PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mtd / nand / denali.c
blobc07cd573ad3af0dd4fa1e91f36c4a44259bbd5e7
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
28 #include "denali.h"
30 MODULE_LICENSE("GPL");
32 /* We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
35 #define NAND_DEFAULT_TIMINGS -1
37 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
38 module_param(onfi_timing_mode, int, S_IRUGO);
39 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
40 " -1 indicates use default timings");
42 #define DENALI_NAND_NAME "denali-nand"
44 /* We define a macro here that combines all interrupts this driver uses into
45 * a single constant value, for convenience. */
46 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
47 INTR_STATUS__ECC_TRANSACTION_DONE | \
48 INTR_STATUS__ECC_ERR | \
49 INTR_STATUS__PROGRAM_FAIL | \
50 INTR_STATUS__LOAD_COMP | \
51 INTR_STATUS__PROGRAM_COMP | \
52 INTR_STATUS__TIME_OUT | \
53 INTR_STATUS__ERASE_FAIL | \
54 INTR_STATUS__RST_COMP | \
55 INTR_STATUS__ERASE_COMP)
57 /* indicates whether or not the internal value for the flash bank is
58 * valid or not */
59 #define CHIP_SELECT_INVALID -1
61 #define SUPPORT_8BITECC 1
63 /* This macro divides two integers and rounds fractional values up
64 * to the nearest integer value. */
65 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67 /* this macro allows us to convert from an MTD structure to our own
68 * device context (denali) structure.
70 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72 /* These constants are defined by the driver to enable common driver
73 * configuration options. */
74 #define SPARE_ACCESS 0x41
75 #define MAIN_ACCESS 0x42
76 #define MAIN_SPARE_ACCESS 0x43
78 #define DENALI_READ 0
79 #define DENALI_WRITE 0x100
81 /* types of device accesses. We can issue commands and get status */
82 #define COMMAND_CYCLE 0
83 #define ADDR_CYCLE 1
84 #define STATUS_CYCLE 2
86 /* this is a helper macro that allows us to
87 * format the bank into the proper bits for the controller */
88 #define BANK(x) ((x) << 24)
90 /* forward declarations */
91 static void clear_interrupts(struct denali_nand_info *denali);
92 static uint32_t wait_for_irq(struct denali_nand_info *denali,
93 uint32_t irq_mask);
94 static void denali_irq_enable(struct denali_nand_info *denali,
95 uint32_t int_mask);
96 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
98 /* Certain operations for the denali NAND controller use
99 * an indexed mode to read/write data. The operation is
100 * performed by writing the address value of the command
101 * to the device memory followed by the data. This function
102 * abstracts this common operation.
104 static void index_addr(struct denali_nand_info *denali,
105 uint32_t address, uint32_t data)
107 iowrite32(address, denali->flash_mem);
108 iowrite32(data, denali->flash_mem + 0x10);
111 /* Perform an indexed read of the device */
112 static void index_addr_read_data(struct denali_nand_info *denali,
113 uint32_t address, uint32_t *pdata)
115 iowrite32(address, denali->flash_mem);
116 *pdata = ioread32(denali->flash_mem + 0x10);
119 /* We need to buffer some data for some of the NAND core routines.
120 * The operations manage buffering that data. */
121 static void reset_buf(struct denali_nand_info *denali)
123 denali->buf.head = denali->buf.tail = 0;
126 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
128 denali->buf.buf[denali->buf.tail++] = byte;
131 /* reads the status of the device */
132 static void read_status(struct denali_nand_info *denali)
134 uint32_t cmd = 0x0;
136 /* initialize the data buffer to store status */
137 reset_buf(denali);
139 cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
140 if (cmd)
141 write_byte_to_buf(denali, NAND_STATUS_WP);
142 else
143 write_byte_to_buf(denali, 0);
146 /* resets a specific device connected to the core */
147 static void reset_bank(struct denali_nand_info *denali)
149 uint32_t irq_status = 0;
150 uint32_t irq_mask = INTR_STATUS__RST_COMP |
151 INTR_STATUS__TIME_OUT;
153 clear_interrupts(denali);
155 iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
157 irq_status = wait_for_irq(denali, irq_mask);
159 if (irq_status & INTR_STATUS__TIME_OUT)
160 dev_err(denali->dev, "reset bank failed.\n");
163 /* Reset the flash controller */
164 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
166 uint32_t i;
168 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
169 __FILE__, __LINE__, __func__);
171 for (i = 0 ; i < denali->max_banks; i++)
172 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
173 denali->flash_reg + INTR_STATUS(i));
175 for (i = 0 ; i < denali->max_banks; i++) {
176 iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
177 while (!(ioread32(denali->flash_reg +
178 INTR_STATUS(i)) &
179 (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
180 cpu_relax();
181 if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
182 INTR_STATUS__TIME_OUT)
183 dev_dbg(denali->dev,
184 "NAND Reset operation timed out on bank %d\n", i);
187 for (i = 0; i < denali->max_banks; i++)
188 iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
189 denali->flash_reg + INTR_STATUS(i));
191 return PASS;
194 /* this routine calculates the ONFI timing values for a given mode and
195 * programs the clocking register accordingly. The mode is determined by
196 * the get_onfi_nand_para routine.
