1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2013 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/stringify.h>
18 #include <linux/kernel.h>
19 #include <linux/timer.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
40 #include <linux/if_vlan.h>
43 #include <net/checksum.h>
44 #include <linux/workqueue.h>
45 #include <linux/crc32.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
52 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
59 #define DRV_MODULE_NAME "bnx2"
60 #define DRV_MODULE_VERSION "2.2.5"
61 #define DRV_MODULE_RELDATE "December 20, 2013"
62 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
63 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
64 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
65 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
66 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
68 #define RUN_AT(x) (jiffies + (x))
70 /* Time in jiffies before concluding the transmitter is hung. */
71 #define TX_TIMEOUT (5*HZ)
73 static char version
[] =
74 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
76 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
77 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
78 MODULE_LICENSE("GPL");
79 MODULE_VERSION(DRV_MODULE_VERSION
);
80 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
81 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
82 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
83 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
86 static int disable_msi
= 0;
88 module_param(disable_msi
, int, S_IRUGO
);
89 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
105 /* indexed by board_t, above */
109 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
110 { "HP NC370T Multifunction Gigabit Server Adapter" },
111 { "HP NC370i Multifunction Gigabit Server Adapter" },
112 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
113 { "HP NC370F Multifunction Gigabit Server Adapter" },
114 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
116 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
118 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
122 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
123 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
124 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
125 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
126 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
127 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
128 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
129 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
130 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
131 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
132 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
133 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
134 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
135 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
136 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
137 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
138 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
139 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
140 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
141 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
142 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
143 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
144 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
148 static const struct flash_spec flash_table
[] =
150 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
151 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
153 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
154 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
155 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
157 /* Expansion entry 0001 */
158 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
159 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
160 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
162 /* Saifun SA25F010 (non-buffered flash) */
163 /* strap, cfg1, & write1 need updates */
164 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
165 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
166 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
167 "Non-buffered flash (128kB)"},
168 /* Saifun SA25F020 (non-buffered flash) */
169 /* strap, cfg1, & write1 need updates */
170 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
171 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
172 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
173 "Non-buffered flash (256kB)"},
174 /* Expansion entry 0100 */
175 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
176 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
177 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
179 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
180 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
181 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
182 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
183 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
184 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
185 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
186 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
187 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
188 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
189 /* Saifun SA25F005 (non-buffered flash) */
190 /* strap, cfg1, & write1 need updates */
191 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
192 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
193 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
194 "Non-buffered flash (64kB)"},
196 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
197 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
198 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
200 /* Expansion entry 1001 */
201 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
202 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
203 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
205 /* Expansion entry 1010 */
206 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
208 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
210 /* ATMEL AT45DB011B (buffered flash) */
211 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
212 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
213 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
214 "Buffered flash (128kB)"},
215 /* Expansion entry 1100 */
216 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
218 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
220 /* Expansion entry 1101 */
221 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
223 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
225 /* Ateml Expansion entry 1110 */
226 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
227 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
228 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
229 "Entry 1110 (Atmel)"},
230 /* ATMEL AT45DB021B (buffered flash) */
231 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
232 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
233 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
234 "Buffered flash (256kB)"},
237 static const struct flash_spec flash_5709
= {
238 .flags
= BNX2_NV_BUFFERED
,
239 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
240 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
241 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
242 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
243 .name
= "5709 Buffered flash (256kB)",
246 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
248 static void bnx2_init_napi(struct bnx2
*bp
);
249 static void bnx2_del_napi(struct bnx2
*bp
);
251 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
255 /* Tell compiler to fetch tx_prod and tx_cons from memory. */
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
261 diff
= txr
->tx_prod
- txr
->tx_cons
;
262 if (unlikely(diff
>= BNX2_TX_DESC_CNT
)) {
264 if (diff
== BNX2_TX_DESC_CNT
)
265 diff
= BNX2_MAX_TX_DESC_CNT
;
267 return bp
->tx_ring_size
- diff
;
271 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_bh(&bp
->indirect_lock
);
276 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= BNX2_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_bh(&bp
->indirect_lock
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
285 spin_lock_bh(&bp
->indirect_lock
);
286 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
287 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
288 spin_unlock_bh(&bp
->indirect_lock
);
292 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
294 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
298 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
300 return bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
);
304 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
307 spin_lock_bh(&bp
->indirect_lock
);
308 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
311 BNX2_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
