5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * David Woodhouse for adding multichip support
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/nand_bch.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
49 #include <linux/mtd/partitions.h>
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8
= {
62 static struct nand_ecclayout nand_oob_16
= {
64 .eccpos
= {0, 1, 2, 3, 6, 7},
70 static struct nand_ecclayout nand_oob_64
= {
73 40, 41, 42, 43, 44, 45, 46, 47,
74 48, 49, 50, 51, 52, 53, 54, 55,
75 56, 57, 58, 59, 60, 61, 62, 63},
81 static struct nand_ecclayout nand_oob_128
= {
84 80, 81, 82, 83, 84, 85, 86, 87,
85 88, 89, 90, 91, 92, 93, 94, 95,
86 96, 97, 98, 99, 100, 101, 102, 103,
87 104, 105, 106, 107, 108, 109, 110, 111,
88 112, 113, 114, 115, 116, 117, 118, 119,
89 120, 121, 122, 123, 124, 125, 126, 127},
95 static int nand_get_device(struct mtd_info
*mtd
, int new_state
);
97 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
98 struct mtd_oob_ops
*ops
);
101 * For devices which display every fart in the system on a separate LED. Is
102 * compiled away when LED support is disabled.
104 DEFINE_LED_TRIGGER(nand_led_trigger
);
106 static int check_offs_len(struct mtd_info
*mtd
,
107 loff_t ofs
, uint64_t len
)
109 struct nand_chip
*chip
= mtd
->priv
;
112 /* Start address must align on block boundary */
113 if (ofs
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
114 pr_debug("%s: unaligned address\n", __func__
);
118 /* Length must align on block boundary */
119 if (len
& ((1ULL << chip
->phys_erase_shift
) - 1)) {
120 pr_debug("%s: length not block aligned\n", __func__
);
128 * nand_release_device - [GENERIC] release chip
129 * @mtd: MTD device structure
131 * Release chip lock and wake up anyone waiting on the device.
133 static void nand_release_device(struct mtd_info
*mtd
)
135 struct nand_chip
*chip
= mtd
->priv
;
137 /* Release the controller and the chip */
138 spin_lock(&chip
->controller
->lock
);
139 chip
->controller
->active
= NULL
;
140 chip
->state
= FL_READY
;
141 wake_up(&chip
->controller
->wq
);
142 spin_unlock(&chip
->controller
->lock
);
146 * nand_read_byte - [DEFAULT] read one byte from the chip
147 * @mtd: MTD device structure
149 * Default read function for 8bit buswidth
151 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
153 struct nand_chip
*chip
= mtd
->priv
;
154 return readb(chip
->IO_ADDR_R
);
158 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * @mtd: MTD device structure
162 * Default read function for 16bit buswidth with endianness conversion.
165 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
167 struct nand_chip
*chip
= mtd
->priv
;
168 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
172 * nand_read_word - [DEFAULT] read one word from the chip
173 * @mtd: MTD device structure
175 * Default read function for 16bit buswidth without endianness conversion.
177 static u16
nand_read_word(struct mtd_info
*mtd
)
179 struct nand_chip
*chip
= mtd
->priv
;
180 return readw(chip
->IO_ADDR_R
);
184 * nand_select_chip - [DEFAULT] control CE line
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
188 * Default select function for 1 chip devices.
190 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
192 struct nand_chip
*chip
= mtd
->priv
;
196 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
211 * Default function to write a byte to I/O[7:0]
213 static void nand_write_byte(struct mtd_info
*mtd
, uint8_t byte
)
215 struct nand_chip
*chip
= mtd
->priv
;
217 chip
->write_buf(mtd
, &byte
, 1);
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
227 static void nand_write_byte16(struct mtd_info
*mtd
, uint8_t byte
)
229 struct nand_chip
*chip
= mtd
->priv
;
230 uint16_t word
= byte
;
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
248 chip
->write_buf(mtd
, (uint8_t *)&word
, 2);
252 * nand_write_buf - [DEFAULT] write buffer to chip
253 * @mtd: MTD device structure
255 * @len: number of bytes to write
257 * Default write function for 8bit buswidth.
259 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
261 struct nand_chip
*chip
= mtd
->priv
;
263 iowrite8_rep(chip
->IO_ADDR_W
, buf
, len
);
267 * nand_read_buf - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
272 * Default read function for 8bit buswidth.
274 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
276 struct nand_chip
*chip
= mtd
->priv
;
278 ioread8_rep(chip
->IO_ADDR_R
, buf
, len
);
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
283 * @mtd: MTD device structure
285 * @len: number of bytes to write
287 * Default write function for 16bit buswidth.
289 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
291 struct nand_chip
*chip
= mtd
->priv
;
292 u16
*p
= (u16
*) buf
;
294 iowrite16_rep(chip
->IO_ADDR_W
, p
, len
>> 1);
298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
303 * Default read function for 16bit buswidth.
305 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
307 struct nand_chip
*chip
= mtd
->priv
;
308 u16
*p
= (u16
*) buf
;
310 ioread16_rep(chip
->IO_ADDR_R
, p
, len
>> 1);
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
319 * Check, if the block is bad.
321 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
323 int page
, chipnr
, res
= 0, i
= 0;
324 struct nand_chip
*chip
= mtd
->priv
;
327 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
328 ofs
+= mtd
->erasesize
- mtd
->writesize
;
330 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
333 chipnr
= (int)(ofs
>> chip
->chip_shift
);
335 nand_get_device(mtd
, FL_READING
);
337 /* Select the NAND device */
338 chip
->select_chip(mtd
, chipnr
);
342 if (chip
->options
& NAND_BUSWIDTH_16
) {
343 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
,
344 chip
->badblockpos
& 0xFE, page
);
345 bad
= cpu_to_le16(chip
->read_word(mtd
));
346 if (chip
->badblockpos
& 0x1)
351 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
,
353 bad
= chip
->read_byte(mtd
);
356 if (likely(chip
->badblockbits
== 8))
359 res
= hweight8(bad
) < chip
->badblockbits
;
360 ofs
+= mtd
->writesize
;
361 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
363 } while (!res
&& i
< 2 && (chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
));
366 chip
->select_chip(mtd
, -1);
367 nand_release_device(mtd
);
374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
378 * This is the default implementation, which can be overridden by a hardware
379 * specific driver. It provides the details for writing a bad block marker to a
382 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
384 struct nand_chip
*chip
= mtd
->priv
;
385 struct mtd_oob_ops ops
;
386 uint8_t buf
[2] = { 0, 0 };
387 int ret
= 0, res
, i
= 0;
391 ops
.ooboffs
= chip
->badblockpos
;
392 if (chip
->options
& NAND_BUSWIDTH_16
) {
393 ops
.ooboffs
&= ~0x01;
394 ops
.len
= ops
.ooblen
= 2;
396 ops
.len
= ops
.ooblen
= 1;
398 ops
.mode
= MTD_OPS_PLACE_OOB
;
400 /* Write to first/last page(s) if necessary */
401 if (chip
->bbt_options
& NAND_BBT_SCANLASTPAGE
)
402 ofs
+= mtd
->erasesize
- mtd
->writesize
;
404 res
= nand_do_write_oob(mtd
, ofs
, &ops
);
409 ofs
+= mtd
->writesize
;
410 } while ((chip
->bbt_options
& NAND_BBT_SCAN2NDPAGE
) && i
< 2);
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
424 * We try operations in the following order:
425 * (1) erase the affected block, to allow OOB marker to be written cleanly
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
429 * Note that we retain the first error encountered in (2) or (3), finish the
430 * procedures, and dump the error in the end.
432 static int nand_block_markbad_lowlevel(struct mtd_info
*mtd
, loff_t ofs
)
434 struct nand_chip
*chip
= mtd
->priv
;
437 if (!(chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
)) {
438 struct erase_info einfo
;
440 /* Attempt erase before marking OOB */
441 memset(&einfo
, 0, sizeof(einfo
));
444 einfo
.len
= 1ULL << chip
->phys_erase_shift
;
445 nand_erase_nand(mtd
, &einfo
, 0);
447 /* Write bad block marker to OOB */
448 nand_get_device(mtd
, FL_WRITING
);
449 ret
= chip
->block_markbad(mtd
, ofs
);
450 nand_release_device(mtd
);
453 /* Mark block bad in BBT */
455 res
= nand_markbad_bbt(mtd
, ofs
);
461 mtd
->ecc_stats
.badblocks
++;
467 * nand_check_wp - [GENERIC] check if the chip is write protected
468 * @mtd: MTD device structure
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
473 static int nand_check_wp(struct mtd_info
*mtd
)
475 struct nand_chip
*chip
= mtd
->priv
;
477 /* Broken xD cards report WP despite being writable */
478 if (chip
->options
& NAND_BROKEN_XD
)
481 /* Check the WP bit */
482 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
483 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
487 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 * @getchip: 0, if the chip is already selected
491 * @allowbbt: 1, if its allowed to access the bbt area
493 * Check, if the block is bad. Either by reading the bad block table or
494 * calling of the scan function.
496 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
499 struct nand_chip
*chip
= mtd
->priv
;
502 return chip
->block_bad(mtd
, ofs
, getchip
);
504 /* Return info from the table */
505 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
509 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
510 * @mtd: MTD device structure
513 * Helper function for nand_wait_ready used when needing to wait in interrupt
516 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
518 struct nand_chip
*chip
= mtd
->priv
;
521 /* Wait for the device to get ready */
522 for (i
= 0; i
< timeo
; i
++) {
523 if (chip
->dev_ready(mtd
))
525 touch_softlockup_watchdog();
530 /* Wait for the ready pin, after a command. The timeout is caught later. */
531 void nand_wait_ready(struct mtd_info
*mtd
)
533 struct nand_chip
*chip
= mtd
->priv
;
534 unsigned long timeo
= jiffies
+ msecs_to_jiffies(20);
537 if (in_interrupt() || oops_in_progress
)
538 return panic_nand_wait_ready(mtd
, 400);
540 led_trigger_event(nand_led_trigger
, LED_FULL
);
541 /* Wait until command is processed or timeout occurs */
543 if (chip
->dev_ready(mtd
))
545 touch_softlockup_watchdog();
546 } while (time_before(jiffies
, timeo
));
547 led_trigger_event(nand_led_trigger
, LED_OFF
);
549 EXPORT_SYMBOL_GPL(nand_wait_ready
);
552 * nand_command - [DEFAULT] Send command to NAND device
553 * @mtd: MTD device structure
554 * @command: the command to be sent
555 * @column: the column address for this command, -1 if none
556 * @page_addr: the page address for this command, -1 if none
558 * Send command to NAND device. This function is used for small page devices
559 * (512 Bytes per page).
561 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
562 int column
, int page_addr
)
564 register struct nand_chip
*chip
= mtd
->priv
;
565 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
567 /* Write out the command to the device */
568 if (command
== NAND_CMD_SEQIN
) {
571 if (column
>= mtd
->writesize
) {
573 column
-= mtd
->writesize
;
574 readcmd
= NAND_CMD_READOOB
;
575 } else if (column
< 256) {
576 /* First 256 bytes --> READ0 */
577 readcmd
= NAND_CMD_READ0
;
580 readcmd
= NAND_CMD_READ1
;
582 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
583 ctrl
&= ~NAND_CTRL_CHANGE
;
585 chip
->cmd_ctrl(mtd
, command
, ctrl
);
587 /* Address cycle, when necessary */
588 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
589 /* Serially input address */
591 /* Adjust columns for 16 bit buswidth */
592 if (chip
->options
& NAND_BUSWIDTH_16
)
594 chip
->cmd_ctrl(mtd
, column
, ctrl
);
595 ctrl
&= ~NAND_CTRL_CHANGE
;
597 if (page_addr
!= -1) {
598 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
599 ctrl
&= ~NAND_CTRL_CHANGE
;
600 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
601 /* One more address cycle for devices > 32MiB */
602 if (chip
->chipsize
> (32 << 20))
603 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
605 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
608 * Program and erase have their own busy handlers status and sequential
613 case NAND_CMD_PAGEPROG
:
614 case NAND_CMD_ERASE1
:
615 case NAND_CMD_ERASE2
:
617 case NAND_CMD_STATUS
:
623 udelay(chip
->chip_delay
);
624 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
625 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
627 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
628 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
632 /* This applies to read commands */
635 * If we don't have access to the busy pin, we apply the given
638 if (!chip
->dev_ready
) {
639 udelay(chip
->chip_delay
);
644 * Apply this short delay always to ensure that we do wait tWB in
645 * any case on any machine.