198 static void nand_onfi_timing_set(struct denali_nand_info *denali,
199 uint16_t mode)
201 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
202 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
203 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
204 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
205 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
206 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
207 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
208 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
209 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
210 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
211 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
212 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
214 uint16_t TclsRising = 1;
215 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
216 uint16_t dv_window = 0;
217 uint16_t en_lo, en_hi;
218 uint16_t acc_clks;
219 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
221 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
222 __FILE__, __LINE__, __func__);
224 en_lo = CEIL_DIV(Trp[mode], CLK_X);
225 en_hi = CEIL_DIV(Treh[mode], CLK_X);
226 #if ONFI_BLOOM_TIME
227 if ((en_hi * CLK_X) < (Treh[mode] + 2))
228 en_hi++;
229 #endif
231 if ((en_lo + en_hi) * CLK_X < Trc[mode])
232 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
234 if ((en_lo + en_hi) < CLK_MULTI)
235 en_lo += CLK_MULTI - en_lo - en_hi;
237 while (dv_window < 8) {
238 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
240 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
242 data_invalid =
243 data_invalid_rhoh <
244 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
246 dv_window = data_invalid - Trea[mode];
248 if (dv_window < 8)
249 en_lo++;
252 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
254 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
255 acc_clks++;
257 if ((data_invalid - acc_clks * CLK_X) < 2)
258 dev_warn(denali->dev, "%s, Line %d: Warning!\n",
259 __FILE__, __LINE__);
261 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
262 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
263 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
264 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
265 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
266 if (!TclsRising)
267 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
268 if (cs_cnt == 0)
269 cs_cnt = 1;
271 if (Tcea[mode]) {
272 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
273 cs_cnt++;
276 #if MODE5_WORKAROUND
277 if (mode == 5)
278 acc_clks = 5;
279 #endif
281 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
282 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
283 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
284 acc_clks = 6;
286 iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
287 iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
288 iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
289 iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
290 iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
291 iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
292 iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
293 iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
296 /* queries the NAND device to see what ONFI modes it supports. */
297 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
299 int i;
300 /* we needn't to do a reset here because driver has already
301 * reset all the banks before
302 * */
303 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
304 ONFI_TIMING_MODE__VALUE))
305 return FAIL;
307 for (i = 5; i > 0; i--) {
308 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
309 (0x01 << i))
310 break;
313 nand_onfi_timing_set(denali, i);
315 /* By now, all the ONFI devices we know support the page cache */
316 /* rw feature. So here we enable the pipeline_rw_ahead feature */
317 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
318 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
320 return PASS;
323 static void get_samsung_nand_para(struct denali_nand_info *denali,
324 uint8_t device_id)
326 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
327 /* Set timing register values according to datasheet */
328 iowrite32(5, denali->flash_reg + ACC_CLKS);
329 iowrite32(20, denali->flash_reg + RE_2_WE);
330 iowrite32(12, denali->flash_reg + WE_2_RE);
331 iowrite32(14, denali->flash_reg + ADDR_2_DATA);
332 iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
333 iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
334 iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
338 static void get_toshiba_nand_para(struct denali_nand_info *denali)
340 uint32_t tmp;
342 /* Workaround to fix a controller bug which reports a wrong */
343 /* spare area size for some kind of Toshiba NAND device */
344 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
345 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
346 iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
347 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
348 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
349 iowrite32(tmp,
350 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
351 #if SUPPORT_15BITECC
352 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
353 #elif SUPPORT_8BITECC
354 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
355 #endif
359 static void get_hynix_nand_para(struct denali_nand_info *denali,
360 uint8_t device_id)
362 uint32_t main_size, spare_size;
364 switch (device_id) {
365 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
366 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
367 iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
368 iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
369 iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
370 main_size = 4096 *
371 ioread32(denali->flash_reg + DEVICES_CONNECTED);
372 spare_size = 224 *
373 ioread32(denali->flash_reg + DEVICES_CONNECTED);
374 iowrite32(main_size,
375 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
376 iowrite32(spare_size,
377 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
378 iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
379 #if SUPPORT_15BITECC
380 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
381 #elif SUPPORT_8BITECC
382 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
383 #endif
384 break;
385 default:
386 dev_warn(denali->dev,
387 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
388 "Will use default parameter values instead.\n",
389 device_id);
393 /* determines how many NAND chips are connected to the controller. Note for
394 * Intel CE4100 devices we don't support more than one device.
396 static void find_valid_banks(struct denali_nand_info *denali)
398 uint32_t id[denali->max_banks];
399 int i;
401 denali->total_used_banks = 1;
402 for (i = 0; i < denali->max_banks; i++) {
403 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
404 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
405 index_addr_read_data(denali,
406 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
408 dev_dbg(denali->dev,
409 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
411 if (i == 0) {
412 if (!(id[i] & 0x0ff))
413 break; /* WTF? */
414 } else {
415 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
416 denali->total_used_banks++;
417 else
418 break;
422 if (denali->platform == INTEL_CE4100) {
423 /* Platform limitations of the CE4100 device limit
424 * users to a single chip solution for NAND.
425 * Multichip support is not enabled.
427 if (denali->total_used_banks != 1) {
428 dev_err(denali->dev,
429 "Sorry, Intel CE4100 only supports "
430 "a single NAND device.\n");
431 BUG();
434 dev_dbg(denali->dev,
435 "denali->total_used_banks: %d\n", denali->total_used_banks);
439 * Use the configuration feature register to determine the maximum number of
440 * banks that the hardware supports.
442 static void detect_max_banks(struct denali_nand_info *denali)
444 uint32_t features = ioread32(denali->flash_reg + FEATURES);
446 denali->max_banks = 2 << (features & FEATURES__N_BANKS);
449 static void detect_partition_feature(struct denali_nand_info *denali)
451 /* For MRST platform, denali->fwblks represent the
452 * number of blocks firmware is taken,
453 * FW is in protect partition and MTD driver has no
454 * permission to access it. So let driver know how many
455 * blocks it can't touch.
