PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mtd / nand / lpc32xx_mlc.c
blob687478c9f09c9a92aee00bdc595f6b5a8757bc0c
1 /*
2 * Driver for NAND MLC Controller in LPC32xx
4 * Author: Roland Stigge <stigge@antcom.de>
6 * Copyright © 2011 WORK Microwave GmbH
7 * Copyright © 2011, 2012 Roland Stigge
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 * NAND Flash Controller Operation:
21 * - Read: Auto Decode
22 * - Write: Auto Encode
23 * - Tested Page Sizes: 2048, 4096
26 #include <linux/slab.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/clk.h>
33 #include <linux/err.h>
34 #include <linux/delay.h>
35 #include <linux/completion.h>
36 #include <linux/interrupt.h>
37 #include <linux/of.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_mlc.h>
41 #include <linux/io.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/dmaengine.h>
45 #include <linux/mtd/nand_ecc.h>
47 #define DRV_NAME "lpc32xx_mlc"
49 /**********************************************************************
50 * MLC NAND controller register offsets
51 **********************************************************************/
53 #define MLC_BUFF(x) (x + 0x00000)
54 #define MLC_DATA(x) (x + 0x08000)
55 #define MLC_CMD(x) (x + 0x10000)
56 #define MLC_ADDR(x) (x + 0x10004)
57 #define MLC_ECC_ENC_REG(x) (x + 0x10008)
58 #define MLC_ECC_DEC_REG(x) (x + 0x1000C)
59 #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010)
60 #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014)
61 #define MLC_RPR(x) (x + 0x10018)
62 #define MLC_WPR(x) (x + 0x1001C)
63 #define MLC_RUBP(x) (x + 0x10020)
64 #define MLC_ROBP(x) (x + 0x10024)
65 #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028)
66 #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C)
67 #define MLC_ICR(x) (x + 0x10030)
68 #define MLC_TIME_REG(x) (x + 0x10034)
69 #define MLC_IRQ_MR(x) (x + 0x10038)
70 #define MLC_IRQ_SR(x) (x + 0x1003C)
71 #define MLC_LOCK_PR(x) (x + 0x10044)
72 #define MLC_ISR(x) (x + 0x10048)
73 #define MLC_CEH(x) (x + 0x1004C)
75 /**********************************************************************
76 * MLC_CMD bit definitions
77 **********************************************************************/
78 #define MLCCMD_RESET 0xFF
80 /**********************************************************************
81 * MLC_ICR bit definitions
82 **********************************************************************/
83 #define MLCICR_WPROT (1 << 3)
84 #define MLCICR_LARGEBLOCK (1 << 2)
85 #define MLCICR_LONGADDR (1 << 1)
86 #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */
88 /**********************************************************************
89 * MLC_TIME_REG bit definitions
90 **********************************************************************/
91 #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24)
92 #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19)
93 #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16)
94 #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12)
95 #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8)
96 #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4)
97 #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0)
99 /**********************************************************************
100 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
101 **********************************************************************/
102 #define MLCIRQ_NAND_READY (1 << 5)
103 #define MLCIRQ_CONTROLLER_READY (1 << 4)
104 #define MLCIRQ_DECODE_FAILURE (1 << 3)
105 #define MLCIRQ_DECODE_ERROR (1 << 2)
106 #define MLCIRQ_ECC_READY (1 << 1)
107 #define MLCIRQ_WRPROT_FAULT (1 << 0)
109 /**********************************************************************