649 nand_wait_ready(mtd
);
653 * nand_command_lp - [DEFAULT] Send command to NAND large page device
654 * @mtd: MTD device structure
655 * @command: the command to be sent
656 * @column: the column address for this command, -1 if none
657 * @page_addr: the page address for this command, -1 if none
659 * Send command to NAND device. This is the version for the new large page
660 * devices. We don't have the separate regions as we have in the small page
661 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
663 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
664 int column
, int page_addr
)
666 register struct nand_chip
*chip
= mtd
->priv
;
668 /* Emulate NAND_CMD_READOOB */
669 if (command
== NAND_CMD_READOOB
) {
670 column
+= mtd
->writesize
;
671 command
= NAND_CMD_READ0
;
674 /* Command latch cycle */
675 chip
->cmd_ctrl(mtd
, command
, NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
677 if (column
!= -1 || page_addr
!= -1) {
678 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
680 /* Serially input address */
682 /* Adjust columns for 16 bit buswidth */
683 if (chip
->options
& NAND_BUSWIDTH_16
)
685 chip
->cmd_ctrl(mtd
, column
, ctrl
);
686 ctrl
&= ~NAND_CTRL_CHANGE
;
687 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
689 if (page_addr
!= -1) {
690 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
691 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
692 NAND_NCE
| NAND_ALE
);
693 /* One more address cycle for devices > 128MiB */
694 if (chip
->chipsize
> (128 << 20))
695 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
696 NAND_NCE
| NAND_ALE
);
699 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
702 * Program and erase have their own busy handlers status, sequential
703 * in, and deplete1 need no delay.
707 case NAND_CMD_CACHEDPROG
:
708 case NAND_CMD_PAGEPROG
:
709 case NAND_CMD_ERASE1
:
710 case NAND_CMD_ERASE2
:
713 case NAND_CMD_STATUS
:
719 udelay(chip
->chip_delay
);
720 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
721 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
722 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
723 NAND_NCE
| NAND_CTRL_CHANGE
);
724 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
728 case NAND_CMD_RNDOUT
:
729 /* No ready / busy check necessary */
730 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
731 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
732 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
733 NAND_NCE
| NAND_CTRL_CHANGE
);
737 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
738 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
739 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
740 NAND_NCE
| NAND_CTRL_CHANGE
);
742 /* This applies to read commands */
745 * If we don't have access to the busy pin, we apply the given
748 if (!chip
->dev_ready
) {
749 udelay(chip
->chip_delay
);
755 * Apply this short delay always to ensure that we do wait tWB in
756 * any case on any machine.
760 nand_wait_ready(mtd
);
764 * panic_nand_get_device - [GENERIC] Get chip for selected access
765 * @chip: the nand chip descriptor
766 * @mtd: MTD device structure
767 * @new_state: the state which is requested
769 * Used when in panic, no locks are taken.
771 static void panic_nand_get_device(struct nand_chip
*chip
,
772 struct mtd_info
*mtd
, int new_state
)
774 /* Hardware controller shared among independent devices */
775 chip
->controller
->active
= chip
;
776 chip
->state
= new_state
;
780 * nand_get_device - [GENERIC] Get chip for selected access
781 * @mtd: MTD device structure
782 * @new_state: the state which is requested
784 * Get the device and lock it for exclusive access
787 nand_get_device(struct mtd_info
*mtd
, int new_state
)
789 struct nand_chip
*chip
= mtd
->priv
;
790 spinlock_t
*lock
= &chip
->controller
->lock
;
791 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
792 DECLARE_WAITQUEUE(wait
, current
);
796 /* Hardware controller shared among independent devices */
797 if (!chip
->controller
->active
)
798 chip
->controller
->active
= chip
;
800 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
801 chip
->state
= new_state
;
805 if (new_state
== FL_PM_SUSPENDED
) {
806 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
807 chip
->state
= FL_PM_SUSPENDED
;
812 set_current_state(TASK_UNINTERRUPTIBLE
);
813 add_wait_queue(wq
, &wait
);
816 remove_wait_queue(wq
, &wait
);
821 * panic_nand_wait - [GENERIC] wait until the command is done
822 * @mtd: MTD device structure
823 * @chip: NAND chip structure
826 * Wait for command done. This is a helper function for nand_wait used when
827 * we are in interrupt context. May happen when in panic and trying to write
828 * an oops through mtdoops.
830 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
834 for (i
= 0; i
< timeo
; i
++) {
835 if (chip
->dev_ready
) {
836 if (chip
->dev_ready(mtd
))
839 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
847 * nand_wait - [DEFAULT] wait until the command is done
848 * @mtd: MTD device structure
849 * @chip: NAND chip structure
851 * Wait for command done. This applies to erase and program only. Erase can
852 * take up to 400ms and program up to 20ms according to general NAND and
855 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
858 int status
, state
= chip
->state
;
859 unsigned long timeo
= (state
== FL_ERASING
? 400 : 20);
861 led_trigger_event(nand_led_trigger
, LED_FULL
);
864 * Apply this short delay always to ensure that we do wait tWB in any
865 * case on any machine.
869 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
871 if (in_interrupt() || oops_in_progress
)
872 panic_nand_wait(mtd
, chip
, timeo
);
874 timeo
= jiffies
+ msecs_to_jiffies(timeo
);
875 while (time_before(jiffies
, timeo
)) {
876 if (chip
->dev_ready
) {
877 if (chip
->dev_ready(mtd
))
880 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
886 led_trigger_event(nand_led_trigger
, LED_OFF
);
888 status
= (int)chip
->read_byte(mtd
);
889 /* This can happen if in case of timeout or buggy dev_ready */
890 WARN_ON(!(status
& NAND_STATUS_READY
));
895 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
897 * @ofs: offset to start unlock from
898 * @len: length to unlock
899 * @invert: when = 0, unlock the range of blocks within the lower and
900 * upper boundary address
901 * when = 1, unlock the range of blocks outside the boundaries
902 * of the lower and upper boundary address
904 * Returs unlock status.
906 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
907 uint64_t len
, int invert
)
911 struct nand_chip
*chip
= mtd
->priv
;
913 /* Submit address of first page to unlock */
914 page
= ofs
>> chip
->page_shift
;
915 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
917 /* Submit address of last page to unlock */
918 page
= (ofs
+ len
) >> chip
->page_shift
;
919 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
920 (page
| invert
) & chip
->pagemask
);
922 /* Call wait ready function */
923 status
= chip
->waitfunc(mtd
, chip
);
924 /* See if device thinks it succeeded */
925 if (status
& NAND_STATUS_FAIL
) {
926 pr_debug("%s: error status = 0x%08x\n",
935 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
940 * Returns unlock status.
942 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
946 struct nand_chip
*chip
= mtd
->priv
;
948 pr_debug("%s: start = 0x%012llx, len = %llu\n",
949 __func__
, (unsigned long long)ofs
, len
);
951 if (check_offs_len(mtd
, ofs
, len
))
954 /* Align to last block address if size addresses end of the device */
955 if (ofs
+ len
== mtd
->size
)
956 len
-= mtd
->erasesize
;
958 nand_get_device(mtd
, FL_UNLOCKING
);
960 /* Shift to get chip number */
961 chipnr
= ofs
>> chip
->chip_shift
;
963 chip
->select_chip(mtd
, chipnr
);
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd
)) {
967 pr_debug("%s: device is write protected!\n",
973 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
976 chip
->select_chip(mtd
, -1);
977 nand_release_device(mtd
);
981 EXPORT_SYMBOL(nand_unlock
);
984 * nand_lock - [REPLACEABLE] locks all blocks present in the device
986 * @ofs: offset to start unlock from
987 * @len: length to unlock
989 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
990 * have this feature, but it allows only to lock all blocks, not for specified
991 * range for block. Implementing 'lock' feature by making use of 'unlock', for
994 * Returns lock status.
996 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
999 int chipnr
, status
, page
;
1000 struct nand_chip
*chip
= mtd
->priv
;
1002 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1003 __func__
, (unsigned long long)ofs
, len
);
1005 if (check_offs_len(mtd
, ofs
, len
))
1008 nand_get_device(mtd
, FL_LOCKING
);
1010 /* Shift to get chip number */
1011 chipnr
= ofs
>> chip
->chip_shift
;
1013 chip
->select_chip(mtd
, chipnr
);
1015 /* Check, if it is write protected */
1016 if (nand_check_wp(mtd
)) {
1017 pr_debug("%s: device is write protected!\n",
1019 status
= MTD_ERASE_FAILED
;
1024 /* Submit address of first page to lock */
1025 page
= ofs
>> chip
->page_shift
;
1026 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1028 /* Call wait ready function */
1029 status
= chip
->waitfunc(mtd
, chip
);
1030 /* See if device thinks it succeeded */
1031 if (status
& NAND_STATUS_FAIL
) {
1032 pr_debug("%s: error status = 0x%08x\n",
1038 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1041 chip
->select_chip(mtd
, -1);
1042 nand_release_device(mtd
);
1046 EXPORT_SYMBOL(nand_lock
);
1049 * nand_read_page_raw - [INTERN] read raw page data without ecc
1050 * @mtd: mtd info structure
1051 * @chip: nand chip info structure
1052 * @buf: buffer to store read data
1053 * @oob_required: caller requires OOB data read to chip->oob_poi
1054 * @page: page number to read
1056 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1058 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1059 uint8_t *buf
, int oob_required
, int page
)
1061 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1063 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1068 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1069 * @mtd: mtd info structure
1070 * @chip: nand chip info structure
1071 * @buf: buffer to store read data
1072 * @oob_required: caller requires OOB data read to chip->oob_poi
1073 * @page: page number to read
1075 * We need a special oob layout and handling even when OOB isn't used.
1077 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1078 struct nand_chip
*chip
, uint8_t *buf
,
1079 int oob_required
, int page
)
1081 int eccsize
= chip
->ecc
.size
;
1082 int eccbytes
= chip
->ecc
.bytes
;
1083 uint8_t *oob
= chip
->oob_poi
;
1086 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1087 chip
->read_buf(mtd
, buf
, eccsize
);
1090 if (chip
->ecc
.prepad
) {
1091 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1092 oob
+= chip
->ecc
.prepad
;
1095 chip
->read_buf(mtd
, oob
, eccbytes
);
1098 if (chip
->ecc
.postpad
) {
1099 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1100 oob
+= chip
->ecc
.postpad
;
1104 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1106 chip
->read_buf(mtd
, oob
, size
);
1112 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1113 * @mtd: mtd info structure
1114 * @chip: nand chip info structure
1115 * @buf: buffer to store read data
1116 * @oob_required: caller requires OOB data read to chip->oob_poi
1117 * @page: page number to read
1119 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1120 uint8_t *buf
, int oob_required
, int page
)
1122 int i
, eccsize
= chip
->ecc
.size
;
1123 int eccbytes
= chip
->ecc
.bytes
;
1124 int eccsteps
= chip
->ecc
.steps
;
1126 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1127 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1128 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1129 unsigned int max_bitflips
= 0;
1131 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, 1, page
);
1133 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1134 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1136 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1137 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1139 eccsteps
= chip
->ecc
.steps
;
1142 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1145 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1147 mtd
->ecc_stats
.failed
++;
1149 mtd
->ecc_stats
.corrected
+= stat
;
1150 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1153 return max_bitflips
;
1157 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1158 * @mtd: mtd info structure
1159 * @chip: nand chip info structure
1160 * @data_offs: offset of requested data within the page
1161 * @readlen: data length
1162 * @bufpoi: buffer to store read data
1164 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1165 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1167 int start_step
, end_step
, num_steps
;
1168 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1170 int data_col_addr
, i
, gaps
= 0;
1171 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1172 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1174 unsigned int max_bitflips
= 0;
1176 /* Column address within the page aligned to ECC size (256bytes) */
1177 start_step
= data_offs
/ chip
->ecc
.size
;
1178 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1179 num_steps
= end_step
- start_step
+ 1;
1181 /* Data size aligned to ECC ecc.size */
1182 datafrag_len
= num_steps
* chip
->ecc
.size
;
1183 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1185 data_col_addr
= start_step
* chip
->ecc
.size
;
1186 /* If we read not a page aligned data */
1187 if (data_col_addr
!= 0)
1188 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1190 p
= bufpoi
+ data_col_addr
;
1191 chip
->read_buf(mtd
, p
, datafrag_len
);
1194 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1195 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1198 * The performance is faster if we position offsets according to
1199 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1201 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1202 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1203 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1209 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1210 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1213 * Send the command to read the particular ECC bytes take care
1214 * about buswidth alignment in read_buf.
