PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / mtd / nand / s3c2410.c
blobf0918e7411d99147fd67c26c48a8672cb237437f
1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27 #define DEBUG
28 #endif
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/string.h>
35 #include <linux/io.h>
36 #include <linux/ioport.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/err.h>
40 #include <linux/slab.h>
41 #include <linux/clk.h>
42 #include <linux/cpufreq.h>
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/nand.h>
46 #include <linux/mtd/nand_ecc.h>
47 #include <linux/mtd/partitions.h>
49 #include <linux/platform_data/mtd-nand-s3c2410.h>
51 #define S3C2410_NFREG(x) (x)
53 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
54 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
55 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
56 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
57 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
58 #define S3C2410_NFECC S3C2410_NFREG(0x14)
59 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
60 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
61 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
62 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
63 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
64 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
65 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
66 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
67 #define S3C2410_NFCONF_EN (1<<15)
68 #define S3C2410_NFCONF_INITECC (1<<12)
69 #define S3C2410_NFCONF_nFCE (1<<11)
70 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
71 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
72 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
73 #define S3C2410_NFSTAT_BUSY (1<<0)
74 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
75 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
76 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
77 #define S3C2440_NFCONT_INITECC (1<<4)
78 #define S3C2440_NFCONT_nFCE (1<<1)
79 #define S3C2440_NFCONT_ENABLE (1<<0)
80 #define S3C2440_NFSTAT_READY (1<<0)
81 #define S3C2412_NFCONF_NANDBOOT (1<<31)
82 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
83 #define S3C2412_NFCONT_nFCE0 (1<<1)
84 #define S3C2412_NFSTAT_READY (1<<0)
86 /* new oob placement block for use with hardware ecc generation
89 static struct nand_ecclayout nand_hw_eccoob = {
90 .eccbytes = 3,
91 .eccpos = {0, 1, 2},
92 .oobfree = {{8, 8}}
95 /* controller and mtd information */
97 struct s3c2410_nand_info;
99 /**
100 * struct s3c2410_nand_mtd - driver MTD structure
101 * @mtd: The MTD instance to pass to the MTD layer.
102 * @chip: The NAND chip information.
103 * @set: The platform information supplied for this set of NAND chips.
104 * @info: Link back to the hardware information.
105 * @scan_res: The result from calling nand_scan_ident().
107 struct s3c2410_nand_mtd {
108 struct mtd_info mtd;
109 struct nand_chip chip;
110 struct s3c2410_nand_set *set;
111 struct s3c2410_nand_info *info;
112 int scan_res;
115 enum s3c_cpu_type {
116 TYPE_S3C2410,
117 TYPE_S3C2412,
118 TYPE_S3C2440,
121 enum s3c_nand_clk_state {
122 CLOCK_DISABLE = 0,
123 CLOCK_ENABLE,
124 CLOCK_SUSPEND,
127 /* overview of the s3c2410 nand state */
130 * struct s3c2410_nand_info - NAND controller state.
131 * @mtds: An array of MTD instances on this controoler.
132 * @platform: The platform data for this board.
133 * @device: The platform device we bound to.
134 * @clk: The clock resource for this controller.
135 * @regs: The area mapped for the hardware registers.
136 * @sel_reg: Pointer to the register controlling the NAND selection.
137 * @sel_bit: The bit in @sel_reg to select the NAND chip.
138 * @mtd_count: The number of MTDs created from this controller.
139 * @save_sel: The contents of @sel_reg to be saved over suspend.
140 * @clk_rate: The clock rate from @clk.
141 * @clk_state: The current clock state.
142 * @cpu_type: The exact type of this controller.
144 struct s3c2410_nand_info {
145 /* mtd info */
146 struct nand_hw_control controller;
147 struct s3c2410_nand_mtd *mtds;
148 struct s3c2410_platform_nand *platform;
150 /* device info */
151 struct device *device;
152 struct clk *clk;
153 void __iomem *regs;
154 void __iomem *sel_reg;
155 int sel_bit;
156 int mtd_count;
157 unsigned long save_sel;
158 unsigned long clk_rate;
159 enum s3c_nand_clk_state clk_state;
161 enum s3c_cpu_type cpu_type;
163 #ifdef CONFIG_CPU_FREQ
164 struct notifier_block freq_transition;
165 #endif
168 /* conversion functions */
170 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
172 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
175 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
177 return s3c2410_nand_mtd_toours(mtd)->info;
180 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
182 return platform_get_drvdata(dev);
185 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
187 return dev_get_platdata(&dev->dev);
190 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
192 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
193 return 1;
194 #else
195 return 0;
196 #endif
200 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
201 * @info: The controller instance.