312 BNX2_WR(bp
, BNX2_CTX_CTX_CTRL
,
313 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
314 for (i
= 0; i
< 5; i
++) {
315 val
= BNX2_RD(bp
, BNX2_CTX_CTX_CTRL
);
316 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
321 BNX2_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
322 BNX2_WR(bp
, BNX2_CTX_DATA
, val
);
324 spin_unlock_bh(&bp
->indirect_lock
);
329 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
331 struct bnx2
*bp
= netdev_priv(dev
);
332 struct drv_ctl_io
*io
= &info
->data
.io
;
335 case DRV_CTL_IO_WR_CMD
:
336 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
338 case DRV_CTL_IO_RD_CMD
:
339 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
341 case DRV_CTL_CTX_WR_CMD
:
342 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
350 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
352 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
353 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
356 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
357 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
358 bnapi
->cnic_present
= 0;
359 sb_id
= bp
->irq_nvecs
;
360 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
362 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
363 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
364 bnapi
->cnic_present
= 1;
366 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
369 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
370 cp
->irq_arr
[0].status_blk
= (void *)
371 ((unsigned long) bnapi
->status_blk
.msi
+
372 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
373 cp
->irq_arr
[0].status_blk_num
= sb_id
;
377 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
380 struct bnx2
*bp
= netdev_priv(dev
);
381 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
386 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
389 if (!bnx2_reg_rd_ind(bp
, BNX2_FW_MAX_ISCSI_CONN
))
392 bp
->cnic_data
= data
;
393 rcu_assign_pointer(bp
->cnic_ops
, ops
);
396 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
398 bnx2_setup_cnic_irq_info(bp
);
403 static int bnx2_unregister_cnic(struct net_device
*dev
)
405 struct bnx2
*bp
= netdev_priv(dev
);
406 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
407 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
409 mutex_lock(&bp
->cnic_lock
);
411 bnapi
->cnic_present
= 0;
412 RCU_INIT_POINTER(bp
->cnic_ops
, NULL
);
413 mutex_unlock(&bp
->cnic_lock
);
418 static struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
420 struct bnx2
*bp
= netdev_priv(dev
);
421 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
423 if (!cp
->max_iscsi_conn
)
426 cp
->drv_owner
= THIS_MODULE
;
427 cp
->chip_id
= bp
->chip_id
;
429 cp
->io_base
= bp
->regview
;
430 cp
->drv_ctl
= bnx2_drv_ctl
;
431 cp
->drv_register_cnic
= bnx2_register_cnic
;
432 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
438 bnx2_cnic_stop(struct bnx2
*bp
)
440 struct cnic_ops
*c_ops
;
441 struct cnic_ctl_info info
;
443 mutex_lock(&bp
->cnic_lock
);
444 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
445 lockdep_is_held(&bp
->cnic_lock
));
447 info
.cmd
= CNIC_CTL_STOP_CMD
;
448 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
450 mutex_unlock(&bp
->cnic_lock
);
454 bnx2_cnic_start(struct bnx2
*bp
)
456 struct cnic_ops
*c_ops
;
457 struct cnic_ctl_info info
;
459 mutex_lock(&bp
->cnic_lock
);
460 c_ops
= rcu_dereference_protected(bp
->cnic_ops
,
461 lockdep_is_held(&bp
->cnic_lock
));
463 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
464 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
466 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
468 info
.cmd
= CNIC_CTL_START_CMD
;
469 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
471 mutex_unlock(&bp
->cnic_lock
);
477 bnx2_cnic_stop(struct bnx2
*bp
)
482 bnx2_cnic_start(struct bnx2
*bp
)
489 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
494 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
495 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
496 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
498 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
499 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
504 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
505 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
506 BNX2_EMAC_MDIO_COMM_START_BUSY
;
507 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
509 for (i
= 0; i
< 50; i
++) {
512 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
513 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
516 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
517 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
523 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
532 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
533 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
534 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
536 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
537 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
546 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
551 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
552 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
553 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
555 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
556 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
561 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
562 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
563 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
564 BNX2_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
566 for (i
= 0; i
< 50; i
++) {
569 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_COMM
);
570 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
576 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
581 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
582 val1
= BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
583 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
585 BNX2_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
586 BNX2_RD(bp
, BNX2_EMAC_MDIO_MODE
);
595 bnx2_disable_int(struct bnx2
*bp
)
598 struct bnx2_napi
*bnapi
;
600 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
601 bnapi
= &bp
->bnx2_napi
[i
];
602 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
603 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
605 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
609 bnx2_enable_int(struct bnx2
*bp
)
612 struct bnx2_napi
*bnapi
;
614 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
615 bnapi
= &bp
->bnx2_napi
[i
];
617 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
618 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
619 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
620 bnapi
->last_status_idx
);
622 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
623 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
624 bnapi
->last_status_idx
);
626 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
630 bnx2_disable_int_sync(struct bnx2
*bp
)
634 atomic_inc(&bp
->intr_sem
);
635 if (!netif_running(bp
->dev
))
638 bnx2_disable_int(bp
);
639 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
640 synchronize_irq(bp
->irq_tbl
[i
].vector
);
644 bnx2_napi_disable(struct bnx2
*bp
)
648 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
649 napi_disable(&bp
->bnx2_napi
[i
].napi
);
653 bnx2_napi_enable(struct bnx2
*bp
)
657 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
658 napi_enable(&bp
->bnx2_napi
[i
].napi
);
662 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
666 if (netif_running(bp
->dev
)) {
667 bnx2_napi_disable(bp
);
668 netif_tx_disable(bp
->dev
);
670 bnx2_disable_int_sync(bp
);
671 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
675 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
677 if (atomic_dec_and_test(&bp
->intr_sem
)) {
678 if (netif_running(bp
->dev
)) {
679 netif_tx_wake_all_queues(bp
->dev
);
680 spin_lock_bh(&bp
->phy_lock
);
682 netif_carrier_on(bp
->dev
);
683 spin_unlock_bh(&bp
->phy_lock
);
684 bnx2_napi_enable(bp
);
693 bnx2_free_tx_mem(struct bnx2
*bp
)
697 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
698 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
699 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
701 if (txr
->tx_desc_ring
) {
702 dma_free_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
704 txr
->tx_desc_mapping
);
705 txr
->tx_desc_ring
= NULL
;
707 kfree(txr
->tx_buf_ring
);
708 txr
->tx_buf_ring
= NULL
;
713 bnx2_free_rx_mem(struct bnx2
*bp
)
717 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
718 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
719 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
722 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
723 if (rxr
->rx_desc_ring
[j
])
724 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
725 rxr
->rx_desc_ring
[j
],
726 rxr
->rx_desc_mapping
[j
]);
727 rxr
->rx_desc_ring
[j
] = NULL
;
729 vfree(rxr
->rx_buf_ring