1216 index
= start_step
* chip
->ecc
.bytes
;
1218 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1219 aligned_len
= eccfrag_len
;
1220 if (eccpos
[index
] & (busw
- 1))
1222 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1225 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1226 mtd
->writesize
+ aligned_pos
, -1);
1227 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1230 for (i
= 0; i
< eccfrag_len
; i
++)
1231 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1233 p
= bufpoi
+ data_col_addr
;
1234 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1237 stat
= chip
->ecc
.correct(mtd
, p
,
1238 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1240 mtd
->ecc_stats
.failed
++;
1242 mtd
->ecc_stats
.corrected
+= stat
;
1243 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1246 return max_bitflips
;
1250 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1251 * @mtd: mtd info structure
1252 * @chip: nand chip info structure
1253 * @buf: buffer to store read data
1254 * @oob_required: caller requires OOB data read to chip->oob_poi
1255 * @page: page number to read
1257 * Not for syndrome calculating ECC controllers which need a special oob layout.
1259 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1260 uint8_t *buf
, int oob_required
, int page
)
1262 int i
, eccsize
= chip
->ecc
.size
;
1263 int eccbytes
= chip
->ecc
.bytes
;
1264 int eccsteps
= chip
->ecc
.steps
;
1266 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1267 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1268 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1269 unsigned int max_bitflips
= 0;
1271 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1272 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1273 chip
->read_buf(mtd
, p
, eccsize
);
1274 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1276 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1278 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1279 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1281 eccsteps
= chip
->ecc
.steps
;
1284 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1287 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1289 mtd
->ecc_stats
.failed
++;
1291 mtd
->ecc_stats
.corrected
+= stat
;
1292 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1295 return max_bitflips
;
1299 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1300 * @mtd: mtd info structure
1301 * @chip: nand chip info structure
1302 * @buf: buffer to store read data
1303 * @oob_required: caller requires OOB data read to chip->oob_poi
1304 * @page: page number to read
1306 * Hardware ECC for large page chips, require OOB to be read first. For this
1307 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1308 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1309 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1310 * the data area, by overwriting the NAND manufacturer bad block markings.
1312 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1313 struct nand_chip
*chip
, uint8_t *buf
, int oob_required
, int page
)
1315 int i
, eccsize
= chip
->ecc
.size
;
1316 int eccbytes
= chip
->ecc
.bytes
;
1317 int eccsteps
= chip
->ecc
.steps
;
1319 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1320 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1321 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1322 unsigned int max_bitflips
= 0;
1324 /* Read the OOB area first */
1325 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1326 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1327 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1329 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1330 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1332 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1335 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1336 chip
->read_buf(mtd
, p
, eccsize
);
1337 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1339 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1341 mtd
->ecc_stats
.failed
++;
1343 mtd
->ecc_stats
.corrected
+= stat
;
1344 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1347 return max_bitflips
;
1351 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1352 * @mtd: mtd info structure
1353 * @chip: nand chip info structure
1354 * @buf: buffer to store read data
1355 * @oob_required: caller requires OOB data read to chip->oob_poi
1356 * @page: page number to read
1358 * The hw generator calculates the error syndrome automatically. Therefore we
1359 * need a special oob layout and handling.
1361 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1362 uint8_t *buf
, int oob_required
, int page
)
1364 int i
, eccsize
= chip
->ecc
.size
;
1365 int eccbytes
= chip
->ecc
.bytes
;
1366 int eccsteps
= chip
->ecc
.steps
;
1368 uint8_t *oob
= chip
->oob_poi
;
1369 unsigned int max_bitflips
= 0;
1371 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1374 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1375 chip
->read_buf(mtd
, p
, eccsize
);
1377 if (chip
->ecc
.prepad
) {
1378 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1379 oob
+= chip
->ecc
.prepad
;
1382 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1383 chip
->read_buf(mtd
, oob
, eccbytes
);
1384 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1387 mtd
->ecc_stats
.failed
++;
1389 mtd
->ecc_stats
.corrected
+= stat
;
1390 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1395 if (chip
->ecc
.postpad
) {
1396 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1397 oob
+= chip
->ecc
.postpad
;
1401 /* Calculate remaining oob bytes */
1402 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1404 chip
->read_buf(mtd
, oob
, i
);
1406 return max_bitflips
;
1410 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1411 * @chip: nand chip structure
1412 * @oob: oob destination address
1413 * @ops: oob ops structure
1414 * @len: size of oob to transfer
1416 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1417 struct mtd_oob_ops
*ops
, size_t len
)
1419 switch (ops
->mode
) {
1421 case MTD_OPS_PLACE_OOB
:
1423 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1426 case MTD_OPS_AUTO_OOB
: {
1427 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1428 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1431 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1432 /* Read request not from offset 0? */
1433 if (unlikely(roffs
)) {
1434 if (roffs
>= free
->length
) {
1435 roffs
-= free
->length
;
1438 boffs
= free
->offset
+ roffs
;
1439 bytes
= min_t(size_t, len
,
1440 (free
->length
- roffs
));
1443 bytes
= min_t(size_t, len
, free
->length
);
1444 boffs
= free
->offset
;
1446 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1458 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1459 * @mtd: MTD device structure
1460 * @retry_mode: the retry mode to use
1462 * Some vendors supply a special command to shift the Vt threshold, to be used
1463 * when there are too many bitflips in a page (i.e., ECC error). After setting
1464 * a new threshold, the host should retry reading the page.
1466 static int nand_setup_read_retry(struct mtd_info
*mtd
, int retry_mode
)
1468 struct nand_chip
*chip
= mtd
->priv
;
1470 pr_debug("setting READ RETRY mode %d\n", retry_mode
);
1472 if (retry_mode
>= chip
->read_retries
)
1475 if (!chip
->setup_read_retry
)
1478 return chip
->setup_read_retry(mtd
, retry_mode
);
1482 * nand_do_read_ops - [INTERN] Read data with ECC
1483 * @mtd: MTD device structure
1484 * @from: offset to read from
1485 * @ops: oob ops structure
1487 * Internal function. Called with chip held.
1489 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1490 struct mtd_oob_ops
*ops
)
1492 int chipnr
, page
, realpage
, col
, bytes
, aligned
, oob_required
;
1493 struct nand_chip
*chip
= mtd
->priv
;
1495 uint32_t readlen
= ops
->len
;
1496 uint32_t oobreadlen
= ops
->ooblen
;
1497 uint32_t max_oobsize
= ops
->mode
== MTD_OPS_AUTO_OOB
?
1498 mtd
->oobavail
: mtd
->oobsize
;
1500 uint8_t *bufpoi
, *oob
, *buf
;
1501 unsigned int max_bitflips
= 0;
1503 bool ecc_fail
= false;
1505 chipnr
= (int)(from
>> chip
->chip_shift
);
1506 chip
->select_chip(mtd
, chipnr
);
1508 realpage
= (int)(from
>> chip
->page_shift
);
1509 page
= realpage
& chip
->pagemask
;
1511 col
= (int)(from
& (mtd
->writesize
- 1));
1515 oob_required
= oob
? 1 : 0;
1518 unsigned int ecc_failures
= mtd
->ecc_stats
.failed
;
1520 bytes
= min(mtd
->writesize
- col
, readlen
);
1521 aligned
= (bytes
== mtd
->writesize
);
1523 /* Is the current page in the buffer? */
1524 if (realpage
!= chip
->pagebuf
|| oob
) {
1525 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1528 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1531 * Now read the page into the buffer. Absent an error,
1532 * the read methods return max bitflips per ecc step.
1534 if (unlikely(ops
->mode
== MTD_OPS_RAW
))
1535 ret
= chip
->ecc
.read_page_raw(mtd
, chip
, bufpoi
,
1538 else if (!aligned
&& NAND_HAS_SUBPAGE_READ(chip
) &&
1540 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1541 col
, bytes
, bufpoi
);
1543 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1544 oob_required
, page
);
1547 /* Invalidate page cache */
1552 max_bitflips
= max_t(unsigned int, max_bitflips
, ret
);
1554 /* Transfer not aligned data */
1556 if (!NAND_HAS_SUBPAGE_READ(chip
) && !oob
&&
1557 !(mtd
->ecc_stats
.failed
- ecc_failures
) &&
1558 (ops
->mode
!= MTD_OPS_RAW
)) {
1559 chip
->pagebuf
= realpage
;
1560 chip
->pagebuf_bitflips
= ret
;
1562 /* Invalidate page cache */
1565 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1568 if (unlikely(oob
)) {
1569 int toread
= min(oobreadlen
, max_oobsize
);
1572 oob
= nand_transfer_oob(chip
,
1574 oobreadlen
-= toread
;
1578 if (chip
->options
& NAND_NEED_READRDY
) {
1579 /* Apply delay or wait for ready/busy pin */
1580 if (!chip
->dev_ready
)
1581 udelay(chip
->chip_delay
);
1583 nand_wait_ready(mtd
);
1586 if (mtd
->ecc_stats
.failed
- ecc_failures
) {
1587 if (retry_mode
+ 1 <= chip
->read_retries
) {
1589 ret
= nand_setup_read_retry(mtd
,
1594 /* Reset failures; retry */
1595 mtd
->ecc_stats
.failed
= ecc_failures
;
1598 /* No more retry modes; real failure */
1605 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1607 max_bitflips
= max_t(unsigned int, max_bitflips
,
1608 chip
->pagebuf_bitflips
);
1613 /* Reset to retry mode 0 */
1615 ret
= nand_setup_read_retry(mtd
, 0);
1624 /* For subsequent reads align to page boundary */
1626 /* Increment page address */
1629 page
= realpage
& chip
->pagemask
;
1630 /* Check, if we cross a chip boundary */
1633 chip
->select_chip(mtd
, -1);
1634 chip
->select_chip(mtd
, chipnr
);
1637 chip
->select_chip(mtd
, -1);
1639 ops
->retlen
= ops
->len
- (size_t) readlen
;
1641 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1649 return max_bitflips
;
1653 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1654 * @mtd: MTD device structure
1655 * @from: offset to read from
1656 * @len: number of bytes to read
1657 * @retlen: pointer to variable to store the number of read bytes
1658 * @buf: the databuffer to put data
1660 * Get hold of the chip and call nand_do_read.
