PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mtd / nand / omap2.c
blobef4190a02b7bd591af7c97be8ee1e3caecf6f83c
1 /*
2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
105 #define CS_MASK 0x7
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
112 #define ECC1 0x1
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
122 #define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
124 #define SECTOR_BYTES 512
125 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
126 #define BCH4_BIT_PAD 4
127 #define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
128 #define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
130 /* GPMC ecc engine settings for read */
131 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
132 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
133 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
134 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
135 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
137 /* GPMC ecc engine settings for write */
138 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
139 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
140 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
142 #define BADBLOCK_MARKER_LENGTH 2
144 #ifdef CONFIG_MTD_NAND_OMAP_BCH
145 static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147 static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
148 #endif
150 /* oob info generated runtime depending on ecc algorithm and layout selected */
151 static struct nand_ecclayout omap_oobinfo;
153 struct omap_nand_info {
154 struct nand_hw_control controller;
155 struct omap_nand_platform_data *pdata;
156 struct mtd_info mtd;
157 struct nand_chip nand;
158 struct platform_device *pdev;
160 int gpmc_cs;
161 unsigned long phys_base;
162 unsigned long mem_size;
163 struct completion comp;
164 struct dma_chan *dma;
165 int gpmc_irq_fifo;
166 int gpmc_irq_count;
167 enum {
168 OMAP_NAND_IO_READ = 0, /* read */
169 OMAP_NAND_IO_WRITE, /* write */
170 } iomode;
171 u_char *buf;
172 int buf_len;
173 struct gpmc_nand_regs reg;
174 /* fields specific for BCHx_HW ECC scheme */
175 bool is_elm_used;
176 struct device *elm_dev;
177 struct device_node *of_node;
181 * omap_prefetch_enable - configures and starts prefetch transfer
182 * @cs: cs (chip select) number
183 * @fifo_th: fifo threshold to be used for read/ write
184 * @dma_mode: dma mode enable (1) or disable (0)
185 * @u32_count: number of bytes to be transferred
186 * @is_write: prefetch read(0) or write post(1) mode
188 static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
189 unsigned int u32_count, int is_write, struct omap_nand_info *info)
191 u32 val;
193 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
194 return -1;
196 if (readl(info->reg.gpmc_prefetch_control))
197 return -EBUSY;
199 /* Set the amount of bytes to be prefetched */
200 writel(u32_count, info->reg.gpmc_prefetch_config2);
202 /* Set dma/mpu mode, the prefetch read / post write and
203 * enable the engine. Set which cs is has requested for.
205 val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
206 PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
207 (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write));
208 writel(val, info->reg.gpmc_prefetch_config1);
210 /* Start the prefetch engine */
211 writel(0x1, info->reg.gpmc_prefetch_control);
213 return 0;
217 * omap_prefetch_reset - disables and stops the prefetch engine
219 static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
221 u32 config1;
223 /* check if the same module/cs is trying to reset */
224 config1 = readl(info->reg.gpmc_prefetch_config1);
225 if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
226 return -EINVAL;
228 /* Stop the PFPW engine */
229 writel(0x0, info->reg.gpmc_prefetch_control);
231 /* Reset/disable the PFPW engine */
232 writel(0x0, info->reg.gpmc_prefetch_config1);
234 return 0;
238 * omap_hwcontrol - hardware specific access to control-lines
239 * @mtd: MTD device structure
240 * @cmd: command to device
241 * @ctrl:
242 * NAND_NCE: bit 0 -> don't care
243 * NAND_CLE: bit 1 -> Command Latch
244 * NAND_ALE: bit 2 -> Address Latch
246 * NOTE: boards may use different bits for these!!
248 static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
250 struct omap_nand_info *info = container_of(mtd,
251 struct omap_nand_info, mtd);
253 if (cmd != NAND_CMD_NONE) {
254 if (ctrl & NAND_CLE)
255 writeb(cmd, info->reg.gpmc_nand_command);
257 else if (ctrl & NAND_ALE)
258 writeb(cmd, info->reg.gpmc_nand_address);
260 else /* NAND_NCE */
261 writeb(cmd, info->reg.gpmc_nand_data);
266 * omap_read_buf8 - read data from NAND controller into buffer
267 * @mtd: MTD device structure
268 * @buf: buffer to store date
269 * @len: number of bytes to read
271 static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
273 struct nand_chip *nand = mtd->priv;
275 ioread8_rep(nand->IO_ADDR_R, buf, len);
279 * omap_write_buf8 - write buffer to NAND controller
280 * @mtd: MTD device structure
281 * @buf: data buffer
282 * @len: number of bytes to write
284 static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
286 struct omap_nand_info *info = container_of(mtd,
287 struct omap_nand_info, mtd);
288 u_char *p = (u_char *)buf;
289 u32 status = 0;
291 while (len--) {
292 iowrite8(*p++, info->nand.IO_ADDR_W);
293 /* wait until buffer is available for write */
294 do {
295 status = readl(info->reg.gpmc_status) &
296 STATUS_BUFF_EMPTY;
297 } while (!status);
302 * omap_read_buf16 - read data from NAND controller into buffer
303 * @mtd: MTD device structure
304 * @buf: buffer to store date
305 * @len: number of bytes to read
307 static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
309 struct nand_chip *nand = mtd->priv;
311 ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
315 * omap_write_buf16 - write buffer to NAND controller
316 * @mtd: MTD device structure
317 * @buf: data buffer
318 * @len: number of bytes to write
320 static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
322 struct omap_nand_info *info = container_of(mtd,
323 struct omap_nand_info, mtd);
324 u16 *p = (u16 *) buf;
325 u32 status = 0;
326 /* FIXME try bursts of writesw() or DMA ... */
327 len >>= 1;
329 while (len--) {
330 iowrite16(*p++, info->nand.IO_ADDR_W);
331 /* wait until buffer is available for write */
332 do {
333 status = readl(info->reg.gpmc_status) &
334 STATUS_BUFF_EMPTY;
335 } while (!status);
340 * omap_read_buf_pref - read data from NAND controller into buffer
341 * @mtd: MTD device structure
342 * @buf: buffer to store date
343 * @len: number of bytes to read
345 static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
347 struct omap_nand_info *info = container_of(mtd,
348 struct omap_nand_info, mtd);
349 uint32_t r_count = 0;
350 int ret = 0;
351 u32 *p = (u32 *)buf;
353 /* take care of subpage reads */
354 if (len % 4) {
355 if (info->nand.options & NAND_BUSWIDTH_16)
356 omap_read_buf16(mtd, buf, len % 4);
357 else
358 omap_read_buf8(mtd, buf, len % 4);
359 p = (u32 *) (buf + len % 4);
360 len -= len % 4;
363 /* configure and start prefetch transfer */
364 ret = omap_prefetch_enable(info->gpmc_cs,
365 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
366 if (ret) {
367 /* PFPW engine is busy, use cpu copy method */
368 if (info->nand.options & NAND_BUSWIDTH_16)
369 omap_read_buf16(mtd, (u_char *)p, len);
370 else
371 omap_read_buf8(mtd, (u_char *)p, len);
372 } else {
373 do {
374 r_count = readl(info->reg.gpmc_prefetch_status);
375 r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
376 r_count = r_count >> 2;