456 * */
457 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
458 if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
459 PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
460 denali->fwblks =
461 ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
462 MIN_MAX_BANK__MIN_VALUE) *
463 denali->blksperchip)
465 (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
466 MIN_BLK_ADDR__VALUE);
467 } else
468 denali->fwblks = SPECTRA_START_BLOCK;
469 } else
470 denali->fwblks = SPECTRA_START_BLOCK;
473 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
475 uint16_t status = PASS;
476 uint32_t id_bytes[5], addr;
477 uint8_t i, maf_id, device_id;
479 dev_dbg(denali->dev,
480 "%s, Line %d, Function: %s\n",
481 __FILE__, __LINE__, __func__);
483 /* Use read id method to get device ID and other
484 * params. For some NAND chips, controller can't
485 * report the correct device ID by reading from
486 * DEVICE_ID register
487 * */
488 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
489 index_addr(denali, (uint32_t)addr | 0, 0x90);
490 index_addr(denali, (uint32_t)addr | 1, 0);
491 for (i = 0; i < 5; i++)
492 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
493 maf_id = id_bytes[0];
494 device_id = id_bytes[1];
496 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
497 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
498 if (FAIL == get_onfi_nand_para(denali))
499 return FAIL;
500 } else if (maf_id == 0xEC) { /* Samsung NAND */
501 get_samsung_nand_para(denali, device_id);
502 } else if (maf_id == 0x98) { /* Toshiba NAND */
503 get_toshiba_nand_para(denali);
504 } else if (maf_id == 0xAD) { /* Hynix NAND */
505 get_hynix_nand_para(denali, device_id);
508 dev_info(denali->dev,
509 "Dump timing register values:"
510 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
511 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
512 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
513 ioread32(denali->flash_reg + ACC_CLKS),
514 ioread32(denali->flash_reg + RE_2_WE),
515 ioread32(denali->flash_reg + RE_2_RE),
516 ioread32(denali->flash_reg + WE_2_RE),
517 ioread32(denali->flash_reg + ADDR_2_DATA),
518 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
519 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
520 ioread32(denali->flash_reg + CS_SETUP_CNT));
522 find_valid_banks(denali);
524 detect_partition_feature(denali);
526 /* If the user specified to override the default timings
527 * with a specific ONFI mode, we apply those changes here.
529 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
530 nand_onfi_timing_set(denali, onfi_timing_mode);
532 return status;
535 static void denali_set_intr_modes(struct denali_nand_info *denali,
536 uint16_t INT_ENABLE)
538 dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
539 __FILE__, __LINE__, __func__);
541 if (INT_ENABLE)
542 iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
543 else
544 iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
547 /* validation function to verify that the controlling software is making
548 * a valid request
550 static inline bool is_flash_bank_valid(int flash_bank)
552 return (flash_bank >= 0 && flash_bank < 4);
555 static void denali_irq_init(struct denali_nand_info *denali)
557 uint32_t int_mask = 0;
558 int i;
560 /* Disable global interrupts */
561 denali_set_intr_modes(denali, false);
563 int_mask = DENALI_IRQ_ALL;
565 /* Clear all status bits */
566 for (i = 0; i < denali->max_banks; ++i)
567 iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
569 denali_irq_enable(denali, int_mask);
572 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
574 denali_set_intr_modes(denali, false);
575 free_irq(irqnum, denali);
578 static void denali_irq_enable(struct denali_nand_info *denali,
579 uint32_t int_mask)
581 int i;
583 for (i = 0; i < denali->max_banks; ++i)
584 iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
587 /* This function only returns when an interrupt that this driver cares about
588 * occurs. This is to reduce the overhead of servicing interrupts
590 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
592 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
595 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
596 static inline void clear_interrupt(struct denali_nand_info *denali,
597 uint32_t irq_mask)
599 uint32_t intr_status_reg = 0;
601 intr_status_reg = INTR_STATUS(denali->flash_bank);
603 iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
606 static void clear_interrupts(struct denali_nand_info *denali)
608 uint32_t status = 0x0;
609 spin_lock_irq(&denali->irq_lock);
611 status = read_interrupt_status(denali);
612 clear_interrupt(denali, status);
614 denali->irq_status = 0x0;
615 spin_unlock_irq(&denali->irq_lock);
618 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
620 uint32_t intr_status_reg = 0;
622 intr_status_reg = INTR_STATUS(denali->flash_bank);
624 return ioread32(denali->flash_reg + intr_status_reg);
627 /* This is the interrupt service routine. It handles all interrupts
628 * sent to this device. Note that on CE4100, this is a shared
629 * interrupt.
631 static irqreturn_t denali_isr(int irq, void *dev_id)
633 struct denali_nand_info *denali = dev_id;
634 uint32_t irq_status = 0x0;
635 irqreturn_t result = IRQ_NONE;
637 spin_lock(&denali->irq_lock);
639 /* check to see if a valid NAND chip has
640 * been selected.
