PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mmc / host / sh_mmcif.c
blob54730f4aac87f0143ca08a5ca740634376fc4871
1 /*
2 * MMCIF eMMC driver.
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/pagemap.h>
61 #include <linux/platform_device.h>
62 #include <linux/pm_qos.h>
63 #include <linux/pm_runtime.h>
64 #include <linux/sh_dma.h>
65 #include <linux/spinlock.h>
66 #include <linux/module.h>
68 #define DRIVER_NAME "sh_mmcif"
69 #define DRIVER_VERSION "2010-04-28"
71 /* CE_CMD_SET */
72 #define CMD_MASK 0x3f000000
73 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
74 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
76 #define CMD_SET_RBSY (1 << 21) /* R1b */
77 #define CMD_SET_CCSEN (1 << 20)
78 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
79 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
80 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
81 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
82 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
83 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
84 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
85 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
86 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
87 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
89 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
90 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
91 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
92 #define CMD_SET_CCSH (1 << 5)
93 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
94 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
95 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
96 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98 /* CE_CMD_CTRL */
99 #define CMD_CTRL_BREAK (1 << 0)
101 /* CE_BLOCK_SET */
102 #define BLOCK_SIZE_MASK 0x0000ffff
104 /* CE_INT */
105 #define INT_CCSDE (1 << 29)
106 #define INT_CMD12DRE (1 << 26)
107 #define INT_CMD12RBE (1 << 25)
108 #define INT_CMD12CRE (1 << 24)
109 #define INT_DTRANE (1 << 23)
110 #define INT_BUFRE (1 << 22)
111 #define INT_BUFWEN (1 << 21)
112 #define INT_BUFREN (1 << 20)
113 #define INT_CCSRCV (1 << 19)
114 #define INT_RBSYE (1 << 17)
115 #define INT_CRSPE (1 << 16)
116 #define INT_CMDVIO (1 << 15)
117 #define INT_BUFVIO (1 << 14)
118 #define INT_WDATERR (1 << 11)
119 #define INT_RDATERR (1 << 10)
120 #define INT_RIDXERR (1 << 9)
121 #define INT_RSPERR (1 << 8)
122 #define INT_CCSTO (1 << 5)
123 #define INT_CRCSTO (1 << 4)
124 #define INT_WDATTO (1 << 3)
125 #define INT_RDATTO (1 << 2)
126 #define INT_RBSYTO (1 << 1)
127 #define INT_RSPTO (1 << 0)
128 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
129 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
131 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
134 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139 /* CE_INT_MASK */
140 #define MASK_ALL 0x00000000
141 #define MASK_MCCSDE (1 << 29)
142 #define MASK_MCMD12DRE (1 << 26)
143 #define MASK_MCMD12RBE (1 << 25)
144 #define MASK_MCMD12CRE (1 << 24)
145 #define MASK_MDTRANE (1 << 23)
146 #define MASK_MBUFRE (1 << 22)
147 #define MASK_MBUFWEN (1 << 21)
148 #define MASK_MBUFREN (1 << 20)
149 #define MASK_MCCSRCV (1 << 19)
150 #define MASK_MRBSYE (1 << 17)
151 #define MASK_MCRSPE (1 << 16)
152 #define MASK_MCMDVIO (1 << 15)
153 #define MASK_MBUFVIO (1 << 14)
154 #define MASK_MWDATERR (1 << 11)
155 #define MASK_MRDATERR (1 << 10)
156 #define MASK_MRIDXERR (1 << 9)
157 #define MASK_MRSPERR (1 << 8)
158 #define MASK_MCCSTO (1 << 5)
159 #define MASK_MCRCSTO (1 << 4)
160 #define MASK_MWDATTO (1 << 3)
161 #define MASK_MRDATTO (1 << 2)
162 #define MASK_MRBSYTO (1 << 1)
163 #define MASK_MRSPTO (1 << 0)
165 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167 MASK_MCRCSTO | MASK_MWDATTO | \
168 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
171 MASK_MBUFREN | MASK_MBUFWEN | \
172 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
173 MASK_MCMD12RBE | MASK_MCMD12CRE)
175 /* CE_HOST_STS1 */
176 #define STS1_CMDSEQ (1 << 31)
178 /* CE_HOST_STS2 */
179 #define STS2_CRCSTE (1 << 31)
180 #define STS2_CRC16E (1 << 30)
181 #define STS2_AC12CRCE (1 << 29)
182 #define STS2_RSPCRC7E (1 << 28)
183 #define STS2_CRCSTEBE (1 << 27)
184 #define STS2_RDATEBE (1 << 26)
185 #define STS2_AC12REBE (1 << 25)
186 #define STS2_RSPEBE (1 << 24)
187 #define STS2_AC12IDXE (1 << 23)
188 #define STS2_RSPIDXE (1 << 22)
189 #define STS2_CCSTO (1 << 15)
190 #define STS2_RDATTO (1 << 14)
191 #define STS2_DATBSYTO (1 << 13)
192 #define STS2_CRCSTTO (1 << 12)
193 #define STS2_AC12BSYTO (1 << 11)
194 #define STS2_RSPBSYTO (1 << 10)
195 #define STS2_AC12RSPTO (1 << 9)
196 #define STS2_RSPTO (1 << 8)
197 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
198 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
200 STS2_DATBSYTO | STS2_CRCSTTO | \
201 STS2_AC12BSYTO | STS2_RSPBSYTO | \
202 STS2_AC12RSPTO | STS2_RSPTO)
204 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
205 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
206 #define CLKDEV_INIT 400000 /* 400 KHz */
208 enum mmcif_state {
209 STATE_IDLE,
210 STATE_REQUEST,