377 ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
378 p += r_count;
379 len -= r_count << 2;
380 } while (len);
381 /* disable and stop the PFPW engine */
382 omap_prefetch_reset(info->gpmc_cs, info);
387 * omap_write_buf_pref - write buffer to NAND controller
388 * @mtd: MTD device structure
389 * @buf: data buffer
390 * @len: number of bytes to write
392 static void omap_write_buf_pref(struct mtd_info *mtd,
393 const u_char *buf, int len)
395 struct omap_nand_info *info = container_of(mtd,
396 struct omap_nand_info, mtd);
397 uint32_t w_count = 0;
398 int i = 0, ret = 0;
399 u16 *p = (u16 *)buf;
400 unsigned long tim, limit;
401 u32 val;
403 /* take care of subpage writes */
404 if (len % 2 != 0) {
405 writeb(*buf, info->nand.IO_ADDR_W);
406 p = (u16 *)(buf + 1);
407 len--;
410 /* configure and start prefetch transfer */
411 ret = omap_prefetch_enable(info->gpmc_cs,
412 PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
413 if (ret) {
414 /* PFPW engine is busy, use cpu copy method */
415 if (info->nand.options & NAND_BUSWIDTH_16)
416 omap_write_buf16(mtd, (u_char *)p, len);
417 else
418 omap_write_buf8(mtd, (u_char *)p, len);
419 } else {
420 while (len) {
421 w_count = readl(info->reg.gpmc_prefetch_status);
422 w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
423 w_count = w_count >> 1;
424 for (i = 0; (i < w_count) && len; i++, len -= 2)
425 iowrite16(*p++, info->nand.IO_ADDR_W);
427 /* wait for data to flushed-out before reset the prefetch */
428 tim = 0;
429 limit = (loops_per_jiffy *
430 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
431 do {
432 cpu_relax();
433 val = readl(info->reg.gpmc_prefetch_status);
434 val = PREFETCH_STATUS_COUNT(val);
435 } while (val && (tim++ < limit));
437 /* disable and stop the PFPW engine */
438 omap_prefetch_reset(info->gpmc_cs, info);
443 * omap_nand_dma_callback: callback on the completion of dma transfer
444 * @data: pointer to completion data structure
446 static void omap_nand_dma_callback(void *data)
448 complete((struct completion *) data);
452 * omap_nand_dma_transfer: configure and start dma transfer
453 * @mtd: MTD device structure
454 * @addr: virtual address in RAM of source/destination
455 * @len: number of data bytes to be transferred
456 * @is_write: flag for read/write operation
458 static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
459 unsigned int len, int is_write)
461 struct omap_nand_info *info = container_of(mtd,
462 struct omap_nand_info, mtd);
463 struct dma_async_tx_descriptor *tx;
464 enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
465 DMA_FROM_DEVICE;
466 struct scatterlist sg;
467 unsigned long tim, limit;
468 unsigned n;
469 int ret;
470 u32 val;
472 if (addr >= high_memory) {
473 struct page *p1;
475 if (((size_t)addr & PAGE_MASK) !=
476 ((size_t)(addr + len - 1) & PAGE_MASK))
477 goto out_copy;
478 p1 = vmalloc_to_page(addr);
479 if (!p1)
480 goto out_copy;
481 addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
484 sg_init_one(&sg, addr, len);
485 n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
486 if (n == 0) {
487 dev_err(&info->pdev->dev,
488 "Couldn't DMA map a %d byte buffer\n", len);
489 goto out_copy;
492 tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
493 is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
494 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
495 if (!tx)
496 goto out_copy_unmap;
498 tx->callback = omap_nand_dma_callback;
499 tx->callback_param = &info->comp;
500 dmaengine_submit(tx);
502 /* configure and start prefetch transfer */
503 ret = omap_prefetch_enable(info->gpmc_cs,
504 PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
505 if (ret)
506 /* PFPW engine is busy, use cpu copy method */
507 goto out_copy_unmap;
509 init_completion(&info->comp);
510 dma_async_issue_pending(info->dma);
512 /* setup and start DMA using dma_addr */
513 wait_for_completion(&info->comp);
514 tim = 0;
515 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
517 do {
518 cpu_relax();
519 val = readl(info->reg.gpmc_prefetch_status);
520 val = PREFETCH_STATUS_COUNT(val);
521 } while (val && (tim++ < limit));
523 /* disable and stop the PFPW engine */
524 omap_prefetch_reset(info->gpmc_cs, info);
526 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
527 return 0;
529 out_copy_unmap:
530 dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
531 out_copy:
532 if (info->nand.options & NAND_BUSWIDTH_16)
533 is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
534 : omap_write_buf16(mtd, (u_char *) addr, len);
535 else
536 is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
537 : omap_write_buf8(mtd, (u_char *) addr, len);
538 return 0;
542 * omap_read_buf_dma_pref - read data from NAND controller into buffer
543 * @mtd: MTD device structure
544 * @buf: buffer to store date
545 * @len: number of bytes to read
547 static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
549 if (len <= mtd->oobsize)
550 omap_read_buf_pref(mtd, buf, len);
551 else
552 /* start transfer in DMA mode */
553 omap_nand_dma_transfer(mtd, buf, len, 0x0);
557 * omap_write_buf_dma_pref - write buffer to NAND controller
558 * @mtd: MTD device structure
559 * @buf: data buffer
560 * @len: number of bytes to write
562 static void omap_write_buf_dma_pref(struct mtd_info *mtd,
563 const u_char *buf, int len)
565 if (len <= mtd->oobsize)
566 omap_write_buf_pref(mtd, buf, len);
567 else
568 /* start transfer in DMA mode */
569 omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
573 * omap_nand_irq - GPMC irq handler
574 * @this_irq: gpmc irq number
575 * @dev: omap_nand_info structure pointer is passed here
577 static irqreturn_t omap_nand_irq(int this_irq, void *dev)
579 struct omap_nand_info *info = (struct omap_nand_info *) dev;
580 u32 bytes;
582 bytes = readl(info->reg.gpmc_prefetch_status);
583 bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
584 bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
585 if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
586 if (this_irq == info->gpmc_irq_count)
587 goto done;
589 if (info->buf_len && (info->buf_len < bytes))
590 bytes = info->buf_len;
591 else if (!info->buf_len)
592 bytes = 0;
593 iowrite32_rep(info->nand.IO_ADDR_W,
594 (u32 *)info->buf, bytes >> 2);
595 info->buf = info->buf + bytes;
596 info->buf_len -= bytes;
598 } else {
599 ioread32_rep(info->nand.IO_ADDR_R,
600 (u32 *)info->buf, bytes >> 2);
601 info->buf = info->buf + bytes;
603 if (this_irq == info->gpmc_irq_count)
604 goto done;
607 return IRQ_HANDLED;
609 done:
610 complete(&info->comp);
612 disable_irq_nosync(info->gpmc_irq_fifo);
613 disable_irq_nosync(info->gpmc_irq_count);
615 return IRQ_HANDLED;
619 * omap_read_buf_irq_pref - read data from NAND controller into buffer
620 * @mtd: MTD device structure
621 * @buf: buffer to store date
622 * @len: number of bytes to read
624 static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
626 struct omap_nand_info *info = container_of(mtd,
627 struct omap_nand_info, mtd);
628 int ret = 0;
630 if (len <= mtd->oobsize) {
631 omap_read_buf_pref(mtd, buf, len);
632 return;
635 info->iomode = OMAP_NAND_IO_READ;
636 info->buf = buf;
637 init_completion(&info->comp);
639 /* configure and start prefetch transfer */
640 ret = omap_prefetch_enable(info->gpmc_cs,
641 PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
642 if (ret)
643 /* PFPW engine is busy, use cpu copy method */
644 goto out_copy;
646 info->buf_len = len;
648 enable_irq(info->gpmc_irq_count);
649 enable_irq(info->gpmc_irq_fifo);
651 /* waiting for read to complete */