202 * @new_state: State to which clock should be set.
204 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
205 enum s3c_nand_clk_state new_state)
207 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
208 return;
210 if (info->clk_state == CLOCK_ENABLE) {
211 if (new_state != CLOCK_ENABLE)
212 clk_disable(info->clk);
213 } else {
214 if (new_state == CLOCK_ENABLE)
215 clk_enable(info->clk);
218 info->clk_state = new_state;
221 /* timing calculations */
223 #define NS_IN_KHZ 1000000
226 * s3c_nand_calc_rate - calculate timing data.
227 * @wanted: The cycle time in nanoseconds.
228 * @clk: The clock rate in kHz.
229 * @max: The maximum divider value.
231 * Calculate the timing value from the given parameters.
233 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
235 int result;
237 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
239 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
241 if (result > max) {
242 pr_err("%d ns is too big for current clock rate %ld\n",
243 wanted, clk);
244 return -1;
247 if (result < 1)
248 result = 1;
250 return result;
253 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
255 /* controller setup */
258 * s3c2410_nand_setrate - setup controller timing information.
259 * @info: The controller instance.
261 * Given the information supplied by the platform, calculate and set
262 * the necessary timing registers in the hardware to generate the
263 * necessary timing cycles to the hardware.
265 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
267 struct s3c2410_platform_nand *plat = info->platform;
268 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
269 int tacls, twrph0, twrph1;
270 unsigned long clkrate = clk_get_rate(info->clk);
271 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
272 unsigned long flags;
274 /* calculate the timing information for the controller */
276 info->clk_rate = clkrate;
277 clkrate /= 1000; /* turn clock into kHz for ease of use */
279 if (plat != NULL) {
280 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
281 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
282 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
283 } else {
284 /* default timings */
285 tacls = tacls_max;
286 twrph0 = 8;
287 twrph1 = 8;
290 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
291 dev_err(info->device, "cannot get suitable timings\n");
292 return -EINVAL;
295 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
296 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
297 twrph1, to_ns(twrph1, clkrate));
299 switch (info->cpu_type) {
300 case TYPE_S3C2410:
301 mask = (S3C2410_NFCONF_TACLS(3) |
302 S3C2410_NFCONF_TWRPH0(7) |
303 S3C2410_NFCONF_TWRPH1(7));
304 set = S3C2410_NFCONF_EN;
305 set |= S3C2410_NFCONF_TACLS(tacls - 1);
306 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
307 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
308 break;
310 case TYPE_S3C2440:
311 case TYPE_S3C2412:
312 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
313 S3C2440_NFCONF_TWRPH0(7) |
314 S3C2440_NFCONF_TWRPH1(7));
316 set = S3C2440_NFCONF_TACLS(tacls - 1);
317 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
318 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
319 break;
321 default:
322 BUG();
325 local_irq_save(flags);
327 cfg = readl(info->regs + S3C2410_NFCONF);
328 cfg &= ~mask;
329 cfg |= set;
330 writel(cfg, info->regs + S3C2410_NFCONF);
332 local_irq_restore(flags);
334 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
336 return 0;
340 * s3c2410_nand_inithw - basic hardware initialisation
341 * @info: The hardware state.
343 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
344 * to setup the hardware access speeds and set the controller to be enabled.
346 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
348 int ret;
350 ret = s3c2410_nand_setrate(info);
351 if (ret < 0)
352 return ret;
354 switch (info->cpu_type) {
355 case TYPE_S3C2410:
356 default:
357 break;
359 case TYPE_S3C2440:
360 case TYPE_S3C2412:
361 /* enable the controller and de-assert nFCE */
363 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
366 return 0;
370 * s3c2410_nand_select_chip - select the given nand chip
371 * @mtd: The MTD instance for this chip.
372 * @chip: The chip number.
374 * This is called by the MTD layer to either select a given chip for the
375 * @mtd instance, or to indicate that the access has finished and the
376 * chip can be de-selected.
378 * The routine ensures that the nFCE line is correctly setup, and any
379 * platform specific selection code is called to route nFCE to the specific
380 * chip.