211 STATE_IOS,
212 STATE_TIMEOUT,
215 enum mmcif_wait_for {
216 MMCIF_WAIT_FOR_REQUEST,
217 MMCIF_WAIT_FOR_CMD,
218 MMCIF_WAIT_FOR_MREAD,
219 MMCIF_WAIT_FOR_MWRITE,
220 MMCIF_WAIT_FOR_READ,
221 MMCIF_WAIT_FOR_WRITE,
222 MMCIF_WAIT_FOR_READ_END,
223 MMCIF_WAIT_FOR_WRITE_END,
224 MMCIF_WAIT_FOR_STOP,
227 struct sh_mmcif_host {
228 struct mmc_host *mmc;
229 struct mmc_request *mrq;
230 struct platform_device *pd;
231 struct clk *hclk;
232 unsigned int clk;
233 int bus_width;
234 unsigned char timing;
235 bool sd_error;
236 bool dying;
237 long timeout;
238 void __iomem *addr;
239 u32 *pio_ptr;
240 spinlock_t lock; /* protect sh_mmcif_host::state */
241 enum mmcif_state state;
242 enum mmcif_wait_for wait_for;
243 struct delayed_work timeout_work;
244 size_t blocksize;
245 int sg_idx;
246 int sg_blkidx;
247 bool power;
248 bool card_present;
249 bool ccs_enable; /* Command Completion Signal support */
250 bool clk_ctrl2_enable;
251 struct mutex thread_lock;
253 /* DMA support */
254 struct dma_chan *chan_rx;
255 struct dma_chan *chan_tx;
256 struct completion dma_complete;
257 bool dma_active;
260 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261 unsigned int reg, u32 val)
263 writel(val | readl(host->addr + reg), host->addr + reg);
266 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267 unsigned int reg, u32 val)
269 writel(~val & readl(host->addr + reg), host->addr + reg);
272 static void mmcif_dma_complete(void *arg)
274 struct sh_mmcif_host *host = arg;
275 struct mmc_request *mrq = host->mrq;
277 dev_dbg(&host->pd->dev, "Command completed\n");
279 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280 dev_name(&host->pd->dev)))
281 return;
283 complete(&host->dma_complete);
286 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
288 struct mmc_data *data = host->mrq->data;
289 struct scatterlist *sg = data->sg;
290 struct dma_async_tx_descriptor *desc = NULL;
291 struct dma_chan *chan = host->chan_rx;
292 dma_cookie_t cookie = -EINVAL;
293 int ret;
295 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296 DMA_FROM_DEVICE);
297 if (ret > 0) {
298 host->dma_active = true;
299 desc = dmaengine_prep_slave_sg(chan, sg, ret,
300 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
303 if (desc) {
304 desc->callback = mmcif_dma_complete;
305 desc->callback_param = host;
306 cookie = dmaengine_submit(desc);
307 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308 dma_async_issue_pending(chan);
310 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311 __func__, data->sg_len, ret, cookie);
313 if (!desc) {
314 /* DMA failed, fall back to PIO */
315 if (ret >= 0)
316 ret = -EIO;
317 host->chan_rx = NULL;
318 host->dma_active = false;
319 dma_release_channel(chan);
320 /* Free the Tx channel too */
321 chan = host->chan_tx;
322 if (chan) {
323 host->chan_tx = NULL;
324 dma_release_channel(chan);
326 dev_warn(&host->pd->dev,
327 "DMA failed: %d, falling back to PIO\n", ret);
328 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
331 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332 desc, cookie, data->sg_len);
335 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
337 struct mmc_data *data = host->mrq->data;
338 struct scatterlist *sg = data->sg;
339 struct dma_async_tx_descriptor *desc = NULL;
340 struct dma_chan *chan = host->chan_tx;
341 dma_cookie_t cookie = -EINVAL;
342 int ret;
344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 DMA_TO_DEVICE);
346 if (ret > 0) {
347 host->dma_active = true;
348 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352 if (desc) {
353 desc->callback = mmcif_dma_complete;
354 desc->callback_param = host;
355 cookie = dmaengine_submit(desc);
356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 dma_async_issue_pending(chan);
359 dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__, data->sg_len, ret, cookie);
362 if (!desc) {
363 /* DMA failed, fall back to PIO */
364 if (ret >= 0)
365 ret = -EIO;
366 host->chan_tx = NULL;
367 host->dma_active = false;
368 dma_release_channel(chan);
369 /* Free the Rx channel too */
370 chan = host->chan_rx;
371 if (chan) {
372 host->chan_rx = NULL;
373 dma_release_channel(chan);
375 dev_warn(&host->pd->dev,
376 "DMA failed: %d, falling back to PIO\n", ret);
377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380 dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381 desc, cookie);
384 static struct dma_chan *
385 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386 struct sh_mmcif_plat_data *pdata,
387 enum dma_transfer_direction direction)
389 struct dma_slave_config cfg;
390 struct dma_chan *chan;
391 unsigned int slave_id;
392 struct resource *res;
393 dma_cap_mask_t mask;
394 int ret;
396 dma_cap_zero(mask);
397 dma_cap_set(DMA_SLAVE, mask);
399 if (pdata)
400 slave_id = direction == DMA_MEM_TO_DEV
401 ? pdata->slave_id_tx : pdata->slave_id_rx;
402 else
403 slave_id = 0;
405 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
406 (void *)(unsigned long)slave_id, &host->pd->dev,
407 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
409 dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