652 wait_for_completion(&info->comp);
654 /* disable and stop the PFPW engine */
655 omap_prefetch_reset(info->gpmc_cs, info);
656 return;
658 out_copy:
659 if (info->nand.options & NAND_BUSWIDTH_16)
660 omap_read_buf16(mtd, buf, len);
661 else
662 omap_read_buf8(mtd, buf, len);
666 * omap_write_buf_irq_pref - write buffer to NAND controller
667 * @mtd: MTD device structure
668 * @buf: data buffer
669 * @len: number of bytes to write
671 static void omap_write_buf_irq_pref(struct mtd_info *mtd,
672 const u_char *buf, int len)
674 struct omap_nand_info *info = container_of(mtd,
675 struct omap_nand_info, mtd);
676 int ret = 0;
677 unsigned long tim, limit;
678 u32 val;
680 if (len <= mtd->oobsize) {
681 omap_write_buf_pref(mtd, buf, len);
682 return;
685 info->iomode = OMAP_NAND_IO_WRITE;
686 info->buf = (u_char *) buf;
687 init_completion(&info->comp);
689 /* configure and start prefetch transfer : size=24 */
690 ret = omap_prefetch_enable(info->gpmc_cs,
691 (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
692 if (ret)
693 /* PFPW engine is busy, use cpu copy method */
694 goto out_copy;
696 info->buf_len = len;
698 enable_irq(info->gpmc_irq_count);
699 enable_irq(info->gpmc_irq_fifo);
701 /* waiting for write to complete */
702 wait_for_completion(&info->comp);
704 /* wait for data to flushed-out before reset the prefetch */
705 tim = 0;
706 limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
707 do {
708 val = readl(info->reg.gpmc_prefetch_status);
709 val = PREFETCH_STATUS_COUNT(val);
710 cpu_relax();
711 } while (val && (tim++ < limit));
713 /* disable and stop the PFPW engine */
714 omap_prefetch_reset(info->gpmc_cs, info);
715 return;
717 out_copy:
718 if (info->nand.options & NAND_BUSWIDTH_16)
719 omap_write_buf16(mtd, buf, len);
720 else
721 omap_write_buf8(mtd, buf, len);
725 * gen_true_ecc - This function will generate true ECC value
726 * @ecc_buf: buffer to store ecc code
728 * This generated true ECC value can be used when correcting
729 * data read from NAND flash memory core
731 static void gen_true_ecc(u8 *ecc_buf)
733 u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
734 ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
736 ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
737 P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
738 ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
739 P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
740 ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
741 P1e(tmp) | P2048o(tmp) | P2048e(tmp));
745 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
746 * @ecc_data1: ecc code from nand spare area
747 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
748 * @page_data: page data
750 * This function compares two ECC's and indicates if there is an error.
751 * If the error can be corrected it will be corrected to the buffer.
752 * If there is no error, %0 is returned. If there is an error but it
753 * was corrected, %1 is returned. Otherwise, %-1 is returned.
755 static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
756 u8 *ecc_data2, /* read from register */
757 u8 *page_data)
759 uint i;
760 u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
761 u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
762 u8 ecc_bit[24];
763 u8 ecc_sum = 0;
764 u8 find_bit = 0;
765 uint find_byte = 0;
766 int isEccFF;
768 isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
770 gen_true_ecc(ecc_data1);
771 gen_true_ecc(ecc_data2);
773 for (i = 0; i <= 2; i++) {
774 *(ecc_data1 + i) = ~(*(ecc_data1 + i));
775 *(ecc_data2 + i) = ~(*(ecc_data2 + i));
778 for (i = 0; i < 8; i++) {
779 tmp0_bit[i] = *ecc_data1 % 2;
780 *ecc_data1 = *ecc_data1 / 2;
783 for (i = 0; i < 8; i++) {
784 tmp1_bit[i] = *(ecc_data1 + 1) % 2;
785 *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
788 for (i = 0; i < 8; i++) {
789 tmp2_bit[i] = *(ecc_data1 + 2) % 2;
790 *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
793 for (i = 0; i < 8; i++) {
794 comp0_bit[i] = *ecc_data2 % 2;
795 *ecc_data2 = *ecc_data2 / 2;
798 for (i = 0; i < 8; i++) {
799 comp1_bit[i] = *(ecc_data2 + 1) % 2;
800 *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
803 for (i = 0; i < 8; i++) {
804 comp2_bit[i] = *(ecc_data2 + 2) % 2;
805 *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
808 for (i = 0; i < 6; i++)
809 ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
811 for (i = 0; i < 8; i++)
812 ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
814 for (i = 0; i < 8; i++)
815 ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
817 ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
818 ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
820 for (i = 0; i < 24; i++)
821 ecc_sum += ecc_bit[i];
823 switch (ecc_sum) {
824 case 0:
825 /* Not reached because this function is not called if
826 * ECC values are equal
828 return 0;
830 case 1:
831 /* Uncorrectable error */
832 pr_debug("ECC UNCORRECTED_ERROR 1\n");
833 return -1;
835 case 11:
836 /* UN-Correctable error */
837 pr_debug("ECC UNCORRECTED_ERROR B\n");
838 return -1;
840 case 12:
841 /* Correctable error */
842 find_byte = (ecc_bit[23] << 8) +
843 (ecc_bit[21] << 7) +
844 (ecc_bit[19] << 6) +
845 (ecc_bit[17] << 5) +
846 (ecc_bit[15] << 4) +
847 (ecc_bit[13] << 3) +
848 (ecc_bit[11] << 2) +
849 (ecc_bit[9] << 1) +
850 ecc_bit[7];
852 find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
854 pr_debug("Correcting single bit ECC error at offset: "
855 "%d, bit: %d\n", find_byte, find_bit);
857 page_data[find_byte] ^= (1 << find_bit);
859 return 1;
860 default:
861 if (isEccFF) {
862 if (ecc_data2[0] == 0 &&
863 ecc_data2[1] == 0 &&
864 ecc_data2[2] == 0)
865 return 0;
867 pr_debug("UNCORRECTED_ERROR default\n");
868 return -1;
873 * omap_correct_data - Compares the ECC read with HW generated ECC
874 * @mtd: MTD device structure
875 * @dat: page data
876 * @read_ecc: ecc read from nand flash
877 * @calc_ecc: ecc read from HW ECC registers
879 * Compares the ecc read from nand spare area with ECC registers values
880 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
881 * detection and correction. If there are no errors, %0 is returned. If
882 * there were errors and all of the errors were corrected, the number of
883 * corrected errors is returned. If uncorrectable errors exist, %-1 is
884 * returned.
886 static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
887 u_char *read_ecc, u_char *calc_ecc)
889 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
890 mtd);
891 int blockCnt = 0, i = 0, ret = 0;
892 int stat = 0;
894 /* Ex NAND_ECC_HW12_2048 */
895 if ((info->nand.ecc.mode == NAND_ECC_HW) &&
896 (info->nand.ecc.size == 2048))
897 blockCnt = 4;
898 else
899 blockCnt = 1;
901 for (i = 0; i < blockCnt; i++) {
902 if (memcmp(read_ecc, calc_ecc, 3) != 0) {
903 ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
904 if (ret < 0)
905 return ret;
906 /* keep track of the number of corrected errors */
907 stat += ret;
909 read_ecc += 3;
910 calc_ecc += 3;
911 dat += 512;
913 return stat;
917 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
918 * @mtd: MTD device structure
919 * @dat: The pointer to data on which ecc is computed
920 * @ecc_code: The ecc_code buffer
922 * Using noninverted ECC can be considered ugly since writing a blank
923 * page ie. padding will clear the ECC bytes. This is no problem as long
924 * nobody is trying to write data on the seemingly unused page. Reading
925 * an erased page will produce an ECC mismatch between generated and read
926 * ECC bytes that has to be dealt with separately.