642 if (is_flash_bank_valid(denali->flash_bank)) {
643 /* check to see if controller generated
644 * the interrupt, since this is a shared interrupt */
645 irq_status = denali_irq_detected(denali);
646 if (irq_status != 0) {
647 /* handle interrupt */
648 /* first acknowledge it */
649 clear_interrupt(denali, irq_status);
650 /* store the status in the device context for someone
651 to read */
652 denali->irq_status |= irq_status;
653 /* notify anyone who cares that it happened */
654 complete(&denali->complete);
655 /* tell the OS that we've handled this */
656 result = IRQ_HANDLED;
659 spin_unlock(&denali->irq_lock);
660 return result;
662 #define BANK(x) ((x) << 24)
664 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
666 unsigned long comp_res = 0;
667 uint32_t intr_status = 0;
668 bool retry = false;
669 unsigned long timeout = msecs_to_jiffies(1000);
671 do {
672 comp_res =
673 wait_for_completion_timeout(&denali->complete, timeout);
674 spin_lock_irq(&denali->irq_lock);
675 intr_status = denali->irq_status;
677 if (intr_status & irq_mask) {
678 denali->irq_status &= ~irq_mask;
679 spin_unlock_irq(&denali->irq_lock);
680 /* our interrupt was detected */
681 break;
682 } else {
683 /* these are not the interrupts you are looking for -
684 * need to wait again */
685 spin_unlock_irq(&denali->irq_lock);
686 retry = true;
688 } while (comp_res != 0);
690 if (comp_res == 0) {
691 /* timeout */
692 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
693 intr_status, irq_mask);
695 intr_status = 0;
697 return intr_status;
700 /* This helper function setups the registers for ECC and whether or not
701 * the spare area will be transferred. */
702 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
703 bool transfer_spare)
705 int ecc_en_flag = 0, transfer_spare_flag = 0;
707 /* set ECC, transfer spare bits if needed */
708 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
709 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
711 /* Enable spare area/ECC per user's request. */
712 iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
713 iowrite32(transfer_spare_flag,
714 denali->flash_reg + TRANSFER_SPARE_REG);
717 /* sends a pipeline command operation to the controller. See the Denali NAND
718 * controller's user guide for more information (section 4.2.3.6).
720 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
721 bool ecc_en,
722 bool transfer_spare,
723 int access_type,
724 int op)
726 int status = PASS;
727 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
728 irq_mask = 0;
730 if (op == DENALI_READ)
731 irq_mask = INTR_STATUS__LOAD_COMP;
732 else if (op == DENALI_WRITE)
733 irq_mask = 0;
734 else
735 BUG();
737 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
739 /* clear interrupts */
740 clear_interrupts(denali);
742 addr = BANK(denali->flash_bank) | denali->page;
744 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
745 cmd = MODE_01 | addr;
746 iowrite32(cmd, denali->flash_mem);
747 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
748 /* read spare area */
749 cmd = MODE_10 | addr;
750 index_addr(denali, (uint32_t)cmd, access_type);
752 cmd = MODE_01 | addr;
753 iowrite32(cmd, denali->flash_mem);
754 } else if (op == DENALI_READ) {
755 /* setup page read request for access type */
756 cmd = MODE_10 | addr;
757 index_addr(denali, (uint32_t)cmd, access_type);
759 /* page 33 of the NAND controller spec indicates we should not
760 use the pipeline commands in Spare area only mode. So we
761 don't.
763 if (access_type == SPARE_ACCESS) {
764 cmd = MODE_01 | addr;
765 iowrite32(cmd, denali->flash_mem);
766 } else {
767 index_addr(denali, (uint32_t)cmd,
768 0x2000 | op | page_count);
770 /* wait for command to be accepted
771 * can always use status0 bit as the
772 * mask is identical for each
773 * bank. */
774 irq_status = wait_for_irq(denali, irq_mask);
776 if (irq_status == 0) {
777 dev_err(denali->dev,
778 "cmd, page, addr on timeout "
779 "(0x%x, 0x%x, 0x%x)\n",
780 cmd, denali->page, addr);
781 status = FAIL;
782 } else {
783 cmd = MODE_01 | addr;
784 iowrite32(cmd, denali->flash_mem);
788 return status;
791 /* helper function that simply writes a buffer to the flash */
792 static int write_data_to_flash_mem(struct denali_nand_info *denali,
793 const uint8_t *buf,
794 int len)
796 uint32_t i = 0, *buf32;
798 /* verify that the len is a multiple of 4. see comment in
799 * read_data_from_flash_mem() */
800 BUG_ON((len % 4) != 0);
802 /* write the data to the flash memory */
803 buf32 = (uint32_t *)buf;
804 for (i = 0; i < len / 4; i++)
805 iowrite32(*buf32++, denali->flash_mem + 0x10);
806 return i*4; /* intent is to return the number of bytes read */
809 /* helper function that simply reads a buffer from the flash */
810 static int read_data_from_flash_mem(struct denali_nand_info *denali,
811 uint8_t *buf,
812 int len)
814 uint32_t i = 0, *buf32;
816 /* we assume that len will be a multiple of 4, if not
817 * it would be nice to know about it ASAP rather than
818 * have random failures...
819 * This assumption is based on the fact that this
820 * function is designed to be used to read flash pages,
821 * which are typically multiples of 4...
824 BUG_ON((len % 4) != 0);
826 /* transfer the data from the flash */
827 buf32 = (uint32_t *)buf;
828 for (i = 0; i < len / 4; i++)
829 *buf32++ = ioread32(denali->flash_mem + 0x10);
830 return i*4; /* intent is to return the number of bytes read */
833 /* writes OOB data to the device */
834 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
836 struct denali_nand_info *denali = mtd_to_denali(mtd);
837 uint32_t irq_status = 0;
838 uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
839 INTR_STATUS__PROGRAM_FAIL;
840 int status = 0;
842 denali->page = page;
844 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
845 DENALI_WRITE) == PASS) {
846 write_data_to_flash_mem(denali, buf, mtd->oobsize);
848 /* wait for operation to complete */
849 irq_status = wait_for_irq(denali, irq_mask);
851 if (irq_status == 0) {
852 dev_err(denali->dev, "OOB write failed\n");
853 status = -EIO;
855 } else {
856 dev_err(denali->dev, "unable to send pipeline command\n");
857 status = -EIO;
859 return status;
862 /* reads OOB data from the device */
863 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
865 struct denali_nand_info *denali = mtd_to_denali(mtd);
866 uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
867 irq_status = 0, addr = 0x0, cmd = 0x0;
869 denali->page = page;
871 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
872 DENALI_READ) == PASS) {
873 read_data_from_flash_mem(denali, buf, mtd->oobsize);
875 /* wait for command to be accepted
876 * can always use status0 bit as the mask is identical for each
877 * bank. */
878 irq_status = wait_for_irq(denali, irq_mask);
880 if (irq_status == 0)
881 dev_err(denali->dev, "page on OOB timeout %d\n",
882 denali->page);
884 /* We set the device back to MAIN_ACCESS here as I observed
885 * instability with the controller if you do a block erase
886 * and the last transaction was a SPARE_ACCESS. Block erase
887 * is reliable (according to the MTD test infrastructure)
888 * if you are in MAIN_ACCESS.