410 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
412 if (!chan)
413 return NULL;
415 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
417 /* In the OF case the driver will get the slave ID from the DT */
418 cfg.slave_id = slave_id;
419 cfg.direction = direction;
420 cfg.dst_addr = res->start + MMCIF_CE_DATA;
421 cfg.src_addr = 0;
422 ret = dmaengine_slave_config(chan, &cfg);
423 if (ret < 0) {
424 dma_release_channel(chan);
425 return NULL;
428 return chan;
431 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
432 struct sh_mmcif_plat_data *pdata)
434 host->dma_active = false;
436 if (pdata) {
437 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
438 return;
439 } else if (!host->pd->dev.of_node) {
440 return;
443 /* We can only either use DMA for both Tx and Rx or not use it at all */
444 host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
445 if (!host->chan_tx)
446 return;
448 host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
449 if (!host->chan_rx) {
450 dma_release_channel(host->chan_tx);
451 host->chan_tx = NULL;
455 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
457 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
458 /* Descriptors are freed automatically */
459 if (host->chan_tx) {
460 struct dma_chan *chan = host->chan_tx;
461 host->chan_tx = NULL;
462 dma_release_channel(chan);
464 if (host->chan_rx) {
465 struct dma_chan *chan = host->chan_rx;
466 host->chan_rx = NULL;
467 dma_release_channel(chan);
470 host->dma_active = false;
473 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
475 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
476 bool sup_pclk = p ? p->sup_pclk : false;
478 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
479 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
481 if (!clk)
482 return;
483 if (sup_pclk && clk == host->clk)
484 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
485 else
486 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
487 ((fls(DIV_ROUND_UP(host->clk,
488 clk) - 1) - 1) << 16));
490 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
493 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
495 u32 tmp;
497 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
499 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
500 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
501 if (host->ccs_enable)
502 tmp |= SCCSTO_29;
503 if (host->clk_ctrl2_enable)
504 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
505 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
506 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
507 /* byte swap on */
508 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
511 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
513 u32 state1, state2;
514 int ret, timeout;
516 host->sd_error = false;
518 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
519 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
520 dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
521 dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
523 if (state1 & STS1_CMDSEQ) {
524 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
525 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
526 for (timeout = 10000000; timeout; timeout--) {
527 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
528 & STS1_CMDSEQ))
529 break;
530 mdelay(1);
532 if (!timeout) {
533 dev_err(&host->pd->dev,
534 "Forced end of command sequence timeout err\n");
535 return -EIO;
537 sh_mmcif_sync_reset(host);
538 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
539 return -EIO;
542 if (state2 & STS2_CRC_ERR) {
543 dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
544 host->state, host->wait_for);
545 ret = -EIO;
546 } else if (state2 & STS2_TIMEOUT_ERR) {
547 dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
548 host->state, host->wait_for);
549 ret = -ETIMEDOUT;
550 } else {
551 dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
552 host->state, host->wait_for);
553 ret = -EIO;
555 return ret;
558 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
560 struct mmc_data *data = host->mrq->data;
562 host->sg_blkidx += host->blocksize;
564 /* data->sg->length must be a multiple of host->blocksize? */
565 BUG_ON(host->sg_blkidx > data->sg->length);
567 if (host->sg_blkidx == data->sg->length) {
568 host->sg_blkidx = 0;
569 if (++host->sg_idx < data->sg_len)
570 host->pio_ptr = sg_virt(++data->sg);
571 } else {
572 host->pio_ptr = p;
575 return host->sg_idx != data->sg_len;
578 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
579 struct mmc_request *mrq)
581 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
582 BLOCK_SIZE_MASK) + 3;
584 host->wait_for = MMCIF_WAIT_FOR_READ;
586 /* buf read enable */
587 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
590 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
592 struct mmc_data *data = host->mrq->data;
593 u32 *p = sg_virt(data->sg);
594 int i;
596 if (host->sd_error) {
597 data->error = sh_mmcif_error_manage(host);
598 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
599 return false;
602 for (i = 0; i < host->blocksize / 4; i++)