928 static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
929 u_char *ecc_code)
931 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
932 mtd);
933 u32 val;
935 val = readl(info->reg.gpmc_ecc_config);
936 if (((val >> ECC_CONFIG_CS_SHIFT) & ~CS_MASK) != info->gpmc_cs)
937 return -EINVAL;
939 /* read ecc result */
940 val = readl(info->reg.gpmc_ecc1_result);
941 *ecc_code++ = val; /* P128e, ..., P1e */
942 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
943 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
944 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
946 return 0;
950 * omap_enable_hwecc - This function enables the hardware ecc functionality
951 * @mtd: MTD device structure
952 * @mode: Read/Write mode
954 static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
956 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
957 mtd);
958 struct nand_chip *chip = mtd->priv;
959 unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
960 u32 val;
962 /* clear ecc and enable bits */
963 val = ECCCLEAR | ECC1;
964 writel(val, info->reg.gpmc_ecc_control);
966 /* program ecc and result sizes */
967 val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
968 ECC1RESULTSIZE);
969 writel(val, info->reg.gpmc_ecc_size_config);
971 switch (mode) {
972 case NAND_ECC_READ:
973 case NAND_ECC_WRITE:
974 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
975 break;
976 case NAND_ECC_READSYN:
977 writel(ECCCLEAR, info->reg.gpmc_ecc_control);
978 break;
979 default:
980 dev_info(&info->pdev->dev,
981 "error: unrecognized Mode[%d]!\n", mode);
982 break;
985 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
986 val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
987 writel(val, info->reg.gpmc_ecc_config);
991 * omap_wait - wait until the command is done
992 * @mtd: MTD device structure
993 * @chip: NAND Chip structure
995 * Wait function is called during Program and erase operations and
996 * the way it is called from MTD layer, we should wait till the NAND
997 * chip is ready after the programming/erase operation has completed.
999 * Erase can take up to 400ms and program up to 20ms according to
1000 * general NAND and SmartMedia specs
1002 static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
1004 struct nand_chip *this = mtd->priv;
1005 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1006 mtd);
1007 unsigned long timeo = jiffies;
1008 int status, state = this->state;
1010 if (state == FL_ERASING)
1011 timeo += msecs_to_jiffies(400);
1012 else
1013 timeo += msecs_to_jiffies(20);
1015 writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
1016 while (time_before(jiffies, timeo)) {
1017 status = readb(info->reg.gpmc_nand_data);
1018 if (status & NAND_STATUS_READY)
1019 break;
1020 cond_resched();
1023 status = readb(info->reg.gpmc_nand_data);
1024 return status;
1028 * omap_dev_ready - calls the platform specific dev_ready function
1029 * @mtd: MTD device structure
1031 static int omap_dev_ready(struct mtd_info *mtd)
1033 unsigned int val = 0;
1034 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1035 mtd);
1037 val = readl(info->reg.gpmc_status);
1039 if ((val & 0x100) == 0x100) {
1040 return 1;
1041 } else {
1042 return 0;
1046 #if defined(CONFIG_MTD_NAND_ECC_BCH) || defined(CONFIG_MTD_NAND_OMAP_BCH)
1048 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1049 * @mtd: MTD device structure
1050 * @mode: Read/Write mode
1052 * When using BCH, sector size is hardcoded to 512 bytes.
1053 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1054 * for error correction.
1055 * On writing,
1056 * eccsize0 = 0 (no additional protected byte in spare area)
1057 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1059 static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode)
1061 int nerrors;
1062 unsigned int dev_width, nsectors;
1063 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1064 mtd);
1065 struct nand_chip *chip = mtd->priv;
1066 u32 val, wr_mode;
1067 unsigned int ecc_size1, ecc_size0;
1069 /* Using wrapping mode 6 for writing */
1070 wr_mode = BCH_WRAPMODE_6;
1073 * ECC engine enabled for valid ecc_size0 nibbles
1074 * and disabled for ecc_size1 nibbles.
1076 ecc_size0 = BCH_ECC_SIZE0;
1077 ecc_size1 = BCH_ECC_SIZE1;
1079 /* Perform ecc calculation on 512-byte sector */
1080 nsectors = 1;
1082 /* Update number of error correction */
1083 nerrors = info->nand.ecc.strength;
1085 /* Multi sector reading/writing for NAND flash with page size < 4096 */
1086 if (info->is_elm_used && (mtd->writesize <= 4096)) {
1087 if (mode == NAND_ECC_READ) {
1088 /* Using wrapping mode 1 for reading */
1089 wr_mode = BCH_WRAPMODE_1;
1092 * ECC engine enabled for ecc_size0 nibbles
1093 * and disabled for ecc_size1 nibbles.
1095 ecc_size0 = (nerrors == 8) ?
1096 BCH8R_ECC_SIZE0 : BCH4R_ECC_SIZE0;
1097 ecc_size1 = (nerrors == 8) ?
1098 BCH8R_ECC_SIZE1 : BCH4R_ECC_SIZE1;
1101 /* Perform ecc calculation for one page (< 4096) */
1102 nsectors = info->nand.ecc.steps;
1105 writel(ECC1, info->reg.gpmc_ecc_control);
1107 /* Configure ecc size for BCH */
1108 val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
1109 writel(val, info->reg.gpmc_ecc_size_config);
1111 dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
1113 /* BCH configuration */
1114 val = ((1 << 16) | /* enable BCH */
1115 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1116 (wr_mode << 8) | /* wrap mode */
1117 (dev_width << 7) | /* bus width */
1118 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1119 (info->gpmc_cs << 1) | /* ECC CS */
1120 (0x1)); /* enable ECC */
1122 writel(val, info->reg.gpmc_ecc_config);
1124 /* Clear ecc and enable bits */
1125 writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
1127 #endif
1129 #ifdef CONFIG_MTD_NAND_ECC_BCH
1131 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1132 * @mtd: MTD device structure
1133 * @dat: The pointer to data on which ecc is computed
1134 * @ecc_code: The ecc_code buffer
1136 static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat,
1137 u_char *ecc_code)
1139 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1140 mtd);
1141 unsigned long nsectors, val1, val2;
1142 int i;
1144 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1146 for (i = 0; i < nsectors; i++) {
1148 /* Read hw-computed remainder */
1149 val1 = readl(info->reg.gpmc_bch_result0[i]);
1150 val2 = readl(info->reg.gpmc_bch_result1[i]);
1153 * Add constant polynomial to remainder, in order to get an ecc
1154 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1155 * left-justify the resulting polynomial.