110 * MLC_LOCK_PR bit definitions
111 **********************************************************************/
112 #define MLCLOCKPR_MAGIC 0xA25E
114 /**********************************************************************
115 * MLC_ISR bit definitions
116 **********************************************************************/
117 #define MLCISR_DECODER_FAILURE (1 << 6)
118 #define MLCISR_ERRORS ((1 << 4) | (1 << 5))
119 #define MLCISR_ERRORS_DETECTED (1 << 3)
120 #define MLCISR_ECC_READY (1 << 2)
121 #define MLCISR_CONTROLLER_READY (1 << 1)
122 #define MLCISR_NAND_READY (1 << 0)
124 /**********************************************************************
125 * MLC_CEH bit definitions
126 **********************************************************************/
127 #define MLCCEH_NORMAL (1 << 0)
129 struct lpc32xx_nand_cfg_mlc {
130 uint32_t tcea_delay;
131 uint32_t busy_delay;
132 uint32_t nand_ta;
133 uint32_t rd_high;
134 uint32_t rd_low;
135 uint32_t wr_high;
136 uint32_t wr_low;
137 int wp_gpio;
138 struct mtd_partition *parts;
139 unsigned num_parts;
142 static struct nand_ecclayout lpc32xx_nand_oob = {
143 .eccbytes = 40,
144 .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
145 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
146 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
147 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
148 .oobfree = {
149 { .offset = 0,
150 .length = 6, },
151 { .offset = 16,
152 .length = 6, },
153 { .offset = 32,
154 .length = 6, },
155 { .offset = 48,
156 .length = 6, },
160 static struct nand_bbt_descr lpc32xx_nand_bbt = {
161 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
162 NAND_BBT_WRITE,
163 .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
166 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
167 .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
168 NAND_BBT_WRITE,
169 .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
172 struct lpc32xx_nand_host {
173 struct nand_chip nand_chip;
174 struct lpc32xx_mlc_platform_data *pdata;
175 struct clk *clk;
176 struct mtd_info mtd;
177 void __iomem *io_base;
178 int irq;
179 struct lpc32xx_nand_cfg_mlc *ncfg;
180 struct completion comp_nand;
181 struct completion comp_controller;
182 uint32_t llptr;
184 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
186 dma_addr_t oob_buf_phy;
188 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
190 uint8_t *oob_buf;
191 /* Physical address of DMA base address */
192 dma_addr_t io_base_phy;
194 struct completion comp_dma;
195 struct dma_chan *dma_chan;
196 struct dma_slave_config dma_slave_config;
197 struct scatterlist sgl;
198 uint8_t *dma_buf;
199 uint8_t *dummy_buf;
200 int mlcsubpages; /* number of 512bytes-subpages */
204 * Activate/Deactivate DMA Operation:
206 * Using the PL080 DMA Controller for transferring the 512 byte subpages
207 * instead of doing readl() / writel() in a loop slows it down significantly.
208 * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
210 * - readl() of 128 x 32 bits in a loop: ~20us
211 * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
212 * - DMA read of 512 bytes (32 bit, no bursts): ~100us
214 * This applies to the transfer itself. In the DMA case: only the
215 * wait_for_completion() (DMA setup _not_ included).
217 * Note that the 512 bytes subpage transfer is done directly from/to a
218 * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
219 * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
220 * controller transferring data between its internal buffer to/from the NAND
221 * chip.)
223 * Therefore, using the PL080 DMA is disabled by default, for now.