603 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
605 /* buffer read end */
606 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
607 host->wait_for = MMCIF_WAIT_FOR_READ_END;
609 return true;
612 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
613 struct mmc_request *mrq)
615 struct mmc_data *data = mrq->data;
617 if (!data->sg_len || !data->sg->length)
618 return;
620 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
621 BLOCK_SIZE_MASK;
623 host->wait_for = MMCIF_WAIT_FOR_MREAD;
624 host->sg_idx = 0;
625 host->sg_blkidx = 0;
626 host->pio_ptr = sg_virt(data->sg);
628 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
631 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
633 struct mmc_data *data = host->mrq->data;
634 u32 *p = host->pio_ptr;
635 int i;
637 if (host->sd_error) {
638 data->error = sh_mmcif_error_manage(host);
639 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
640 return false;
643 BUG_ON(!data->sg->length);
645 for (i = 0; i < host->blocksize / 4; i++)
646 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
648 if (!sh_mmcif_next_block(host, p))
649 return false;
651 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
653 return true;
656 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
657 struct mmc_request *mrq)
659 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
660 BLOCK_SIZE_MASK) + 3;
662 host->wait_for = MMCIF_WAIT_FOR_WRITE;
664 /* buf write enable */
665 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
668 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
670 struct mmc_data *data = host->mrq->data;
671 u32 *p = sg_virt(data->sg);
672 int i;
674 if (host->sd_error) {
675 data->error = sh_mmcif_error_manage(host);
676 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
677 return false;
680 for (i = 0; i < host->blocksize / 4; i++)
681 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
683 /* buffer write end */
684 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
685 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
687 return true;
690 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
691 struct mmc_request *mrq)
693 struct mmc_data *data = mrq->data;
695 if (!data->sg_len || !data->sg->length)
696 return;
698 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
699 BLOCK_SIZE_MASK;
701 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
702 host->sg_idx = 0;
703 host->sg_blkidx = 0;
704 host->pio_ptr = sg_virt(data->sg);
706 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
709 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
711 struct mmc_data *data = host->mrq->data;
712 u32 *p = host->pio_ptr;
713 int i;
715 if (host->sd_error) {
716 data->error = sh_mmcif_error_manage(host);
717 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
718 return false;
721 BUG_ON(!data->sg->length);
723 for (i = 0; i < host->blocksize / 4; i++)
724 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
726 if (!sh_mmcif_next_block(host, p))
727 return false;
729 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
731 return true;
734 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
735 struct mmc_command *cmd)
737 if (cmd->flags & MMC_RSP_136) {
738 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
739 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
740 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
741 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
742 } else
743 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
746 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
747 struct mmc_command *cmd)
749 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
752 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
753 struct mmc_request *mrq)
755 struct mmc_data *data = mrq->data;
756 struct mmc_command *cmd = mrq->cmd;
757 u32 opc = cmd->opcode;
758 u32 tmp = 0;
760 /* Response Type check */
761 switch (mmc_resp_type(cmd)) {
762 case MMC_RSP_NONE:
763 tmp |= CMD_SET_RTYP_NO;
764 break;
765 case MMC_RSP_R1:
766 case MMC_RSP_R1B:
767 case MMC_RSP_R3:
768 tmp |= CMD_SET_RTYP_6B;
769 break;
770 case MMC_RSP_R2:
771 tmp |= CMD_SET_RTYP_17B;
772 break;
773 default:
774 dev_err(&host->pd->dev, "Unsupported response type.\n");
775 break;
777 switch (opc) {
778 /* RBSY */
779 case MMC_SLEEP_AWAKE:
780 case MMC_SWITCH:
781 case MMC_STOP_TRANSMISSION:
782 case MMC_SET_WRITE_PROT:
783 case MMC_CLR_WRITE_PROT:
784 case MMC_ERASE:
785 tmp |= CMD_SET_RBSY;
786 break;
788 /* WDAT / DATW */
789 if (data) {
790 tmp |= CMD_SET_WDAT;
791 switch (host->bus_width) {
792 case MMC_BUS_WIDTH_1:
793 tmp |= CMD_SET_DATW_1;
794 break;
795 case MMC_BUS_WIDTH_4:
796 tmp |= CMD_SET_DATW_4;
797 break;
798 case MMC_BUS_WIDTH_8:
799 tmp |= CMD_SET_DATW_8;
800 break;
801 default:
802 dev_err(&host->pd->dev, "Unsupported bus width.\n");
803 break;
805 switch (host->timing) {
806 case MMC_TIMING_UHS_DDR50:
808 * MMC core will only set this timing, if the host
809 * advertises the MMC_CAP_UHS_DDR50 capability. MMCIF
810 * implementations with this capability, e.g. sh73a0,
811 * will have to set it in their platform data.