);
730 rxr
->rx_buf_ring
= NULL
;
732 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
733 if (rxr
->rx_pg_desc_ring
[j
])
734 dma_free_coherent(&bp
->pdev
->dev
, RXBD_RING_SIZE
,
735 rxr
->rx_pg_desc_ring
[j
],
736 rxr
->rx_pg_desc_mapping
[j
]);
737 rxr
->rx_pg_desc_ring
[j
] = NULL
;
739 vfree(rxr
->rx_pg_ring
);
740 rxr
->rx_pg_ring
= NULL
;
745 bnx2_alloc_tx_mem(struct bnx2
*bp
)
749 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
750 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
751 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
753 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
754 if (txr
->tx_buf_ring
== NULL
)
758 dma_alloc_coherent(&bp
->pdev
->dev
, TXBD_RING_SIZE
,
759 &txr
->tx_desc_mapping
, GFP_KERNEL
);
760 if (txr
->tx_desc_ring
== NULL
)
767 bnx2_alloc_rx_mem(struct bnx2
*bp
)
771 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
772 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
773 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
777 vzalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
778 if (rxr
->rx_buf_ring
== NULL
)
781 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
782 rxr
->rx_desc_ring
[j
] =
783 dma_alloc_coherent(&bp
->pdev
->dev
,
785 &rxr
->rx_desc_mapping
[j
],
787 if (rxr
->rx_desc_ring
[j
] == NULL
)
792 if (bp
->rx_pg_ring_size
) {
793 rxr
->rx_pg_ring
= vzalloc(SW_RXPG_RING_SIZE
*
795 if (rxr
->rx_pg_ring
== NULL
)
800 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
801 rxr
->rx_pg_desc_ring
[j
] =
802 dma_alloc_coherent(&bp
->pdev
->dev
,
804 &rxr
->rx_pg_desc_mapping
[j
],
806 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
815 bnx2_free_mem(struct bnx2
*bp
)
818 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
820 bnx2_free_tx_mem(bp
);
821 bnx2_free_rx_mem(bp
);
823 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
824 if (bp
->ctx_blk
[i
]) {
825 dma_free_coherent(&bp
->pdev
->dev
, BNX2_PAGE_SIZE
,
827 bp
->ctx_blk_mapping
[i
]);
828 bp
->ctx_blk
[i
] = NULL
;
831 if (bnapi
->status_blk
.msi
) {
832 dma_free_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
833 bnapi
->status_blk
.msi
,
834 bp
->status_blk_mapping
);
835 bnapi
->status_blk
.msi
= NULL
;
836 bp
->stats_blk
= NULL
;
841 bnx2_alloc_mem(struct bnx2
*bp
)
843 int i
, status_blk_size
, err
;
844 struct bnx2_napi
*bnapi
;
847 /* Combine status and statistics blocks into one allocation. */
848 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
849 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
850 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
851 BNX2_SBLK_MSIX_ALIGN_SIZE
);
852 bp
->status_stats_size
= status_blk_size
+
853 sizeof(struct statistics_block
);
855 status_blk
= dma_zalloc_coherent(&bp
->pdev
->dev
, bp
->status_stats_size
,
856 &bp
->status_blk_mapping
, GFP_KERNEL
);
857 if (status_blk
== NULL
)
860 bnapi
= &bp
->bnx2_napi
[0];
861 bnapi
->status_blk
.msi
= status_blk
;
862 bnapi
->hw_tx_cons_ptr
=
863 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
864 bnapi
->hw_rx_cons_ptr
=
865 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
866 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
867 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
868 struct status_block_msix
*sblk
;
870 bnapi
= &bp
->bnx2_napi
[i
];
872 sblk
= (status_blk
+ BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
873 bnapi
->status_blk
.msix
= sblk
;
874 bnapi
->hw_tx_cons_ptr
=
875 &sblk
->status_tx_quick_consumer_index
;
876 bnapi
->hw_rx_cons_ptr
=
877 &sblk
->status_rx_quick_consumer_index
;
878 bnapi
->int_num
= i
<< 24;
882 bp
->stats_blk
= status_blk
+ status_blk_size
;
884 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
886 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
887 bp
->ctx_pages
= 0x2000 / BNX2_PAGE_SIZE
;
888 if (bp
->ctx_pages
== 0)
890 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
891 bp
->ctx_blk
[i
] = dma_alloc_coherent(&bp
->pdev
->dev
,
893 &bp
->ctx_blk_mapping
[i
],
895 if (bp
->ctx_blk
[i
] == NULL
)
900 err
= bnx2_alloc_rx_mem(bp
);
904 err
= bnx2_alloc_tx_mem(bp
);
916 bnx2_report_fw_link(struct bnx2
*bp
)
918 u32 fw_link_status
= 0;
920 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
926 switch (bp
->line_speed
) {
928 if (bp
->duplex
== DUPLEX_HALF
)
929 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
931 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
934 if (bp
->duplex
== DUPLEX_HALF
)
935 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
937 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
940 if (bp
->duplex
== DUPLEX_HALF
)
941 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
943 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
946 if (bp
->duplex
== DUPLEX_HALF
)
947 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
949 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
953 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
956 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
958 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
959 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
961 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
962 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
963 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
965 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
969 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
971 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
975 bnx2_xceiver_str(struct bnx2
*bp
)
977 return (bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
978 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
983 bnx2_report_link(struct bnx2
*bp
)
986 netif_carrier_on(bp
->dev
);
987 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
988 bnx2_xceiver_str(bp
),
990 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
993 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
994 pr_cont(", receive ");
995 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
996 pr_cont("& transmit ");
999 pr_cont(", transmit ");
1001 pr_cont("flow control ON");
1005 netif_carrier_off(bp
->dev
);
1006 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1007 bnx2_xceiver_str(bp
));
1010 bnx2_report_fw_link(bp
);
1014 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1016 u32 local_adv
, remote_adv
;
1019 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1020 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1022 if (bp
->duplex
== DUPLEX_FULL
) {
1023 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1028 if (bp
->duplex
!= DUPLEX_FULL
) {
1032 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1033 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
1036 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1037 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1038 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1039 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1040 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1044 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1045 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1047 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1048 u32 new_local_adv
= 0;
1049 u32 new_remote_adv
= 0;
1051 if (local_adv
& ADVERTISE_1000XPAUSE
)
1052 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1053 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1054 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1055 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1056 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1057 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1058 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1060 local_adv
= new_local_adv
;
1061 remote_adv
= new_remote_adv
;
1064 /* See Table 28B-3 of 802.3ab-1999 spec. */
1065 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1066 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1067 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1068 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1070 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1071 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1075 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1076 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1080 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1081 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1082 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1084 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1090 bnx2_5709s_linkup(struct bnx2
*bp
)
1096 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1097 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1098 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1100 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1101 bp
->line_speed
= bp
->req_line_speed
;
1102 bp
->duplex
= bp
->req_duplex
;
1105 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1107 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1108 bp
->line_speed
= SPEED_10
;
1110 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1111 bp
->line_speed
