PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / can / slcan.c
blob3fcdae266377a8141546f239ff805160d6cadbb9
1 /*
2 * slcan.c - serial line CAN interface driver (using tty line discipline)
4 * This file is derived from linux/drivers/net/slip/slip.c
6 * slip.c Authors : Laurence Culhane <loz@holmes.demon.co.uk>
7 * Fred N. van Kempen <waltje@uwalt.nl.mugnet.org>
8 * slcan.c Author : Oliver Hartkopp <socketcan@hartkopp.net>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see http://www.gnu.org/licenses/gpl.html
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
29 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34 * DAMAGE.
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
41 #include <linux/uaccess.h>
42 #include <linux/bitops.h>
43 #include <linux/string.h>
44 #include <linux/tty.h>
45 #include <linux/errno.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/if_arp.h>
50 #include <linux/if_ether.h>
51 #include <linux/sched.h>
52 #include <linux/delay.h>
53 #include <linux/init.h>
54 #include <linux/kernel.h>
55 #include <linux/can.h>
56 #include <linux/can/skb.h>
58 static __initconst const char banner[] =
59 KERN_INFO "slcan: serial line CAN interface driver\n";
61 MODULE_ALIAS_LDISC(N_SLCAN);
62 MODULE_DESCRIPTION("serial line CAN interface");
63 MODULE_LICENSE("GPL");
64 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
66 #define SLCAN_MAGIC 0x53CA
68 static int maxdev = 10; /* MAX number of SLCAN channels;
69 This can be overridden with
70 insmod slcan.ko maxdev=nnn */
71 module_param(maxdev, int, 0);
72 MODULE_PARM_DESC(maxdev, "Maximum number of slcan interfaces");
74 /* maximum rx buffer len: extended CAN frame with timestamp */
75 #define SLC_MTU (sizeof("T1111222281122334455667788EA5F\r")+1)
77 #define SLC_CMD_LEN 1
78 #define SLC_SFF_ID_LEN 3
79 #define SLC_EFF_ID_LEN 8
81 struct slcan {
82 int magic;
84 /* Various fields. */
85 struct tty_struct *tty; /* ptr to TTY structure */
86 struct net_device *dev; /* easy for intr handling */
87 spinlock_t lock;
89 /* These are pointers to the malloc()ed frame buffers. */
90 unsigned char rbuff[SLC_MTU]; /* receiver buffer */
91 int rcount; /* received chars counter */
92 unsigned char xbuff[SLC_MTU]; /* transmitter buffer */
93 unsigned char *xhead; /* pointer to next XMIT byte */
94 int xleft; /* bytes left in XMIT queue */
96 unsigned long flags; /* Flag values/ mode etc */
97 #define SLF_INUSE 0 /* Channel in use */
98 #define SLF_ERROR 1 /* Parity, etc. error */
101 static struct net_device **slcan_devs;
103 /************************************************************************
104 * SLCAN ENCAPSULATION FORMAT *
105 ************************************************************************/
108 * A CAN frame has a can_id (11 bit standard frame format OR 29 bit extended
109 * frame format) a data length code (can_dlc) which can be from 0 to 8
110 * and up to <can_dlc> data bytes as payload.
111 * Additionally a CAN frame may become a remote transmission frame if the
112 * RTR-bit is set. This causes another ECU to send a CAN frame with the
113 * given can_id.
115 * The SLCAN ASCII representation of these different frame types is:
116 * <type> <id> <dlc> <data>*
118 * Extended frames (29 bit) are defined by capital characters in the type.
119 * RTR frames are defined as 'r' types - normal frames have 't' type:
120 * t => 11 bit data frame
121 * r => 11 bit RTR frame
122 * T => 29 bit data frame
123 * R => 29 bit RTR frame
125 * The <id> is 3 (standard) or 8 (extended) bytes in ASCII Hex (base64).