226 static int use_dma;
228 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
230 uint32_t clkrate, tmp;
232 /* Reset MLC controller */
233 writel(MLCCMD_RESET, MLC_CMD(host->io_base));
234 udelay(1000);
236 /* Get base clock for MLC block */
237 clkrate = clk_get_rate(host->clk);
238 if (clkrate == 0)
239 clkrate = 104000000;
241 /* Unlock MLC_ICR
242 * (among others, will be locked again automatically) */
243 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
245 /* Configure MLC Controller: Large Block, 5 Byte Address */
246 tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
247 writel(tmp, MLC_ICR(host->io_base));
249 /* Unlock MLC_TIME_REG
250 * (among others, will be locked again automatically) */
251 writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
253 /* Compute clock setup values, see LPC and NAND manual */
254 tmp = 0;
255 tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
256 tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
257 tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
258 tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
259 tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
260 tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
261 tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
262 writel(tmp, MLC_TIME_REG(host->io_base));
264 /* Enable IRQ for CONTROLLER_READY and NAND_READY */
265 writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
266 MLC_IRQ_MR(host->io_base));
268 /* Normal nCE operation: nCE controlled by controller */
269 writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
273 * Hardware specific access to control lines
275 static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
276 unsigned int ctrl)
278 struct nand_chip *nand_chip = mtd->priv;
279 struct lpc32xx_nand_host *host = nand_chip->priv;
281 if (cmd != NAND_CMD_NONE) {
282 if (ctrl & NAND_CLE)
283 writel(cmd, MLC_CMD(host->io_base));
284 else
285 writel(cmd, MLC_ADDR(host->io_base));
290 * Read Device Ready (NAND device _and_ controller ready)
292 static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
294 struct nand_chip *nand_chip = mtd->priv;
295 struct lpc32xx_nand_host *host = nand_chip->priv;
297 if ((readb(MLC_ISR(host->io_base)) &
298 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
299 (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
300 return 1;
302 return 0;
305 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
307 uint8_t sr;
309 /* Clear interrupt flag by reading status */
310 sr = readb(MLC_IRQ_SR(host->io_base));
311 if (sr & MLCIRQ_NAND_READY)
312 complete(&host->comp_nand);
313 if (sr & MLCIRQ_CONTROLLER_READY)
314 complete(&host->comp_controller);
316 return IRQ_HANDLED;
319 static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
321 struct lpc32xx_nand_host *host = chip->priv;
323 if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
324 goto exit;
326 wait_for_completion(&host->comp_nand);
328 while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
329 /* Seems to be delayed sometimes by controller */
330 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
331 cpu_relax();
334 exit:
335 return NAND_STATUS_READY;
338 static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
339 struct nand_chip *chip)
341 struct lpc32xx_nand_host *host = chip->priv;
343 if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
344 goto exit;
346 wait_for_completion(&host->comp_controller);
348 while (!(readb(MLC_ISR(host->io_base)) &
349 MLCISR_CONTROLLER_READY)) {
350 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
351 cpu_relax();
354 exit:
355 return NAND_STATUS_READY;
358 static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
360 lpc32xx_waitfunc_nand(mtd, chip);
361 lpc32xx_waitfunc_controller(mtd, chip);
363 return NAND_STATUS_READY;
367 * Enable NAND write protect
369 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
371 if (gpio_is_valid(host->ncfg->wp_gpio))
372 gpio_set_value(host->ncfg->wp_gpio, 0);
376 * Disable NAND write protect
378 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
380 if (gpio_is_valid(host->ncfg->wp_gpio))
381 gpio_set_value(host->ncfg->wp_gpio, 1);
384 static void lpc32xx_dma_complete_func(void *completion)
386 complete(completion);
389 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
390 enum dma_transfer_direction dir)
392 struct nand_chip *chip = mtd->priv;
393 struct lpc32xx_nand_host *host = chip->priv;
394 struct dma_async_tx_descriptor *desc;
395 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
396 int res;
398 sg_init_one(&host->sgl, mem, len);
400 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
401 DMA_BIDIRECTIONAL);
402 if (res != 1) {