1662 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1663 size_t *retlen
, uint8_t *buf
)
1665 struct mtd_oob_ops ops
;
1668 nand_get_device(mtd
, FL_READING
);
1672 ops
.mode
= MTD_OPS_PLACE_OOB
;
1673 ret
= nand_do_read_ops(mtd
, from
, &ops
);
1674 *retlen
= ops
.retlen
;
1675 nand_release_device(mtd
);
1680 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1681 * @mtd: mtd info structure
1682 * @chip: nand chip info structure
1683 * @page: page number to read
1685 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1688 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1689 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1694 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1696 * @mtd: mtd info structure
1697 * @chip: nand chip info structure
1698 * @page: page number to read
1700 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1703 uint8_t *buf
= chip
->oob_poi
;
1704 int length
= mtd
->oobsize
;
1705 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1706 int eccsize
= chip
->ecc
.size
;
1707 uint8_t *bufpoi
= buf
;
1708 int i
, toread
, sndrnd
= 0, pos
;
1710 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1711 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1713 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1714 if (mtd
->writesize
> 512)
1715 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1717 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1720 toread
= min_t(int, length
, chunk
);
1721 chip
->read_buf(mtd
, bufpoi
, toread
);
1726 chip
->read_buf(mtd
, bufpoi
, length
);
1732 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1733 * @mtd: mtd info structure
1734 * @chip: nand chip info structure
1735 * @page: page number to write
1737 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1741 const uint8_t *buf
= chip
->oob_poi
;
1742 int length
= mtd
->oobsize
;
1744 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1745 chip
->write_buf(mtd
, buf
, length
);
1746 /* Send command to program the OOB data */
1747 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1749 status
= chip
->waitfunc(mtd
, chip
);
1751 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1755 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1756 * with syndrome - only for large page flash
1757 * @mtd: mtd info structure
1758 * @chip: nand chip info structure
1759 * @page: page number to write
1761 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1762 struct nand_chip
*chip
, int page
)
1764 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1765 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1766 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1767 const uint8_t *bufpoi
= chip
->oob_poi
;
1770 * data-ecc-data-ecc ... ecc-oob
1772 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1774 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1775 pos
= steps
* (eccsize
+ chunk
);
1780 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1781 for (i
= 0; i
< steps
; i
++) {
1783 if (mtd
->writesize
<= 512) {
1784 uint32_t fill
= 0xFFFFFFFF;
1788 int num
= min_t(int, len
, 4);
1789 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1794 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1795 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1799 len
= min_t(int, length
, chunk
);
1800 chip
->write_buf(mtd
, bufpoi
, len
);
1805 chip
->write_buf(mtd
, bufpoi
, length
);
1807 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1808 status
= chip
->waitfunc(mtd
, chip
);
1810 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1814 * nand_do_read_oob - [INTERN] NAND read out-of-band
1815 * @mtd: MTD device structure
1816 * @from: offset to read from
1817 * @ops: oob operations description structure
1819 * NAND read out-of-band data from the spare area.
1821 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1822 struct mtd_oob_ops
*ops
)
1824 int page
, realpage
, chipnr
;
1825 struct nand_chip
*chip
= mtd
->priv
;
1826 struct mtd_ecc_stats stats
;
1827 int readlen
= ops
->ooblen
;
1829 uint8_t *buf
= ops
->oobbuf
;
1832 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1833 __func__
, (unsigned long long)from
, readlen
);
1835 stats
= mtd
->ecc_stats
;
1837 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1838 len
= chip
->ecc
.layout
->oobavail
;
1842 if (unlikely(ops
->ooboffs
>= len
)) {
1843 pr_debug("%s: attempt to start read outside oob\n",
1848 /* Do not allow reads past end of device */
1849 if (unlikely(from
>= mtd
->size
||
1850 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1851 (from
>> chip
->page_shift
)) * len
)) {
1852 pr_debug("%s: attempt to read beyond end of device\n",
1857 chipnr
= (int)(from
>> chip
->chip_shift
);
1858 chip
->select_chip(mtd
, chipnr
);
1860 /* Shift to get page */
1861 realpage
= (int)(from
>> chip
->page_shift
);
1862 page
= realpage
& chip
->pagemask
;
1865 if (ops
->mode
== MTD_OPS_RAW
)
1866 ret
= chip
->ecc
.read_oob_raw(mtd
, chip
, page
);
1868 ret
= chip
->ecc
.read_oob(mtd
, chip
, page
);
1873 len
= min(len
, readlen
);
1874 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1876 if (chip
->options
& NAND_NEED_READRDY
) {
1877 /* Apply delay or wait for ready/busy pin */
1878 if (!chip
->dev_ready
)
1879 udelay(chip
->chip_delay
);
1881 nand_wait_ready(mtd
);
1888 /* Increment page address */
1891 page
= realpage
& chip
->pagemask
;
1892 /* Check, if we cross a chip boundary */
1895 chip
->select_chip(mtd
, -1);
1896 chip
->select_chip(mtd
, chipnr
);
1899 chip
->select_chip(mtd
, -1);
1901 ops
->oobretlen
= ops
->ooblen
- readlen
;
1906 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1909 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1913 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1914 * @mtd: MTD device structure
1915 * @from: offset to read from
1916 * @ops: oob operation description structure
1918 * NAND read data and/or out-of-band data.
1920 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1921 struct mtd_oob_ops
*ops
)
1923 int ret
= -ENOTSUPP
;
1927 /* Do not allow reads past end of device */
1928 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1929 pr_debug("%s: attempt to read beyond end of device\n",
1934 nand_get_device(mtd
, FL_READING
);
1936 switch (ops
->mode
) {
1937 case MTD_OPS_PLACE_OOB
:
1938 case MTD_OPS_AUTO_OOB
:
1947 ret
= nand_do_read_oob(mtd
, from
, ops
);
1949 ret
= nand_do_read_ops(mtd
, from
, ops
);
1952 nand_release_device(mtd
);
1958 * nand_write_page_raw - [INTERN] raw page write function
1959 * @mtd: mtd info structure
1960 * @chip: nand chip info structure
1962 * @oob_required: must write chip->oob_poi to OOB
1964 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1966 static int nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1967 const uint8_t *buf
, int oob_required
)
1969 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1971 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1977 * nand_write_page_raw_syndrome - [INTERN] raw page write function
1978 * @mtd: mtd info structure
1979 * @chip: nand chip info structure
1981 * @oob_required: must write chip->oob_poi to OOB
1983 * We need a special oob layout and handling even when ECC isn't checked.
1985 static int nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
1986 struct nand_chip
*chip
,
1987 const uint8_t *buf
, int oob_required
)
1989 int eccsize
= chip
->ecc
.size
;
1990 int eccbytes
= chip
->ecc
.bytes
;
1991 uint8_t *oob
= chip
->oob_poi
;
1994 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1995 chip
->write_buf(mtd
, buf
, eccsize
);
1998 if (chip
->ecc
.prepad
) {
1999 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2000 oob
+= chip
->ecc
.prepad
;
2003 chip
->read_buf(mtd
, oob
, eccbytes
);
2006 if (chip
->ecc
.postpad
) {
2007 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2008 oob
+= chip
->ecc
.postpad
;
2012 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2014 chip
->write_buf(mtd
, oob
, size
);
2019 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2020 * @mtd: mtd info structure
2021 * @chip: nand chip info structure
2023 * @oob_required: must write chip->oob_poi to OOB
2025 static int nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2026 const uint8_t *buf
, int oob_required
)
2028 int i
, eccsize
= chip
->ecc
.size
;
2029 int eccbytes
= chip
->ecc
.bytes
;
2030 int eccsteps
= chip
->ecc
.steps
;
2031 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2032 const uint8_t *p
= buf
;
2033 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2035 /* Software ECC calculation */
2036 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
2037 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2039 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2040 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2042 return chip
->ecc
.write_page_raw(mtd
, chip
, buf
, 1);
2046 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2047 * @mtd: mtd info structure
2048 * @chip: nand chip info structure
2050 * @oob_required: must write chip->oob_poi to OOB
2052 static int nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2053 const uint8_t *buf
, int oob_required
)
2055 int i
, eccsize
= chip
->ecc
.size
;
2056 int eccbytes
= chip
->ecc
.bytes
;
2057 int eccsteps
= chip
->ecc
.steps
;
2058 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2059 const uint8_t *p
= buf
;
2060 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2062 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2063 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2064 chip
->write_buf(mtd
, p
, eccsize
);
2065 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
2068 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2069 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2071 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2078 * nand_write_subpage_hwecc - [REPLACABLE] hardware ECC based subpage write
2079 * @mtd: mtd info structure
2080 * @chip: nand chip info structure
2081 * @offset: column address of subpage within the page
2082 * @data_len: data length
2084 * @oob_required: must write chip->oob_poi to OOB
2086 static int nand_write_subpage_hwecc(struct mtd_info
*mtd
,
2087 struct nand_chip
*chip
, uint32_t offset
,
2088 uint32_t data_len
, const uint8_t *buf
,
2091 uint8_t *oob_buf
= chip
->oob_poi
;
2092 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
2093 int ecc_size
= chip
->ecc
.size
;
2094 int ecc_bytes
= chip
->ecc
.bytes
;
2095 int ecc_steps
= chip
->ecc
.steps
;
2096 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
2097 uint32_t start_step
= offset
/ ecc_size
;
2098 uint32_t end_step
= (offset
+ data_len
- 1) / ecc_size
;
2099 int oob_bytes
= mtd
->oobsize
/ ecc_steps
;
2102 for (step
= 0; step
< ecc_steps
; step
++) {
2103 /* configure controller for WRITE access */
2104 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2106 /* write data (untouched subpages already masked by 0xFF) */
2107 chip
->write_buf(mtd
, buf
, ecc_size
);
2109 /* mask ECC of un-touched subpages by padding 0xFF */
2110 if ((step
< start_step
) || (step
> end_step
))
2111 memset(ecc_calc
, 0xff, ecc_bytes
);
2113 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
2115 /* mask OOB of un-touched subpages by padding 0xFF */
2116 /* if oob_required, preserve OOB metadata of written subpage */
2117 if (!oob_required
|| (step
< start_step
) || (step
> end_step
))
2118 memset(oob_buf
, 0xff, oob_bytes
);
2121 ecc_calc
+= ecc_bytes
;
2122 oob_buf
+= oob_bytes
;
2125 /* copy calculated ECC for whole page to chip->buffer->oob */
2126 /* this include masked-value(0xFF) for unwritten subpages */
2127 ecc_calc
= chip
->buffers
->ecccalc
;
2128 for (i
= 0; i
< chip
->ecc
.total
; i
++)
2129 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
2131 /* write OOB buffer to NAND device */
2132 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
2139 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2140 * @mtd: mtd info structure
2141 * @chip: nand chip info structure
2143 * @oob_required: must write chip->oob_poi to OOB
2145 * The hw generator calculates the error syndrome automatically. Therefore we
2146 * need a special oob layout and handling.
2148 static int nand_write_page_syndrome(struct mtd_info
*mtd
,
2149 struct nand_chip
*chip
,
2150 const uint8_t *buf
, int oob_required
)
2152 int i
, eccsize
= chip
->ecc
.size
;
2153 int eccbytes
= chip
->ecc
.bytes
;
2154 int eccsteps
= chip
->ecc
.steps
;
2155 const uint8_t *p
= buf
;
2156 uint8_t *oob
= chip
->oob_poi
;
2158 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2160 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2161 chip
->write_buf(mtd
, p
, eccsize
);
2163 if (chip
->ecc
.prepad
) {
2164 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2165 oob
+= chip
->ecc
.prepad
;
2168 chip
->ecc
.calculate(mtd
, p
, oob
);
2169 chip
->write_buf(mtd
, oob
, eccbytes
);
2172 if (chip
->ecc
.postpad
) {
2173 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2174 oob
+= chip
->ecc
.postpad
;
2178 /* Calculate remaining oob bytes */
2179 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2181 chip
->write_buf(mtd
, oob
, i
);
2187 * nand_write_page - [REPLACEABLE] write one page
2188 * @mtd: MTD device structure
2189 * @chip: NAND chip descriptor
2190 * @offset: address offset within the page
2191 * @data_len: length of actual data to be written
2192 * @buf: the data to write
2193 * @oob_required: must write chip->oob_poi to OOB
2194 * @page: page number to write
2195 * @cached: cached programming
2196 * @raw: use _raw version of write_page
2198 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2199 uint32_t offset
, int data_len
, const uint8_t *buf
,
2200 int oob_required
, int page
, int cached
, int raw
)
2202 int status
, subpage
;
2204 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
2205 chip
->ecc
.write_subpage
)
2206 subpage
= offset
|| (data_len
< mtd
->writesize
);
2210 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2213 status
= chip
->ecc
.write_page_raw(mtd
, chip
, buf
,
2216 status
= chip
->ecc
.write_subpage(mtd
, chip
, offset
, data_len
,
2219 status
= chip
->ecc
.write_page(mtd
, chip
, buf
, oob_required
);
2225 * Cached progamming disabled for now. Not sure if it's worth the
2226 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2230 if (!cached
|| !NAND_HAS_CACHEPROG(chip
)) {
2232 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2233 status
= chip
->waitfunc(mtd
, chip
);
2235 * See if operation failed and additional status checks are
2238 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2239 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2242 if (status
& NAND_STATUS_FAIL
)
2245 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2246 status
= chip
->waitfunc(mtd
, chip
);
2253 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2254 * @mtd: MTD device structure
2255 * @oob: oob data buffer
2256 * @len: oob data write length
2257 * @ops: oob ops structure
2259 static uint8_t *nand_fill_oob(struct mtd_info
*mtd
, uint8_t *oob
, size_t len
,
2260 struct mtd_oob_ops
*ops
)
2262 struct nand_chip
*chip
= mtd
->priv
;
2265 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2266 * data from a previous OOB read.