382 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
384 struct s3c2410_nand_info *info;
385 struct s3c2410_nand_mtd *nmtd;
386 struct nand_chip *this = mtd->priv;
387 unsigned long cur;
389 nmtd = this->priv;
390 info = nmtd->info;
392 if (chip != -1)
393 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
395 cur = readl(info->sel_reg);
397 if (chip == -1) {
398 cur |= info->sel_bit;
399 } else {
400 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
401 dev_err(info->device, "invalid chip %d\n", chip);
402 return;
405 if (info->platform != NULL) {
406 if (info->platform->select_chip != NULL)
407 (info->platform->select_chip) (nmtd->set, chip);
410 cur &= ~info->sel_bit;
413 writel(cur, info->sel_reg);
415 if (chip == -1)
416 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
419 /* s3c2410_nand_hwcontrol
421 * Issue command and address cycles to the chip
424 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
425 unsigned int ctrl)
427 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
429 if (cmd == NAND_CMD_NONE)
430 return;
432 if (ctrl & NAND_CLE)
433 writeb(cmd, info->regs + S3C2410_NFCMD);
434 else
435 writeb(cmd, info->regs + S3C2410_NFADDR);
438 /* command and control functions */
440 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
441 unsigned int ctrl)
443 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
445 if (cmd == NAND_CMD_NONE)
446 return;
448 if (ctrl & NAND_CLE)
449 writeb(cmd, info->regs + S3C2440_NFCMD);
450 else
451 writeb(cmd, info->regs + S3C2440_NFADDR);
454 /* s3c2410_nand_devready()
456 * returns 0 if the nand is busy, 1 if it is ready
459 static int s3c2410_nand_devready(struct mtd_info *mtd)
461 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
462 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
465 static int s3c2440_nand_devready(struct mtd_info *mtd)
467 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
468 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
471 static int s3c2412_nand_devready(struct mtd_info *mtd)
473 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
474 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
477 /* ECC handling functions */
479 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
480 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
481 u_char *read_ecc, u_char *calc_ecc)
483 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
484 unsigned int diff0, diff1, diff2;
485 unsigned int bit, byte;
487 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
489 diff0 = read_ecc[0] ^ calc_ecc[0];
490 diff1 = read_ecc[1] ^ calc_ecc[1];
491 diff2 = read_ecc[2] ^ calc_ecc[2];
493 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
494 __func__, 3, read_ecc, 3, calc_ecc,
495 diff0, diff1, diff2);
497 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
498 return 0; /* ECC is ok */
500 /* sometimes people do not think about using the ECC, so check
501 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
502 * the error, on the assumption that this is an un-eccd page.
504 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
505 && info->platform->ignore_unset_ecc)
506 return 0;
508 /* Can we correct this ECC (ie, one row and column change).
509 * Note, this is similar to the 256 error code on smartmedia */
511 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
512 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
513 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
514 /* calculate the bit position of the error */
516 bit = ((diff2 >> 3) & 1) |
517 ((diff2 >> 4) & 2) |
518 ((diff2 >> 5) & 4);
520 /* calculate the byte position of the error */
522 byte = ((diff2 << 7) & 0x100) |
523 ((diff1 << 0) & 0x80) |
524 ((diff1 << 1) & 0x40) |
525 ((diff1 << 2) & 0x20) |
526 ((diff1 << 3) & 0x10) |
527 ((diff0 >> 4) & 0x08) |
528 ((diff0 >> 3) & 0x04) |
529 ((diff0 >> 2) & 0x02) |
530 ((diff0 >> 1) & 0x01);
532 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
533 bit, byte);
535 dat[byte] ^= (1 << bit);
536 return 1;
539 /* if there is only one bit difference in the ECC, then
540 * one of only a row or column parity has changed, which
541 * means the error is most probably in the ECC itself */
543 diff0 |= (diff1 << 8);
544 diff0 |= (diff2 << 16);
546 if ((diff0 & ~(1<<fls(diff0))) == 0)
547 return 1;
549 return -1;
552 /* ECC functions
554 * These allow the s3c2410 and s3c2440 to use the controller's ECC
555 * generator block to ECC the data as it passes through]
558 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
560 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
561 unsigned long ctrl;
563 ctrl = readl(info->regs + S3C2410_NFCONF);
564 ctrl |= S3C2410_NFCONF_INITECC;
565 writel(ctrl, info->regs + S3C2410_NFCONF);
568 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
570 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
571 unsigned long ctrl;
573 ctrl = readl(info->regs + S3C2440_NFCONT);
574 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
575 info->regs + S3C2440_NFCONT);
