2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/platform_device.h>
22 #include <asm/mach-au1x00/au1000.h>
23 #include <asm/mach-au1x00/au1550nd.h>
28 struct nand_chip chip
;
32 void (*write_byte
)(struct mtd_info
*, u_char
);
36 * au_read_byte - read one byte from the chip
37 * @mtd: MTD device structure
39 * read function for 8bit buswidth
41 static u_char
au_read_byte(struct mtd_info
*mtd
)
43 struct nand_chip
*this = mtd
->priv
;
44 u_char ret
= readb(this->IO_ADDR_R
);
50 * au_write_byte - write one byte to the chip
51 * @mtd: MTD device structure
52 * @byte: pointer to data byte to write
54 * write function for 8it buswidth
56 static void au_write_byte(struct mtd_info
*mtd
, u_char byte
)
58 struct nand_chip
*this = mtd
->priv
;
59 writeb(byte
, this->IO_ADDR_W
);
64 * au_read_byte16 - read one byte endianness aware from the chip
65 * @mtd: MTD device structure
67 * read function for 16bit buswidth with endianness conversion
69 static u_char
au_read_byte16(struct mtd_info
*mtd
)
71 struct nand_chip
*this = mtd
->priv
;
72 u_char ret
= (u_char
) cpu_to_le16(readw(this->IO_ADDR_R
));
78 * au_write_byte16 - write one byte endianness aware to the chip
79 * @mtd: MTD device structure
80 * @byte: pointer to data byte to write
82 * write function for 16bit buswidth with endianness conversion
84 static void au_write_byte16(struct mtd_info
*mtd
, u_char byte
)
86 struct nand_chip
*this = mtd
->priv
;
87 writew(le16_to_cpu((u16
) byte
), this->IO_ADDR_W
);
92 * au_read_word - read one word from the chip
93 * @mtd: MTD device structure
95 * read function for 16bit buswidth without endianness conversion
97 static u16
au_read_word(struct mtd_info
*mtd
)
99 struct nand_chip
*this = mtd
->priv
;
100 u16 ret
= readw(this->IO_ADDR_R
);
106 * au_write_buf - write buffer to chip
107 * @mtd: MTD device structure
109 * @len: number of bytes to write
111 * write function for 8bit buswidth
113 static void au_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
116 struct nand_chip
*this = mtd
->priv
;
118 for (i
= 0; i
< len
; i
++) {
119 writeb(buf
[i
], this->IO_ADDR_W
);
125 * au_read_buf - read chip data into buffer
126 * @mtd: MTD device structure
127 * @buf: buffer to store date
128 * @len: number of bytes to read
130 * read function for 8bit buswidth
132 static void au_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
135 struct nand_chip
*this = mtd
->priv
;
137 for (i
= 0; i
< len
; i
++) {
138 buf
[i
] = readb(this->IO_ADDR_R
);
144 * au_write_buf16 - write buffer to chip
145 * @mtd: MTD device structure
147 * @len: number of bytes to write
149 * write function for 16bit buswidth
151 static void au_write_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
154 struct nand_chip
*this = mtd
->priv
;
155 u16
*p
= (u16
*) buf
;
158 for (i
= 0; i
< len
; i
++) {
159 writew(p
[i
], this->IO_ADDR_W
);
166 * au_read_buf16 - read chip data into buffer
167 * @mtd: MTD device structure
168 * @buf: buffer to store date
169 * @len: number of bytes to read
171 * read function for 16bit buswidth
173 static void au_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
176 struct nand_chip
*this = mtd
->priv
;
177 u16
*p
= (u16
*) buf
;
180 for (i
= 0; i
< len
; i
++) {
181 p
[i
] = readw(this->IO_ADDR_R
);
186 /* Select the chip by setting nCE to low */
187 #define NAND_CTL_SETNCE 1
188 /* Deselect the chip by setting nCE to high */
189 #define NAND_CTL_CLRNCE 2
190 /* Select the command latch by setting CLE to high */
191 #define NAND_CTL_SETCLE 3
192 /* Deselect the command latch by setting CLE to low */
193 #define NAND_CTL_CLRCLE 4
194 /* Select the address latch by setting ALE to high */
195 #define NAND_CTL_SETALE 5
196 /* Deselect the address latch by setting ALE to low */
197 #define NAND_CTL_CLRALE 6
199 static void au1550_hwcontrol(struct mtd_info
*mtd
, int cmd
)
201 struct au1550nd_ctx
*ctx
= container_of(mtd
, struct au1550nd_ctx
, info
);
202 struct nand_chip
*this = mtd
->priv
;
206 case NAND_CTL_SETCLE
:
207 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_CMD
;
210 case NAND_CTL_CLRCLE
:
211 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_DATA
;
214 case NAND_CTL_SETALE
:
215 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_ADDR
;
218 case NAND_CTL_CLRALE
:
219 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_DATA
;
220 /* FIXME: Nobody knows why this is necessary,
221 * but it works only that way */
225 case NAND_CTL_SETNCE
:
226 /* assert (force assert) chip enable */
227 au_writel((1 << (4 + ctx
->cs
)), MEM_STNDCTL
);
230 case NAND_CTL_CLRNCE
:
231 /* deassert chip enable */
232 au_writel(0, MEM_STNDCTL
);
236 this->IO_ADDR_R
= this->IO_ADDR_W
;
238 /* Drain the writebuffer */
242 int au1550_device_ready(struct mtd_info
*mtd
)
244 int ret
= (au_readl(MEM_STSTAT
) & 0x1) ? 1 : 0;
250 * au1550_select_chip - control -CE line
251 * Forbid driving -CE manually permitting the NAND controller to do this.