813 tmp |= CMD_SET_DARS;
814 break;
817 /* DWEN */
818 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
819 tmp |= CMD_SET_DWEN;
820 /* CMLTE/CMD12EN */
821 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
822 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
823 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
824 data->blocks << 16);
826 /* RIDXC[1:0] check bits */
827 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
828 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
829 tmp |= CMD_SET_RIDXC_BITS;
830 /* RCRC7C[1:0] check bits */
831 if (opc == MMC_SEND_OP_COND)
832 tmp |= CMD_SET_CRC7C_BITS;
833 /* RCRC7C[1:0] internal CRC7 */
834 if (opc == MMC_ALL_SEND_CID ||
835 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
836 tmp |= CMD_SET_CRC7C_INTERNAL;
838 return (opc << 24) | tmp;
841 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
842 struct mmc_request *mrq, u32 opc)
844 switch (opc) {
845 case MMC_READ_MULTIPLE_BLOCK:
846 sh_mmcif_multi_read(host, mrq);
847 return 0;
848 case MMC_WRITE_MULTIPLE_BLOCK:
849 sh_mmcif_multi_write(host, mrq);
850 return 0;
851 case MMC_WRITE_BLOCK:
852 sh_mmcif_single_write(host, mrq);
853 return 0;
854 case MMC_READ_SINGLE_BLOCK:
855 case MMC_SEND_EXT_CSD:
856 sh_mmcif_single_read(host, mrq);
857 return 0;
858 default:
859 dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
860 return -EINVAL;
864 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
865 struct mmc_request *mrq)
867 struct mmc_command *cmd = mrq->cmd;
868 u32 opc = cmd->opcode;
869 u32 mask;
871 switch (opc) {
872 /* response busy check */
873 case MMC_SLEEP_AWAKE:
874 case MMC_SWITCH:
875 case MMC_STOP_TRANSMISSION:
876 case MMC_SET_WRITE_PROT:
877 case MMC_CLR_WRITE_PROT:
878 case MMC_ERASE:
879 mask = MASK_START_CMD | MASK_MRBSYE;
880 break;
881 default:
882 mask = MASK_START_CMD | MASK_MCRSPE;
883 break;
886 if (host->ccs_enable)
887 mask |= MASK_MCCSTO;
889 if (mrq->data) {
890 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
891 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
892 mrq->data->blksz);
894 opc = sh_mmcif_set_cmd(host, mrq);
896 if (host->ccs_enable)
897 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
898 else
899 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
900 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
901 /* set arg */
902 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
903 /* set cmd */
904 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
906 host->wait_for = MMCIF_WAIT_FOR_CMD;
907 schedule_delayed_work(&host->timeout_work, host->timeout);
910 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
911 struct mmc_request *mrq)
913 switch (mrq->cmd->opcode) {
914 case MMC_READ_MULTIPLE_BLOCK:
915 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
916 break;
917 case MMC_WRITE_MULTIPLE_BLOCK:
918 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
919 break;
920 default:
921 dev_err(&host->pd->dev, "unsupported stop cmd\n");
922 mrq->stop->error = sh_mmcif_error_manage(host);
923 return;
926 host->wait_for = MMCIF_WAIT_FOR_STOP;
929 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
931 struct sh_mmcif_host *host = mmc_priv(mmc);
932 unsigned long flags;
934 spin_lock_irqsave(&host->lock, flags);
935 if (host->state != STATE_IDLE) {
936 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
937 spin_unlock_irqrestore(&host->lock, flags);
938 mrq->cmd->error = -EAGAIN;
939 mmc_request_done(mmc, mrq);
940 return;
943 host->state = STATE_REQUEST;
944 spin_unlock_irqrestore(&host->lock, flags);
946 switch (mrq->cmd->opcode) {
947 /* MMCIF does not support SD/SDIO command */
948 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
949 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
950 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
951 break;
952 case MMC_APP_CMD:
953 case SD_IO_RW_DIRECT:
954 host->state = STATE_IDLE;
955 mrq->cmd->error = -ETIMEDOUT;
956 mmc_request_done(mmc, mrq);
957 return;
958 default:
959 break;
962 host->mrq = mrq;
964 sh_mmcif_start_cmd(host, mrq);
967 static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
969 int ret = clk_prepare_enable(host->hclk);
971 if (!ret) {
972 host->clk = clk_get_rate(host->hclk);
973 host->mmc->f_max = host->clk / 2;
974 host->mmc->f_min = host->clk / 512;
977 return ret;
980 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
982 struct mmc_host *mmc = host->mmc;
984 if (!IS_ERR(mmc->supply.vmmc))
985 /* Errors ignored... */
986 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
987 ios->power_mode ? ios->vdd : 0);
990 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
992 struct sh_mmcif_host *host = mmc_priv(mmc);
993 unsigned long flags;
995 spin_lock_irqsave(&host->lock, flags);
996 if (host->state != STATE_IDLE) {
997 dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
998 spin_unlock_irqrestore(&host->lock, flags);
999 return;
1002 host->state = STATE_IOS;
1003 spin_unlock_irqrestore(&host->lock, flags);