= SPEED_100
;
1113 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1114 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1115 bp
->line_speed
= SPEED_1000
;
1117 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1118 bp
->line_speed
= SPEED_2500
;
1121 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1122 bp
->duplex
= DUPLEX_FULL
;
1124 bp
->duplex
= DUPLEX_HALF
;
1129 bnx2_5708s_linkup(struct bnx2
*bp
)
1134 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1135 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1136 case BCM5708S_1000X_STAT1_SPEED_10
:
1137 bp
->line_speed
= SPEED_10
;
1139 case BCM5708S_1000X_STAT1_SPEED_100
:
1140 bp
->line_speed
= SPEED_100
;
1142 case BCM5708S_1000X_STAT1_SPEED_1G
:
1143 bp
->line_speed
= SPEED_1000
;
1145 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1146 bp
->line_speed
= SPEED_2500
;
1149 if (val
& BCM5708S_1000X_STAT1_FD
)
1150 bp
->duplex
= DUPLEX_FULL
;
1152 bp
->duplex
= DUPLEX_HALF
;
1158 bnx2_5706s_linkup(struct bnx2
*bp
)
1160 u32 bmcr
, local_adv
, remote_adv
, common
;
1163 bp
->line_speed
= SPEED_1000
;
1165 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1166 if (bmcr
& BMCR_FULLDPLX
) {
1167 bp
->duplex
= DUPLEX_FULL
;
1170 bp
->duplex
= DUPLEX_HALF
;
1173 if (!(bmcr
& BMCR_ANENABLE
)) {
1177 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1178 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1180 common
= local_adv
& remote_adv
;
1181 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1183 if (common
& ADVERTISE_1000XFULL
) {
1184 bp
->duplex
= DUPLEX_FULL
;
1187 bp
->duplex
= DUPLEX_HALF
;
1195 bnx2_copper_linkup(struct bnx2
*bp
)
1199 bp
->phy_flags
&= ~BNX2_PHY_FLAG_MDIX
;
1201 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1202 if (bmcr
& BMCR_ANENABLE
) {
1203 u32 local_adv
, remote_adv
, common
;
1205 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1206 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1208 common
= local_adv
& (remote_adv
>> 2);
1209 if (common
& ADVERTISE_1000FULL
) {
1210 bp
->line_speed
= SPEED_1000
;
1211 bp
->duplex
= DUPLEX_FULL
;
1213 else if (common
& ADVERTISE_1000HALF
) {
1214 bp
->line_speed
= SPEED_1000
;
1215 bp
->duplex
= DUPLEX_HALF
;
1218 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1219 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1221 common
= local_adv
& remote_adv
;
1222 if (common
& ADVERTISE_100FULL
) {
1223 bp
->line_speed
= SPEED_100
;
1224 bp
->duplex
= DUPLEX_FULL
;
1226 else if (common
& ADVERTISE_100HALF
) {
1227 bp
->line_speed
= SPEED_100
;
1228 bp
->duplex
= DUPLEX_HALF
;
1230 else if (common
& ADVERTISE_10FULL
) {
1231 bp
->line_speed
= SPEED_10
;
1232 bp
->duplex
= DUPLEX_FULL
;
1234 else if (common
& ADVERTISE_10HALF
) {
1235 bp
->line_speed
= SPEED_10
;
1236 bp
->duplex
= DUPLEX_HALF
;
1245 if (bmcr
& BMCR_SPEED100
) {
1246 bp
->line_speed
= SPEED_100
;
1249 bp
->line_speed
= SPEED_10
;
1251 if (bmcr
& BMCR_FULLDPLX
) {
1252 bp
->duplex
= DUPLEX_FULL
;
1255 bp
->duplex
= DUPLEX_HALF
;
1262 bnx2_read_phy(bp
, MII_BNX2_EXT_STATUS
, &ext_status
);
1263 if (ext_status
& EXT_STATUS_MDIX
)
1264 bp
->phy_flags
|= BNX2_PHY_FLAG_MDIX
;
1271 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1273 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1275 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1276 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1279 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1280 val
|= BNX2_L2CTX_FLOW_CTRL_ENABLE
;
1282 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1286 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1291 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1294 bnx2_init_rx_context(bp
, cid
);
1299 bnx2_set_mac_link(struct bnx2
*bp
)
1303 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1304 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1305 (bp
->duplex
== DUPLEX_HALF
)) {
1306 BNX2_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1309 /* Configure the EMAC mode register. */
1310 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
1312 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1313 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1314 BNX2_EMAC_MODE_25G_MODE
);
1317 switch (bp
->line_speed
) {
1319 if (BNX2_CHIP(bp
) != BNX2_CHIP_5706
) {
1320 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1325 val
|= BNX2_EMAC_MODE_PORT_MII
;
1328 val
|= BNX2_EMAC_MODE_25G_MODE
;
1331 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1336 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1339 /* Set the MAC to operate in the appropriate duplex mode. */
1340 if (bp
->duplex
== DUPLEX_HALF
)
1341 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1342 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
1344 /* Enable/disable rx PAUSE. */
1345 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1347 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1348 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1349 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1351 /* Enable/disable tx PAUSE. */
1352 val
= BNX2_RD(bp
, BNX2_EMAC_TX_MODE
);
1353 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1355 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1356 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1357 BNX2_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1359 /* Acknowledge the interrupt. */
1360 BNX2_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1362 bnx2_init_all_rx_contexts(bp
);
1366 bnx2_enable_bmsr1(struct bnx2
*bp
)
1368 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1369 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1370 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1371 MII_BNX2_BLK_ADDR_GP_STATUS
);
1375 bnx2_disable_bmsr1(struct bnx2
*bp
)
1377 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1378 (BNX2_CHIP(bp
) == BNX2_CHIP_5709
))
1379 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1380 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1384 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1389 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1392 if (bp
->autoneg
& AUTONEG_SPEED
)
1393 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1395 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1396 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1398 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1399 if (!(up1
& BCM5708S_UP1_2G5
)) {
1400 up1
|= BCM5708S_UP1_2G5
;
1401 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1405 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1406 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1407 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1413 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1418 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1421 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1422 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1424 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1425 if (up1
& BCM5708S_UP1_2G5
) {
1426 up1
&= ~BCM5708S_UP1_2G5
;
1427 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1431 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1432 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1433 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1439 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1441 u32
uninitialized_var(bmcr
);
1444 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1447 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1450 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1451 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1452 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1453 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1454 val
|= MII_BNX2_SD_MISC1_FORCE
|
1455 MII_BNX2_SD_MISC1_FORCE_2_5G
;
1456 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1459 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1460 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1461 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1463 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1464 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1466 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1474 if (bp
->autoneg
& AUTONEG_SPEED
) {
1475 bmcr
&= ~BMCR_ANENABLE
;
1476 if (bp
->req_duplex
== DUPLEX_FULL
)
1477 bmcr
|= BMCR_FULLDPLX
;
1479 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1483 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1485 u32
uninitialized_var(bmcr
);
1488 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1491 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1494 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1495 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1496 if (!bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
)) {
1497 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1498 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1501 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1502 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1503 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1505 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1506 err
= bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1508 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1516 if (bp
->autoneg
& AUTONEG_SPEED
)
1517 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1518 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1522 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1526 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1527 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1529 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1531 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1535 bnx2_set_link(struct bnx2
*bp
)
1540 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1545 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1548 link_up
= bp
->link_up
;
1550 bnx2_enable_bmsr1(bp
);
1551 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1552 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1553 bnx2_disable_bmsr1(bp
);
1555 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1556 (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)) {
1559 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1560 bnx2_5706s_force_link_dn(bp
, 0);
1561 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1563 val
= BNX2_RD(bp
, BNX2_EMAC_STATUS
);
1565 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1566 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1567 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1569 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1570 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1571 bmsr
|= BMSR_LSTATUS
;
1573 bmsr
&= ~BMSR_LSTATUS
;
1576 if (bmsr
& BMSR_LSTATUS
) {
1579 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1580 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
1581 bnx2_5706s_linkup(bp
);
1582 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
1583 bnx2_5708s_linkup(bp
);
1584 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
1585 bnx2_5709s_linkup(bp
);
1588 bnx2_copper_linkup(bp
);
1590 bnx2_resolve_flow_ctrl(bp
);
1593 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1594 (bp
->autoneg
& AUTONEG_SPEED
))
1595 bnx2_disable_forced_2g5(bp
);
1597 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1600 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1601 bmcr
|= BMCR_ANENABLE
;
1602 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1604 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1609 if (bp
->link_up
!= link_up
) {
1610 bnx2_report_link(bp
);
1613 bnx2_set_mac_link(bp
);
1619 bnx2_reset_phy(struct bnx2
*bp
)
1624 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1626 #define PHY_RESET_MAX_WAIT 100
1627 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1630 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1631 if (!(reg
& BMCR_RESET
)) {
1636 if (i
== PHY_RESET_MAX_WAIT
) {
1643 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1647 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1648 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1650 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1651 adv
= ADVERTISE_1000XPAUSE
;
1654 adv
= ADVERTISE_PAUSE_CAP
;
1657 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1658 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1659 adv
= ADVERTISE_1000XPSE_ASYM
;
1662 adv
= ADVERTISE_PAUSE_ASYM
;
1665 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1666 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1667 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1670 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1676 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1679 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1680 __releases(&bp
->phy_lock
)
1681 __acquires(&bp
->phy_lock
)
1683 u32 speed_arg
= 0, pause_adv
;
1685 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1687 if (bp
->autoneg
& AUTONEG_SPEED
) {
1688 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1689 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1690 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1691 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1692 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1693 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1694 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1695 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1696 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1697 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1698 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1699 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1700 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1702 if (bp
->req_line_speed
== SPEED_2500
)
1703 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1704 else if (bp
->req_line_speed
== SPEED_1000
)
1705 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1706 else if (bp
->req_line_speed
== SPEED_100
) {
1707 if (bp
->req_duplex
== DUPLEX_FULL
)
1708 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1710 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1711 } else if (bp
->req_line_speed
== SPEED_10
) {
1712 if (bp
->req_duplex
== DUPLEX_FULL
)
1713 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1715 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1719 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1720 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1721 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1722 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1724 if (port
== PORT_TP
)
1725 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1726 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1728 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1730 spin_unlock_bh(&bp
->phy_lock
);
1731 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1732 spin_lock_bh(&bp
->phy_lock
);
1738 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1739 __releases(&bp
->phy_lock
)
1740 __acquires(&bp
->phy_lock
)
1745 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1746 return bnx2_setup_remote_phy(bp
, port
);
1748 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1750 int force_link_down
= 0;
1752 if (bp
->req_line_speed
== SPEED_2500
) {
1753 if (!bnx2_test_and_enable_2g5(bp
))
1754 force_link_down
= 1;
1755 } else if (bp
->req_line_speed
== SPEED_1000
) {
1756 if (bnx2_test_and_disable_2g5(bp
))
1757 force_link_down
= 1;
1759 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1760 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1762 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1763 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1764 new_bmcr
|= BMCR_SPEED1000
;
1766 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
1767 if (bp
->req_line_speed
== SPEED_2500
)
1768 bnx2_enable_forced_2g5(bp
);
1769 else if (bp
->req_line_speed
== SPEED_1000
) {
1770 bnx2_disable_forced_2g5(bp
);
1771 new_bmcr
&= ~0x2000;
1774 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
) {
1775 if (bp
->req_line_speed
== SPEED_2500
)
1776 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1778 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1781 if (bp
->req_duplex
== DUPLEX_FULL
) {
1782 adv
|= ADVERTISE_1000XFULL
;
1783 new_bmcr
|= BMCR_FULLDPLX
;
1786 adv
|= ADVERTISE_1000XHALF
;
1787 new_bmcr
&= ~BMCR_FULLDPLX
;
1789 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1790 /* Force a link down visible on the other side */
1792 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1793 ~(ADVERTISE_1000XFULL
|
1794 ADVERTISE_1000XHALF
));
1795 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1796 BMCR_ANRESTART
| BMCR_ANENABLE
);
1799 netif_carrier_off(bp
->dev
);
1800 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1801 bnx2_report_link(bp
);
1803 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1804 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1806 bnx2_resolve_flow_ctrl(bp
);
1807 bnx2_set_mac_link(bp
);
1812 bnx2_test_and_enable_2g5(bp
);
1814 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1815 new_adv
|= ADVERTISE_1000XFULL
;
1817 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1819 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1820 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1822 bp
->serdes_an_pending
= 0;
1823 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1824 /* Force a link down visible on the other side */
1826 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1827 spin_unlock_bh(&bp
->phy_lock
);
1829 spin_lock_bh(&bp
->phy_lock
);
1832 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1833 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1835 /* Speed up link-up time when the link partner
1836 * does not autonegotiate which is very common
1837 * in blade servers. Some blade servers use
1838 * IPMI for kerboard input and it's important
1839 * to minimize link disruptions. Autoneg. involves
1840 * exchanging base pages plus 3 next pages and
1841 * normally completes in about 120 msec.