403 dev_err(mtd->dev.parent, "Failed to map sg list\n");
404 return -ENXIO;
406 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
407 flags);
408 if (!desc) {
409 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
410 goto out1;
413 init_completion(&host->comp_dma);
414 desc->callback = lpc32xx_dma_complete_func;
415 desc->callback_param = &host->comp_dma;
417 dmaengine_submit(desc);
418 dma_async_issue_pending(host->dma_chan);
420 wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
422 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
423 DMA_BIDIRECTIONAL);
424 return 0;
425 out1:
426 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
427 DMA_BIDIRECTIONAL);
428 return -ENXIO;
431 static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
432 uint8_t *buf, int oob_required, int page)
434 struct lpc32xx_nand_host *host = chip->priv;
435 int i, j;
436 uint8_t *oobbuf = chip->oob_poi;
437 uint32_t mlc_isr;
438 int res;
439 uint8_t *dma_buf;
440 bool dma_mapped;
442 if ((void *)buf <= high_memory) {
443 dma_buf = buf;
444 dma_mapped = true;
445 } else {
446 dma_buf = host->dma_buf;
447 dma_mapped = false;
450 /* Writing Command and Address */
451 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
453 /* For all sub-pages */
454 for (i = 0; i < host->mlcsubpages; i++) {
455 /* Start Auto Decode Command */
456 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
458 /* Wait for Controller Ready */
459 lpc32xx_waitfunc_controller(mtd, chip);
461 /* Check ECC Error status */
462 mlc_isr = readl(MLC_ISR(host->io_base));
463 if (mlc_isr & MLCISR_DECODER_FAILURE) {
464 mtd->ecc_stats.failed++;
465 dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
466 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
467 mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
470 /* Read 512 + 16 Bytes */
471 if (use_dma) {
472 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
473 DMA_DEV_TO_MEM);
474 if (res)
475 return res;
476 } else {
477 for (j = 0; j < (512 >> 2); j++) {
478 *((uint32_t *)(buf)) =
479 readl(MLC_BUFF(host->io_base));
480 buf += 4;
483 for (j = 0; j < (16 >> 2); j++) {
484 *((uint32_t *)(oobbuf)) =
485 readl(MLC_BUFF(host->io_base));
486 oobbuf += 4;
490 if (use_dma && !dma_mapped)
491 memcpy(buf, dma_buf, mtd->writesize);
493 return 0;
496 static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
497 struct nand_chip *chip,
498 const uint8_t *buf, int oob_required)
500 struct lpc32xx_nand_host *host = chip->priv;
501 const uint8_t *oobbuf = chip->oob_poi;
502 uint8_t *dma_buf = (uint8_t *)buf;
503 int res;
504 int i, j;
506 if (use_dma && (void *)buf >= high_memory) {
507 dma_buf = host->dma_buf;
508 memcpy(dma_buf, buf, mtd->writesize);
511 for (i = 0; i < host->mlcsubpages; i++) {
512 /* Start Encode */
513 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
515 /* Write 512 + 6 Bytes to Buffer */
516 if (use_dma) {
517 res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
518 DMA_MEM_TO_DEV);
519 if (res)
520 return res;
521 } else {
522 for (j = 0; j < (512 >> 2); j++) {
523 writel(*((uint32_t *)(buf)),
524 MLC_BUFF(host->io_base));
525 buf += 4;
528 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
529 oobbuf += 4;
530 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
531 oobbuf += 12;
533 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
534 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
536 /* Wait for Controller Ready */
537 lpc32xx_waitfunc_controller(mtd, chip);
539 return 0;
542 static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
543 int page)
545 struct lpc32xx_nand_host *host = chip->priv;
547 /* Read whole page - necessary with MLC controller! */
548 lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
550 return 0;
553 static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
554 int page)
556 /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
557 return 0;
560 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
561 static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
563 /* Always enabled! */
566 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
568 struct mtd_info *mtd = &host->mtd;
569 dma_cap_mask_t mask;
571 if (!host->pdata || !host->pdata->dma_filter) {
572 dev_err(mtd->dev.parent, "no DMA platform data\n");
573 return -ENOENT;
576 dma_cap_zero(mask);
577 dma_cap_set(DMA_SLAVE, mask);
578 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
579 "nand-mlc");
580 if (!host->dma_chan) {
581 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
582 return -EBUSY;
586 * Set direction to a sensible value even if the dmaengine driver
587 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
588 * driver criticizes it as "alien transfer direction".