1005 if (ios->power_mode == MMC_POWER_UP) {
1006 if (!host->card_present) {
1007 /* See if we also get DMA */
1008 sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1009 host->card_present = true;
1011 sh_mmcif_set_power(host, ios);
1012 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1013 /* clock stop */
1014 sh_mmcif_clock_control(host, 0);
1015 if (ios->power_mode == MMC_POWER_OFF) {
1016 if (host->card_present) {
1017 sh_mmcif_release_dma(host);
1018 host->card_present = false;
1021 if (host->power) {
1022 pm_runtime_put_sync(&host->pd->dev);
1023 clk_disable_unprepare(host->hclk);
1024 host->power = false;
1025 if (ios->power_mode == MMC_POWER_OFF)
1026 sh_mmcif_set_power(host, ios);
1028 host->state = STATE_IDLE;
1029 return;
1032 if (ios->clock) {
1033 if (!host->power) {
1034 sh_mmcif_clk_update(host);
1035 pm_runtime_get_sync(&host->pd->dev);
1036 host->power = true;
1037 sh_mmcif_sync_reset(host);
1039 sh_mmcif_clock_control(host, ios->clock);
1042 host->timing = ios->timing;
1043 host->bus_width = ios->bus_width;
1044 host->state = STATE_IDLE;
1047 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1049 struct sh_mmcif_host *host = mmc_priv(mmc);
1050 struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1051 int ret = mmc_gpio_get_cd(mmc);
1053 if (ret >= 0)
1054 return ret;
1056 if (!p || !p->get_cd)
1057 return -ENOSYS;
1058 else
1059 return p->get_cd(host->pd);
1062 static struct mmc_host_ops sh_mmcif_ops = {
1063 .request = sh_mmcif_request,
1064 .set_ios = sh_mmcif_set_ios,
1065 .get_cd = sh_mmcif_get_cd,
1068 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1070 struct mmc_command *cmd = host->mrq->cmd;
1071 struct mmc_data *data = host->mrq->data;
1072 long time;
1074 if (host->sd_error) {
1075 switch (cmd->opcode) {
1076 case MMC_ALL_SEND_CID:
1077 case MMC_SELECT_CARD:
1078 case MMC_APP_CMD:
1079 cmd->error = -ETIMEDOUT;
1080 break;
1081 default:
1082 cmd->error = sh_mmcif_error_manage(host);
1083 break;
1085 dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1086 cmd->opcode, cmd->error);
1087 host->sd_error = false;
1088 return false;
1090 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1091 cmd->error = 0;
1092 return false;
1095 sh_mmcif_get_response(host, cmd);
1097 if (!data)
1098 return false;
1101 * Completion can be signalled from DMA callback and error, so, have to
1102 * reset here, before setting .dma_active
1104 init_completion(&host->dma_complete);
1106 if (data->flags & MMC_DATA_READ) {
1107 if (host->chan_rx)
1108 sh_mmcif_start_dma_rx(host);
1109 } else {
1110 if (host->chan_tx)
1111 sh_mmcif_start_dma_tx(host);
1114 if (!host->dma_active) {
1115 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1116 return !data->error;
1119 /* Running in the IRQ thread, can sleep */
1120 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1121 host->timeout);
1123 if (data->flags & MMC_DATA_READ)
1124 dma_unmap_sg(host->chan_rx->device->dev,
1125 data->sg, data->sg_len,
1126 DMA_FROM_DEVICE);
1127 else
1128 dma_unmap_sg(host->chan_tx->device->dev,
1129 data->sg, data->sg_len,
1130 DMA_TO_DEVICE);
1132 if (host->sd_error) {
1133 dev_err(host->mmc->parent,
1134 "Error IRQ while waiting for DMA completion!\n");
1135 /* Woken up by an error IRQ: abort DMA */
1136 data->error = sh_mmcif_error_manage(host);
1137 } else if (!time) {
1138 dev_err(host->mmc->parent, "DMA timeout!\n");
1139 data->error = -ETIMEDOUT;
1140 } else if (time < 0) {
1141 dev_err(host->mmc->parent,
1142 "wait_for_completion_...() error %ld!\n", time);
1143 data->error = time;
1145 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1146 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1147 host->dma_active = false;
1149 if (data->error) {
1150 data->bytes_xfered = 0;
1151 /* Abort DMA */
1152 if (data->flags & MMC_DATA_READ)
1153 dmaengine_terminate_all(host->chan_rx);
1154 else
1155 dmaengine_terminate_all(host->chan_tx);
1158 return false;
1161 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1163 struct sh_mmcif_host *host = dev_id;
1164 struct mmc_request *mrq;
1165 bool wait = false;
1167 cancel_delayed_work_sync(&host->timeout_work);
1169 mutex_lock(&host->thread_lock);
1171 mrq = host->mrq;
1172 if (!mrq) {
1173 dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1174 host->state, host->wait_for);
1175 mutex_unlock(&host->thread_lock);
1176 return IRQ_HANDLED;
1180 * All handlers return true, if processing continues, and false, if the
1181 * request has to be completed - successfully or not
1183 switch (host->wait_for) {
1184 case MMCIF_WAIT_FOR_REQUEST:
1185 /* We're too late, the timeout has already kicked in */
1186 mutex_unlock(&host->thread_lock);
1187 return IRQ_HANDLED;
1188 case MMCIF_WAIT_FOR_CMD:
1189 /* Wait for data? */
1190 wait = sh_mmcif_end_cmd(host);
1191 break;
1192 case MMCIF_WAIT_FOR_MREAD:
1193 /* Wait for more data? */
1194 wait = sh_mmcif_mread_block(host);
1195 break;
1196 case MMCIF_WAIT_FOR_READ:
1197 /* Wait for data end? */
1198 wait = sh_mmcif_read_block(host);
1199 break;