252 * Keeping -CE asserted during the whole sector reads interferes with the
253 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
254 * We only have to hold -CE low for the NAND read commands since the flash
255 * chip needs it to be asserted during chip not ready time but the NAND
256 * controller keeps it released.
258 * @mtd: MTD device structure
259 * @chip: chipnumber to select, -1 for deselect
261 static void au1550_select_chip(struct mtd_info
*mtd
, int chip
)
266 * au1550_command - Send command to NAND device
267 * @mtd: MTD device structure
268 * @command: the command to be sent
269 * @column: the column address for this command, -1 if none
270 * @page_addr: the page address for this command, -1 if none
272 static void au1550_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
274 struct au1550nd_ctx
*ctx
= container_of(mtd
, struct au1550nd_ctx
, info
);
275 struct nand_chip
*this = mtd
->priv
;
276 int ce_override
= 0, i
;
277 unsigned long flags
= 0;
279 /* Begin command latch cycle */
280 au1550_hwcontrol(mtd
, NAND_CTL_SETCLE
);
282 * Write out the command to the device.
284 if (command
== NAND_CMD_SEQIN
) {
287 if (column
>= mtd
->writesize
) {
289 column
-= mtd
->writesize
;
290 readcmd
= NAND_CMD_READOOB
;
291 } else if (column
< 256) {
292 /* First 256 bytes --> READ0 */
293 readcmd
= NAND_CMD_READ0
;
296 readcmd
= NAND_CMD_READ1
;
298 ctx
->write_byte(mtd
, readcmd
);
300 ctx
->write_byte(mtd
, command
);
302 /* Set ALE and clear CLE to start address cycle */
303 au1550_hwcontrol(mtd
, NAND_CTL_CLRCLE
);
305 if (column
!= -1 || page_addr
!= -1) {
306 au1550_hwcontrol(mtd
, NAND_CTL_SETALE
);
308 /* Serially input address */
310 /* Adjust columns for 16 bit buswidth */
311 if (this->options
& NAND_BUSWIDTH_16
)
313 ctx
->write_byte(mtd
, column
);
315 if (page_addr
!= -1) {
316 ctx
->write_byte(mtd
, (u8
)(page_addr
& 0xff));
318 if (command
== NAND_CMD_READ0
||
319 command
== NAND_CMD_READ1
||
320 command
== NAND_CMD_READOOB
) {
322 * NAND controller will release -CE after
323 * the last address byte is written, so we'll
324 * have to forcibly assert it. No interrupts
325 * are allowed while we do this as we don't
326 * want the NOR flash or PCMCIA drivers to
327 * steal our precious bytes of data...
330 local_irq_save(flags
);
331 au1550_hwcontrol(mtd
, NAND_CTL_SETNCE
);
334 ctx
->write_byte(mtd
, (u8
)(page_addr
>> 8));
336 /* One more address cycle for devices > 32MiB */
337 if (this->chipsize
> (32 << 20))
339 ((page_addr
>> 16) & 0x0f));
341 /* Latch in address */
342 au1550_hwcontrol(mtd
, NAND_CTL_CLRALE
);
346 * Program and erase have their own busy handlers.
347 * Status and sequential in need no delay.