126 * The <dlc> is a one byte ASCII number ('0' - '8')
127 * The <data> section has at much ASCII Hex bytes as defined by the <dlc>
129 * Examples:
131 * t1230 : can_id 0x123, can_dlc 0, no data
132 * t4563112233 : can_id 0x456, can_dlc 3, data 0x11 0x22 0x33
133 * T12ABCDEF2AA55 : extended can_id 0x12ABCDEF, can_dlc 2, data 0xAA 0x55
134 * r1230 : can_id 0x123, can_dlc 0, no data, remote transmission request
138 /************************************************************************
139 * STANDARD SLCAN DECAPSULATION *
140 ************************************************************************/
142 /* Send one completely decapsulated can_frame to the network layer */
143 static void slc_bump(struct slcan *sl)
145 struct sk_buff *skb;
146 struct can_frame cf;
147 int i, tmp;
148 u32 tmpid;
149 char *cmd = sl->rbuff;
151 cf.can_id = 0;
153 switch (*cmd) {
154 case 'r':
155 cf.can_id = CAN_RTR_FLAG;
156 /* fallthrough */
157 case 't':
158 /* store dlc ASCII value and terminate SFF CAN ID string */
159 cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN];
160 sl->rbuff[SLC_CMD_LEN + SLC_SFF_ID_LEN] = 0;
161 /* point to payload data behind the dlc */
162 cmd += SLC_CMD_LEN + SLC_SFF_ID_LEN + 1;
163 break;
164 case 'R':
165 cf.can_id = CAN_RTR_FLAG;
166 /* fallthrough */
167 case 'T':
168 cf.can_id |= CAN_EFF_FLAG;
169 /* store dlc ASCII value and terminate EFF CAN ID string */
170 cf.can_dlc = sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN];
171 sl->rbuff[SLC_CMD_LEN + SLC_EFF_ID_LEN] = 0;
172 /* point to payload data behind the dlc */
173 cmd += SLC_CMD_LEN + SLC_EFF_ID_LEN + 1;
174 break;
175 default:
176 return;
179 if (kstrtou32(sl->rbuff + SLC_CMD_LEN, 16, &tmpid))
180 return;
182 cf.can_id |= tmpid;
184 /* get can_dlc from sanitized ASCII value */
185 if (cf.can_dlc >= '0' && cf.can_dlc < '9')
186 cf.can_dlc -= '0';
187 else
188 return;
190 *(u64 *) (&cf.data) = 0; /* clear payload */
192 /* RTR frames may have a dlc > 0 but they never have any data bytes */
193 if (!(cf.can_id & CAN_RTR_FLAG)) {
194 for (i = 0; i < cf.can_dlc; i++) {
195 tmp = hex_to_bin(*cmd++);
196 if (tmp < 0)
197 return;
198 cf.data[i] = (tmp << 4);
199 tmp = hex_to_bin(*cmd++);
200 if (tmp < 0)
201 return;
202 cf.data[i] |= tmp;
206 skb = dev_alloc_skb(sizeof(struct can_frame) +
207 sizeof(struct can_skb_priv));
208 if (!skb)
209 return;
211 skb->dev = sl->dev;
212 skb->protocol = htons(ETH_P_CAN);
213 skb->pkt_type = PACKET_BROADCAST;
214 skb->ip_summed = CHECKSUM_UNNECESSARY;
216 can_skb_reserve(skb);
217 can_skb_prv(skb)->ifindex = sl->dev->ifindex;
219 memcpy(skb_put(skb, sizeof(struct can_frame)),
220 &cf, sizeof(struct can_frame));
221 netif_rx_ni(skb);