890 addr = BANK(denali->flash_bank) | denali->page;
891 cmd = MODE_10 | addr;
892 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
896 /* this function examines buffers to see if they contain data that
897 * indicate that the buffer is part of an erased region of flash.
899 static bool is_erased(uint8_t *buf, int len)
901 int i = 0;
902 for (i = 0; i < len; i++)
903 if (buf[i] != 0xFF)
904 return false;
905 return true;
907 #define ECC_SECTOR_SIZE 512
909 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
910 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
911 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
912 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
913 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
914 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
916 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
917 uint32_t irq_status, unsigned int *max_bitflips)
919 bool check_erased_page = false;
920 unsigned int bitflips = 0;
922 if (irq_status & INTR_STATUS__ECC_ERR) {
923 /* read the ECC errors. we'll ignore them for now */
924 uint32_t err_address = 0, err_correction_info = 0;
925 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
926 uint32_t err_correction_value = 0;
927 denali_set_intr_modes(denali, false);
929 do {
930 err_address = ioread32(denali->flash_reg +
931 ECC_ERROR_ADDRESS);
932 err_sector = ECC_SECTOR(err_address);
933 err_byte = ECC_BYTE(err_address);
935 err_correction_info = ioread32(denali->flash_reg +
936 ERR_CORRECTION_INFO);
937 err_correction_value =
938 ECC_CORRECTION_VALUE(err_correction_info);
939 err_device = ECC_ERR_DEVICE(err_correction_info);
941 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
942 /* If err_byte is larger than ECC_SECTOR_SIZE,
943 * means error happened in OOB, so we ignore
944 * it. It's no need for us to correct it
945 * err_device is represented the NAND error
946 * bits are happened in if there are more
947 * than one NAND connected.
948 * */
949 if (err_byte < ECC_SECTOR_SIZE) {
950 int offset;
951 offset = (err_sector *
952 ECC_SECTOR_SIZE +
953 err_byte) *
954 denali->devnum +
955 err_device;
956 /* correct the ECC error */
957 buf[offset] ^= err_correction_value;
958 denali->mtd.ecc_stats.corrected++;
959 bitflips++;
961 } else {
962 /* if the error is not correctable, need to
963 * look at the page to see if it is an erased
964 * page. if so, then it's not a real ECC error
965 * */
966 check_erased_page = true;
968 } while (!ECC_LAST_ERR(err_correction_info));
969 /* Once handle all ecc errors, controller will triger
970 * a ECC_TRANSACTION_DONE interrupt, so here just wait
971 * for a while for this interrupt
972 * */
973 while (!(read_interrupt_status(denali) &
974 INTR_STATUS__ECC_TRANSACTION_DONE))
975 cpu_relax();
976 clear_interrupts(denali);
977 denali_set_intr_modes(denali, true);
979 *max_bitflips = bitflips;
980 return check_erased_page;
983 /* programs the controller to either enable/disable DMA transfers */
984 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
986 uint32_t reg_val = 0x0;
988 if (en)
989 reg_val = DMA_ENABLE__FLAG;
991 iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
992 ioread32(denali->flash_reg + DMA_ENABLE);
995 /* setups the HW to perform the data DMA */
996 static void denali_setup_dma(struct denali_nand_info *denali, int op)
998 uint32_t mode = 0x0;
999 const int page_count = 1;
1000 dma_addr_t addr = denali->buf.dma_buf;
1002 mode = MODE_10 | BANK(denali->flash_bank);
1004 /* DMA is a four step process */
1006 /* 1. setup transfer type and # of pages */
1007 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1009 /* 2. set memory high address bits 23:8 */
1010 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1012 /* 3. set memory low address bits 23:8 */
1013 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1015 /* 4. interrupt when complete, burst len = 64 bytes*/
1016 index_addr(denali, mode | 0x14000, 0x2400);
1019 /* writes a page. user specifies type, and this function handles the
1020 * configuration details. */
1021 static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1022 const uint8_t *buf, bool raw_xfer)
1024 struct denali_nand_info *denali = mtd_to_denali(mtd);
1026 dma_addr_t addr = denali->buf.dma_buf;
1027 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1029 uint32_t irq_status = 0;
1030 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1031 INTR_STATUS__PROGRAM_FAIL;
1033 /* if it is a raw xfer, we want to disable ecc, and send
1034 * the spare area.
1035 * !raw_xfer - enable ecc
1036 * raw_xfer - transfer spare
1038 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1040 /* copy buffer into DMA buffer */
1041 memcpy(denali->buf.buf, buf, mtd->writesize);
1043 if (raw_xfer) {
1044 /* transfer the data to the spare area */
1045 memcpy(denali->buf.buf + mtd->writesize,
1046 chip->oob_poi,
1047 mtd->oobsize);
1050 dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1052 clear_interrupts(denali);
1053 denali_enable_dma(denali, true);
1055 denali_setup_dma(denali, DENALI_WRITE);
1057 /* wait for operation to complete */
1058 irq_status = wait_for_irq(denali, irq_mask);
1060 if (irq_status == 0) {
1061 dev_err(denali->dev,
1062 "timeout on write_page (type = %d)\n",
1063 raw_xfer);
1064 denali->status =
1065 (irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1066 NAND_STATUS_FAIL : PASS;
1069 denali_enable_dma(denali, false);
1070 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1072 return 0;
1075 /* NAND core entry points */
1077 /* this is the callback that the NAND core calls to write a page. Since
1078 * writing a page with ECC or without is similar, all the work is done
1079 * by write_page above.