351 case NAND_CMD_PAGEPROG
:
352 case NAND_CMD_ERASE1
:
353 case NAND_CMD_ERASE2
:
355 case NAND_CMD_STATUS
:
363 case NAND_CMD_READOOB
:
364 /* Check if we're really driving -CE low (just in case) */
365 if (unlikely(!ce_override
))
368 /* Apply a short delay always to ensure that we do wait tWB. */
370 /* Wait for a chip to become ready... */
371 for (i
= this->chip_delay
; !this->dev_ready(mtd
) && i
> 0; --i
)
374 /* Release -CE and re-enable interrupts. */
375 au1550_hwcontrol(mtd
, NAND_CTL_CLRNCE
);
376 local_irq_restore(flags
);
379 /* Apply this short delay always to ensure that we do wait tWB. */
382 while(!this->dev_ready(mtd
));
385 static int find_nand_cs(unsigned long nand_base
)
388 (void __iomem
*)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR
);
389 unsigned long addr
, staddr
, start
, mask
, end
;
392 for (i
= 0; i
< 4; i
++) {
393 addr
= 0x1000 + (i
* 0x10); /* CSx */
394 staddr
= __raw_readl(base
+ addr
+ 0x08); /* STADDRx */
395 /* figure out the decoded range of this CS */
396 start
= (staddr
<< 4) & 0xfffc0000;
397 mask
= (staddr
<< 18) & 0xfffc0000;
398 end
= (start
| (start
- 1)) & ~(start
^ mask
);
399 if ((nand_base
>= start
) && (nand_base
< end
))
406 static int au1550nd_probe(struct platform_device
*pdev
)
408 struct au1550nd_platdata
*pd
;
409 struct au1550nd_ctx
*ctx
;
410 struct nand_chip
*this;
414 pd
= dev_get_platdata(&pdev
->dev
);
416 dev_err(&pdev
->dev
, "missing platform data\n");
420 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
424 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
426 dev_err(&pdev
->dev
, "no NAND memory resource\n");
430 if (request_mem_region(r
->start
, resource_size(r
), "au1550-nand")) {
431 dev_err(&pdev
->dev
, "cannot claim NAND memory area\n");
436 ctx
->base
= ioremap_nocache(r
->start
, 0x1000);
438 dev_err(&pdev
->dev
, "cannot remap NAND memory area\n");
444 ctx
->info
.priv
= this;
445 ctx
->info
.owner
= THIS_MODULE
;
447 /* figure out which CS# r->start belongs to */
448 cs
= find_nand_cs(r
->start
);
450 dev_err(&pdev
->dev
, "cannot detect NAND chipselect\n");
456 this->dev_ready
= au1550_device_ready
;
457 this->select_chip
= au1550_select_chip
;
458 this->cmdfunc
= au1550_command
;
460 /* 30 us command delay time */
461 this->chip_delay
= 30;
462 this->ecc
.mode
= NAND_ECC_SOFT
;
465 this->options
|= NAND_BUSWIDTH_16
;
467 this->read_byte
= (pd
->devwidth
) ? au_read_byte16
: au_read_byte
;
468 ctx
->write_byte
= (pd
->devwidth
) ? au_write_byte16
: au_write_byte
;
469 this->read_word
= au_read_word
;
470 this->write_buf
= (pd
->devwidth
) ? au_write_buf16
: au_write_buf
;
471 this->read_buf
= (pd
->devwidth
) ? au_read_buf16
: au_read_buf
;
473 ret
= nand_scan(&ctx
->info
, 1);
475 dev_err(&pdev
->dev
, "NAND scan failed with %d\n", ret
);
479 mtd_device_register(&ctx
->info
, pd
->parts
, pd
->num_parts
);
481 platform_set_drvdata(pdev
, ctx
);
488 release_mem_region(r
->start
, resource_size(r
));
494 static int au1550nd_remove(struct platform_device
*pdev
)
496 struct au1550nd_ctx
*ctx
= platform_get_drvdata(pdev
);
497 struct resource
*r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
499 nand_release(&ctx
->info
);
501 release_mem_region(r
->start
, 0x1000);
506 static struct platform_driver au1550nd_driver
= {
508 .name
= "au1550-nand",
509 .owner
= THIS_MODULE
,
511 .probe
= au1550nd_probe
,
512 .remove
= au1550nd_remove
,
515 module_platform_driver(au1550nd_driver
);
517 MODULE_LICENSE("GPL");
518 MODULE_AUTHOR("Embedded Edge, LLC");
519 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");