PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mtd / nand / fsl_elbc_nand.c
blobbcf60800c3ce7f5e0489972ebe7a3e3f83d225df
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright © 2006-2007, 2010 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
7 * Jack Lan <jack.lan@freescale.com>
8 * Roy Zang <tie-fei.zang@freescale.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/ioport.h>
31 #include <linux/of_address.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/nand.h>
39 #include <linux/mtd/nand_ecc.h>
40 #include <linux/mtd/partitions.h>
42 #include <asm/io.h>
43 #include <asm/fsl_lbc.h>
45 #define MAX_BANKS 8
46 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
47 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
49 /* mtd information per set */
51 struct fsl_elbc_mtd {
52 struct mtd_info mtd;
53 struct nand_chip chip;
54 struct fsl_lbc_ctrl *ctrl;
56 struct device *dev;
57 int bank; /* Chip select bank number */
58 u8 __iomem *vbase; /* Chip select base virtual address */
59 int page_size; /* NAND page size (0=512, 1=2048) */
60 unsigned int fmr; /* FCM Flash Mode Register value */
63 /* Freescale eLBC FCM controller information */
65 struct fsl_elbc_fcm_ctrl {
66 struct nand_hw_control controller;
67 struct fsl_elbc_mtd *chips[MAX_BANKS];
69 u8 __iomem *addr; /* Address of assigned FCM buffer */
70 unsigned int page; /* Last page written to / read from */
71 unsigned int read_bytes; /* Number of bytes read during command */
72 unsigned int column; /* Saved column from SEQIN */
73 unsigned int index; /* Pointer to next byte to 'read' */
74 unsigned int status; /* status read from LTESR after last op */
75 unsigned int mdr; /* UPM/FCM Data Register value */
76 unsigned int use_mdr; /* Non zero if the MDR is to be set */
77 unsigned int oob; /* Non zero if operating on OOB data */
78 unsigned int counter; /* counter for the initializations */
79 unsigned int max_bitflips; /* Saved during READ0 cmd */
82 /* These map to the positions used by the FCM hardware ECC generator */
84 /* Small Page FLASH with FMR[ECCM] = 0 */
85 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
86 .eccbytes = 3,
87 .eccpos = {6, 7, 8},
88 .oobfree = { {0, 5}, {9, 7} },
91 /* Small Page FLASH with FMR[ECCM] = 1 */
92 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
93 .eccbytes = 3,
94 .eccpos = {8, 9, 10},
95 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
98 /* Large Page FLASH with FMR[ECCM] = 0 */
99 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
100 .eccbytes = 12,
101 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
102 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
105 /* Large Page FLASH with FMR[ECCM] = 1 */
106 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
107 .eccbytes = 12,
108 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
109 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
113 * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
114 * interfere with ECC positions, that's why we implement our own descriptors.
115 * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
117 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
118 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
120 static struct nand_bbt_descr bbt_main_descr = {
121 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
122 NAND_BBT_2BIT | NAND_BBT_VERSION,
123 .offs = 11,
124 .len = 4,
125 .veroffs = 15,
126 .maxblocks = 4,
127 .pattern = bbt_pattern,
130 static struct nand_bbt_descr bbt_mirror_descr = {
131 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
132 NAND_BBT_2BIT | NAND_BBT_VERSION,
133 .offs = 11,
134 .len = 4,
135 .veroffs = 15,
136 .maxblocks = 4,
137 .pattern = mirror_pattern,
140 /*=================================*/
143 * Set up the FCM hardware block and page address fields, and the fcm
144 * structure addr field to point to the correct FCM buffer in memory
146 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
148 struct nand_chip *chip = mtd->priv;
149 struct fsl_elbc_mtd *priv = chip->priv;
150 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
151 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
152 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
153 int buf_num;
155 elbc_fcm_ctrl->page = page_addr;
157 if (priv->page_size) {
159 * large page size chip : FPAR[PI] save the lowest 6 bits,
160 * FBAR[BLK] save the other bits.
162 out_be32(&lbc->fbar, page_addr >> 6);
163 out_be32(&lbc->fpar,
164 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
165 (oob ? FPAR_LP_MS : 0) | column);
166 buf_num = (page_addr & 1) << 2;
167 } else {
169 * small page size chip : FPAR[PI] save the lowest 5 bits,
170 * FBAR[BLK] save the other bits.