1080 * */
1081 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1082 const uint8_t *buf, int oob_required)
1084 /* for regular page writes, we let HW handle all the ECC
1085 * data written to the device. */
1086 return write_page(mtd, chip, buf, false);
1089 /* This is the callback that the NAND core calls to write a page without ECC.
1090 * raw access is similar to ECC page writes, so all the work is done in the
1091 * write_page() function above.
1093 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1094 const uint8_t *buf, int oob_required)
1096 /* for raw page writes, we want to disable ECC and simply write
1097 whatever data is in the buffer. */
1098 return write_page(mtd, chip, buf, true);
1101 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1102 int page)
1104 return write_oob_data(mtd, chip->oob_poi, page);
1107 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1108 int page)
1110 read_oob_data(mtd, chip->oob_poi, page);
1112 return 0;
1115 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1116 uint8_t *buf, int oob_required, int page)
1118 unsigned int max_bitflips;
1119 struct denali_nand_info *denali = mtd_to_denali(mtd);
1121 dma_addr_t addr = denali->buf.dma_buf;
1122 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1124 uint32_t irq_status = 0;
1125 uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1126 INTR_STATUS__ECC_ERR;
1127 bool check_erased_page = false;
1129 if (page != denali->page) {
1130 dev_err(denali->dev, "IN %s: page %d is not"
1131 " equal to denali->page %d, investigate!!",
1132 __func__, page, denali->page);
1133 BUG();
1136 setup_ecc_for_xfer(denali, true, false);
1138 denali_enable_dma(denali, true);
1139 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1141 clear_interrupts(denali);
1142 denali_setup_dma(denali, DENALI_READ);
1144 /* wait for operation to complete */
1145 irq_status = wait_for_irq(denali, irq_mask);
1147 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1149 memcpy(buf, denali->buf.buf, mtd->writesize);
1151 check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1152 denali_enable_dma(denali, false);
1154 if (check_erased_page) {
1155 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1157 /* check ECC failures that may have occurred on erased pages */
1158 if (check_erased_page) {
1159 if (!is_erased(buf, denali->mtd.writesize))
1160 denali->mtd.ecc_stats.failed++;
1161 if (!is_erased(buf, denali->mtd.oobsize))
1162 denali->mtd.ecc_stats.failed++;
1165 return max_bitflips;
1168 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1169 uint8_t *buf, int oob_required, int page)
1171 struct denali_nand_info *denali = mtd_to_denali(mtd);
1173 dma_addr_t addr = denali->buf.dma_buf;
1174 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1176 uint32_t irq_status = 0;
1177 uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1179 if (page != denali->page) {
1180 dev_err(denali->dev, "IN %s: page %d is not"
1181 " equal to denali->page %d, investigate!!",
1182 __func__, page, denali->page);
1183 BUG();
1186 setup_ecc_for_xfer(denali, false, true);
1187 denali_enable_dma(denali, true);
1189 dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1191 clear_interrupts(denali);
1192 denali_setup_dma(denali, DENALI_READ);
1194 /* wait for operation to complete */
1195 irq_status = wait_for_irq(denali, irq_mask);
1197 dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1199 denali_enable_dma(denali, false);
1201 memcpy(buf, denali->buf.buf, mtd->writesize);
1202 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1204 return 0;
1207 static uint8_t denali_read_byte(struct mtd_info *mtd)
1209 struct denali_nand_info *denali = mtd_to_denali(mtd);
1210 uint8_t result = 0xff;
1212 if (denali->buf.head < denali->buf.tail)
1213 result = denali->buf.buf[denali->buf.head++];
1215 return result;
1218 static void denali_select_chip(struct mtd_info *mtd, int chip)
1220 struct denali_nand_info *denali = mtd_to_denali(mtd);
1222 spin_lock_irq(&denali->irq_lock);
1223 denali->flash_bank = chip;
1224 spin_unlock_irq(&denali->irq_lock);
1227 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1229 struct denali_nand_info *denali = mtd_to_denali(mtd);
1230 int status = denali->status;
1231 denali->status = 0;
1233 return status;
1236 static void denali_erase(struct mtd_info *mtd, int page)
1238 struct denali_nand_info *denali = mtd_to_denali(mtd);
1240 uint32_t cmd = 0x0, irq_status = 0;
1242 /* clear interrupts */
1243 clear_interrupts(denali);
1245 /* setup page read request for access type */
1246 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1247 index_addr(denali, (uint32_t)cmd, 0x1);
1249 /* wait for erase to complete or failure to occur */
1250 irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1251 INTR_STATUS__ERASE_FAIL);
1253 denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1254 NAND_STATUS_FAIL : PASS;