2268 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2270 switch (ops
->mode
) {
2272 case MTD_OPS_PLACE_OOB
:
2274 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2277 case MTD_OPS_AUTO_OOB
: {
2278 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2279 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2282 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2283 /* Write request not from offset 0? */
2284 if (unlikely(woffs
)) {
2285 if (woffs
>= free
->length
) {
2286 woffs
-= free
->length
;
2289 boffs
= free
->offset
+ woffs
;
2290 bytes
= min_t(size_t, len
,
2291 (free
->length
- woffs
));
2294 bytes
= min_t(size_t, len
, free
->length
);
2295 boffs
= free
->offset
;
2297 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2308 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2311 * nand_do_write_ops - [INTERN] NAND write with ECC
2312 * @mtd: MTD device structure
2313 * @to: offset to write to
2314 * @ops: oob operations description structure
2316 * NAND write with ECC.
2318 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2319 struct mtd_oob_ops
*ops
)
2321 int chipnr
, realpage
, page
, blockmask
, column
;
2322 struct nand_chip
*chip
= mtd
->priv
;
2323 uint32_t writelen
= ops
->len
;
2325 uint32_t oobwritelen
= ops
->ooblen
;
2326 uint32_t oobmaxlen
= ops
->mode
== MTD_OPS_AUTO_OOB
?
2327 mtd
->oobavail
: mtd
->oobsize
;
2329 uint8_t *oob
= ops
->oobbuf
;
2330 uint8_t *buf
= ops
->datbuf
;
2332 int oob_required
= oob
? 1 : 0;
2338 /* Reject writes, which are not page aligned */
2339 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2340 pr_notice("%s: attempt to write non page aligned data\n",
2345 column
= to
& (mtd
->writesize
- 1);
2347 chipnr
= (int)(to
>> chip
->chip_shift
);
2348 chip
->select_chip(mtd
, chipnr
);
2350 /* Check, if it is write protected */
2351 if (nand_check_wp(mtd
)) {
2356 realpage
= (int)(to
>> chip
->page_shift
);
2357 page
= realpage
& chip
->pagemask
;
2358 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2360 /* Invalidate the page cache, when we write to the cached page */
2361 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2362 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2365 /* Don't allow multipage oob writes with offset */
2366 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
)) {
2372 int bytes
= mtd
->writesize
;
2373 int cached
= writelen
> bytes
&& page
!= blockmask
;
2374 uint8_t *wbuf
= buf
;
2376 /* Partial page write? */
2377 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2379 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2381 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2382 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2383 wbuf
= chip
->buffers
->databuf
;
2386 if (unlikely(oob
)) {
2387 size_t len
= min(oobwritelen
, oobmaxlen
);
2388 oob
= nand_fill_oob(mtd
, oob
, len
, ops
);
2391 /* We still need to erase leftover OOB data */
2392 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2394 ret
= chip
->write_page(mtd
, chip
, column
, bytes
, wbuf
,
2395 oob_required
, page
, cached
,
2396 (ops
->mode
== MTD_OPS_RAW
));
2408 page
= realpage
& chip
->pagemask
;
2409 /* Check, if we cross a chip boundary */
2412 chip
->select_chip(mtd
, -1);
2413 chip
->select_chip(mtd
, chipnr
);
2417 ops
->retlen
= ops
->len
- writelen
;
2419 ops
->oobretlen
= ops
->ooblen
;
2422 chip
->select_chip(mtd
, -1);
2427 * panic_nand_write - [MTD Interface] NAND write with ECC
2428 * @mtd: MTD device structure
2429 * @to: offset to write to
2430 * @len: number of bytes to write
2431 * @retlen: pointer to variable to store the number of written bytes
2432 * @buf: the data to write
2434 * NAND write with ECC. Used when performing writes in interrupt context, this
2435 * may for example be called by mtdoops when writing an oops while in panic.
2437 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2438 size_t *retlen
, const uint8_t *buf
)
2440 struct nand_chip
*chip
= mtd
->priv
;
2441 struct mtd_oob_ops ops
;
2444 /* Wait for the device to get ready */
2445 panic_nand_wait(mtd
, chip
, 400);
2447 /* Grab the device */
2448 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2451 ops
.datbuf
= (uint8_t *)buf
;
2453 ops
.mode
= MTD_OPS_PLACE_OOB
;
2455 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2457 *retlen
= ops
.retlen
;
2462 * nand_write - [MTD Interface] NAND write with ECC
2463 * @mtd: MTD device structure
2464 * @to: offset to write to
2465 * @len: number of bytes to write
2466 * @retlen: pointer to variable to store the number of written bytes
2467 * @buf: the data to write
2469 * NAND write with ECC.
2471 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2472 size_t *retlen
, const uint8_t *buf
)
2474 struct mtd_oob_ops ops
;
2477 nand_get_device(mtd
, FL_WRITING
);
2479 ops
.datbuf
= (uint8_t *)buf
;
2481 ops
.mode
= MTD_OPS_PLACE_OOB
;
2482 ret
= nand_do_write_ops(mtd
, to
, &ops
);
2483 *retlen
= ops
.retlen
;
2484 nand_release_device(mtd
);
2489 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2490 * @mtd: MTD device structure
2491 * @to: offset to write to
2492 * @ops: oob operation description structure
2494 * NAND write out-of-band.
2496 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2497 struct mtd_oob_ops
*ops
)
2499 int chipnr
, page
, status
, len
;
2500 struct nand_chip
*chip
= mtd
->priv
;
2502 pr_debug("%s: to = 0x%08x, len = %i\n",
2503 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2505 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
2506 len
= chip
->ecc
.layout
->oobavail
;
2510 /* Do not allow write past end of page */
2511 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2512 pr_debug("%s: attempt to write past end of page\n",
2517 if (unlikely(ops
->ooboffs
>= len
)) {
2518 pr_debug("%s: attempt to start write outside oob\n",
2523 /* Do not allow write past end of device */
2524 if (unlikely(to
>= mtd
->size
||
2525 ops
->ooboffs
+ ops
->ooblen
>
2526 ((mtd
->size
>> chip
->page_shift
) -
2527 (to
>> chip
->page_shift
)) * len
)) {
2528 pr_debug("%s: attempt to write beyond end of device\n",
2533 chipnr
= (int)(to
>> chip
->chip_shift
);
2534 chip
->select_chip(mtd
, chipnr
);
2536 /* Shift to get page */
2537 page
= (int)(to
>> chip
->page_shift
);
2540 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2541 * of my DiskOnChip 2000 test units) will clear the whole data page too
2542 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2543 * it in the doc2000 driver in August 1999. dwmw2.
2545 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2547 /* Check, if it is write protected */
2548 if (nand_check_wp(mtd
)) {
2549 chip
->select_chip(mtd
, -1);
2553 /* Invalidate the page cache, if we write to the cached page */
2554 if (page
== chip
->pagebuf
)
2557 nand_fill_oob(mtd
, ops
->oobbuf
, ops
->ooblen
, ops
);
2559 if (ops
->mode
== MTD_OPS_RAW
)
2560 status
= chip
->ecc
.write_oob_raw(mtd
, chip
, page
& chip
->pagemask
);
2562 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2564 chip
->select_chip(mtd
, -1);
2569 ops
->oobretlen
= ops
->ooblen
;
2575 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2576 * @mtd: MTD device structure
2577 * @to: offset to write to
2578 * @ops: oob operation description structure
2580 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2581 struct mtd_oob_ops
*ops
)
2583 int ret
= -ENOTSUPP
;
2587 /* Do not allow writes past end of device */
2588 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2589 pr_debug("%s: attempt to write beyond end of device\n",
2594 nand_get_device(mtd
, FL_WRITING
);
2596 switch (ops
->mode
) {
2597 case MTD_OPS_PLACE_OOB
:
2598 case MTD_OPS_AUTO_OOB
:
2607 ret
= nand_do_write_oob(mtd
, to
, ops
);
2609 ret
= nand_do_write_ops(mtd
, to
, ops
);
2612 nand_release_device(mtd
);
2617 * single_erase_cmd - [GENERIC] NAND standard block erase command function
2618 * @mtd: MTD device structure
2619 * @page: the page address of the block which will be erased
2621 * Standard erase command for NAND chips.
2623 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2625 struct nand_chip
*chip
= mtd
->priv
;
2626 /* Send commands to erase a block */
2627 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2628 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2632 * nand_erase - [MTD Interface] erase block(s)
2633 * @mtd: MTD device structure
2634 * @instr: erase instruction
2636 * Erase one ore more blocks.
2638 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2640 return nand_erase_nand(mtd
, instr
, 0);
2644 * nand_erase_nand - [INTERN] erase block(s)
2645 * @mtd: MTD device structure
2646 * @instr: erase instruction
2647 * @allowbbt: allow erasing the bbt area
2649 * Erase one ore more blocks.
2651 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2654 int page
, status
, pages_per_block
, ret
, chipnr
;
2655 struct nand_chip
*chip
= mtd
->priv
;
2658 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2659 __func__
, (unsigned long long)instr
->addr
,
2660 (unsigned long long)instr
->len
);
2662 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2665 /* Grab the lock and see if the device is available */
2666 nand_get_device(mtd
, FL_ERASING
);
2668 /* Shift to get first page */
2669 page
= (int)(instr
->addr
>> chip
->page_shift
);
2670 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2672 /* Calculate pages in each block */
2673 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2675 /* Select the NAND device */
2676 chip
->select_chip(mtd
, chipnr
);
2678 /* Check, if it is write protected */
2679 if (nand_check_wp(mtd
)) {
2680 pr_debug("%s: device is write protected!\n",
2682 instr
->state
= MTD_ERASE_FAILED
;
2686 /* Loop through the pages */
2689 instr
->state
= MTD_ERASING
;
2692 /* Check if we have a bad block, we do not erase bad blocks! */
2693 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2694 chip
->page_shift
, 0, allowbbt
)) {
2695 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2697 instr
->state
= MTD_ERASE_FAILED
;
2702 * Invalidate the page cache, if we erase the block which
2703 * contains the current cached page.
2705 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2706 (page
+ pages_per_block
))
2709 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2711 status
= chip
->waitfunc(mtd
, chip
);
2714 * See if operation failed and additional status checks are
2717 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2718 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2721 /* See if block erase succeeded */
2722 if (status
& NAND_STATUS_FAIL
) {
2723 pr_debug("%s: failed erase, page 0x%08x\n",
2725 instr
->state
= MTD_ERASE_FAILED
;
2727 ((loff_t
)page
<< chip
->page_shift
);
2731 /* Increment page address and decrement length */
2732 len
-= (1ULL << chip
->phys_erase_shift
);
2733 page
+= pages_per_block
;
2735 /* Check, if we cross a chip boundary */
2736 if (len
&& !(page
& chip
->pagemask
)) {
2738 chip
->select_chip(mtd
, -1);
2739 chip
->select_chip(mtd
, chipnr
);
2742 instr
->state
= MTD_ERASE_DONE
;
2746 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2748 /* Deselect and wake up anyone waiting on the device */
2749 chip
->select_chip(mtd
, -1);
2750 nand_release_device(mtd
);
2752 /* Do call back function */
2754 mtd_erase_callback(instr
);
2756 /* Return more or less happy */
2761 * nand_sync - [MTD Interface] sync
2762 * @mtd: MTD device structure
2764 * Sync is actually a wait for chip ready function.
2766 static void nand_sync(struct mtd_info
*mtd
)
2768 pr_debug("%s: called\n", __func__
);
2770 /* Grab the lock and see if the device is available */
2771 nand_get_device(mtd
, FL_SYNCING
);
2772 /* Release it and go back */
2773 nand_release_device(mtd
);
2777 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2778 * @mtd: MTD device structure
2779 * @offs: offset relative to mtd start
2781 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2783 return nand_block_checkbad(mtd
, offs
, 1, 0);
2787 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2788 * @mtd: MTD device structure
2789 * @ofs: offset relative to mtd start
2791 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2795 ret
= nand_block_isbad(mtd
, ofs
);
2797 /* If it was bad already, return success and do nothing */
2803 return nand_block_markbad_lowlevel(mtd
, ofs
);
2807 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2808 * @mtd: MTD device structure
2809 * @chip: nand chip info structure
2810 * @addr: feature address.