223 sl->dev->stats.rx_packets++;
224 sl->dev->stats.rx_bytes += cf.can_dlc;
227 /* parse tty input stream */
228 static void slcan_unesc(struct slcan *sl, unsigned char s)
230 if ((s == '\r') || (s == '\a')) { /* CR or BEL ends the pdu */
231 if (!test_and_clear_bit(SLF_ERROR, &sl->flags) &&
232 (sl->rcount > 4)) {
233 slc_bump(sl);
235 sl->rcount = 0;
236 } else {
237 if (!test_bit(SLF_ERROR, &sl->flags)) {
238 if (sl->rcount < SLC_MTU) {
239 sl->rbuff[sl->rcount++] = s;
240 return;
241 } else {
242 sl->dev->stats.rx_over_errors++;
243 set_bit(SLF_ERROR, &sl->flags);
249 /************************************************************************
250 * STANDARD SLCAN ENCAPSULATION *
251 ************************************************************************/
253 /* Encapsulate one can_frame and stuff into a TTY queue. */
254 static void slc_encaps(struct slcan *sl, struct can_frame *cf)
256 int actual, i;
257 unsigned char *pos;
258 unsigned char *endpos;
259 canid_t id = cf->can_id;
261 pos = sl->xbuff;
263 if (cf->can_id & CAN_RTR_FLAG)
264 *pos = 'R'; /* becomes 'r' in standard frame format (SFF) */
265 else
266 *pos = 'T'; /* becomes 't' in standard frame format (SSF) */
268 /* determine number of chars for the CAN-identifier */
269 if (cf->can_id & CAN_EFF_FLAG) {
270 id &= CAN_EFF_MASK;
271 endpos = pos + SLC_EFF_ID_LEN;
272 } else {
273 *pos |= 0x20; /* convert R/T to lower case for SFF */
274 id &= CAN_SFF_MASK;
275 endpos = pos + SLC_SFF_ID_LEN;
278 /* build 3 (SFF) or 8 (EFF) digit CAN identifier */
279 pos++;
280 while (endpos >= pos) {
281 *endpos-- = hex_asc_upper[id & 0xf];
282 id >>= 4;
285 pos += (cf->can_id & CAN_EFF_FLAG) ? SLC_EFF_ID_LEN : SLC_SFF_ID_LEN;
287 *pos++ = cf->can_dlc + '0';
289 /* RTR frames may have a dlc > 0 but they never have any data bytes */
290 if (!(cf->can_id & CAN_RTR_FLAG)) {
291 for (i = 0; i < cf->can_dlc; i++)
292 pos = hex_byte_pack_upper(pos, cf->data[i]);
295 *pos++ = '\r';
297 /* Order of next two lines is *very* important.
298 * When we are sending a little amount of data,
299 * the transfer may be completed inside the ops->write()
300 * routine, because it's running with interrupts enabled.
301 * In this case we *never* got WRITE_WAKEUP event,
302 * if we did not request it before write operation.
303 * 14 Oct 1994 Dmitry Gorodchanin.
305 set_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
306 actual = sl->tty->ops->write(sl->tty, sl->xbuff, pos - sl->xbuff);
307 sl->xleft = (pos - sl->xbuff) - actual;
308 sl->xhead = sl->xbuff + actual;
309 sl->dev->stats.tx_bytes += cf->can_dlc;
313 * Called by the driver when there's room for more data. If we have
314 * more packets to send, we send them here.