1157 *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1158 *ecc_code++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1159 *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1160 *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1161 *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1162 *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF);
1163 *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4);
1166 return 0;
1170 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1171 * @mtd: MTD device structure
1172 * @dat: The pointer to data on which ecc is computed
1173 * @ecc_code: The ecc_code buffer
1175 static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat,
1176 u_char *ecc_code)
1178 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1179 mtd);
1180 unsigned long nsectors, val1, val2, val3, val4;
1181 int i;
1183 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1185 for (i = 0; i < nsectors; i++) {
1187 /* Read hw-computed remainder */
1188 val1 = readl(info->reg.gpmc_bch_result0[i]);
1189 val2 = readl(info->reg.gpmc_bch_result1[i]);
1190 val3 = readl(info->reg.gpmc_bch_result2[i]);
1191 val4 = readl(info->reg.gpmc_bch_result3[i]);
1194 * Add constant polynomial to remainder, in order to get an ecc
1195 * sequence of 0xFFs for a buffer filled with 0xFFs.
1197 *ecc_code++ = 0xef ^ (val4 & 0xFF);
1198 *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1199 *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1200 *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1201 *ecc_code++ = 0xed ^ (val3 & 0xFF);
1202 *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1203 *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1204 *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1205 *ecc_code++ = 0x97 ^ (val2 & 0xFF);
1206 *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1207 *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1208 *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1209 *ecc_code++ = 0xb5 ^ (val1 & 0xFF);
1212 return 0;
1214 #endif /* CONFIG_MTD_NAND_ECC_BCH */
1216 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1218 * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
1219 * @mtd: MTD device structure
1220 * @dat: The pointer to data on which ecc is computed
1221 * @ecc_code: The ecc_code buffer
1223 * Support calculating of BCH4/8 ecc vectors for the page
1225 static int omap3_calculate_ecc_bch(struct mtd_info *mtd, const u_char *dat,
1226 u_char *ecc_code)
1228 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1229 mtd);
1230 unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
1231 int i, eccbchtsel;
1233 nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
1235 * find BCH scheme used
1236 * 0 -> BCH4
1237 * 1 -> BCH8
1239 eccbchtsel = ((readl(info->reg.gpmc_ecc_config) >> 12) & 0x3);
1241 for (i = 0; i < nsectors; i++) {
1243 /* Read hw-computed remainder */
1244 bch_val1 = readl(info->reg.gpmc_bch_result0[i]);
1245 bch_val2 = readl(info->reg.gpmc_bch_result1[i]);
1246 if (eccbchtsel) {
1247 bch_val3 = readl(info->reg.gpmc_bch_result2[i]);
1248 bch_val4 = readl(info->reg.gpmc_bch_result3[i]);
1251 if (eccbchtsel) {
1252 /* BCH8 ecc scheme */
1253 *ecc_code++ = (bch_val4 & 0xFF);
1254 *ecc_code++ = ((bch_val3 >> 24) & 0xFF);
1255 *ecc_code++ = ((bch_val3 >> 16) & 0xFF);
1256 *ecc_code++ = ((bch_val3 >> 8) & 0xFF);
1257 *ecc_code++ = (bch_val3 & 0xFF);
1258 *ecc_code++ = ((bch_val2 >> 24) & 0xFF);
1259 *ecc_code++ = ((bch_val2 >> 16) & 0xFF);
1260 *ecc_code++ = ((bch_val2 >> 8) & 0xFF);
1261 *ecc_code++ = (bch_val2 & 0xFF);
1262 *ecc_code++ = ((bch_val1 >> 24) & 0xFF);
1263 *ecc_code++ = ((bch_val1 >> 16) & 0xFF);
1264 *ecc_code++ = ((bch_val1 >> 8) & 0xFF);
1265 *ecc_code++ = (bch_val1 & 0xFF);
1267 * Setting 14th byte to zero to handle
1268 * erased page & maintain compatibility
1269 * with RBL
1271 *ecc_code++ = 0x0;
1272 } else {
1273 /* BCH4 ecc scheme */
1274 *ecc_code++ = ((bch_val2 >> 12) & 0xFF);
1275 *ecc_code++ = ((bch_val2 >> 4) & 0xFF);
1276 *ecc_code++ = ((bch_val2 & 0xF) << 4) |
1277 ((bch_val1 >> 28) & 0xF);
1278 *ecc_code++ = ((bch_val1 >> 20) & 0xFF);
1279 *ecc_code++ = ((bch_val1 >> 12) & 0xFF);
1280 *ecc_code++ = ((bch_val1 >> 4) & 0xFF);
1281 *ecc_code++ = ((bch_val1 & 0xF) << 4);
1283 * Setting 8th byte to zero to handle
1284 * erased page
1286 *ecc_code++ = 0x0;
1290 return 0;
1294 * erased_sector_bitflips - count bit flips
1295 * @data: data sector buffer
1296 * @oob: oob buffer
1297 * @info: omap_nand_info
1299 * Check the bit flips in erased page falls below correctable level.
1300 * If falls below, report the page as erased with correctable bit
1301 * flip, else report as uncorrectable page.
1303 static int erased_sector_bitflips(u_char *data, u_char *oob,
1304 struct omap_nand_info *info)
1306 int flip_bits = 0, i;
1308 for (i = 0; i < info->nand.ecc.size; i++) {
1309 flip_bits += hweight8(~data[i]);
1310 if (flip_bits > info->nand.ecc.strength)
1311 return 0;
1314 for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
1315 flip_bits += hweight8(~oob[i]);
1316 if (flip_bits > info->nand.ecc.strength)
1317 return 0;
1321 * Bit flips falls in correctable level.
1322 * Fill data area with 0xFF
1324 if (flip_bits) {
1325 memset(data, 0xFF, info->nand.ecc.size);
1326 memset(oob, 0xFF, info->nand.ecc.bytes);
1329 return flip_bits;
1333 * omap_elm_correct_data - corrects page data area in case error reported
1334 * @mtd: MTD device structure
1335 * @data: page data
1336 * @read_ecc: ecc read from nand flash
1337 * @calc_ecc: ecc read from HW ECC registers
1339 * Calculated ecc vector reported as zero in case of non-error pages.
1340 * In case of error/erased pages non-zero error vector is reported.
1341 * In case of non-zero ecc vector, check read_ecc at fixed offset
1342 * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
1343 * To handle bit flips in this data, count the number of 0's in
1344 * read_ecc[x] and check if it greater than 4. If it is less, it is
1345 * programmed page, else erased page.
1347 * 1. If page is erased, check with standard ecc vector (ecc vector
1348 * for erased page to find any bit flip). If check fails, bit flip
1349 * is present in erased page. Count the bit flips in erased page and
1350 * if it falls under correctable level, report page with 0xFF and
1351 * update the correctable bit information.
1352 * 2. If error is reported on programmed page, update elm error
1353 * vector and correct the page with ELM error correction routine.
1356 static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1357 u_char *read_ecc, u_char *calc_ecc)
1359 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1360 mtd);
1361 int eccsteps = info->nand.ecc.steps;
1362 int i , j, stat = 0;
1363 int eccsize, eccflag, ecc_vector_size;
1364 struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
1365 u_char *ecc_vec = calc_ecc;
1366 u_char *spare_ecc = read_ecc;
1367 u_char *erased_ecc_vec;
1368 enum bch_ecc type;
1369 bool is_error_reported = false;
1371 /* Initialize elm error vector to zero */
1372 memset(err_vec, 0, sizeof(err_vec));
1374 if (info->nand.ecc.strength == BCH8_MAX_ERROR) {
1375 type = BCH8_ECC;
1376 erased_ecc_vec = bch8_vector;
1377 } else {
1378 type = BCH4_ECC;
1379 erased_ecc_vec = bch4_vector;
1382 ecc_vector_size = info->nand.ecc.bytes;
1385 * Remove extra byte padding for BCH8 RBL
1386 * compatibility and erased page handling
1388 eccsize = ecc_vector_size - 1;
1390 for (i = 0; i < eccsteps ; i++) {
1391 eccflag = 0; /* initialize eccflag */
1394 * Check any error reported,
1395 * In case of error, non zero ecc reported.