172 out_be32(&lbc->fbar, page_addr >> 5);
173 out_be32(&lbc->fpar,
174 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
175 (oob ? FPAR_SP_MS : 0) | column);
176 buf_num = page_addr & 7;
179 elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
180 elbc_fcm_ctrl->index = column;
182 /* for OOB data point to the second half of the buffer */
183 if (oob)
184 elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
186 dev_vdbg(priv->dev, "set_addr: bank=%d, "
187 "elbc_fcm_ctrl->addr=0x%p (0x%p), "
188 "index %x, pes %d ps %d\n",
189 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
190 elbc_fcm_ctrl->index,
191 chip->phys_erase_shift, chip->page_shift);
195 * execute FCM command and wait for it to complete
197 static int fsl_elbc_run_command(struct mtd_info *mtd)
199 struct nand_chip *chip = mtd->priv;
200 struct fsl_elbc_mtd *priv = chip->priv;
201 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
202 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
203 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
205 /* Setup the FMR[OP] to execute without write protection */
206 out_be32(&lbc->fmr, priv->fmr | 3);
207 if (elbc_fcm_ctrl->use_mdr)
208 out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
210 dev_vdbg(priv->dev,
211 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
212 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
213 dev_vdbg(priv->dev,
214 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
215 "fbcr=%08x bank=%d\n",
216 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
217 in_be32(&lbc->fbcr), priv->bank);
219 ctrl->irq_status = 0;
220 /* execute special operation */
221 out_be32(&lbc->lsor, priv->bank);
223 /* wait for FCM complete flag or timeout */
224 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
225 FCM_TIMEOUT_MSECS * HZ/1000);
226 elbc_fcm_ctrl->status = ctrl->irq_status;
227 /* store mdr value in case it was needed */
228 if (elbc_fcm_ctrl->use_mdr)
229 elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
231 elbc_fcm_ctrl->use_mdr = 0;
233 if (elbc_fcm_ctrl->status != LTESR_CC) {
234 dev_info(priv->dev,
235 "command failed: fir %x fcr %x status %x mdr %x\n",
236 in_be32(&lbc->fir), in_be32(&lbc->fcr),
237 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
238 return -EIO;
241 if (chip->ecc.mode != NAND_ECC_HW)
242 return 0;
244 elbc_fcm_ctrl->max_bitflips = 0;
246 if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
247 uint32_t lteccr = in_be32(&lbc->lteccr);
249 * if command was a full page read and the ELBC
250 * has the LTECCR register, then bits 12-15 (ppc order) of
251 * LTECCR indicates which 512 byte sub-pages had fixed errors.
252 * bits 28-31 are uncorrectable errors, marked elsewhere.
253 * for small page nand only 1 bit is used.
254 * if the ELBC doesn't have the lteccr register it reads 0
255 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
256 * count the number of sub-pages with bitflips and update
257 * ecc_stats.corrected accordingly.
259 if (lteccr & 0x000F000F)
260 out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
261 if (lteccr & 0x000F0000) {
262 mtd->ecc_stats.corrected++;
263 elbc_fcm_ctrl->max_bitflips = 1;
267 return 0;
270 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
272 struct fsl_elbc_mtd *priv = chip->priv;
273 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
274 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
276 if (priv->page_size) {
277 out_be32(&lbc->fir,
278 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
279 (FIR_OP_CA << FIR_OP1_SHIFT) |
280 (FIR_OP_PA << FIR_OP2_SHIFT) |
281 (FIR_OP_CM1 << FIR_OP3_SHIFT) |
282 (FIR_OP_RBW << FIR_OP4_SHIFT));
284 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
285 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
286 } else {
287 out_be32(&lbc->fir,
288 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
289 (FIR_OP_CA << FIR_OP1_SHIFT) |
290 (FIR_OP_PA << FIR_OP2_SHIFT) |
291 (FIR_OP_RBW << FIR_OP3_SHIFT));
293 if (oob)
294 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
295 else
296 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
300 /* cmdfunc send commands to the FCM */
301 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
302 int column, int page_addr)
304 struct nand_chip *chip = mtd->priv;
305 struct fsl_elbc_mtd *priv = chip->priv;
306 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
307 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
308 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
310 elbc_fcm_ctrl->use_mdr = 0;
312 /* clear the read buffer */
313 elbc_fcm_ctrl->read_bytes = 0;
314 if (command != NAND_CMD_PAGEPROG)
315 elbc_fcm_ctrl->index = 0;