578 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
580 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
581 unsigned long ctrl;
583 ctrl = readl(info->regs + S3C2440_NFCONT);
584 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
587 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
588 u_char *ecc_code)
590 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
592 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
593 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
594 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
596 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
598 return 0;
601 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
602 u_char *ecc_code)
604 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
605 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
607 ecc_code[0] = ecc;
608 ecc_code[1] = ecc >> 8;
609 ecc_code[2] = ecc >> 16;
611 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
613 return 0;
616 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
617 u_char *ecc_code)
619 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
620 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
622 ecc_code[0] = ecc;
623 ecc_code[1] = ecc >> 8;
624 ecc_code[2] = ecc >> 16;
626 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
628 return 0;
630 #endif
632 /* over-ride the standard functions for a little more speed. We can
633 * use read/write block to move the data buffers to/from the controller
636 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
638 struct nand_chip *this = mtd->priv;
639 readsb(this->IO_ADDR_R, buf, len);
642 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
644 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
646 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
648 /* cleanup if we've got less than a word to do */
649 if (len & 3) {
650 buf += len & ~3;
652 for (; len & 3; len--)
653 *buf++ = readb(info->regs + S3C2440_NFDATA);
657 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
658 int len)
660 struct nand_chip *this = mtd->priv;
661 writesb(this->IO_ADDR_W, buf, len);
664 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
665 int len)
667 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
669 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
671 /* cleanup any fractional write */
672 if (len & 3) {
673 buf += len & ~3;
675 for (; len & 3; len--, buf++)
676 writeb(*buf, info->regs + S3C2440_NFDATA);
680 /* cpufreq driver support */
682 #ifdef CONFIG_CPU_FREQ
684 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
685 unsigned long val, void *data)
687 struct s3c2410_nand_info *info;
688 unsigned long newclk;
690 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
691 newclk = clk_get_rate(info->clk);
693 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
694 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
695 s3c2410_nand_setrate(info);
698 return 0;
701 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
703 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
705 return cpufreq_register_notifier(&info->freq_transition,
706 CPUFREQ_TRANSITION_NOTIFIER);
709 static inline void
710 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
712 cpufreq_unregister_notifier(&info->freq_transition,
713 CPUFREQ_TRANSITION_NOTIFIER);
716 #else
717 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
719 return 0;
722 static inline void
723 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
726 #endif
728 /* device management functions */
730 static int s3c24xx_nand_remove(struct platform_device *pdev)
732 struct s3c2410_nand_info *info = to_nand_info(pdev);
734 if (info == NULL)
735 return 0;
737 s3c2410_nand_cpufreq_deregister(info);
739 /* Release all our mtds and their partitions, then go through
740 * freeing the resources used
743 if (info->mtds != NULL) {
744 struct s3c2410_nand_mtd *ptr = info->mtds;
745 int mtdno;
747 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
748 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
749 nand_release(&ptr->mtd);
753 /* free the common resources */
755 if (!IS_ERR(info->clk))
756 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
758 return 0;
761 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
762 struct s3c2410_nand_mtd *mtd,
763 struct s3c2410_nand_set *set)
765 if (set) {
766 mtd->mtd.name = set->name;
768 return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
769 set->partitions, set->nr_partitions);
772 return -ENODEV;
776 * s3c2410_nand_init_chip - initialise a single instance of an chip
777 * @info: The base NAND controller the chip is on.
778 * @nmtd: The new controller MTD instance to fill in.
779 * @set: The information passed from the board specific platform data.
781 * Initialise the given @nmtd from the information in @info and @set. This
782 * readies the structure for use with the MTD layer functions by ensuring
783 * all pointers are setup and the necessary control routines selected.
