_size
= 1 << 11;
1572 * Limit the number of blocks transferred so that we don't overflow
1573 * the maximum request size.
1575 mmc
->max_blk_count
= mmc
->max_req_size
>> 11;
1577 spin_lock_init(&host
->lock
);
1579 writel(0, host
->base
+ MMCIMASK0
);
1580 writel(0, host
->base
+ MMCIMASK1
);
1581 writel(0xfff, host
->base
+ MMCICLEAR
);
1583 if (plat
->gpio_cd
== -EPROBE_DEFER
) {
1584 ret
= -EPROBE_DEFER
;
1587 if (gpio_is_valid(plat
->gpio_cd
)) {
1588 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1590 ret
= gpio_direction_input(plat
->gpio_cd
);
1592 host
->gpio_cd
= plat
->gpio_cd
;
1593 else if (ret
!= -ENOSYS
)
1597 * A gpio pin that will detect cards when inserted and removed
1598 * will most likely want to trigger on the edges if it is
1599 * 0 when ejected and 1 when inserted (or mutatis mutandis
1600 * for the inverted case) so we request triggers on both
1603 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1605 IRQF_TRIGGER_RISING
| IRQF_TRIGGER_FALLING
,
1606 DRIVER_NAME
" (cd)", host
);
1608 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1610 if (plat
->gpio_wp
== -EPROBE_DEFER
) {
1611 ret
= -EPROBE_DEFER
;
1614 if (gpio_is_valid(plat
->gpio_wp
)) {
1615 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1617 ret
= gpio_direction_input(plat
->gpio_wp
);
1619 host
->gpio_wp
= plat
->gpio_wp
;
1620 else if (ret
!= -ENOSYS
)
1624 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1625 && host
->gpio_cd_irq
< 0)
1626 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1628 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1633 host
->singleirq
= true;
1635 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1636 DRIVER_NAME
" (pio)", host
);
1641 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1643 amba_set_drvdata(dev
, mmc
);
1645 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1646 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1647 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1648 dev
->irq
[0], dev
->irq
[1]);
1650 mmci_dma_setup(host
);
1652 pm_runtime_set_autosuspend_delay(&dev
->dev
, 50);
1653 pm_runtime_use_autosuspend(&dev
->dev
);
1654 pm_runtime_put(&dev
->dev
);
1661 free_irq(dev
->irq
[0], host
);
1663 if (host
->gpio_wp
!= -ENOSYS
)
1664 gpio_free(host
->gpio_wp
);
1666 if (host
->gpio_cd_irq
>= 0)
1667 free_irq(host
->gpio_cd_irq
, host
);
1668 if (host
->gpio_cd
!= -ENOSYS
)
1669 gpio_free(host
->gpio_cd
);
1671 iounmap(host
->base
);
1673 clk_disable_unprepare(host
->clk
);
1677 amba_release_regions(dev
);
1682 static int mmci_remove(struct amba_device
*dev
)
1684 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1687 struct mmci_host
*host
= mmc_priv(mmc
);
1690 * Undo pm_runtime_put() in probe. We use the _sync
1691 * version here so that we can access the primecell.