1398 for (j = 0; (j < eccsize); j++) {
1399 if (calc_ecc[j] != 0) {
1400 eccflag = 1; /* non zero ecc, error present */
1401 break;
1405 if (eccflag == 1) {
1407 * Set threshold to minimum of 4, half of ecc.strength/2
1408 * to allow max bit flip in byte to 4
1410 unsigned int threshold = min_t(unsigned int, 4,
1411 info->nand.ecc.strength / 2);
1414 * Check data area is programmed by counting
1415 * number of 0's at fixed offset in spare area.
1416 * Checking count of 0's against threshold.
1417 * In case programmed page expects at least threshold
1418 * zeros in byte.
1419 * If zeros are less than threshold for programmed page/
1420 * zeros are more than threshold erased page, either
1421 * case page reported as uncorrectable.
1423 if (hweight8(~read_ecc[eccsize]) >= threshold) {
1425 * Update elm error vector as
1426 * data area is programmed
1428 err_vec[i].error_reported = true;
1429 is_error_reported = true;
1430 } else {
1431 /* Error reported in erased page */
1432 int bitflip_count;
1433 u_char *buf = &data[info->nand.ecc.size * i];
1435 if (memcmp(calc_ecc, erased_ecc_vec, eccsize)) {
1436 bitflip_count = erased_sector_bitflips(
1437 buf, read_ecc, info);
1439 if (bitflip_count)
1440 stat += bitflip_count;
1441 else
1442 return -EINVAL;
1447 /* Update the ecc vector */
1448 calc_ecc += ecc_vector_size;
1449 read_ecc += ecc_vector_size;
1452 /* Check if any error reported */
1453 if (!is_error_reported)
1454 return 0;
1456 /* Decode BCH error using ELM module */
1457 elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
1459 for (i = 0; i < eccsteps; i++) {
1460 if (err_vec[i].error_reported) {
1461 for (j = 0; j < err_vec[i].error_count; j++) {
1462 u32 bit_pos, byte_pos, error_max, pos;
1464 if (type == BCH8_ECC)
1465 error_max = BCH8_ECC_MAX;
1466 else
1467 error_max = BCH4_ECC_MAX;
1469 if (info->nand.ecc.strength == BCH8_MAX_ERROR)
1470 pos = err_vec[i].error_loc[j];
1471 else
1472 /* Add 4 to take care 4 bit padding */
1473 pos = err_vec[i].error_loc[j] +
1474 BCH4_BIT_PAD;
1476 /* Calculate bit position of error */
1477 bit_pos = pos % 8;
1479 /* Calculate byte position of error */
1480 byte_pos = (error_max - pos - 1) / 8;
1482 if (pos < error_max) {
1483 if (byte_pos < 512)
1484 data[byte_pos] ^= 1 << bit_pos;
1485 else
1486 spare_ecc[byte_pos - 512] ^=
1487 1 << bit_pos;
1489 /* else, not interested to correct ecc */
1493 /* Update number of correctable errors */
1494 stat += err_vec[i].error_count;
1496 /* Update page data with sector size */
1497 data += info->nand.ecc.size;
1498 spare_ecc += ecc_vector_size;
1501 for (i = 0; i < eccsteps; i++)
1502 /* Return error if uncorrectable error present */
1503 if (err_vec[i].error_uncorrectable)
1504 return -EINVAL;
1506 return stat;
1510 * omap_write_page_bch - BCH ecc based write page function for entire page
1511 * @mtd: mtd info structure
1512 * @chip: nand chip info structure
1513 * @buf: data buffer
1514 * @oob_required: must write chip->oob_poi to OOB
1516 * Custom write page method evolved to support multi sector writing in one shot
1518 static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1519 const uint8_t *buf, int oob_required)
1521 int i;
1522 uint8_t *ecc_calc = chip->buffers->ecccalc;
1523 uint32_t *eccpos = chip->ecc.layout->eccpos;
1525 /* Enable GPMC ecc engine */
1526 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1528 /* Write data */
1529 chip->write_buf(mtd, buf, mtd->writesize);
1531 /* Update ecc vector from GPMC result registers */
1532 chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
1534 for (i = 0; i < chip->ecc.total; i++)
1535 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1537 /* Write ecc vector to OOB area */
1538 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1539 return 0;
1543 * omap_read_page_bch - BCH ecc based page read function for entire page
1544 * @mtd: mtd info structure
1545 * @chip: nand chip info structure
1546 * @buf: buffer to store read data
1547 * @oob_required: caller requires OOB data read to chip->oob_poi
1548 * @page: page number to read
1550 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1551 * used for error correction.
1552 * Custom method evolved to support ELM error correction & multi sector
1553 * reading. On reading page data area is read along with OOB data with
1554 * ecc engine enabled. ecc vector updated after read of OOB data.
1555 * For non error pages ecc vector reported as zero.
1557 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
1558 uint8_t *buf, int oob_required, int page)
1560 uint8_t *ecc_calc = chip->buffers->ecccalc;
1561 uint8_t *ecc_code = chip->buffers->ecccode;
1562 uint32_t *eccpos = chip->ecc.layout->eccpos;
1563 uint8_t *oob = &chip->oob_poi[eccpos[0]];
1564 uint32_t oob_pos = mtd->writesize + chip->ecc.layout->eccpos[0];
1565 int stat;
1566 unsigned int max_bitflips = 0;
1568 /* Enable GPMC ecc engine */
1569 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1571 /* Read data */
1572 chip->read_buf(mtd, buf, mtd->writesize);
1574 /* Read oob bytes */
1575 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
1576 chip->read_buf(mtd, oob, chip->ecc.total);
1578 /* Calculate ecc bytes */
1579 chip->ecc.calculate(mtd, buf, ecc_calc);
1581 memcpy(ecc_code, &chip->oob_poi[eccpos[0]], chip->ecc.total);
1583 stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
1585 if (stat < 0) {
1586 mtd->ecc_stats.failed++;
1587 } else {
1588 mtd->ecc_stats.corrected += stat;
1589 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1592 return max_bitflips;
1596 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1597 * @omap_nand_info: NAND device structure containing platform data
1598 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1600 static int is_elm_present(struct omap_nand_info *info,
1601 struct device_node *elm_node, enum bch_ecc bch_type)
1603 struct platform_device *pdev;
1604 info->is_elm_used = false;
1605 /* check whether elm-id is passed via DT */
1606 if (!elm_node) {
1607 pr_err("nand: error: ELM DT node not found\n");
1608 return -ENODEV;
1610 pdev = of_find_device_by_node(elm_node);
1611 /* check whether ELM device is registered */
1612 if (!pdev) {
1613 pr_err("nand: error: ELM device not found\n");
1614 return -ENODEV;
1616 /* ELM module available, now configure it */
1617 info->elm_dev = &pdev->dev;
1618 if (elm_config(info->elm_dev, bch_type))
1619 return -ENODEV;
1620 info->is_elm_used = true;
1621 return 0;
1623 #endif /* CONFIG_MTD_NAND_ECC_BCH */
1625 static int omap_nand_probe(struct platform_device *pdev)