785 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
786 struct s3c2410_nand_mtd *nmtd,
787 struct s3c2410_nand_set *set)
789 struct nand_chip *chip = &nmtd->chip;
790 void __iomem *regs = info->regs;
792 chip->write_buf = s3c2410_nand_write_buf;
793 chip->read_buf = s3c2410_nand_read_buf;
794 chip->select_chip = s3c2410_nand_select_chip;
795 chip->chip_delay = 50;
796 chip->priv = nmtd;
797 chip->options = set->options;
798 chip->controller = &info->controller;
800 switch (info->cpu_type) {
801 case TYPE_S3C2410:
802 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
803 info->sel_reg = regs + S3C2410_NFCONF;
804 info->sel_bit = S3C2410_NFCONF_nFCE;
805 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
806 chip->dev_ready = s3c2410_nand_devready;
807 break;
809 case TYPE_S3C2440:
810 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
811 info->sel_reg = regs + S3C2440_NFCONT;
812 info->sel_bit = S3C2440_NFCONT_nFCE;
813 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
814 chip->dev_ready = s3c2440_nand_devready;
815 chip->read_buf = s3c2440_nand_read_buf;
816 chip->write_buf = s3c2440_nand_write_buf;
817 break;
819 case TYPE_S3C2412:
820 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
821 info->sel_reg = regs + S3C2440_NFCONT;
822 info->sel_bit = S3C2412_NFCONT_nFCE0;
823 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
824 chip->dev_ready = s3c2412_nand_devready;
826 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
827 dev_info(info->device, "System booted from NAND\n");
829 break;
832 chip->IO_ADDR_R = chip->IO_ADDR_W;
834 nmtd->info = info;
835 nmtd->mtd.priv = chip;
836 nmtd->mtd.owner = THIS_MODULE;
837 nmtd->set = set;
839 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
840 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
841 chip->ecc.correct = s3c2410_nand_correct_data;
842 chip->ecc.mode = NAND_ECC_HW;
843 chip->ecc.strength = 1;
845 switch (info->cpu_type) {
846 case TYPE_S3C2410:
847 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
848 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
849 break;
851 case TYPE_S3C2412:
852 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
853 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
854 break;
856 case TYPE_S3C2440:
857 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
858 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
859 break;
861 #else
862 chip->ecc.mode = NAND_ECC_SOFT;
863 #endif
865 if (set->ecc_layout != NULL)
866 chip->ecc.layout = set->ecc_layout;
868 if (set->disable_ecc)
869 chip->ecc.mode = NAND_ECC_NONE;
871 switch (chip->ecc.mode) {
872 case NAND_ECC_NONE:
873 dev_info(info->device, "NAND ECC disabled\n");
874 break;
875 case NAND_ECC_SOFT:
876 dev_info(info->device, "NAND soft ECC\n");
877 break;
878 case NAND_ECC_HW:
879 dev_info(info->device, "NAND hardware ECC\n");
880 break;
881 default:
882 dev_info(info->device, "NAND ECC UNKNOWN\n");
883 break;
886 /* If you use u-boot BBT creation code, specifying this flag will
887 * let the kernel fish out the BBT from the NAND, and also skip the
888 * full NAND scan that can take 1/2s or so. Little things... */
889 if (set->flash_bbt) {
890 chip->bbt_options |= NAND_BBT_USE_FLASH;
891 chip->options |= NAND_SKIP_BBTSCAN;
896 * s3c2410_nand_update_chip - post probe update
897 * @info: The controller instance.
898 * @nmtd: The driver version of the MTD instance.
900 * This routine is called after the chip probe has successfully completed
901 * and the relevant per-chip information updated. This call ensure that
902 * we update the internal state accordingly.
904 * The internal state is currently limited to the ECC state information.
906 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
907 struct s3c2410_nand_mtd *nmtd)
909 struct nand_chip *chip = &nmtd->chip;
911 dev_dbg(info->device, "chip %p => page shift %d\n",
912 chip, chip->page_shift);
914 if (chip->ecc.mode != NAND_ECC_HW)
915 return;
917 /* change the behaviour depending on whether we are using
918 * the large or small page nand device */
920 if (chip->page_shift > 10) {
921 chip->ecc.size = 256;
922 chip->ecc.bytes = 3;
923 } else {
924 chip->ecc.size = 512;
925 chip->ecc.bytes = 3;
926 chip->ecc.layout = &nand_hw_eccoob;
930 /* s3c24xx_nand_probe
932 * called by device layer when it finds a device matching
933 * one our driver can handled. This code checks to see if
934 * it can allocate all necessary resources then calls the
935 * nand layer to look for devices
937 static int s3c24xx_nand_probe(struct platform_device *pdev)
939 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
940 enum s3c_cpu_type cpu_type;
941 struct s3c2410_nand_info *info;
942 struct s3c2410_nand_mtd *nmtd;
943 struct s3c2410_nand_set *sets;
944 struct resource *res;