1843 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1844 bp
->serdes_an_pending
= 1;
1845 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1847 bnx2_resolve_flow_ctrl(bp
);
1848 bnx2_set_mac_link(bp
);
1854 #define ETHTOOL_ALL_FIBRE_SPEED \
1855 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1856 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1857 (ADVERTISED_1000baseT_Full)
1859 #define ETHTOOL_ALL_COPPER_SPEED \
1860 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1861 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1862 ADVERTISED_1000baseT_Full)
1864 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1865 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1867 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1870 bnx2_set_default_remote_link(struct bnx2
*bp
)
1874 if (bp
->phy_port
== PORT_TP
)
1875 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1877 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1879 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1880 bp
->req_line_speed
= 0;
1881 bp
->autoneg
|= AUTONEG_SPEED
;
1882 bp
->advertising
= ADVERTISED_Autoneg
;
1883 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1884 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1885 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1886 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1887 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1888 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1889 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1890 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1891 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1892 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1893 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1894 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1897 bp
->advertising
= 0;
1898 bp
->req_duplex
= DUPLEX_FULL
;
1899 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1900 bp
->req_line_speed
= SPEED_10
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1902 bp
->req_duplex
= DUPLEX_HALF
;
1904 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1905 bp
->req_line_speed
= SPEED_100
;
1906 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1907 bp
->req_duplex
= DUPLEX_HALF
;
1909 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1910 bp
->req_line_speed
= SPEED_1000
;
1911 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1912 bp
->req_line_speed
= SPEED_2500
;
1917 bnx2_set_default_link(struct bnx2
*bp
)
1919 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1920 bnx2_set_default_remote_link(bp
);
1924 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1925 bp
->req_line_speed
= 0;
1926 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1929 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1931 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1932 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1933 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1935 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1936 bp
->req_duplex
= DUPLEX_FULL
;
1939 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1943 bnx2_send_heart_beat(struct bnx2
*bp
)
1948 spin_lock(&bp
->indirect_lock
);
1949 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1950 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1951 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1952 BNX2_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1953 spin_unlock(&bp
->indirect_lock
);
1957 bnx2_remote_phy_event(struct bnx2
*bp
)
1960 u8 link_up
= bp
->link_up
;
1963 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1965 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1966 bnx2_send_heart_beat(bp
);
1968 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1970 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1976 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1977 bp
->duplex
= DUPLEX_FULL
;
1979 case BNX2_LINK_STATUS_10HALF
:
1980 bp
->duplex
= DUPLEX_HALF
;
1982 case BNX2_LINK_STATUS_10FULL
:
1983 bp
->line_speed
= SPEED_10
;
1985 case BNX2_LINK_STATUS_100HALF
:
1986 bp
->duplex
= DUPLEX_HALF
;
1988 case BNX2_LINK_STATUS_100BASE_T4
:
1989 case BNX2_LINK_STATUS_100FULL
:
1990 bp
->line_speed
= SPEED_100
;
1992 case BNX2_LINK_STATUS_1000HALF
:
1993 bp
->duplex
= DUPLEX_HALF
;
1995 case BNX2_LINK_STATUS_1000FULL
:
1996 bp
->line_speed
= SPEED_1000
;
1998 case BNX2_LINK_STATUS_2500HALF
:
1999 bp
->duplex
= DUPLEX_HALF
;
2001 case BNX2_LINK_STATUS_2500FULL
:
2002 bp
->line_speed
= SPEED_2500
;
2010 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2011 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2012 if (bp
->duplex
== DUPLEX_FULL
)
2013 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2015 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2016 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2017 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2018 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2021 old_port
= bp
->phy_port
;
2022 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2023 bp
->phy_port
= PORT_FIBRE
;
2025 bp
->phy_port
= PORT_TP
;
2027 if (old_port
!= bp
->phy_port
)
2028 bnx2_set_default_link(bp
);
2031 if (bp
->link_up
!= link_up
)
2032 bnx2_report_link(bp
);
2034 bnx2_set_mac_link(bp
);
2038 bnx2_set_remote_link(struct bnx2
*bp
)
2042 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2044 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2045 bnx2_remote_phy_event(bp
);
2047 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2049 bnx2_send_heart_beat(bp
);
2056 bnx2_setup_copper_phy(struct bnx2
*bp
)
2057 __releases(&bp
->phy_lock
)
2058 __acquires(&bp
->phy_lock
)
2060 u32 bmcr
, adv_reg
, new_adv
= 0;
2063 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2065 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2066 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2067 ADVERTISE_PAUSE_ASYM
);
2069 new_adv
= ADVERTISE_CSMA
| ethtool_adv_to_mii_adv_t(bp
->advertising
);
2071 if (bp
->autoneg
& AUTONEG_SPEED
) {
2073 u32 new_adv1000
= 0;
2075 new_adv
|= bnx2_phy_get_pause_adv(bp
);
2077 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2078 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2080 new_adv1000
|= ethtool_adv_to_mii_ctrl1000_t(bp
->advertising
);
2081 if ((adv1000_reg
!= new_adv1000
) ||
2082 (adv_reg
!= new_adv
) ||
2083 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2085 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2086 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000
);
2087 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2090 else if (bp
->link_up
) {
2091 /* Flow ctrl may have changed from auto to forced */
2092 /* or vice-versa. */
2094 bnx2_resolve_flow_ctrl(bp
);
2095 bnx2_set_mac_link(bp
);
2100 /* advertise nothing when forcing speed */
2101 if (adv_reg
!= new_adv
)
2102 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
2105 if (bp
->req_line_speed
== SPEED_100
) {
2106 new_bmcr
|= BMCR_SPEED100
;
2108 if (bp
->req_duplex
== DUPLEX_FULL
) {
2109 new_bmcr
|= BMCR_FULLDPLX
;
2111 if (new_bmcr
!= bmcr
) {
2114 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2115 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2117 if (bmsr
& BMSR_LSTATUS
) {
2118 /* Force link down */
2119 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2120 spin_unlock_bh(&bp
->phy_lock
);
2122 spin_lock_bh(&bp
->phy_lock
);
2124 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2125 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2128 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2130 /* Normally, the new speed is setup after the link has