1627 struct omap_nand_info *info;
1628 struct omap_nand_platform_data *pdata;
1629 struct mtd_info *mtd;
1630 struct nand_chip *nand_chip;
1631 struct nand_ecclayout *ecclayout;
1632 int err;
1633 int i;
1634 dma_cap_mask_t mask;
1635 unsigned sig;
1636 struct resource *res;
1637 struct mtd_part_parser_data ppdata = {};
1639 pdata = dev_get_platdata(&pdev->dev);
1640 if (pdata == NULL) {
1641 dev_err(&pdev->dev, "platform data missing\n");
1642 return -ENODEV;
1645 info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
1646 GFP_KERNEL);
1647 if (!info)
1648 return -ENOMEM;
1650 platform_set_drvdata(pdev, info);
1652 spin_lock_init(&info->controller.lock);
1653 init_waitqueue_head(&info->controller.wq);
1655 info->pdev = pdev;
1656 info->gpmc_cs = pdata->cs;
1657 info->reg = pdata->reg;
1658 info->of_node = pdata->of_node;
1659 mtd = &info->mtd;
1660 mtd->priv = &info->nand;
1661 mtd->name = dev_name(&pdev->dev);
1662 mtd->owner = THIS_MODULE;
1663 nand_chip = &info->nand;
1664 nand_chip->ecc.priv = NULL;
1665 nand_chip->options |= NAND_SKIP_BBTSCAN;
1667 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1668 if (res == NULL) {
1669 err = -EINVAL;
1670 dev_err(&pdev->dev, "error getting memory resource\n");
1671 goto return_error;
1674 info->phys_base = res->start;
1675 info->mem_size = resource_size(res);
1677 if (!devm_request_mem_region(&pdev->dev, info->phys_base,
1678 info->mem_size, pdev->dev.driver->name)) {
1679 err = -EBUSY;
1680 goto return_error;
1683 nand_chip->IO_ADDR_R = devm_ioremap(&pdev->dev, info->phys_base,
1684 info->mem_size);
1685 if (!nand_chip->IO_ADDR_R) {
1686 err = -ENOMEM;
1687 goto return_error;
1690 nand_chip->controller = &info->controller;
1692 nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
1693 nand_chip->cmd_ctrl = omap_hwcontrol;
1696 * If RDY/BSY line is connected to OMAP then use the omap ready
1697 * function and the generic nand_wait function which reads the status
1698 * register after monitoring the RDY/BSY line. Otherwise use a standard
1699 * chip delay which is slightly more than tR (AC Timing) of the NAND
1700 * device and read status register until you get a failure or success
1702 if (pdata->dev_ready) {
1703 nand_chip->dev_ready = omap_dev_ready;
1704 nand_chip->chip_delay = 0;
1705 } else {
1706 nand_chip->waitfunc = omap_wait;
1707 nand_chip->chip_delay = 50;
1710 /* scan NAND device connected to chip controller */
1711 nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
1712 if (nand_scan_ident(mtd, 1, NULL)) {
1713 pr_err("nand device scan failed, may be bus-width mismatch\n");
1714 err = -ENXIO;
1715 goto return_error;
1718 /* check for small page devices */
1719 if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
1720 pr_err("small page devices are not supported\n");
1721 err = -EINVAL;
1722 goto return_error;
1725 /* re-populate low-level callbacks based on xfer modes */
1726 switch (pdata->xfer_type) {
1727 case NAND_OMAP_PREFETCH_POLLED:
1728 nand_chip->read_buf = omap_read_buf_pref;
1729 nand_chip->write_buf = omap_write_buf_pref;
1730 break;
1732 case NAND_OMAP_POLLED:
1733 /* Use nand_base defaults for {read,write}_buf */
1734 break;
1736 case NAND_OMAP_PREFETCH_DMA:
1737 dma_cap_zero(mask);
1738 dma_cap_set(DMA_SLAVE, mask);
1739 sig = OMAP24XX_DMA_GPMC;
1740 info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig);
1741 if (!info->dma) {
1742 dev_err(&pdev->dev, "DMA engine request failed\n");
1743 err = -ENXIO;
1744 goto return_error;
1745 } else {
1746 struct dma_slave_config cfg;
1748 memset(&cfg, 0, sizeof(cfg));
1749 cfg.src_addr = info->phys_base;
1750 cfg.dst_addr = info->phys_base;
1751 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1752 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1753 cfg.src_maxburst = 16;
1754 cfg.dst_maxburst = 16;
1755 err = dmaengine_slave_config(info->dma, &cfg);
1756 if (err) {
1757 dev_err(&pdev->dev, "DMA engine slave config failed: %d\n",
1758 err);
1759 goto return_error;
1761 nand_chip->read_buf = omap_read_buf_dma_pref;
1762 nand_chip->write_buf = omap_write_buf_dma_pref;
1764 break;
1766 case NAND_OMAP_PREFETCH_IRQ:
1767 info->gpmc_irq_fifo = platform_get_irq(pdev, 0);
1768 if (info->gpmc_irq_fifo <= 0) {
1769 dev_err(&pdev->dev, "error getting fifo irq\n");
1770 err = -ENODEV;
1771 goto return_error;
1773 err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo,
1774 omap_nand_irq, IRQF_SHARED,
1775 "gpmc-nand-fifo", info);
1776 if (err) {
1777 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1778 info->gpmc_irq_fifo, err);
1779 info->gpmc_irq_fifo = 0;
1780 goto return_error;
1783 info->gpmc_irq_count = platform_get_irq(pdev, 1);
1784 if (info->gpmc_irq_count <= 0) {
1785 dev_err(&pdev->dev, "error getting count irq\n");
1786 err = -ENODEV;
1787 goto return_error;
1789 err = devm_request_irq(&pdev->dev, info->gpmc_irq_count,
1790 omap_nand_irq, IRQF_SHARED,
1791 "gpmc-nand-count", info);
1792 if (err) {
1793 dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1794 info->gpmc_irq_count, err);
1795 info->gpmc_irq_count = 0;
1796 goto return_error;
1799 nand_chip->read_buf = omap_read_buf_irq_pref;
1800 nand_chip->write_buf = omap_write_buf_irq_pref;
1802 break;
1804 default:
1805 dev_err(&pdev->dev,
1806 "xfer_type(%d) not supported!\n", pdata->xfer_type);
1807 err = -EINVAL;
1808 goto return_error;
1811 /* populate MTD interface based on ECC scheme */
1812 nand_chip->ecc.layout = &omap_oobinfo;
1813 ecclayout = &omap_oobinfo;
1814 switch (pdata->ecc_opt) {
1815 case OMAP_ECC_HAM1_CODE_HW:
1816 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1817 nand_chip->ecc.mode = NAND_ECC_HW;
1818 nand_chip->ecc.bytes = 3;
1819 nand_chip->ecc.size = 512;
1820 nand_chip->ecc.strength = 1;
1821 nand_chip->ecc.calculate = omap_calculate_ecc;
1822 nand_chip->ecc.hwctl = omap_enable_hwecc;
1823 nand_chip->ecc.correct = omap_correct_data;
1824 /* define ECC layout */
1825 ecclayout->eccbytes = nand_chip->ecc.bytes *
1826 (mtd->writesize /
1827 nand_chip->ecc.size);
1828 if (nand_chip->options & NAND_BUSWIDTH_16)
1829 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
1830 else
1831 ecclayout->eccpos[0] = 1;
1832 ecclayout->oobfree->offset = ecclayout->eccpos[0] +
1833 ecclayout->eccbytes;
1834 break;
1836 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
1837 #ifdef CONFIG_MTD_NAND_ECC_BCH
1838 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1839 nand_chip->ecc.mode = NAND_ECC_HW;
1840 nand_chip->ecc.size = 512;
1841 nand_chip->ecc.bytes = 7;