945 int err = 0;
946 int size;
947 int nr_sets;
948 int setno;
950 cpu_type = platform_get_device_id(pdev)->driver_data;
952 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
954 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
955 if (info == NULL) {
956 err = -ENOMEM;
957 goto exit_error;
960 platform_set_drvdata(pdev, info);
962 spin_lock_init(&info->controller.lock);
963 init_waitqueue_head(&info->controller.wq);
965 /* get the clock source and enable it */
967 info->clk = devm_clk_get(&pdev->dev, "nand");
968 if (IS_ERR(info->clk)) {
969 dev_err(&pdev->dev, "failed to get clock\n");
970 err = -ENOENT;
971 goto exit_error;
974 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
976 /* allocate and map the resource */
978 /* currently we assume we have the one resource */
979 res = pdev->resource;
980 size = resource_size(res);
982 info->device = &pdev->dev;
983 info->platform = plat;
984 info->cpu_type = cpu_type;
986 info->regs = devm_ioremap_resource(&pdev->dev, res);
987 if (IS_ERR(info->regs)) {
988 err = PTR_ERR(info->regs);
989 goto exit_error;
992 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
994 /* initialise the hardware */
996 err = s3c2410_nand_inithw(info);
997 if (err != 0)
998 goto exit_error;
1000 sets = (plat != NULL) ? plat->sets : NULL;
1001 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
1003 info->mtd_count = nr_sets;
1005 /* allocate our information */
1007 size = nr_sets * sizeof(*info->mtds);
1008 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1009 if (info->mtds == NULL) {
1010 err = -ENOMEM;
1011 goto exit_error;
1014 /* initialise all possible chips */
1016 nmtd = info->mtds;
1018 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
1019 pr_debug("initialising set %d (%p, info %p)\n",
1020 setno, nmtd, info);
1022 s3c2410_nand_init_chip(info, nmtd, sets);
1024 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
1025 (sets) ? sets->nr_chips : 1,
1026 NULL);
1028 if (nmtd->scan_res == 0) {
1029 s3c2410_nand_update_chip(info, nmtd);
1030 nand_scan_tail(&nmtd->mtd);
1031 s3c2410_nand_add_partition(info, nmtd, sets);
1034 if (sets != NULL)
1035 sets++;
1038 err = s3c2410_nand_cpufreq_register(info);
1039 if (err < 0) {
1040 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1041 goto exit_error;
1044 if (allow_clk_suspend(info)) {
1045 dev_info(&pdev->dev, "clock idle support enabled\n");
1046 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1049 pr_debug("initialised ok\n");
1050 return 0;
1052 exit_error:
1053 s3c24xx_nand_remove(pdev);
1055 if (err == 0)
1056 err = -EINVAL;
1057 return err;
1060 /* PM Support */
1061 #ifdef CONFIG_PM
1063 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1065 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1067 if (info) {
1068 info->save_sel = readl(info->sel_reg);
1070 /* For the moment, we must ensure nFCE is high during
1071 * the time we are suspended. This really should be
1072 * handled by suspending the MTDs we are using, but
1073 * that is currently not the case. */
1075 writel(info->save_sel | info->sel_bit, info->sel_reg);
1077 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1080 return 0;
1083 static int s3c24xx_nand_resume(struct platform_device *dev)
1085 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1086 unsigned long sel;
1088 if (info) {
1089 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1090 s3c2410_nand_inithw(info);
1092 /* Restore the state of the nFCE line. */
1094 sel = readl(info->sel_reg);
1095 sel &= ~info->sel_bit;
1096 sel |= info->save_sel & info->sel_bit;
1097 writel(sel, info->sel_reg);
1099 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1102 return 0;
1105 #else
1106 #define s3c24xx_nand_suspend NULL
1107 #define s3c24xx_nand_resume NULL
1108 #endif
1110 /* driver device registration */
1112 static struct platform_device_id s3c24xx_driver_ids[] = {
1114 .name = "s3c2410-nand",
1115 .driver_data = TYPE_S3C2410,
1116 }, {
1117 .name = "s3c2440-nand",
1118 .driver_data = TYPE_S3C2440,
1119 }, {
1120 .name = "s3c2412-nand",
1121 .driver_data = TYPE_S3C2412,
1122 }, {
1123 .name = "s3c6400-nand",
1124 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
1129 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1131 static struct platform_driver s3c24xx_nand_driver = {
1132 .probe = s3c24xx_nand_probe,
1133 .remove = s3c24xx_nand_remove,
1134 .suspend = s3c24xx_nand_suspend,
1135 .resume = s3c24xx_nand_resume,
1136 .id_table = s3c24xx_driver_ids,
1137 .driver = {
1138 .name = "s3c24xx-nand",
1139 .owner = THIS_MODULE,
1143 module_platform_driver(s3c24xx_nand_driver);
1145 MODULE_LICENSE("GPL");
1146 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1147 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");