2131 * gone down and up again. In some cases, link will not go
2132 * down so we need to set up the new speed here.
2134 if (bmsr
& BMSR_LSTATUS
) {
2135 bp
->line_speed
= bp
->req_line_speed
;
2136 bp
->duplex
= bp
->req_duplex
;
2137 bnx2_resolve_flow_ctrl(bp
);
2138 bnx2_set_mac_link(bp
);
2141 bnx2_resolve_flow_ctrl(bp
);
2142 bnx2_set_mac_link(bp
);
2148 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2149 __releases(&bp
->phy_lock
)
2150 __acquires(&bp
->phy_lock
)
2152 if (bp
->loopback
== MAC_LOOPBACK
)
2155 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2156 return bnx2_setup_serdes_phy(bp
, port
);
2159 return bnx2_setup_copper_phy(bp
);
2164 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2168 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2169 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2170 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2171 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2172 bp
->mii_lpa
= MII_LPA
+ 0x10;
2173 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2175 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2176 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2178 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2182 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2184 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2185 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2186 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2187 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2189 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2190 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2191 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2192 val
|= BCM5708S_UP1_2G5
;
2194 val
&= ~BCM5708S_UP1_2G5
;
2195 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2197 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2198 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2199 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2200 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2202 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2204 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2205 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2206 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2208 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2214 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2221 bp
->mii_up1
= BCM5708S_UP1
;
2223 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2224 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2225 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2227 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2228 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2229 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2231 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2232 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2233 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2235 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2236 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2237 val
|= BCM5708S_UP1_2G5
;
2238 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2241 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
2242 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
2243 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
)) {
2244 /* increase tx signal amplitude */
2245 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2246 BCM5708S_BLK_ADDR_TX_MISC
);
2247 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2248 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2249 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2250 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2253 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2254 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2259 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2260 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2261 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2262 BCM5708S_BLK_ADDR_TX_MISC
);
2263 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2264 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2265 BCM5708S_BLK_ADDR_DIG
);
2272 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2277 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2279 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2280 BNX2_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2282 if (bp
->dev
->mtu
> 1500) {
2285 /* Set extended packet length bit */
2286 bnx2_write_phy(bp
, 0x18, 0x7);
2287 bnx2_read_phy(bp
, 0x18, &val
);
2288 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2290 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2291 bnx2_read_phy(bp
, 0x1c, &val
);
2292 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2297 bnx2_write_phy(bp
, 0x18, 0x7);
2298 bnx2_read_phy(bp
, 0x18, &val
);
2299 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2301 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2302 bnx2_read_phy(bp
, 0x1c, &val
);
2303 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2310 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2317 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2318 bnx2_write_phy(bp
, 0x18, 0x0c00);
2319 bnx2_write_phy(bp
, 0x17, 0x000a);
2320 bnx2_write_phy(bp
, 0x15, 0x310b);
2321 bnx2_write_phy(bp
, 0x17, 0x201f);
2322 bnx2_write_phy(bp
, 0x15, 0x9506);
2323 bnx2_write_phy(bp
, 0x17, 0x401f);
2324 bnx2_write_phy(bp
, 0x15, 0x14e2);
2325 bnx2_write_phy(bp
, 0x18, 0x0400);
2328 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2329 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2330 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2331 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2333 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2336 if (bp
->dev
->mtu
> 1500) {
2337 /* Set extended packet length bit */
2338 bnx2_write_phy(bp
, 0x18, 0x7);
2339 bnx2_read_phy(bp
, 0x18, &val
);
2340 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2342 bnx2_read_phy(bp
, 0x10, &val
);
2343 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2346 bnx2_write_phy(bp
, 0x18, 0x7);
2347 bnx2_read_phy(bp
, 0x18, &val
);
2348 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2350 bnx2_read_phy(bp
, 0x10, &val
);
2351 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2354 /* ethernet@wirespeed */
2355 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, AUX_CTL_MISC_CTL
);
2356 bnx2_read_phy(bp
, MII_BNX2_AUX_CTL
, &val
);
2357 val
|= AUX_CTL_MISC_CTL_WR
| AUX_CTL_MISC_CTL_WIRESPEED
;
2360 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2361 val
|= AUX_CTL_MISC_CTL_AUTOMDIX
;
2363 bnx2_write_phy(bp
, MII_BNX2_AUX_CTL
, val
);
2369 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2370 __releases(&bp
->phy_lock
)
2371 __acquires(&bp
->phy_lock
)
2376 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2377 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2379 bp
->mii_bmcr
= MII_BMCR
;
2380 bp
->mii_bmsr
= MII_BMSR
;
2381 bp
->mii_bmsr1
= MII_BMSR
;
2382 bp
->mii_adv
= MII_ADVERTISE
;
2383 bp
->mii_lpa
= MII_LPA
;
2385 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2387 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2390 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2391 bp
->phy_id
= val
<< 16;
2392 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2393 bp
->phy_id
|= val
& 0xffff;
2395 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2396 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
2397 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2398 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
2399 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2400 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