2811 * @subfeature_param: the subfeature parameters, a four bytes array.
2813 static int nand_onfi_set_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2814 int addr
, uint8_t *subfeature_param
)
2819 if (!chip
->onfi_version
||
2820 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2821 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2824 chip
->cmdfunc(mtd
, NAND_CMD_SET_FEATURES
, addr
, -1);
2825 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
2826 chip
->write_byte(mtd
, subfeature_param
[i
]);
2828 status
= chip
->waitfunc(mtd
, chip
);
2829 if (status
& NAND_STATUS_FAIL
)
2835 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2836 * @mtd: MTD device structure
2837 * @chip: nand chip info structure
2838 * @addr: feature address.
2839 * @subfeature_param: the subfeature parameters, a four bytes array.
2841 static int nand_onfi_get_features(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2842 int addr
, uint8_t *subfeature_param
)
2846 if (!chip
->onfi_version
||
2847 !(le16_to_cpu(chip
->onfi_params
.opt_cmd
)
2848 & ONFI_OPT_CMD_SET_GET_FEATURES
))
2851 /* clear the sub feature parameters */
2852 memset(subfeature_param
, 0, ONFI_SUBFEATURE_PARAM_LEN
);
2854 chip
->cmdfunc(mtd
, NAND_CMD_GET_FEATURES
, addr
, -1);
2855 for (i
= 0; i
< ONFI_SUBFEATURE_PARAM_LEN
; ++i
)
2856 *subfeature_param
++ = chip
->read_byte(mtd
);
2861 * nand_suspend - [MTD Interface] Suspend the NAND flash
2862 * @mtd: MTD device structure
2864 static int nand_suspend(struct mtd_info
*mtd
)
2866 return nand_get_device(mtd
, FL_PM_SUSPENDED
);
2870 * nand_resume - [MTD Interface] Resume the NAND flash
2871 * @mtd: MTD device structure
2873 static void nand_resume(struct mtd_info
*mtd
)
2875 struct nand_chip
*chip
= mtd
->priv
;
2877 if (chip
->state
== FL_PM_SUSPENDED
)
2878 nand_release_device(mtd
);
2880 pr_err("%s called for a chip which is not in suspended state\n",
2884 /* Set default functions */
2885 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2887 /* check for proper chip_delay setup, set 20us if not */
2888 if (!chip
->chip_delay
)
2889 chip
->chip_delay
= 20;
2891 /* check, if a user supplied command function given */
2892 if (chip
->cmdfunc
== NULL
)
2893 chip
->cmdfunc
= nand_command
;
2895 /* check, if a user supplied wait function given */
2896 if (chip
->waitfunc
== NULL
)
2897 chip
->waitfunc
= nand_wait
;
2899 if (!chip
->select_chip
)
2900 chip
->select_chip
= nand_select_chip
;
2902 /* set for ONFI nand */
2903 if (!chip
->onfi_set_features
)
2904 chip
->onfi_set_features
= nand_onfi_set_features
;
2905 if (!chip
->onfi_get_features
)
2906 chip
->onfi_get_features
= nand_onfi_get_features
;
2908 /* If called twice, pointers that depend on busw may need to be reset */
2909 if (!chip
->read_byte
|| chip
->read_byte
== nand_read_byte
)
2910 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2911 if (!chip
->read_word
)
2912 chip
->read_word
= nand_read_word
;
2913 if (!chip
->block_bad
)
2914 chip
->block_bad
= nand_block_bad
;
2915 if (!chip
->block_markbad
)
2916 chip
->block_markbad
= nand_default_block_markbad
;
2917 if (!chip
->write_buf
|| chip
->write_buf
== nand_write_buf
)
2918 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2919 if (!chip
->write_byte
|| chip
->write_byte
== nand_write_byte
)
2920 chip
->write_byte
= busw
? nand_write_byte16
: nand_write_byte
;
2921 if (!chip
->read_buf
|| chip
->read_buf
== nand_read_buf
)
2922 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2923 if (!chip
->scan_bbt
)
2924 chip
->scan_bbt
= nand_default_bbt
;
2926 if (!chip
->controller
) {
2927 chip
->controller
= &chip
->hwcontrol
;
2928 spin_lock_init(&chip
->controller
->lock
);
2929 init_waitqueue_head(&chip
->controller
->wq
);
2934 /* Sanitize ONFI strings so we can safely print them */
2935 static void sanitize_string(uint8_t *s
, size_t len
)
2939 /* Null terminate */
2942 /* Remove non printable chars */
2943 for (i
= 0; i
< len
- 1; i
++) {
2944 if (s
[i
] < ' ' || s
[i
] > 127)
2948 /* Remove trailing spaces */
2952 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2957 for (i
= 0; i
< 8; i
++)
2958 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2964 /* Parse the Extended Parameter Page. */
2965 static int nand_flash_detect_ext_param_page(struct mtd_info
*mtd
,
2966 struct nand_chip
*chip
, struct nand_onfi_params
*p
)
2968 struct onfi_ext_param_page
*ep
;
2969 struct onfi_ext_section
*s
;
2970 struct onfi_ext_ecc_info
*ecc
;
2976 len
= le16_to_cpu(p
->ext_param_page_length
) * 16;
2977 ep
= kmalloc(len
, GFP_KERNEL
);
2981 /* Send our own NAND_CMD_PARAM. */
2982 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2984 /* Use the Change Read Column command to skip the ONFI param pages. */
2985 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
2986 sizeof(*p
) * p
->num_of_param_pages
, -1);
2988 /* Read out the Extended Parameter Page. */
2989 chip
->read_buf(mtd
, (uint8_t *)ep
, len
);
2990 if ((onfi_crc16(ONFI_CRC_BASE
, ((uint8_t *)ep
) + 2, len
- 2)
2991 != le16_to_cpu(ep
->crc
))) {
2992 pr_debug("fail in the CRC.\n");
2997 * Check the signature.
2998 * Do not strictly follow the ONFI spec, maybe changed in future.
3000 if (strncmp(ep
->sig
, "EPPS", 4)) {
3001 pr_debug("The signature is invalid.\n");
3005 /* find the ECC section. */
3006 cursor
= (uint8_t *)(ep
+ 1);
3007 for (i
= 0; i
< ONFI_EXT_SECTION_MAX
; i
++) {
3008 s
= ep
->sections
+ i
;
3009 if (s
->type
== ONFI_SECTION_TYPE_2
)
3011 cursor
+= s
->length
* 16;
3013 if (i
== ONFI_EXT_SECTION_MAX
) {
3014 pr_debug("We can not find the ECC section.\n");
3018 /* get the info we want. */
3019 ecc
= (struct onfi_ext_ecc_info
*)cursor
;
3021 if (!ecc
->codeword_size
) {
3022 pr_debug("Invalid codeword size\n");
3026 chip
->ecc_strength_ds
= ecc
->ecc_bits
;
3027 chip
->ecc_step_ds
= 1 << ecc
->codeword_size
;
3035 static int nand_setup_read_retry_micron(struct mtd_info
*mtd
, int retry_mode
)
3037 struct nand_chip
*chip
= mtd
->priv
;
3038 uint8_t feature
[ONFI_SUBFEATURE_PARAM_LEN
] = {retry_mode
};
3040 return chip
->onfi_set_features(mtd
, chip
, ONFI_FEATURE_ADDR_READ_RETRY
,
3045 * Configure chip properties from Micron vendor-specific ONFI table
3047 static void nand_onfi_detect_micron(struct nand_chip
*chip
,
3048 struct nand_onfi_params
*p
)
3050 struct nand_onfi_vendor_micron
*micron
= (void *)p
->vendor
;
3052 if (le16_to_cpu(p
->vendor_revision
) < 1)
3055 chip
->read_retries
= micron
->read_retry_options
;
3056 chip
->setup_read_retry
= nand_setup_read_retry_micron
;
3060 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3062 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3065 struct nand_onfi_params
*p
= &chip
->onfi_params
;
3069 /* Try ONFI for unknown chip or LP */
3070 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
3071 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
3072 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
3076 * ONFI must be probed in 8-bit mode or with NAND_BUSWIDTH_AUTO, not
3077 * with NAND_BUSWIDTH_16
3079 if (chip
->options
& NAND_BUSWIDTH_16
) {
3080 pr_err("ONFI cannot be probed in 16-bit mode; aborting\n");
3084 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
3085 for (i
= 0; i
< 3; i
++) {
3086 chip
->read_buf(mtd
, (uint8_t *)p
, sizeof(*p
));
3087 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
3088 le16_to_cpu(p
->crc
)) {
3094 pr_err("Could not find valid ONFI parameter page; aborting\n");
3099 val
= le16_to_cpu(p
->revision
);
3101 chip
->onfi_version
= 23;
3102 else if (val
& (1 << 4))
3103 chip
->onfi_version
= 22;
3104 else if (val
& (1 << 3))
3105 chip
->onfi_version
= 21;
3106 else if (val
& (1 << 2))
3107 chip
->onfi_version
= 20;
3108 else if (val
& (1 << 1))
3109 chip
->onfi_version
= 10;
3111 if (!chip
->onfi_version
) {
3112 pr_info("unsupported ONFI version: %d\n", val
);
3116 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
3117 sanitize_string(p
->model
, sizeof(p
->model
));
3119 mtd
->name
= p
->model
;
3121 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
3124 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3125 * (don't ask me who thought of this...). MTD assumes that these
3126 * dimensions will be power-of-2, so just truncate the remaining area.
3128 mtd
->erasesize
= 1 << (fls(le32_to_cpu(p
->pages_per_block
)) - 1);
3129 mtd
->erasesize
*= mtd
->writesize
;
3131 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
3133 /* See erasesize comment */
3134 chip
->chipsize
= 1 << (fls(le32_to_cpu(p
->blocks_per_lun
)) - 1);
3135 chip
->chipsize
*= (uint64_t)mtd
->erasesize
* p
->lun_count
;
3136 chip
->bits_per_cell
= p
->bits_per_cell
;
3138 if (onfi_feature(chip
) & ONFI_FEATURE_16_BIT_BUS
)
3139 *busw
= NAND_BUSWIDTH_16
;
3143 if (p
->ecc_bits
!= 0xff) {
3144 chip
->ecc_strength_ds
= p
->ecc_bits
;
3145 chip
->ecc_step_ds
= 512;
3146 } else if (chip
->onfi_version
>= 21 &&
3147 (onfi_feature(chip
) & ONFI_FEATURE_EXT_PARAM_PAGE
)) {
3150 * The nand_flash_detect_ext_param_page() uses the
3151 * Change Read Column command which maybe not supported
3152 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3153 * now. We do not replace user supplied command function.
3155 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3156 chip
->cmdfunc
= nand_command_lp
;
3158 /* The Extended Parameter Page is supported since ONFI 2.1. */
3159 if (nand_flash_detect_ext_param_page(mtd
, chip
, p
))
3160 pr_warn("Failed to detect ONFI extended param page\n");
3162 pr_warn("Could not retrieve ONFI ECC requirements\n");
3165 if (p
->jedec_id
== NAND_MFR_MICRON
)
3166 nand_onfi_detect_micron(chip
, p
);
3172 * nand_id_has_period - Check if an ID string has a given wraparound period
3173 * @id_data: the ID string
3174 * @arrlen: the length of the @id_data array
3175 * @period: the period of repitition
3177 * Check if an ID string is repeated within a given sequence of bytes at
3178 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3179 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3180 * if the repetition has a period of @period; otherwise, returns zero.
3182 static int nand_id_has_period(u8
*id_data
, int arrlen
, int period
)
3185 for (i
= 0; i
< period
; i
++)
3186 for (j
= i
+ period
; j
< arrlen
; j
+= period
)
3187 if (id_data
[i
] != id_data
[j
])
3193 * nand_id_len - Get the length of an ID string returned by CMD_READID
3194 * @id_data: the ID string
3195 * @arrlen: the length of the @id_data array
3197 * Returns the length of the ID string, according to known wraparound/trailing
3198 * zero patterns. If no pattern exists, returns the length of the array.