317 switch (command) {
318 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
319 case NAND_CMD_READ1:
320 column += 256;
322 /* fall-through */
323 case NAND_CMD_READ0:
324 dev_dbg(priv->dev,
325 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
326 " 0x%x, column: 0x%x.\n", page_addr, column);
329 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
330 set_addr(mtd, 0, page_addr, 0);
332 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
333 elbc_fcm_ctrl->index += column;
335 fsl_elbc_do_read(chip, 0);
336 fsl_elbc_run_command(mtd);
337 return;
339 /* READOOB reads only the OOB because no ECC is performed. */
340 case NAND_CMD_READOOB:
341 dev_vdbg(priv->dev,
342 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
343 " 0x%x, column: 0x%x.\n", page_addr, column);
345 out_be32(&lbc->fbcr, mtd->oobsize - column);
346 set_addr(mtd, column, page_addr, 1);
348 elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
350 fsl_elbc_do_read(chip, 1);
351 fsl_elbc_run_command(mtd);
352 return;
354 case NAND_CMD_READID:
355 case NAND_CMD_PARAM:
356 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
358 out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
359 (FIR_OP_UA << FIR_OP1_SHIFT) |
360 (FIR_OP_RBW << FIR_OP2_SHIFT));
361 out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
363 * although currently it's 8 bytes for READID, we always read
364 * the maximum 256 bytes(for PARAM)
366 out_be32(&lbc->fbcr, 256);
367 elbc_fcm_ctrl->read_bytes = 256;
368 elbc_fcm_ctrl->use_mdr = 1;
369 elbc_fcm_ctrl->mdr = column;
370 set_addr(mtd, 0, 0, 0);
371 fsl_elbc_run_command(mtd);
372 return;
374 /* ERASE1 stores the block and page address */
375 case NAND_CMD_ERASE1:
376 dev_vdbg(priv->dev,
377 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
378 "page_addr: 0x%x.\n", page_addr);
379 set_addr(mtd, 0, page_addr, 0);
380 return;
382 /* ERASE2 uses the block and page address from ERASE1 */
383 case NAND_CMD_ERASE2:
384 dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
386 out_be32(&lbc->fir,
387 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
388 (FIR_OP_PA << FIR_OP1_SHIFT) |
389 (FIR_OP_CM2 << FIR_OP2_SHIFT) |
390 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
391 (FIR_OP_RS << FIR_OP4_SHIFT));
393 out_be32(&lbc->fcr,
394 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
395 (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
396 (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
398 out_be32(&lbc->fbcr, 0);
399 elbc_fcm_ctrl->read_bytes = 0;
400 elbc_fcm_ctrl->use_mdr = 1;
402 fsl_elbc_run_command(mtd);
403 return;
405 /* SEQIN sets up the addr buffer and all registers except the length */
406 case NAND_CMD_SEQIN: {
407 __be32 fcr;
408 dev_vdbg(priv->dev,
409 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
410 "page_addr: 0x%x, column: 0x%x.\n",
411 page_addr, column);
413 elbc_fcm_ctrl->column = column;
414 elbc_fcm_ctrl->use_mdr = 1;
416 if (column >= mtd->writesize) {
417 /* OOB area */
418 column -= mtd->writesize;
419 elbc_fcm_ctrl->oob = 1;
420 } else {
421 WARN_ON(column != 0);
422 elbc_fcm_ctrl->oob = 0;
425 fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
426 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) |
427 (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
429 if (priv->page_size) {
430 out_be32(&lbc->fir,
431 (FIR_OP_CM2 << FIR_OP0_SHIFT) |
432 (FIR_OP_CA << FIR_OP1_SHIFT) |
433 (FIR_OP_PA << FIR_OP2_SHIFT) |
434 (FIR_OP_WB << FIR_OP3_SHIFT) |
435 (FIR_OP_CM3 << FIR_OP4_SHIFT) |
436 (FIR_OP_CW1 << FIR_OP5_SHIFT) |
437 (FIR_OP_RS << FIR_OP6_SHIFT));
438 } else {
439 out_be32(&lbc->fir,
440 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
441 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
442 (FIR_OP_CA << FIR_OP2_SHIFT) |
443 (FIR_OP_PA << FIR_OP3_SHIFT) |
444 (FIR_OP_WB << FIR_OP4_SHIFT) |
445 (FIR_OP_CM3 << FIR_OP5_SHIFT) |
446 (FIR_OP_CW1 << FIR_OP6_SHIFT) |
447 (FIR_OP_RS << FIR_OP7_SHIFT));
449 if (elbc_fcm_ctrl->oob)
450 /* OOB area --> READOOB */
451 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
452 else
453 /* First 256 bytes --> READ0 */
454 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
457 out_be32(&lbc->fcr, fcr);
458 set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
459 return;
462 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
463 case NAND_CMD_PAGEPROG: {
464 dev_vdbg(priv->dev,
465 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
466 "writing %d bytes.\n", elbc_fcm_ctrl->index);
468 /* if the write did not start at 0 or is not a full page
469 * then set the exact length, otherwise use a full page
470 * write so the HW generates the ECC.