316 static void slcan_write_wakeup(struct tty_struct *tty)
318 int actual;
319 struct slcan *sl = (struct slcan *) tty->disc_data;
321 /* First make sure we're connected. */
322 if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
323 return;
325 spin_lock(&sl->lock);
326 if (sl->xleft <= 0) {
327 /* Now serial buffer is almost free & we can start
328 * transmission of another packet */
329 sl->dev->stats.tx_packets++;
330 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
331 spin_unlock(&sl->lock);
332 netif_wake_queue(sl->dev);
333 return;
336 actual = tty->ops->write(tty, sl->xhead, sl->xleft);
337 sl->xleft -= actual;
338 sl->xhead += actual;
339 spin_unlock(&sl->lock);
342 /* Send a can_frame to a TTY queue. */
343 static netdev_tx_t slc_xmit(struct sk_buff *skb, struct net_device *dev)
345 struct slcan *sl = netdev_priv(dev);
347 if (skb->len != sizeof(struct can_frame))
348 goto out;
350 spin_lock(&sl->lock);
351 if (!netif_running(dev)) {
352 spin_unlock(&sl->lock);
353 printk(KERN_WARNING "%s: xmit: iface is down\n", dev->name);
354 goto out;
356 if (sl->tty == NULL) {
357 spin_unlock(&sl->lock);
358 goto out;
361 netif_stop_queue(sl->dev);
362 slc_encaps(sl, (struct can_frame *) skb->data); /* encaps & send */
363 spin_unlock(&sl->lock);
365 out:
366 kfree_skb(skb);
367 return NETDEV_TX_OK;
371 /******************************************
372 * Routines looking at netdevice side.
373 ******************************************/
375 /* Netdevice UP -> DOWN routine */
376 static int slc_close(struct net_device *dev)
378 struct slcan *sl = netdev_priv(dev);
380 spin_lock_bh(&sl->lock);
381 if (sl->tty) {
382 /* TTY discipline is running. */
383 clear_bit(TTY_DO_WRITE_WAKEUP, &sl->tty->flags);
385 netif_stop_queue(dev);
386 sl->rcount = 0;
387 sl->xleft = 0;
388 spin_unlock_bh(&sl->lock);
390 return 0;
393 /* Netdevice DOWN -> UP routine */
394 static int slc_open(struct net_device *dev)
396 struct slcan *sl = netdev_priv(dev);
398 if (sl->tty == NULL)
399 return -ENODEV;
401 sl->flags &= (1 << SLF_INUSE);
402 netif_start_queue(dev);
403 return 0;
406 /* Hook the destructor so we can free slcan devs at the right point in time */
407 static void slc_free_netdev(struct net_device *dev)
409 int i = dev->base_addr;
410 free_netdev(dev);
411 slcan_devs[i] = NULL;
414 static const struct net_device_ops slc_netdev_ops = {
415 .ndo_open = slc_open,
416 .ndo_stop = slc_close,
417 .ndo_start_xmit = slc_xmit,
420 static void slc_setup(struct net_device *dev)
422 dev->netdev_ops = &slc_netdev_ops;
423 dev->destructor = slc_free_netdev;
425 dev->hard_header_len = 0;
426 dev->addr_len = 0;
427 dev->tx_queue_len = 10;
429 dev->mtu = sizeof(struct can_frame);
430 dev->type = ARPHRD_CAN;
432 /* New-style flags. */
433 dev->flags = IFF_NOARP;
434 dev->features = NETIF_F_HW_CSUM;
437 /******************************************
438 Routines looking at TTY side.
439 ******************************************/
442 * Handle the 'receiver data ready' interrupt.
443 * This function is called by the 'tty_io' module in the kernel when
444 * a block of SLCAN data has been received, which can now be decapsulated
445 * and sent on to some IP layer for further processing. This will not
446 * be re-entered while running but other ldisc functions may be called
447 * in parallel
450 static void slcan_receive_buf(struct tty_struct *tty,
451 const unsigned char *cp, char *fp, int count)
453 struct slcan *sl = (struct slcan *) tty->disc_data;
455 if (!sl || sl->magic != SLCAN_MAGIC || !netif_running(sl->dev))
456 return;
458 /* Read the characters out of the buffer */
459 while (count--) {
460 if (fp && *fp++) {
461 if (!test_and_set_bit(SLF_ERROR, &sl->flags))
462 sl->dev->stats.rx_errors++;
463 cp++;
464 continue;
466 slcan_unesc(sl, *cp++);
470 /************************************
471 * slcan_open helper routines.