3200 static int nand_id_len(u8
*id_data
, int arrlen
)
3202 int last_nonzero
, period
;
3204 /* Find last non-zero byte */
3205 for (last_nonzero
= arrlen
- 1; last_nonzero
>= 0; last_nonzero
--)
3206 if (id_data
[last_nonzero
])
3210 if (last_nonzero
< 0)
3213 /* Calculate wraparound period */
3214 for (period
= 1; period
< arrlen
; period
++)
3215 if (nand_id_has_period(id_data
, arrlen
, period
))
3218 /* There's a repeated pattern */
3219 if (period
< arrlen
)
3222 /* There are trailing zeros */
3223 if (last_nonzero
< arrlen
- 1)
3224 return last_nonzero
+ 1;
3226 /* No pattern detected */
3230 /* Extract the bits of per cell from the 3rd byte of the extended ID */
3231 static int nand_get_bits_per_cell(u8 cellinfo
)
3235 bits
= cellinfo
& NAND_CI_CELLTYPE_MSK
;
3236 bits
>>= NAND_CI_CELLTYPE_SHIFT
;
3241 * Many new NAND share similar device ID codes, which represent the size of the
3242 * chip. The rest of the parameters must be decoded according to generic or
3243 * manufacturer-specific "extended ID" decoding patterns.
3245 static void nand_decode_ext_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3246 u8 id_data
[8], int *busw
)
3249 /* The 3rd id byte holds MLC / multichip data */
3250 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3251 /* The 4th id byte is the important one */
3254 id_len
= nand_id_len(id_data
, 8);
3257 * Field definitions are in the following datasheets:
3258 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3259 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3260 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3262 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3263 * ID to decide what to do.
3265 if (id_len
== 6 && id_data
[0] == NAND_MFR_SAMSUNG
&&
3266 !nand_is_slc(chip
) && id_data
[5] != 0x00) {
3268 mtd
->writesize
= 2048 << (extid
& 0x03);
3271 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3291 default: /* Other cases are "reserved" (unknown) */
3292 mtd
->oobsize
= 1024;
3296 /* Calc blocksize */
3297 mtd
->erasesize
= (128 * 1024) <<
3298 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3300 } else if (id_len
== 6 && id_data
[0] == NAND_MFR_HYNIX
&&
3301 !nand_is_slc(chip
)) {
3305 mtd
->writesize
= 2048 << (extid
& 0x03);
3308 switch (((extid
>> 2) & 0x04) | (extid
& 0x03)) {
3332 /* Calc blocksize */
3333 tmp
= ((extid
>> 1) & 0x04) | (extid
& 0x03);
3335 mtd
->erasesize
= (128 * 1024) << tmp
;
3336 else if (tmp
== 0x03)
3337 mtd
->erasesize
= 768 * 1024;
3339 mtd
->erasesize
= (64 * 1024) << tmp
;
3343 mtd
->writesize
= 1024 << (extid
& 0x03);
3346 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3347 (mtd
->writesize
>> 9);
3349 /* Calc blocksize. Blocksize is multiples of 64KiB */
3350 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3352 /* Get buswidth information */
3353 *busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3356 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3357 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3359 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3361 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3363 if (id_len
>= 6 && id_data
[0] == NAND_MFR_TOSHIBA
&&
3364 nand_is_slc(chip
) &&
3365 (id_data
[5] & 0x7) == 0x6 /* 24nm */ &&
3366 !(id_data
[4] & 0x80) /* !BENAND */) {
3367 mtd
->oobsize
= 32 * mtd
->writesize
>> 9;
3374 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3375 * decodes a matching ID table entry and assigns the MTD size parameters for
3378 static void nand_decode_id(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3379 struct nand_flash_dev
*type
, u8 id_data
[8],
3382 int maf_id
= id_data
[0];
3384 mtd
->erasesize
= type
->erasesize
;
3385 mtd
->writesize
= type
->pagesize
;
3386 mtd
->oobsize
= mtd
->writesize
/ 32;
3387 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3389 /* All legacy ID NAND are small-page, SLC */
3390 chip
->bits_per_cell
= 1;
3393 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3394 * some Spansion chips have erasesize that conflicts with size
3395 * listed in nand_ids table.
3396 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3398 if (maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 && id_data
[5] == 0x00
3399 && id_data
[6] == 0x00 && id_data
[7] == 0x00
3400 && mtd
->writesize
== 512) {
3401 mtd
->erasesize
= 128 * 1024;
3402 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3407 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3408 * heuristic patterns using various detected parameters (e.g., manufacturer,
3409 * page size, cell-type information).
3411 static void nand_decode_bbm_options(struct mtd_info
*mtd
,
3412 struct nand_chip
*chip
, u8 id_data
[8])
3414 int maf_id
= id_data
[0];
3416 /* Set the bad block position */
3417 if (mtd
->writesize
> 512 || (chip
->options
& NAND_BUSWIDTH_16
))
3418 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3420 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3423 * Bad block marker is stored in the last page of each block on Samsung
3424 * and Hynix MLC devices; stored in first two pages of each block on
3425 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3426 * AMD/Spansion, and Macronix. All others scan only the first page.
3428 if (!nand_is_slc(chip
) &&
3429 (maf_id
== NAND_MFR_SAMSUNG
||
3430 maf_id
== NAND_MFR_HYNIX
))
3431 chip
->bbt_options
|= NAND_BBT_SCANLASTPAGE
;
3432 else if ((nand_is_slc(chip
) &&
3433 (maf_id
== NAND_MFR_SAMSUNG
||
3434 maf_id
== NAND_MFR_HYNIX
||
3435 maf_id
== NAND_MFR_TOSHIBA
||
3436 maf_id
== NAND_MFR_AMD
||
3437 maf_id
== NAND_MFR_MACRONIX
)) ||
3438 (mtd
->writesize
== 2048 &&
3439 maf_id
== NAND_MFR_MICRON
))
3440 chip
->bbt_options
|= NAND_BBT_SCAN2NDPAGE
;
3443 static inline bool is_full_id_nand(struct nand_flash_dev
*type
)
3445 return type
->id_len
;
3448 static bool find_full_id_nand(struct mtd_info
*mtd
, struct nand_chip
*chip
,
3449 struct nand_flash_dev
*type
, u8
*id_data
, int *busw
)
3451 if (!strncmp(type
->id
, id_data
, type
->id_len
)) {
3452 mtd
->writesize
= type
->pagesize
;
3453 mtd
->erasesize
= type
->erasesize
;
3454 mtd
->oobsize
= type
->oobsize
;
3456 chip
->bits_per_cell
= nand_get_bits_per_cell(id_data
[2]);
3457 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3458 chip
->options
|= type
->options
;
3459 chip
->ecc_strength_ds
= NAND_ECC_STRENGTH(type
);
3460 chip
->ecc_step_ds
= NAND_ECC_STEP(type
);
3462 *busw
= type
->options
& NAND_BUSWIDTH_16
;
3465 mtd
->name
= type
->name
;
3473 * Get the flash and manufacturer id and lookup if the type is supported.
3475 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
3476 struct nand_chip
*chip
,
3478 int *maf_id
, int *dev_id
,
3479 struct nand_flash_dev
*type
)
3484 /* Select the device */
3485 chip
->select_chip(mtd
, 0);
3488 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3491 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3493 /* Send the command for reading device ID */
3494 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3496 /* Read manufacturer and device IDs */
3497 *maf_id
= chip
->read_byte(mtd
);
3498 *dev_id
= chip
->read_byte(mtd
);
3501 * Try again to make sure, as some systems the bus-hold or other
3502 * interface concerns can cause random data which looks like a
3503 * possibly credible NAND flash to appear. If the two results do
3504 * not match, ignore the device completely.
3507 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3509 /* Read entire ID string */
3510 for (i
= 0; i
< 8; i
++)
3511 id_data
[i
] = chip
->read_byte(mtd
);
3513 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
3514 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3515 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
3516 return ERR_PTR(-ENODEV
);
3520 type
= nand_flash_ids
;
3522 for (; type
->name
!= NULL
; type
++) {
3523 if (is_full_id_nand(type
)) {
3524 if (find_full_id_nand(mtd
, chip
, type
, id_data
, &busw
))
3526 } else if (*dev_id
== type
->dev_id
) {
3531 chip
->onfi_version
= 0;
3532 if (!type
->name
|| !type
->pagesize
) {
3533 /* Check is chip is ONFI compliant */
3534 if (nand_flash_detect_onfi(mtd
, chip
, &busw
))
3539 return ERR_PTR(-ENODEV
);
3542 mtd
->name
= type
->name
;
3544 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
3546 if (!type
->pagesize
&& chip
->init_size
) {
3547 /* Set the pagesize, oobsize, erasesize by the driver */
3548 busw
= chip
->init_size(mtd
, chip
, id_data
);
3549 } else if (!type
->pagesize
) {
3550 /* Decode parameters from extended ID */
3551 nand_decode_ext_id(mtd
, chip
, id_data
, &busw
);
3553 nand_decode_id(mtd
, chip
, type
, id_data
, &busw
);
3555 /* Get chip options */
3556 chip
->options
|= type
->options
;
3559 * Check if chip is not a Samsung device. Do not clear the
3560 * options for chips which do not have an extended id.
3562 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3563 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3566 /* Try to identify manufacturer */
3567 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3568 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3572 if (chip
->options
& NAND_BUSWIDTH_AUTO
) {
3573 WARN_ON(chip
->options
& NAND_BUSWIDTH_16
);
3574 chip
->options
|= busw
;
3575 nand_set_defaults(chip
, busw
);
3576 } else if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3578 * Check, if buswidth is correct. Hardware drivers should set
3581 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3583 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3584 pr_warn("bus width %d instead %d bit\n",
3585 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3587 return ERR_PTR(-EINVAL
);
3590 nand_decode_bbm_options(mtd
, chip
, id_data
);
3592 /* Calculate the address shift from the page size */
3593 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3594 /* Convert chipsize to number of pages per chip -1 */
3595 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3597 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3598 ffs(mtd
->erasesize
) - 1;
3599 if (chip
->chipsize
& 0xffffffff)
3600 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3602 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3603 chip
->chip_shift
+= 32 - 1;
3606 chip
->badblockbits
= 8;
3607 chip
->erase_cmd
= single_erase_cmd
;
3609 /* Do not replace user supplied command function! */
3610 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3611 chip
->cmdfunc
= nand_command_lp
;
3613 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3615 pr_info("%s %s\n", nand_manuf_ids
[maf_idx
].name
,
3616 chip
->onfi_version
? chip
->onfi_params
.model
: type
->name
);
3617 pr_info("%dMiB, %s, page size: %d, OOB size: %d\n",
3618 (int)(chip
->chipsize
>> 20), nand_is_slc(chip
) ? "SLC" : "MLC",
3619 mtd
->writesize
, mtd
->oobsize
);
3624 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3625 * @mtd: MTD device structure
3626 * @maxchips: number of chips to scan for
3627 * @table: alternative NAND ID table
3629 * This is the first phase of the normal nand_scan() function. It reads the
3630 * flash ID and sets up MTD fields accordingly.
3632 * The mtd->owner field must be set to the module of the caller.
3634 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3635 struct nand_flash_dev
*table
)
3637 int i
, busw
, nand_maf_id
, nand_dev_id
;
3638 struct nand_chip
*chip
= mtd
->priv
;
3639 struct nand_flash_dev
*type
;
3641 /* Get buswidth to select the correct functions */
3642 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3643 /* Set the default functions */
3644 nand_set_defaults(chip
, busw
);
3646 /* Read the flash type */
3647 type
= nand_get_flash_type(mtd
, chip
, busw
,
3648 &nand_maf_id
, &nand_dev_id
, table
);
3651 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3652 pr_warn("No NAND device found\n");
3653 chip
->select_chip(mtd
, -1);
3654 return PTR_ERR(type
);
3657 chip
->select_chip(mtd
, -1);
3659 /* Check for a chip array */
3660 for (i
= 1; i
< maxchips
; i
++) {
3661 chip
->select_chip(mtd
, i
);
3662 /* See comment in nand_get_flash_type for reset */
3663 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3664 /* Send the command for reading device ID */
3665 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3666 /* Read manufacturer and device IDs */
3667 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3668 nand_dev_id
!= chip
->read_byte(mtd
)) {
3669 chip
->select_chip(mtd
, -1);
3672 chip
->select_chip(mtd
, -1);
3675 pr_info("%d chips detected\n", i
);
3677 /* Store the number of chips and calc total size for mtd */
3679 mtd
->size
= i
* chip
->chipsize
;
3683 EXPORT_SYMBOL(nand_scan_ident
);
3687 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3688 * @mtd: MTD device structure
3690 * This is the second phase of the normal nand_scan() function. It fills out
3691 * all the uninitialized function pointers with the defaults and scans for a
3692 * bad block table if appropriate.