472 if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
473 elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
474 out_be32(&lbc->fbcr,
475 elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
476 else
477 out_be32(&lbc->fbcr, 0);
479 fsl_elbc_run_command(mtd);
480 return;
483 /* CMD_STATUS must read the status byte while CEB is active */
484 /* Note - it does not wait for the ready line */
485 case NAND_CMD_STATUS:
486 out_be32(&lbc->fir,
487 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
488 (FIR_OP_RBW << FIR_OP1_SHIFT));
489 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
490 out_be32(&lbc->fbcr, 1);
491 set_addr(mtd, 0, 0, 0);
492 elbc_fcm_ctrl->read_bytes = 1;
494 fsl_elbc_run_command(mtd);
496 /* The chip always seems to report that it is
497 * write-protected, even when it is not.
499 setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
500 return;
502 /* RESET without waiting for the ready line */
503 case NAND_CMD_RESET:
504 dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
505 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
506 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
507 fsl_elbc_run_command(mtd);
508 return;
510 default:
511 dev_err(priv->dev,
512 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
513 command);
517 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
519 /* The hardware does not seem to support multiple
520 * chips per bank.
525 * Write buf to the FCM Controller Data Buffer
527 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
529 struct nand_chip *chip = mtd->priv;
530 struct fsl_elbc_mtd *priv = chip->priv;
531 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
532 unsigned int bufsize = mtd->writesize + mtd->oobsize;
534 if (len <= 0) {
535 dev_err(priv->dev, "write_buf of %d bytes", len);
536 elbc_fcm_ctrl->status = 0;
537 return;
540 if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
541 dev_err(priv->dev,
542 "write_buf beyond end of buffer "
543 "(%d requested, %u available)\n",
544 len, bufsize - elbc_fcm_ctrl->index);
545 len = bufsize - elbc_fcm_ctrl->index;
548 memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
550 * This is workaround for the weird elbc hangs during nand write,
551 * Scott Wood says: "...perhaps difference in how long it takes a
552 * write to make it through the localbus compared to a write to IMMR
553 * is causing problems, and sync isn't helping for some reason."
554 * Reading back the last byte helps though.
556 in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
558 elbc_fcm_ctrl->index += len;
562 * read a byte from either the FCM hardware buffer if it has any data left
563 * otherwise issue a command to read a single byte.
565 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
567 struct nand_chip *chip = mtd->priv;
568 struct fsl_elbc_mtd *priv = chip->priv;
569 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
571 /* If there are still bytes in the FCM, then use the next byte. */
572 if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
573 return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
575 dev_err(priv->dev, "read_byte beyond end of buffer\n");
576 return ERR_BYTE;
580 * Read from the FCM Controller Data Buffer
582 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
584 struct nand_chip *chip = mtd->priv;
585 struct fsl_elbc_mtd *priv = chip->priv;
586 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
587 int avail;
589 if (len < 0)
590 return;
592 avail = min((unsigned int)len,
593 elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
594 memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
595 elbc_fcm_ctrl->index += avail;
597 if (len > avail)
598 dev_err(priv->dev,
599 "read_buf beyond end of buffer "
600 "(%d requested, %d available)\n",
601 len, avail);
604 /* This function is called after Program and Erase Operations to
605 * check for success or failure.
607 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
609 struct fsl_elbc_mtd *priv = chip->priv;
610 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
612 if (elbc_fcm_ctrl->status != LTESR_CC)
613 return NAND_STATUS_FAIL;
615 /* The chip always seems to report that it is
616 * write-protected, even when it is not.