1257 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1258 int page)
1260 struct denali_nand_info *denali = mtd_to_denali(mtd);
1261 uint32_t addr, id;
1262 int i;
1264 switch (cmd) {
1265 case NAND_CMD_PAGEPROG:
1266 break;
1267 case NAND_CMD_STATUS:
1268 read_status(denali);
1269 break;
1270 case NAND_CMD_READID:
1271 case NAND_CMD_PARAM:
1272 reset_buf(denali);
1273 /*sometimes ManufactureId read from register is not right
1274 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1275 * So here we send READID cmd to NAND insteand
1276 * */
1277 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1278 index_addr(denali, (uint32_t)addr | 0, 0x90);
1279 index_addr(denali, (uint32_t)addr | 1, 0);
1280 for (i = 0; i < 5; i++) {
1281 index_addr_read_data(denali,
1282 (uint32_t)addr | 2,
1283 &id);
1284 write_byte_to_buf(denali, id);
1286 break;
1287 case NAND_CMD_READ0:
1288 case NAND_CMD_SEQIN:
1289 denali->page = page;
1290 break;
1291 case NAND_CMD_RESET:
1292 reset_bank(denali);
1293 break;
1294 case NAND_CMD_READOOB:
1295 /* TODO: Read OOB data */
1296 break;
1297 default:
1298 pr_err(": unsupported command received 0x%x\n", cmd);
1299 break;
1303 /* stubs for ECC functions not used by the NAND core */
1304 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1305 uint8_t *ecc_code)
1307 struct denali_nand_info *denali = mtd_to_denali(mtd);
1308 dev_err(denali->dev,
1309 "denali_ecc_calculate called unexpectedly\n");
1310 BUG();
1311 return -EIO;
1314 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1315 uint8_t *read_ecc, uint8_t *calc_ecc)
1317 struct denali_nand_info *denali = mtd_to_denali(mtd);
1318 dev_err(denali->dev,
1319 "denali_ecc_correct called unexpectedly\n");
1320 BUG();
1321 return -EIO;
1324 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1326 struct denali_nand_info *denali = mtd_to_denali(mtd);
1327 dev_err(denali->dev,
1328 "denali_ecc_hwctl called unexpectedly\n");
1329 BUG();
1331 /* end NAND core entry points */
1333 /* Initialization code to bring the device up to a known good state */
1334 static void denali_hw_init(struct denali_nand_info *denali)
1336 /* tell driver how many bit controller will skip before
1337 * writing ECC code in OOB, this register may be already
1338 * set by firmware. So we read this value out.
1339 * if this value is 0, just let it be.
1340 * */
1341 denali->bbtskipbytes = ioread32(denali->flash_reg +
1342 SPARE_AREA_SKIP_BYTES);
1343 detect_max_banks(denali);
1344 denali_nand_reset(denali);
1345 iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1346 iowrite32(CHIP_EN_DONT_CARE__FLAG,
1347 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1349 iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1351 /* Should set value for these registers when init */
1352 iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1353 iowrite32(1, denali->flash_reg + ECC_ENABLE);
1354 denali_nand_timing_set(denali);
1355 denali_irq_init(denali);
1358 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1359 * but denali controller in MRST only support 15bit and 8bit ECC
1360 * correction
1361 * */
1362 #define ECC_8BITS 14
1363 static struct nand_ecclayout nand_8bit_oob = {
1364 .eccbytes = 14,
1367 #define ECC_15BITS 26
1368 static struct nand_ecclayout nand_15bit_oob = {
1369 .eccbytes = 26,
1372 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1373 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1375 static struct nand_bbt_descr bbt_main_descr = {
1376 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1377 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1378 .offs = 8,
1379 .len = 4,
1380 .veroffs = 12,
1381 .maxblocks = 4,
1382 .pattern = bbt_pattern,
1385 static struct nand_bbt_descr bbt_mirror_descr = {
1386 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1387 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1388 .offs = 8,
1389 .len = 4,
1390 .veroffs = 12,
1391 .maxblocks = 4,
1392 .pattern = mirror_pattern,
1395 /* initialize driver data structures */
1396 static void denali_drv_init(struct denali_nand_info *denali)
1398 denali->idx = 0;
1400 /* setup interrupt handler */
1401 /* the completion object will be used to notify
1402 * the callee that the interrupt is done */
1403 init_completion(&denali->complete);
1405 /* the spinlock will be used to synchronize the ISR
1406 * with any element that might be access shared
1407 * data (interrupt status) */
1408 spin_lock_init(&denali->irq_lock);
1410 /* indicate that MTD has not selected a valid bank yet */
1411 denali->flash_bank = CHIP_SELECT_INVALID;
1413 /* initialize our irq_status variable to indicate no interrupts */
1414 denali->irq_status = 0;
1417 int denali_init(struct denali_nand_info *denali)
1419 int ret;
1421 if (denali->platform == INTEL_CE4100) {
1422 /* Due to a silicon limitation, we can only support
1423 * ONFI timing mode 1 and below.