3694 int nand_scan_tail(struct mtd_info
*mtd
)
3697 struct nand_chip
*chip
= mtd
->priv
;
3698 struct nand_ecc_ctrl
*ecc
= &chip
->ecc
;
3700 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3701 BUG_ON((chip
->bbt_options
& NAND_BBT_NO_OOB_BBM
) &&
3702 !(chip
->bbt_options
& NAND_BBT_USE_FLASH
));
3704 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3705 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3709 /* Set the internal oob buffer location, just after the page data */
3710 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3713 * If no default placement scheme is given, select an appropriate one.
3715 if (!ecc
->layout
&& (ecc
->mode
!= NAND_ECC_SOFT_BCH
)) {
3716 switch (mtd
->oobsize
) {
3718 ecc
->layout
= &nand_oob_8
;
3721 ecc
->layout
= &nand_oob_16
;
3724 ecc
->layout
= &nand_oob_64
;
3727 ecc
->layout
= &nand_oob_128
;
3730 pr_warn("No oob scheme defined for oobsize %d\n",
3736 if (!chip
->write_page
)
3737 chip
->write_page
= nand_write_page
;
3740 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3741 * selected and we have 256 byte pagesize fallback to software ECC
3744 switch (ecc
->mode
) {
3745 case NAND_ECC_HW_OOB_FIRST
:
3746 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3747 if (!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) {
3748 pr_warn("No ECC functions supplied; "
3749 "hardware ECC not possible\n");
3752 if (!ecc
->read_page
)
3753 ecc
->read_page
= nand_read_page_hwecc_oob_first
;
3756 /* Use standard hwecc read page function? */
3757 if (!ecc
->read_page
)
3758 ecc
->read_page
= nand_read_page_hwecc
;
3759 if (!ecc
->write_page
)
3760 ecc
->write_page
= nand_write_page_hwecc
;
3761 if (!ecc
->read_page_raw
)
3762 ecc
->read_page_raw
= nand_read_page_raw
;
3763 if (!ecc
->write_page_raw
)
3764 ecc
->write_page_raw
= nand_write_page_raw
;
3766 ecc
->read_oob
= nand_read_oob_std
;
3767 if (!ecc
->write_oob
)
3768 ecc
->write_oob
= nand_write_oob_std
;
3769 if (!ecc
->read_subpage
)
3770 ecc
->read_subpage
= nand_read_subpage
;
3771 if (!ecc
->write_subpage
)
3772 ecc
->write_subpage
= nand_write_subpage_hwecc
;
3774 case NAND_ECC_HW_SYNDROME
:
3775 if ((!ecc
->calculate
|| !ecc
->correct
|| !ecc
->hwctl
) &&
3777 ecc
->read_page
== nand_read_page_hwecc
||
3779 ecc
->write_page
== nand_write_page_hwecc
)) {
3780 pr_warn("No ECC functions supplied; "
3781 "hardware ECC not possible\n");
3784 /* Use standard syndrome read/write page function? */
3785 if (!ecc
->read_page
)
3786 ecc
->read_page
= nand_read_page_syndrome
;
3787 if (!ecc
->write_page
)
3788 ecc
->write_page
= nand_write_page_syndrome
;
3789 if (!ecc
->read_page_raw
)
3790 ecc
->read_page_raw
= nand_read_page_raw_syndrome
;
3791 if (!ecc
->write_page_raw
)
3792 ecc
->write_page_raw
= nand_write_page_raw_syndrome
;
3794 ecc
->read_oob
= nand_read_oob_syndrome
;
3795 if (!ecc
->write_oob
)
3796 ecc
->write_oob
= nand_write_oob_syndrome
;
3798 if (mtd
->writesize
>= ecc
->size
) {
3799 if (!ecc
->strength
) {
3800 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3805 pr_warn("%d byte HW ECC not possible on "
3806 "%d byte page size, fallback to SW ECC\n",
3807 ecc
->size
, mtd
->writesize
);
3808 ecc
->mode
= NAND_ECC_SOFT
;
3811 ecc
->calculate
= nand_calculate_ecc
;
3812 ecc
->correct
= nand_correct_data
;
3813 ecc
->read_page
= nand_read_page_swecc
;
3814 ecc
->read_subpage
= nand_read_subpage
;
3815 ecc
->write_page
= nand_write_page_swecc
;
3816 ecc
->read_page_raw
= nand_read_page_raw
;
3817 ecc
->write_page_raw
= nand_write_page_raw
;
3818 ecc
->read_oob
= nand_read_oob_std
;
3819 ecc
->write_oob
= nand_write_oob_std
;
3826 case NAND_ECC_SOFT_BCH
:
3827 if (!mtd_nand_has_bch()) {
3828 pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3831 ecc
->calculate
= nand_bch_calculate_ecc
;
3832 ecc
->correct
= nand_bch_correct_data
;
3833 ecc
->read_page
= nand_read_page_swecc
;
3834 ecc
->read_subpage
= nand_read_subpage
;
3835 ecc
->write_page
= nand_write_page_swecc
;
3836 ecc
->read_page_raw
= nand_read_page_raw
;
3837 ecc
->write_page_raw
= nand_write_page_raw
;
3838 ecc
->read_oob
= nand_read_oob_std
;
3839 ecc
->write_oob
= nand_write_oob_std
;
3841 * Board driver should supply ecc.size and ecc.bytes values to
3842 * select how many bits are correctable; see nand_bch_init()
3843 * for details. Otherwise, default to 4 bits for large page
3846 if (!ecc
->size
&& (mtd
->oobsize
>= 64)) {
3850 ecc
->priv
= nand_bch_init(mtd
, ecc
->size
, ecc
->bytes
,
3853 pr_warn("BCH ECC initialization failed!\n");
3856 ecc
->strength
= ecc
->bytes
* 8 / fls(8 * ecc
->size
);
3860 pr_warn("NAND_ECC_NONE selected by board driver. "
3861 "This is not recommended!\n");
3862 ecc
->read_page
= nand_read_page_raw
;
3863 ecc
->write_page
= nand_write_page_raw
;
3864 ecc
->read_oob
= nand_read_oob_std
;
3865 ecc
->read_page_raw
= nand_read_page_raw
;
3866 ecc
->write_page_raw
= nand_write_page_raw
;
3867 ecc
->write_oob
= nand_write_oob_std
;
3868 ecc
->size
= mtd
->writesize
;
3874 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc
->mode
);
3878 /* For many systems, the standard OOB write also works for raw */
3879 if (!ecc
->read_oob_raw
)
3880 ecc
->read_oob_raw
= ecc
->read_oob
;
3881 if (!ecc
->write_oob_raw
)
3882 ecc
->write_oob_raw
= ecc
->write_oob
;
3885 * The number of bytes available for a client to place data into
3886 * the out of band area.
3888 ecc
->layout
->oobavail
= 0;
3889 for (i
= 0; ecc
->layout
->oobfree
[i
].length
3890 && i
< ARRAY_SIZE(ecc
->layout
->oobfree
); i
++)
3891 ecc
->layout
->oobavail
+= ecc
->layout
->oobfree
[i
].length
;
3892 mtd
->oobavail
= ecc
->layout
->oobavail
;
3895 * Set the number of read / write steps for one page depending on ECC
3898 ecc
->steps
= mtd
->writesize
/ ecc
->size
;
3899 if (ecc
->steps
* ecc
->size
!= mtd
->writesize
) {
3900 pr_warn("Invalid ECC parameters\n");
3903 ecc
->total
= ecc
->steps
* ecc
->bytes
;
3905 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3906 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) && nand_is_slc(chip
)) {
3907 switch (ecc
->steps
) {
3909 mtd
->subpage_sft
= 1;
3914 mtd
->subpage_sft
= 2;
3918 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3920 /* Initialize state */
3921 chip
->state
= FL_READY
;
3923 /* Invalidate the pagebuffer reference */
3926 /* Large page NAND with SOFT_ECC should support subpage reads */
3927 if ((ecc
->mode
== NAND_ECC_SOFT
) && (chip
->page_shift
> 9))
3928 chip
->options
|= NAND_SUBPAGE_READ
;
3930 /* Fill in remaining MTD driver data */
3931 mtd
->type
= nand_is_slc(chip
) ? MTD_NANDFLASH
: MTD_MLCNANDFLASH
;
3932 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3934 mtd
->_erase
= nand_erase
;
3936 mtd
->_unpoint
= NULL
;
3937 mtd
->_read
= nand_read
;
3938 mtd
->_write
= nand_write
;
3939 mtd
->_panic_write
= panic_nand_write
;
3940 mtd
->_read_oob
= nand_read_oob
;
3941 mtd
->_write_oob
= nand_write_oob
;
3942 mtd
->_sync
= nand_sync
;
3944 mtd
->_unlock
= NULL
;
3945 mtd
->_suspend
= nand_suspend
;
3946 mtd
->_resume
= nand_resume
;
3947 mtd
->_block_isbad
= nand_block_isbad
;
3948 mtd
->_block_markbad
= nand_block_markbad
;
3949 mtd
->writebufsize
= mtd
->writesize
;
3951 /* propagate ecc info to mtd_info */
3952 mtd
->ecclayout
= ecc
->layout
;
3953 mtd
->ecc_strength
= ecc
->strength
;
3954 mtd
->ecc_step_size
= ecc
->size
;
3956 * Initialize bitflip_threshold to its default prior scan_bbt() call.
3957 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3960 if (!mtd
->bitflip_threshold
)
3961 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
3963 /* Check, if we should skip the bad block table scan */
3964 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3967 /* Build bad block table */
3968 return chip
->scan_bbt(mtd
);
3970 EXPORT_SYMBOL(nand_scan_tail
);
3973 * is_module_text_address() isn't exported, and it's mostly a pointless
3974 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3975 * to call us from in-kernel code if the core NAND support is modular.
3978 #define caller_is_module() (1)
3980 #define caller_is_module() \
3981 is_module_text_address((unsigned long)__builtin_return_address(0))
3985 * nand_scan - [NAND Interface] Scan for the NAND device
3986 * @mtd: MTD device structure
3987 * @maxchips: number of chips to scan for
3989 * This fills out all the uninitialized function pointers with the defaults.
3990 * The flash ID is read and the mtd/chip structures are filled with the
3991 * appropriate values. The mtd->owner field must be set to the module of the
3994 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3998 /* Many callers got this wrong, so check for it for a while... */
3999 if (!mtd
->owner
&& caller_is_module()) {
4000 pr_crit("%s called with NULL mtd->owner!\n", __func__
);
4004 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
4006 ret
= nand_scan_tail(mtd
);
4009 EXPORT_SYMBOL(nand_scan
);
4012 * nand_release - [NAND Interface] Free resources held by the NAND device
4013 * @mtd: MTD device structure
4015 void nand_release(struct mtd_info
*mtd
)
4017 struct nand_chip
*chip
= mtd
->priv
;
4019 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
4020 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
4022 mtd_device_unregister(mtd
);
4024 /* Free bad block table memory */
4026 if (!(chip
->options
& NAND_OWN_BUFFERS
))
4027 kfree(chip
->buffers
);
4029 /* Free bad block descriptor memory */
4030 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
4031 & NAND_BBT_DYNAMICSTRUCT
)
4032 kfree(chip
->badblock_pattern
);
4034 EXPORT_SYMBOL_GPL(nand_release
);
4036 static int __init
nand_base_init(void)
4038 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
4042 static void __exit
nand_base_exit(void)
4044 led_trigger_unregister_simple(nand_led_trigger
);
4047 module_init(nand_base_init
);
4048 module_exit(nand_base_exit
);
4050 MODULE_LICENSE("GPL");
4051 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4052 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4053 MODULE_DESCRIPTION("Generic NAND flash driver code");