590 host->dma_slave_config.direction = DMA_DEV_TO_MEM;
591 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
592 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
593 host->dma_slave_config.src_maxburst = 128;
594 host->dma_slave_config.dst_maxburst = 128;
595 /* DMA controller does flow control: */
596 host->dma_slave_config.device_fc = false;
597 host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
598 host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
599 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
600 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
601 goto out1;
604 return 0;
605 out1:
606 dma_release_channel(host->dma_chan);
607 return -ENXIO;
610 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
612 struct lpc32xx_nand_cfg_mlc *ncfg;
613 struct device_node *np = dev->of_node;
615 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
616 if (!ncfg)
617 return NULL;
619 of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
620 of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
621 of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
622 of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
623 of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
624 of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
625 of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
627 if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
628 !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
629 !ncfg->wr_low) {
630 dev_err(dev, "chip parameters not specified correctly\n");
631 return NULL;
634 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
636 return ncfg;
640 * Probe for NAND controller
642 static int lpc32xx_nand_probe(struct platform_device *pdev)
644 struct lpc32xx_nand_host *host;
645 struct mtd_info *mtd;
646 struct nand_chip *nand_chip;
647 struct resource *rc;
648 int res;
649 struct mtd_part_parser_data ppdata = {};
651 /* Allocate memory for the device structure (and zero it) */
652 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
653 if (!host)
654 return -ENOMEM;
656 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
657 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
658 if (IS_ERR(host->io_base))
659 return PTR_ERR(host->io_base);
661 host->io_base_phy = rc->start;
663 mtd = &host->mtd;
664 nand_chip = &host->nand_chip;
665 if (pdev->dev.of_node)
666 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
667 if (!host->ncfg) {
668 dev_err(&pdev->dev,
669 "Missing or bad NAND config from device tree\n");
670 return -ENOENT;
672 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
673 return -EPROBE_DEFER;
674 if (gpio_is_valid(host->ncfg->wp_gpio) &&
675 gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
676 dev_err(&pdev->dev, "GPIO not available\n");
677 return -EBUSY;
679 lpc32xx_wp_disable(host);
681 host->pdata = dev_get_platdata(&pdev->dev);
683 nand_chip->priv = host; /* link the private data structures */
684 mtd->priv = nand_chip;
685 mtd->owner = THIS_MODULE;
686 mtd->dev.parent = &pdev->dev;
688 /* Get NAND clock */
689 host->clk = clk_get(&pdev->dev, NULL);
690 if (IS_ERR(host->clk)) {
691 dev_err(&pdev->dev, "Clock initialization failure\n");
692 res = -ENOENT;
693 goto err_exit1;
695 clk_enable(host->clk);
697 nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
698 nand_chip->dev_ready = lpc32xx_nand_device_ready;
699 nand_chip->chip_delay = 25; /* us */
700 nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
701 nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
703 /* Init NAND controller */
704 lpc32xx_nand_setup(host);
706 platform_set_drvdata(pdev, host);
708 /* Initialize function pointers */
709 nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
710 nand_chip->ecc.read_page_raw = lpc32xx_read_page;
711 nand_chip->ecc.read_page = lpc32xx_read_page;
712 nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
713 nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
714 nand_chip->ecc.write_oob = lpc32xx_write_oob;
715 nand_chip->ecc.read_oob = lpc32xx_read_oob;
716 nand_chip->ecc.strength = 4;
717 nand_chip->waitfunc = lpc32xx_waitfunc;
719 nand_chip->options = NAND_NO_SUBPAGE_WRITE;
720 nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
721 nand_chip->bbt_td = &lpc32xx_nand_bbt;
722 nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
724 /* bitflip_threshold's default is defined as ecc_strength anyway.