618 return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
621 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
623 struct nand_chip *chip = mtd->priv;
624 struct fsl_elbc_mtd *priv = chip->priv;
625 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
626 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
627 unsigned int al;
629 /* calculate FMR Address Length field */
630 al = 0;
631 if (chip->pagemask & 0xffff0000)
632 al++;
633 if (chip->pagemask & 0xff000000)
634 al++;
636 priv->fmr |= al << FMR_AL_SHIFT;
638 dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
639 chip->numchips);
640 dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
641 chip->chipsize);
642 dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
643 chip->pagemask);
644 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
645 chip->chip_delay);
646 dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
647 chip->badblockpos);
648 dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
649 chip->chip_shift);
650 dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
651 chip->page_shift);
652 dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
653 chip->phys_erase_shift);
654 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
655 chip->ecc.mode);
656 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
657 chip->ecc.steps);
658 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
659 chip->ecc.bytes);
660 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
661 chip->ecc.total);
662 dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
663 chip->ecc.layout);
664 dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
665 dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
666 dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
667 mtd->erasesize);
668 dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
669 mtd->writesize);
670 dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
671 mtd->oobsize);
673 /* adjust Option Register and ECC to match Flash page size */
674 if (mtd->writesize == 512) {
675 priv->page_size = 0;
676 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
677 } else if (mtd->writesize == 2048) {
678 priv->page_size = 1;
679 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
680 /* adjust ecc setup if needed */
681 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
682 BR_DECC_CHK_GEN) {
683 chip->ecc.size = 512;
684 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
685 &fsl_elbc_oob_lp_eccm1 :
686 &fsl_elbc_oob_lp_eccm0;
688 } else {
689 dev_err(priv->dev,
690 "fsl_elbc_init: page size %d is not supported\n",
691 mtd->writesize);
692 return -1;
695 return 0;
698 static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
699 uint8_t *buf, int oob_required, int page)
701 struct fsl_elbc_mtd *priv = chip->priv;
702 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
703 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
705 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
706 if (oob_required)
707 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
709 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
710 mtd->ecc_stats.failed++;
712 return elbc_fcm_ctrl->max_bitflips;
715 /* ECC will be calculated automatically, and errors will be detected in
716 * waitfunc.
718 static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
719 const uint8_t *buf, int oob_required)
721 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
722 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
724 return 0;
727 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
729 struct fsl_lbc_ctrl *ctrl = priv->ctrl;
730 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
731 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
732 struct nand_chip *chip = &priv->chip;
734 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
736 /* Fill in fsl_elbc_mtd structure */
737 priv->mtd.priv = chip;
738 priv->mtd.owner = THIS_MODULE;
740 /* set timeout to maximum */
741 priv->fmr = 15 << FMR_CWTO_SHIFT;
742 if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
743 priv->fmr |= FMR_ECCM;
745 /* fill in nand_chip structure */
746 /* set up function call table */
747 chip->read_byte = fsl_elbc_read_byte;
748 chip->write_buf = fsl_elbc_write_buf;
749 chip->read_buf = fsl_elbc_read_buf;
750 chip->select_chip = fsl_elbc_select_chip;
751 chip->cmdfunc = fsl_elbc_cmdfunc;
752 chip->waitfunc = fsl_elbc_wait;
754 chip->bbt_td = &bbt_main_descr;
755 chip->bbt_md = &bbt_mirror_descr;
757 /* set up nand options */
758 chip->bbt_options = NAND_BBT_USE_FLASH;
760 chip->controller = &elbc_fcm_ctrl->controller;
761 chip->priv = priv;
763 chip->ecc.read_page = fsl_elbc_read_page;
764 chip->ecc.write_page = fsl_elbc_write_page;
766 /* If CS Base Register selects full hardware ECC then use it */