1200 case MMCIF_WAIT_FOR_MWRITE:
1201 /* Wait data to write? */
1202 wait = sh_mmcif_mwrite_block(host);
1203 break;
1204 case MMCIF_WAIT_FOR_WRITE:
1205 /* Wait for data end? */
1206 wait = sh_mmcif_write_block(host);
1207 break;
1208 case MMCIF_WAIT_FOR_STOP:
1209 if (host->sd_error) {
1210 mrq->stop->error = sh_mmcif_error_manage(host);
1211 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1212 break;
1214 sh_mmcif_get_cmd12response(host, mrq->stop);
1215 mrq->stop->error = 0;
1216 break;
1217 case MMCIF_WAIT_FOR_READ_END:
1218 case MMCIF_WAIT_FOR_WRITE_END:
1219 if (host->sd_error) {
1220 mrq->data->error = sh_mmcif_error_manage(host);
1221 dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1223 break;
1224 default:
1225 BUG();
1228 if (wait) {
1229 schedule_delayed_work(&host->timeout_work, host->timeout);
1230 /* Wait for more data */
1231 mutex_unlock(&host->thread_lock);
1232 return IRQ_HANDLED;
1235 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1236 struct mmc_data *data = mrq->data;
1237 if (!mrq->cmd->error && data && !data->error)
1238 data->bytes_xfered =
1239 data->blocks * data->blksz;
1241 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1242 sh_mmcif_stop_cmd(host, mrq);
1243 if (!mrq->stop->error) {
1244 schedule_delayed_work(&host->timeout_work, host->timeout);
1245 mutex_unlock(&host->thread_lock);
1246 return IRQ_HANDLED;
1251 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1252 host->state = STATE_IDLE;
1253 host->mrq = NULL;
1254 mmc_request_done(host->mmc, mrq);
1256 mutex_unlock(&host->thread_lock);
1258 return IRQ_HANDLED;
1261 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1263 struct sh_mmcif_host *host = dev_id;
1264 u32 state, mask;
1266 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1267 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1268 if (host->ccs_enable)
1269 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1270 else
1271 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1272 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1274 if (state & ~MASK_CLEAN)
1275 dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1276 state);
1278 if (state & INT_ERR_STS || state & ~INT_ALL) {
1279 host->sd_error = true;
1280 dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1282 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1283 if (!host->mrq)
1284 dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1285 if (!host->dma_active)
1286 return IRQ_WAKE_THREAD;
1287 else if (host->sd_error)
1288 mmcif_dma_complete(host);
1289 } else {
1290 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1293 return IRQ_HANDLED;
1296 static void mmcif_timeout_work(struct work_struct *work)
1298 struct delayed_work *d = container_of(work, struct delayed_work, work);
1299 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1300 struct mmc_request *mrq = host->mrq;
1301 unsigned long flags;
1303 if (host->dying)
1304 /* Don't run after mmc_remove_host() */
1305 return;
1307 dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1308 host->wait_for, mrq->cmd->opcode);
1310 spin_lock_irqsave(&host->lock, flags);
1311 if (host->state == STATE_IDLE) {
1312 spin_unlock_irqrestore(&host->lock, flags);
1313 return;
1316 host->state = STATE_TIMEOUT;
1317 spin_unlock_irqrestore(&host->lock, flags);
1320 * Handle races with cancel_delayed_work(), unless
1321 * cancel_delayed_work_sync() is used
1323 switch (host->wait_for) {
1324 case MMCIF_WAIT_FOR_CMD:
1325 mrq->cmd->error = sh_mmcif_error_manage(host);
1326 break;
1327 case MMCIF_WAIT_FOR_STOP:
1328 mrq->stop->error = sh_mmcif_error_manage(host);
1329 break;
1330 case MMCIF_WAIT_FOR_MREAD:
1331 case MMCIF_WAIT_FOR_MWRITE:
1332 case MMCIF_WAIT_FOR_READ:
1333 case MMCIF_WAIT_FOR_WRITE:
1334 case MMCIF_WAIT_FOR_READ_END:
1335 case MMCIF_WAIT_FOR_WRITE_END:
1336 mrq->data->error = sh_mmcif_error_manage(host);
1337 break;
1338 default:
1339 BUG();
1342 host->state = STATE_IDLE;
1343 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1344 host->mrq = NULL;
1345 mmc_request_done(host->mmc, mrq);
1348 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1350 struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1351 struct mmc_host *mmc = host->mmc;
1353 mmc_regulator_get_supply(mmc);
1355 if (!pd)
1356 return;
1358 if (!mmc->ocr_avail)
1359 mmc->ocr_avail = pd->ocr;
1360 else if (pd->ocr)
1361 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1364 static int sh_mmcif_probe(struct platform_device *pdev)
1366 int ret = 0, irq[2];
1367 struct mmc_host *mmc;
1368 struct sh_mmcif_host *host;
1369 struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1370 struct resource *res;
1371 void __iomem *reg;
1372 const char *name;
1374 irq[0] = platform_get_irq(pdev, 0);
1375 irq[1] = platform_get_irq(pdev, 1);
1376 if (irq[0] < 0) {
1377 dev_err(&pdev->dev, "Get irq error\n");
1378 return -ENXIO;
1380 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1381 if (!res) {
1382 dev_err(&pdev->dev, "platform_get_resource error.\n");