472 ************************************/
474 /* Collect hanged up channels */
475 static void slc_sync(void)
477 int i;
478 struct net_device *dev;
479 struct slcan *sl;
481 for (i = 0; i < maxdev; i++) {
482 dev = slcan_devs[i];
483 if (dev == NULL)
484 break;
486 sl = netdev_priv(dev);
487 if (sl->tty)
488 continue;
489 if (dev->flags & IFF_UP)
490 dev_close(dev);
494 /* Find a free SLCAN channel, and link in this `tty' line. */
495 static struct slcan *slc_alloc(dev_t line)
497 int i;
498 char name[IFNAMSIZ];
499 struct net_device *dev = NULL;
500 struct slcan *sl;
502 for (i = 0; i < maxdev; i++) {
503 dev = slcan_devs[i];
504 if (dev == NULL)
505 break;
509 /* Sorry, too many, all slots in use */
510 if (i >= maxdev)
511 return NULL;
513 sprintf(name, "slcan%d", i);
514 dev = alloc_netdev(sizeof(*sl), name, slc_setup);
515 if (!dev)
516 return NULL;
518 dev->base_addr = i;
519 sl = netdev_priv(dev);
521 /* Initialize channel control data */
522 sl->magic = SLCAN_MAGIC;
523 sl->dev = dev;
524 spin_lock_init(&sl->lock);
525 slcan_devs[i] = dev;
527 return sl;
531 * Open the high-level part of the SLCAN channel.
532 * This function is called by the TTY module when the
533 * SLCAN line discipline is called for. Because we are
534 * sure the tty line exists, we only have to link it to
535 * a free SLCAN channel...
537 * Called in process context serialized from other ldisc calls.
540 static int slcan_open(struct tty_struct *tty)
542 struct slcan *sl;
543 int err;
545 if (!capable(CAP_NET_ADMIN))
546 return -EPERM;
548 if (tty->ops->write == NULL)
549 return -EOPNOTSUPP;
551 /* RTnetlink lock is misused here to serialize concurrent
552 opens of slcan channels. There are better ways, but it is
553 the simplest one.
555 rtnl_lock();
557 /* Collect hanged up channels. */
558 slc_sync();
560 sl = tty->disc_data;
562 err = -EEXIST;
563 /* First make sure we're not already connected. */
564 if (sl && sl->magic == SLCAN_MAGIC)
565 goto err_exit;
567 /* OK. Find a free SLCAN channel to use. */
568 err = -ENFILE;
569 sl = slc_alloc(tty_devnum(tty));
570 if (sl == NULL)
571 goto err_exit;
573 sl->tty = tty;
574 tty->disc_data = sl;
576 if (!test_bit(SLF_INUSE, &sl->flags)) {
577 /* Perform the low-level SLCAN initialization. */
578 sl->rcount = 0;
579 sl->xleft = 0;
581 set_bit(SLF_INUSE, &sl->flags);
583 err = register_netdevice(sl->dev);
584 if (err)
585 goto err_free_chan;
588 /* Done. We have linked the TTY line to a channel. */
589 rtnl_unlock();
590 tty->receive_room = 65536; /* We don't flow control */
592 /* TTY layer expects 0 on success */
593 return 0;
595 err_free_chan:
596 sl->tty = NULL;
597 tty->disc_data = NULL;
598 clear_bit(SLF_INUSE, &sl->flags);
600 err_exit:
601 rtnl_unlock();
603 /* Count references from TTY module */
604 return err;
608 * Close down a SLCAN channel.
609 * This means flushing out any pending queues, and then returning. This
610 * call is serialized against other ldisc functions.
612 * We also use this method for a hangup event.