1693 pm_runtime_get_sync(&dev
->dev
);
1695 mmc_remove_host(mmc
);
1697 writel(0, host
->base
+ MMCIMASK0
);
1698 writel(0, host
->base
+ MMCIMASK1
);
1700 writel(0, host
->base
+ MMCICOMMAND
);
1701 writel(0, host
->base
+ MMCIDATACTRL
);
1703 mmci_dma_release(host
);
1704 free_irq(dev
->irq
[0], host
);
1705 if (!host
->singleirq
)
1706 free_irq(dev
->irq
[1], host
);
1708 if (host
->gpio_wp
!= -ENOSYS
)
1709 gpio_free(host
->gpio_wp
);
1710 if (host
->gpio_cd_irq
>= 0)
1711 free_irq(host
->gpio_cd_irq
, host
);
1712 if (host
->gpio_cd
!= -ENOSYS
)
1713 gpio_free(host
->gpio_cd
);
1715 iounmap(host
->base
);
1716 clk_disable_unprepare(host
->clk
);
1720 amba_release_regions(dev
);
1726 #ifdef CONFIG_SUSPEND
1727 static int mmci_suspend(struct device
*dev
)
1729 struct amba_device
*adev
= to_amba_device(dev
);
1730 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1733 struct mmci_host
*host
= mmc_priv(mmc
);
1734 pm_runtime_get_sync(dev
);
1735 writel(0, host
->base
+ MMCIMASK0
);
1741 static int mmci_resume(struct device
*dev
)
1743 struct amba_device
*adev
= to_amba_device(dev
);
1744 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1747 struct mmci_host
*host
= mmc_priv(mmc
);
1748 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1749 pm_runtime_put(dev
);
1756 #ifdef CONFIG_PM_RUNTIME
1757 static void mmci_save(struct mmci_host
*host
)
1759 unsigned long flags
;
1761 if (host
->variant
->pwrreg_nopower
) {
1762 spin_lock_irqsave(&host
->lock
, flags
);
1764 writel(0, host
->base
+ MMCIMASK0
);
1765 writel(0, host
->base
+ MMCIDATACTRL
);
1766 writel(0, host
->base
+ MMCIPOWER
);
1767 writel(0, host
->base
+ MMCICLOCK
);
1768 mmci_reg_delay(host
);
1770 spin_unlock_irqrestore(&host
->lock
, flags
);
1775 static void mmci_restore(struct mmci_host
*host
)
1777 unsigned long flags
;
1779 if (host
->variant
->pwrreg_nopower
) {
1780 spin_lock_irqsave(&host
->lock
, flags
);
1782 writel(host
->clk_reg
, host
->base
+ MMCICLOCK
);
1783 writel(host
->datactrl_reg
, host
->base
+ MMCIDATACTRL
);
1784 writel(host
->pwr_reg
, host
->base
+ MMCIPOWER
);
1785 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1786 mmci_reg_delay(host
);
1788 spin_unlock_irqrestore(&host
->lock
, flags
);
1792 static int mmci_runtime_suspend(struct device
*dev
)
1794 struct amba_device
*adev
= to_amba_device(dev
);
1795 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1798 struct mmci_host
*host
= mmc_priv(mmc
);
1799 pinctrl_pm_select_sleep_state(dev
);
1801 clk_disable_unprepare(host
->clk
);
1807 static int mmci_runtime_resume(struct device
*dev
)
1809 struct amba_device
*adev
= to_amba_device(dev
);
1810 struct mmc_host
*mmc
= amba_get_drvdata(adev
);
1813 struct mmci_host
*host
= mmc_priv(mmc
);
1814 clk_prepare_enable(host
->clk
);
1816 pinctrl_pm_select_default_state(dev
);
1823 static const struct dev_pm_ops mmci_dev_pm_ops
= {
1824 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend
, mmci_resume
)
1825 SET_RUNTIME_PM_OPS(mmci_runtime_suspend
, mmci_runtime_resume
, NULL
)
1828 static struct amba_id mmci_ids
[] = {
1832 .data
= &variant_arm
,
1837 .data
= &variant_arm_extended_fifo
,
1842 .data
= &variant_arm_extended_fifo_hwfc
,
1847 .data
= &variant_arm
,
1849 /* ST Micro variants */
1853 .data
= &variant_u300
,
1858 .data
= &variant_nomadik
,
1863 .data
= &variant_u300
,
1868 .data
= &variant_ux500
,
1873 .data
= &variant_ux500v2
,
1878 MODULE_DEVICE_TABLE(amba
, mmci_ids
);
1880 static struct amba_driver mmci_driver
= {
1882 .name
= DRIVER_NAME
,
1883 .pm
= &mmci_dev_pm_ops
,
1885 .probe
= mmci_probe
,
1886 .remove
= mmci_remove
,
1887 .id_table
= mmci_ids
,
1890 module_amba_driver(mmci_driver
);
1892 module_param(fmax
, uint
, 0444);
1894 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1895 MODULE_LICENSE("GPL");