1425 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1426 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1427 return -EINVAL;
1431 /* allocate a temporary buffer for nand_scan_ident() */
1432 denali->buf.buf = devm_kzalloc(denali->dev, PAGE_SIZE,
1433 GFP_DMA | GFP_KERNEL);
1434 if (!denali->buf.buf)
1435 return -ENOMEM;
1437 denali->mtd.dev.parent = denali->dev;
1438 denali_hw_init(denali);
1439 denali_drv_init(denali);
1441 /* denali_isr register is done after all the hardware
1442 * initilization is finished*/
1443 if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1444 DENALI_NAND_NAME, denali)) {
1445 pr_err("Spectra: Unable to allocate IRQ\n");
1446 return -ENODEV;
1449 /* now that our ISR is registered, we can enable interrupts */
1450 denali_set_intr_modes(denali, true);
1451 denali->mtd.name = "denali-nand";
1452 denali->mtd.owner = THIS_MODULE;
1453 denali->mtd.priv = &denali->nand;
1455 /* register the driver with the NAND core subsystem */
1456 denali->nand.select_chip = denali_select_chip;
1457 denali->nand.cmdfunc = denali_cmdfunc;
1458 denali->nand.read_byte = denali_read_byte;
1459 denali->nand.waitfunc = denali_waitfunc;
1461 /* scan for NAND devices attached to the controller
1462 * this is the first stage in a two step process to register
1463 * with the nand subsystem */
1464 if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1465 ret = -ENXIO;
1466 goto failed_req_irq;
1469 /* allocate the right size buffer now */
1470 devm_kfree(denali->dev, denali->buf.buf);
1471 denali->buf.buf = devm_kzalloc(denali->dev,
1472 denali->mtd.writesize + denali->mtd.oobsize,
1473 GFP_KERNEL);
1474 if (!denali->buf.buf) {
1475 ret = -ENOMEM;
1476 goto failed_req_irq;
1479 /* Is 32-bit DMA supported? */
1480 ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1481 if (ret) {
1482 pr_err("Spectra: no usable DMA configuration\n");
1483 goto failed_req_irq;
1486 denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1487 denali->mtd.writesize + denali->mtd.oobsize,
1488 DMA_BIDIRECTIONAL);
1489 if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1490 dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1491 ret = -EIO;
1492 goto failed_req_irq;
1495 /* support for multi nand
1496 * MTD known nothing about multi nand,
1497 * so we should tell it the real pagesize
1498 * and anything necessery
1500 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1501 denali->nand.chipsize <<= (denali->devnum - 1);
1502 denali->nand.page_shift += (denali->devnum - 1);
1503 denali->nand.pagemask = (denali->nand.chipsize >>
1504 denali->nand.page_shift) - 1;
1505 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1506 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1507 denali->nand.chip_shift += (denali->devnum - 1);
1508 denali->mtd.writesize <<= (denali->devnum - 1);
1509 denali->mtd.oobsize <<= (denali->devnum - 1);
1510 denali->mtd.erasesize <<= (denali->devnum - 1);
1511 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1512 denali->bbtskipbytes *= denali->devnum;
1514 /* second stage of the NAND scan
1515 * this stage requires information regarding ECC and
1516 * bad block management. */
1518 /* Bad block management */
1519 denali->nand.bbt_td = &bbt_main_descr;
1520 denali->nand.bbt_md = &bbt_mirror_descr;
1522 /* skip the scan for now until we have OOB read and write support */
1523 denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1524 denali->nand.options |= NAND_SKIP_BBTSCAN;
1525 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1527 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1528 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1529 * SLC if possible.
1530 * */
1531 if (!nand_is_slc(&denali->nand) &&
1532 (denali->mtd.oobsize > (denali->bbtskipbytes +
1533 ECC_15BITS * (denali->mtd.writesize /
1534 ECC_SECTOR_SIZE)))) {
1535 /* if MLC OOB size is large enough, use 15bit ECC*/
1536 denali->nand.ecc.strength = 15;
1537 denali->nand.ecc.layout = &nand_15bit_oob;
1538 denali->nand.ecc.bytes = ECC_15BITS;
1539 iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1540 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1541 ECC_8BITS * (denali->mtd.writesize /
1542 ECC_SECTOR_SIZE))) {
1543 pr_err("Your NAND chip OOB is not large enough to \
1544 contain 8bit ECC correction codes");
1545 goto failed_req_irq;
1546 } else {
1547 denali->nand.ecc.strength = 8;
1548 denali->nand.ecc.layout = &nand_8bit_oob;
1549 denali->nand.ecc.bytes = ECC_8BITS;
1550 iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1553 denali->nand.ecc.bytes *= denali->devnum;
1554 denali->nand.ecc.strength *= denali->devnum;
1555 denali->nand.ecc.layout->eccbytes *=
1556 denali->mtd.writesize / ECC_SECTOR_SIZE;
1557 denali->nand.ecc.layout->oobfree[0].offset =
1558 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1559 denali->nand.ecc.layout->oobfree[0].length =
1560 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1561 denali->bbtskipbytes;
1563 /* Let driver know the total blocks number and
1564 * how many blocks contained by each nand chip.
1565 * blksperchip will help driver to know how many
1566 * blocks is taken by FW.
1567 * */
1568 denali->totalblks = denali->mtd.size >>
1569 denali->nand.phys_erase_shift;
1570 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1572 /* These functions are required by the NAND core framework, otherwise,
1573 * the NAND core will assert. However, we don't need them, so we'll stub
1574 * them out. */
1575 denali->nand.ecc.calculate = denali_ecc_calculate;
1576 denali->nand.ecc.correct = denali_ecc_correct;
1577 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1579 /* override the default read operations */
1580 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1581 denali->nand.ecc.read_page = denali_read_page;
1582 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1583 denali->nand.ecc.write_page = denali_write_page;
1584 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1585 denali->nand.ecc.read_oob = denali_read_oob;
1586 denali->nand.ecc.write_oob = denali_write_oob;
1587 denali->nand.erase_cmd = denali_erase;
1589 if (nand_scan_tail(&denali->mtd)) {
1590 ret = -ENXIO;
1591 goto failed_req_irq;
1594 ret = mtd_device_register(&denali->mtd, NULL, 0);
1595 if (ret) {
1596 dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1597 ret);
1598 goto failed_req_irq;
1600 return 0;
1602 failed_req_irq:
1603 denali_irq_cleanup(denali->irq, denali);
1605 return ret;
1607 EXPORT_SYMBOL(denali_init);
1609 /* driver exit point */
1610 void denali_remove(struct denali_nand_info *denali)
1612 denali_irq_cleanup(denali->irq, denali);
1613 dma_unmap_single(denali->dev, denali->buf.dma_buf,
1614 denali->mtd.writesize + denali->mtd.oobsize,
1615 DMA_BIDIRECTIONAL);
1617 EXPORT_SYMBOL(denali_remove);