1842 nand_chip->ecc.strength = 4;
1843 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1844 nand_chip->ecc.correct = nand_bch_correct_data;
1845 nand_chip->ecc.calculate = omap3_calculate_ecc_bch4;
1846 /* define ECC layout */
1847 ecclayout->eccbytes = nand_chip->ecc.bytes *
1848 (mtd->writesize /
1849 nand_chip->ecc.size);
1850 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
1851 ecclayout->oobfree->offset = ecclayout->eccpos[0] +
1852 ecclayout->eccbytes;
1853 /* software bch library is used for locating errors */
1854 nand_chip->ecc.priv = nand_bch_init(mtd,
1855 nand_chip->ecc.size,
1856 nand_chip->ecc.bytes,
1857 &nand_chip->ecc.layout);
1858 if (!nand_chip->ecc.priv) {
1859 pr_err("nand: error: unable to use s/w BCH library\n");
1860 err = -EINVAL;
1862 break;
1863 #else
1864 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1865 err = -EINVAL;
1866 goto return_error;
1867 #endif
1869 case OMAP_ECC_BCH4_CODE_HW:
1870 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1871 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1872 nand_chip->ecc.mode = NAND_ECC_HW;
1873 nand_chip->ecc.size = 512;
1874 /* 14th bit is kept reserved for ROM-code compatibility */
1875 nand_chip->ecc.bytes = 7 + 1;
1876 nand_chip->ecc.strength = 4;
1877 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1878 nand_chip->ecc.correct = omap_elm_correct_data;
1879 nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
1880 nand_chip->ecc.read_page = omap_read_page_bch;
1881 nand_chip->ecc.write_page = omap_write_page_bch;
1882 /* define ECC layout */
1883 ecclayout->eccbytes = nand_chip->ecc.bytes *
1884 (mtd->writesize /
1885 nand_chip->ecc.size);
1886 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
1887 ecclayout->oobfree->offset = ecclayout->eccpos[0] +
1888 ecclayout->eccbytes;
1889 /* This ECC scheme requires ELM H/W block */
1890 if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
1891 pr_err("nand: error: could not initialize ELM\n");
1892 err = -ENODEV;
1893 goto return_error;
1895 break;
1896 #else
1897 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1898 err = -EINVAL;
1899 goto return_error;
1900 #endif
1902 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
1903 #ifdef CONFIG_MTD_NAND_ECC_BCH
1904 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1905 nand_chip->ecc.mode = NAND_ECC_HW;
1906 nand_chip->ecc.size = 512;
1907 nand_chip->ecc.bytes = 13;
1908 nand_chip->ecc.strength = 8;
1909 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1910 nand_chip->ecc.correct = nand_bch_correct_data;
1911 nand_chip->ecc.calculate = omap3_calculate_ecc_bch8;
1912 /* define ECC layout */
1913 ecclayout->eccbytes = nand_chip->ecc.bytes *
1914 (mtd->writesize /
1915 nand_chip->ecc.size);
1916 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
1917 ecclayout->oobfree->offset = ecclayout->eccpos[0] +
1918 ecclayout->eccbytes;
1919 /* software bch library is used for locating errors */
1920 nand_chip->ecc.priv = nand_bch_init(mtd,
1921 nand_chip->ecc.size,
1922 nand_chip->ecc.bytes,
1923 &nand_chip->ecc.layout);
1924 if (!nand_chip->ecc.priv) {
1925 pr_err("nand: error: unable to use s/w BCH library\n");
1926 err = -EINVAL;
1927 goto return_error;
1929 break;
1930 #else
1931 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1932 err = -EINVAL;
1933 goto return_error;
1934 #endif
1936 case OMAP_ECC_BCH8_CODE_HW:
1937 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1938 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1939 nand_chip->ecc.mode = NAND_ECC_HW;
1940 nand_chip->ecc.size = 512;
1941 /* 14th bit is kept reserved for ROM-code compatibility */
1942 nand_chip->ecc.bytes = 13 + 1;
1943 nand_chip->ecc.strength = 8;
1944 nand_chip->ecc.hwctl = omap3_enable_hwecc_bch;
1945 nand_chip->ecc.correct = omap_elm_correct_data;
1946 nand_chip->ecc.calculate = omap3_calculate_ecc_bch;
1947 nand_chip->ecc.read_page = omap_read_page_bch;
1948 nand_chip->ecc.write_page = omap_write_page_bch;
1949 /* This ECC scheme requires ELM H/W block */
1950 err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
1951 if (err < 0) {
1952 pr_err("nand: error: could not initialize ELM\n");
1953 goto return_error;
1955 /* define ECC layout */
1956 ecclayout->eccbytes = nand_chip->ecc.bytes *
1957 (mtd->writesize /
1958 nand_chip->ecc.size);
1959 ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
1960 ecclayout->oobfree->offset = ecclayout->eccpos[0] +
1961 ecclayout->eccbytes;
1962 break;
1963 #else
1964 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1965 err = -EINVAL;
1966 goto return_error;
1967 #endif
1969 default:
1970 pr_err("nand: error: invalid or unsupported ECC scheme\n");
1971 err = -EINVAL;
1972 goto return_error;
1975 /* populate remaining ECC layout data */
1976 ecclayout->oobfree->length = mtd->oobsize - (BADBLOCK_MARKER_LENGTH +
1977 ecclayout->eccbytes);
1978 for (i = 1; i < ecclayout->eccbytes; i++)
1979 ecclayout->eccpos[i] = ecclayout->eccpos[0] + i;
1980 /* check if NAND device's OOB is enough to store ECC signatures */
1981 if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
1982 pr_err("not enough OOB bytes required = %d, available=%d\n",
1983 ecclayout->eccbytes, mtd->oobsize);
1984 err = -EINVAL;
1985 goto return_error;
1988 /* second phase scan */
1989 if (nand_scan_tail(mtd)) {
1990 err = -ENXIO;
1991 goto return_error;
1994 ppdata.of_node = pdata->of_node;
1995 mtd_device_parse_register(mtd, NULL, &ppdata, pdata->parts,
1996 pdata->nr_parts);
1998 platform_set_drvdata(pdev, mtd);
2000 return 0;
2002 return_error:
2003 if (info->dma)
2004 dma_release_channel(info->dma);
2005 if (nand_chip->ecc.priv) {
2006 nand_bch_free(nand_chip->ecc.priv);
2007 nand_chip->ecc.priv = NULL;
2009 return err;
2012 static int omap_nand_remove(struct platform_device *pdev)
2014 struct mtd_info *mtd = platform_get_drvdata(pdev);
2015 struct nand_chip *nand_chip = mtd->priv;
2016 struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
2017 mtd);
2018 if (nand_chip->ecc.priv) {
2019 nand_bch_free(nand_chip->ecc.priv);
2020 nand_chip->ecc.priv = NULL;
2022 if (info->dma)
2023 dma_release_channel(info->dma);
2024 nand_release(mtd);
2025 return 0;
2028 static struct platform_driver omap_nand_driver = {
2029 .probe = omap_nand_probe,
2030 .remove = omap_nand_remove,
2031 .driver = {
2032 .name = DRIVER_NAME,
2033 .owner = THIS_MODULE,
2037 module_platform_driver(omap_nand_driver);
2039 MODULE_ALIAS("platform:" DRIVER_NAME);
2040 MODULE_LICENSE("GPL");
2041 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");