725 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
726 * being 0, it causes bad block table scanning errors in
727 * nand_scan_tail(), so preparing it here. */
728 mtd->bitflip_threshold = nand_chip->ecc.strength;
730 if (use_dma) {
731 res = lpc32xx_dma_setup(host);
732 if (res) {
733 res = -EIO;
734 goto err_exit2;
739 * Scan to find existance of the device and
740 * Get the type of NAND device SMALL block or LARGE block
742 if (nand_scan_ident(mtd, 1, NULL)) {
743 res = -ENXIO;
744 goto err_exit3;
747 host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
748 if (!host->dma_buf) {
749 res = -ENOMEM;
750 goto err_exit3;
753 host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL);
754 if (!host->dummy_buf) {
755 res = -ENOMEM;
756 goto err_exit3;
759 nand_chip->ecc.mode = NAND_ECC_HW;
760 nand_chip->ecc.size = mtd->writesize;
761 nand_chip->ecc.layout = &lpc32xx_nand_oob;
762 host->mlcsubpages = mtd->writesize / 512;
764 /* initially clear interrupt status */
765 readb(MLC_IRQ_SR(host->io_base));
767 init_completion(&host->comp_nand);
768 init_completion(&host->comp_controller);
770 host->irq = platform_get_irq(pdev, 0);
771 if ((host->irq < 0) || (host->irq >= NR_IRQS)) {
772 dev_err(&pdev->dev, "failed to get platform irq\n");
773 res = -EINVAL;
774 goto err_exit3;
777 if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
778 IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
779 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
780 res = -ENXIO;
781 goto err_exit3;
785 * Fills out all the uninitialized function pointers with the defaults
786 * And scans for a bad block table if appropriate.
788 if (nand_scan_tail(mtd)) {
789 res = -ENXIO;
790 goto err_exit4;
793 mtd->name = DRV_NAME;
795 ppdata.of_node = pdev->dev.of_node;
796 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
797 host->ncfg->num_parts);
798 if (!res)
799 return res;
801 nand_release(mtd);
803 err_exit4:
804 free_irq(host->irq, host);
805 err_exit3:
806 if (use_dma)
807 dma_release_channel(host->dma_chan);
808 err_exit2:
809 clk_disable(host->clk);
810 clk_put(host->clk);
811 err_exit1:
812 lpc32xx_wp_enable(host);
813 gpio_free(host->ncfg->wp_gpio);
815 return res;
819 * Remove NAND device
821 static int lpc32xx_nand_remove(struct platform_device *pdev)
823 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
824 struct mtd_info *mtd = &host->mtd;
826 nand_release(mtd);
827 free_irq(host->irq, host);
828 if (use_dma)
829 dma_release_channel(host->dma_chan);
831 clk_disable(host->clk);
832 clk_put(host->clk);
834 lpc32xx_wp_enable(host);
835 gpio_free(host->ncfg->wp_gpio);
837 return 0;
840 #ifdef CONFIG_PM
841 static int lpc32xx_nand_resume(struct platform_device *pdev)
843 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
845 /* Re-enable NAND clock */
846 clk_enable(host->clk);
848 /* Fresh init of NAND controller */
849 lpc32xx_nand_setup(host);
851 /* Disable write protect */
852 lpc32xx_wp_disable(host);
854 return 0;
857 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
859 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
861 /* Enable write protect for safety */
862 lpc32xx_wp_enable(host);
864 /* Disable clock */
865 clk_disable(host->clk);
866 return 0;
869 #else
870 #define lpc32xx_nand_resume NULL
871 #define lpc32xx_nand_suspend NULL
872 #endif
874 static const struct of_device_id lpc32xx_nand_match[] = {
875 { .compatible = "nxp,lpc3220-mlc" },
876 { /* sentinel */ },
878 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
880 static struct platform_driver lpc32xx_nand_driver = {
881 .probe = lpc32xx_nand_probe,
882 .remove = lpc32xx_nand_remove,
883 .resume = lpc32xx_nand_resume,
884 .suspend = lpc32xx_nand_suspend,
885 .driver = {
886 .name = DRV_NAME,
887 .owner = THIS_MODULE,
888 .of_match_table = lpc32xx_nand_match,
892 module_platform_driver(lpc32xx_nand_driver);
894 MODULE_LICENSE("GPL");
895 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
896 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");