767 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
768 BR_DECC_CHK_GEN) {
769 chip->ecc.mode = NAND_ECC_HW;
770 /* put in small page settings and adjust later if needed */
771 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
772 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
773 chip->ecc.size = 512;
774 chip->ecc.bytes = 3;
775 chip->ecc.strength = 1;
776 } else {
777 /* otherwise fall back to default software ECC */
778 chip->ecc.mode = NAND_ECC_SOFT;
781 return 0;
784 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
786 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
787 nand_release(&priv->mtd);
789 kfree(priv->mtd.name);
791 if (priv->vbase)
792 iounmap(priv->vbase);
794 elbc_fcm_ctrl->chips[priv->bank] = NULL;
795 kfree(priv);
796 return 0;
799 static DEFINE_MUTEX(fsl_elbc_nand_mutex);
801 static int fsl_elbc_nand_probe(struct platform_device *pdev)
803 struct fsl_lbc_regs __iomem *lbc;
804 struct fsl_elbc_mtd *priv;
805 struct resource res;
806 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
807 static const char *part_probe_types[]
808 = { "cmdlinepart", "RedBoot", "ofpart", NULL };
809 int ret;
810 int bank;
811 struct device *dev;
812 struct device_node *node = pdev->dev.of_node;
813 struct mtd_part_parser_data ppdata;
815 ppdata.of_node = pdev->dev.of_node;
816 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
817 return -ENODEV;
818 lbc = fsl_lbc_ctrl_dev->regs;
819 dev = fsl_lbc_ctrl_dev->dev;
821 /* get, allocate and map the memory resource */
822 ret = of_address_to_resource(node, 0, &res);
823 if (ret) {
824 dev_err(dev, "failed to get resource\n");
825 return ret;
828 /* find which chip select it is connected to */
829 for (bank = 0; bank < MAX_BANKS; bank++)
830 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
831 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
832 (in_be32(&lbc->bank[bank].br) &
833 in_be32(&lbc->bank[bank].or) & BR_BA)
834 == fsl_lbc_addr(res.start))
835 break;
837 if (bank >= MAX_BANKS) {
838 dev_err(dev, "address did not match any chip selects\n");
839 return -ENODEV;
842 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
843 if (!priv)
844 return -ENOMEM;
846 mutex_lock(&fsl_elbc_nand_mutex);
847 if (!fsl_lbc_ctrl_dev->nand) {
848 elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
849 if (!elbc_fcm_ctrl) {
850 mutex_unlock(&fsl_elbc_nand_mutex);
851 ret = -ENOMEM;
852 goto err;
854 elbc_fcm_ctrl->counter++;
856 spin_lock_init(&elbc_fcm_ctrl->controller.lock);
857 init_waitqueue_head(&elbc_fcm_ctrl->controller.wq);
858 fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
859 } else {
860 elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
862 mutex_unlock(&fsl_elbc_nand_mutex);
864 elbc_fcm_ctrl->chips[bank] = priv;
865 priv->bank = bank;
866 priv->ctrl = fsl_lbc_ctrl_dev;
867 priv->dev = &pdev->dev;
868 dev_set_drvdata(priv->dev, priv);
870 priv->vbase = ioremap(res.start, resource_size(&res));
871 if (!priv->vbase) {
872 dev_err(dev, "failed to map chip region\n");
873 ret = -ENOMEM;
874 goto err;
877 priv->mtd.name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
878 if (!priv->mtd.name) {
879 ret = -ENOMEM;
880 goto err;
883 ret = fsl_elbc_chip_init(priv);
884 if (ret)
885 goto err;
887 ret = nand_scan_ident(&priv->mtd, 1, NULL);
888 if (ret)
889 goto err;
891 ret = fsl_elbc_chip_init_tail(&priv->mtd);
892 if (ret)
893 goto err;
895 ret = nand_scan_tail(&priv->mtd);
896 if (ret)
897 goto err;
899 /* First look for RedBoot table or partitions on the command
900 * line, these take precedence over device tree information */
901 mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata,
902 NULL, 0);
904 printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n",
905 (unsigned long long)res.start, priv->bank);
906 return 0;
908 err:
909 fsl_elbc_chip_remove(priv);
910 return ret;
913 static int fsl_elbc_nand_remove(struct platform_device *pdev)
915 struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
916 struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
918 fsl_elbc_chip_remove(priv);
920 mutex_lock(&fsl_elbc_nand_mutex);
921 elbc_fcm_ctrl->counter--;
922 if (!elbc_fcm_ctrl->counter) {
923 fsl_lbc_ctrl_dev->nand = NULL;
924 kfree(elbc_fcm_ctrl);
926 mutex_unlock(&fsl_elbc_nand_mutex);
928 return 0;
932 static const struct of_device_id fsl_elbc_nand_match[] = {
933 { .compatible = "fsl,elbc-fcm-nand", },
937 static struct platform_driver fsl_elbc_nand_driver = {
938 .driver = {
939 .name = "fsl,elbc-fcm-nand",
940 .owner = THIS_MODULE,
941 .of_match_table = fsl_elbc_nand_match,
943 .probe = fsl_elbc_nand_probe,
944 .remove = fsl_elbc_nand_remove,
947 module_platform_driver(fsl_elbc_nand_driver);
949 MODULE_LICENSE("GPL");
950 MODULE_AUTHOR("Freescale");
951 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");