615 static void slcan_close(struct tty_struct *tty)
617 struct slcan *sl = (struct slcan *) tty->disc_data;
619 /* First make sure we're connected. */
620 if (!sl || sl->magic != SLCAN_MAGIC || sl->tty != tty)
621 return;
623 tty->disc_data = NULL;
624 sl->tty = NULL;
626 /* Flush network side */
627 unregister_netdev(sl->dev);
628 /* This will complete via sl_free_netdev */
631 static int slcan_hangup(struct tty_struct *tty)
633 slcan_close(tty);
634 return 0;
637 /* Perform I/O control on an active SLCAN channel. */
638 static int slcan_ioctl(struct tty_struct *tty, struct file *file,
639 unsigned int cmd, unsigned long arg)
641 struct slcan *sl = (struct slcan *) tty->disc_data;
642 unsigned int tmp;
644 /* First make sure we're connected. */
645 if (!sl || sl->magic != SLCAN_MAGIC)
646 return -EINVAL;
648 switch (cmd) {
649 case SIOCGIFNAME:
650 tmp = strlen(sl->dev->name) + 1;
651 if (copy_to_user((void __user *)arg, sl->dev->name, tmp))
652 return -EFAULT;
653 return 0;
655 case SIOCSIFHWADDR:
656 return -EINVAL;
658 default:
659 return tty_mode_ioctl(tty, file, cmd, arg);
663 static struct tty_ldisc_ops slc_ldisc = {
664 .owner = THIS_MODULE,
665 .magic = TTY_LDISC_MAGIC,
666 .name = "slcan",
667 .open = slcan_open,
668 .close = slcan_close,
669 .hangup = slcan_hangup,
670 .ioctl = slcan_ioctl,
671 .receive_buf = slcan_receive_buf,
672 .write_wakeup = slcan_write_wakeup,
675 static int __init slcan_init(void)
677 int status;
679 if (maxdev < 4)
680 maxdev = 4; /* Sanity */
682 printk(banner);
683 printk(KERN_INFO "slcan: %d dynamic interface channels.\n", maxdev);
685 slcan_devs = kzalloc(sizeof(struct net_device *)*maxdev, GFP_KERNEL);
686 if (!slcan_devs)
687 return -ENOMEM;
689 /* Fill in our line protocol discipline, and register it */
690 status = tty_register_ldisc(N_SLCAN, &slc_ldisc);
691 if (status) {
692 printk(KERN_ERR "slcan: can't register line discipline\n");
693 kfree(slcan_devs);
695 return status;
698 static void __exit slcan_exit(void)
700 int i;
701 struct net_device *dev;
702 struct slcan *sl;
703 unsigned long timeout = jiffies + HZ;
704 int busy = 0;
706 if (slcan_devs == NULL)
707 return;
709 /* First of all: check for active disciplines and hangup them.
711 do {
712 if (busy)
713 msleep_interruptible(100);
715 busy = 0;
716 for (i = 0; i < maxdev; i++) {
717 dev = slcan_devs[i];
718 if (!dev)
719 continue;
720 sl = netdev_priv(dev);
721 spin_lock_bh(&sl->lock);
722 if (sl->tty) {
723 busy++;
724 tty_hangup(sl->tty);
726 spin_unlock_bh(&sl->lock);
728 } while (busy && time_before(jiffies, timeout));
730 /* FIXME: hangup is async so we should wait when doing this second
731 phase */
733 for (i = 0; i < maxdev; i++) {
734 dev = slcan_devs[i];
735 if (!dev)
736 continue;
737 slcan_devs[i] = NULL;
739 sl = netdev_priv(dev);
740 if (sl->tty) {
741 printk(KERN_ERR "%s: tty discipline still running\n",
742 dev->name);
743 /* Intentionally leak the control block. */
744 dev->destructor = NULL;
747 unregister_netdev(dev);
750 kfree(slcan_devs);
751 slcan_devs = NULL;
753 i = tty_unregister_ldisc(N_SLCAN);
754 if (i)
755 printk(KERN_ERR "slcan: can't unregister ldisc (err %d)\n", i);
758 module_init(slcan_init);
759 module_exit(slcan_exit);