1383 return -ENXIO;
1385 reg = ioremap(res->start, resource_size(res));
1386 if (!reg) {
1387 dev_err(&pdev->dev, "ioremap error.\n");
1388 return -ENOMEM;
1391 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1392 if (!mmc) {
1393 ret = -ENOMEM;
1394 goto ealloch;
1397 ret = mmc_of_parse(mmc);
1398 if (ret < 0)
1399 goto eofparse;
1401 host = mmc_priv(mmc);
1402 host->mmc = mmc;
1403 host->addr = reg;
1404 host->timeout = msecs_to_jiffies(1000);
1405 host->ccs_enable = !pd || !pd->ccs_unsupported;
1406 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1408 host->pd = pdev;
1410 spin_lock_init(&host->lock);
1412 mmc->ops = &sh_mmcif_ops;
1413 sh_mmcif_init_ocr(host);
1415 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1416 if (pd && pd->caps)
1417 mmc->caps |= pd->caps;
1418 mmc->max_segs = 32;
1419 mmc->max_blk_size = 512;
1420 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1421 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1422 mmc->max_seg_size = mmc->max_req_size;
1424 platform_set_drvdata(pdev, host);
1426 pm_runtime_enable(&pdev->dev);
1427 host->power = false;
1429 host->hclk = clk_get(&pdev->dev, NULL);
1430 if (IS_ERR(host->hclk)) {
1431 ret = PTR_ERR(host->hclk);
1432 dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1433 goto eclkget;
1435 ret = sh_mmcif_clk_update(host);
1436 if (ret < 0)
1437 goto eclkupdate;
1439 ret = pm_runtime_resume(&pdev->dev);
1440 if (ret < 0)
1441 goto eresume;
1443 INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1445 sh_mmcif_sync_reset(host);
1446 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1448 name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1449 ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host);
1450 if (ret) {
1451 dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1452 goto ereqirq0;
1454 if (irq[1] >= 0) {
1455 ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt,
1456 0, "sh_mmc:int", host);
1457 if (ret) {
1458 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1459 goto ereqirq1;
1463 if (pd && pd->use_cd_gpio) {
1464 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1465 if (ret < 0)
1466 goto erqcd;
1469 mutex_init(&host->thread_lock);
1471 clk_disable_unprepare(host->hclk);
1472 ret = mmc_add_host(mmc);
1473 if (ret < 0)
1474 goto emmcaddh;
1476 dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1478 dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1479 dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1480 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1481 return ret;
1483 emmcaddh:
1484 erqcd:
1485 if (irq[1] >= 0)
1486 free_irq(irq[1], host);
1487 ereqirq1:
1488 free_irq(irq[0], host);
1489 ereqirq0:
1490 pm_runtime_suspend(&pdev->dev);
1491 eresume:
1492 clk_disable_unprepare(host->hclk);
1493 eclkupdate:
1494 clk_put(host->hclk);
1495 eclkget:
1496 pm_runtime_disable(&pdev->dev);
1497 eofparse:
1498 mmc_free_host(mmc);
1499 ealloch:
1500 iounmap(reg);
1501 return ret;
1504 static int sh_mmcif_remove(struct platform_device *pdev)
1506 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1507 int irq[2];
1509 host->dying = true;
1510 clk_prepare_enable(host->hclk);
1511 pm_runtime_get_sync(&pdev->dev);
1513 dev_pm_qos_hide_latency_limit(&pdev->dev);
1515 mmc_remove_host(host->mmc);
1516 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1519 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1520 * mmc_remove_host() call above. But swapping order doesn't help either
1521 * (a query on the linux-mmc mailing list didn't bring any replies).
1523 cancel_delayed_work_sync(&host->timeout_work);
1525 if (host->addr)
1526 iounmap(host->addr);
1528 irq[0] = platform_get_irq(pdev, 0);
1529 irq[1] = platform_get_irq(pdev, 1);
1531 free_irq(irq[0], host);
1532 if (irq[1] >= 0)
1533 free_irq(irq[1], host);
1535 clk_disable_unprepare(host->hclk);
1536 mmc_free_host(host->mmc);
1537 pm_runtime_put_sync(&pdev->dev);
1538 pm_runtime_disable(&pdev->dev);
1540 return 0;
1543 #ifdef CONFIG_PM_SLEEP
1544 static int sh_mmcif_suspend(struct device *dev)
1546 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1548 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1550 return 0;
1553 static int sh_mmcif_resume(struct device *dev)
1555 return 0;
1557 #endif
1559 static const struct of_device_id mmcif_of_match[] = {
1560 { .compatible = "renesas,sh-mmcif" },
1563 MODULE_DEVICE_TABLE(of, mmcif_of_match);
1565 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1566 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1569 static struct platform_driver sh_mmcif_driver = {
1570 .probe = sh_mmcif_probe,
1571 .remove = sh_mmcif_remove,
1572 .driver = {
1573 .name = DRIVER_NAME,
1574 .pm = &sh_mmcif_dev_pm_ops,
1575 .owner = THIS_MODULE,
1576 .of_match_table = mmcif_of_match,
1580 module_platform_driver(sh_mmcif_driver);
1582 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1583 MODULE_LICENSE("GPL");
1584 MODULE_ALIAS("platform:" DRIVER_NAME);
1585 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");