2401 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2404 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2409 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2415 bnx2_set_mac_loopback(struct bnx2
*bp
)
2419 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2420 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2421 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2422 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2427 static int bnx2_test_link(struct bnx2
*);
2430 bnx2_set_phy_loopback(struct bnx2
*bp
)
2435 spin_lock_bh(&bp
->phy_lock
);
2436 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2438 spin_unlock_bh(&bp
->phy_lock
);
2442 for (i
= 0; i
< 10; i
++) {
2443 if (bnx2_test_link(bp
) == 0)
2448 mac_mode
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
2449 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2450 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2451 BNX2_EMAC_MODE_25G_MODE
);
2453 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2454 BNX2_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2460 bnx2_dump_mcp_state(struct bnx2
*bp
)
2462 struct net_device
*dev
= bp
->dev
;
2465 netdev_err(dev
, "<--- start MCP states dump --->\n");
2466 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
2467 mcp_p0
= BNX2_MCP_STATE_P0
;
2468 mcp_p1
= BNX2_MCP_STATE_P1
;
2470 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
2471 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
2473 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
2474 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
2475 netdev_err(dev
, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
2476 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_MODE
),
2477 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_STATE
),
2478 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_EVENT_MASK
));
2479 netdev_err(dev
, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
2480 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2481 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_PROGRAM_COUNTER
),
2482 bnx2_reg_rd_ind(bp
, BNX2_MCP_CPU_INSTRUCTION
));
2483 netdev_err(dev
, "DEBUG: shmem states:\n");
2484 netdev_err(dev
, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
2485 bnx2_shmem_rd(bp
, BNX2_DRV_MB
),
2486 bnx2_shmem_rd(bp
, BNX2_FW_MB
),
2487 bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
));
2488 pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp
, BNX2_DRV_PULSE_MB
));
2489 netdev_err(dev
, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
2490 bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
),
2491 bnx2_shmem_rd(bp
, BNX2_BC_STATE_RESET_TYPE
));
2492 pr_cont(" condition[%08x]\n",
2493 bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
));
2494 DP_SHMEM_LINE(bp
, BNX2_BC_RESET_TYPE
);
2495 DP_SHMEM_LINE(bp
, 0x3cc);
2496 DP_SHMEM_LINE(bp
, 0x3dc);
2497 DP_SHMEM_LINE(bp
, 0x3ec);
2498 netdev_err(dev
, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp
, 0x3fc));
2499 netdev_err(dev
, "<--- end MCP states dump --->\n");
2503 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2509 msg_data
|= bp
->fw_wr_seq
;
2511 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2516 /* wait for an acknowledgement. */
2517 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2520 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2522 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2525 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2528 /* If we timed out, inform the firmware that this is the case. */
2529 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2530 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2531 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2533 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2535 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2536 bnx2_dump_mcp_state(bp
);
2542 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2549 bnx2_init_5709_context(struct bnx2
*bp
)
2554 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2555 val
|= (BNX2_PAGE_BITS
- 8) << 16;
2556 BNX2_WR(bp
, BNX2_CTX_COMMAND
, val
);
2557 for (i
= 0; i
< 10; i
++) {
2558 val
= BNX2_RD(bp
, BNX2_CTX_COMMAND
);
2559 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2563 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2566 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2570 memset(bp
->ctx_blk
[i
], 0, BNX2_PAGE_SIZE
);
2574 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2575 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2576 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2577 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2578 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2579 BNX2_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2580 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2581 for (j
= 0; j
< 10; j
++) {
2583 val
= BNX2_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2584 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2588 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2597 bnx2_init_context(struct bnx2
*bp
)
2603 u32 vcid_addr
, pcid_addr
, offset
;
2608 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
2611 vcid_addr
= GET_PCID_ADDR(vcid
);
2613 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2618 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2621 vcid_addr
= GET_CID_ADDR(vcid
);
2622 pcid_addr
= vcid_addr
;
2625 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2626 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2627 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2629 BNX2_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2630 BNX2_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2632 /* Zero out the context. */
2633 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2634 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2640 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2646 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2647 if (good_mbuf
== NULL
)
2650 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2651 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2655 /* Allocate a bunch of mbufs and save the good ones in an array. */
2656 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2657 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2658 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2659 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2661 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2663 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2665 /* The addresses with Bit 9 set are bad memory blocks. */
2666 if (!(val
& (1 << 9))) {
2667 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2671 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2674 /* Free the good ones back to the mbuf pool thus discarding
2675 * all the bad ones. */
2676 while (good_mbuf_cnt
) {
2679 val
= good_mbuf
[good_mbuf_cnt
];
2680 val
= (val
<< 9) | val
| 1;
2682 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2689 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2693 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2695 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2697 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2698 (mac_addr
[4] << 8) | mac_addr
[5];
2700 BNX2_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2704 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2707 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2708 struct bnx2_rx_bd
*rxbd
=
2709 &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2710 struct page
*page
= alloc_page(gfp
);
2714 mapping
= dma_map_page(&bp
->pdev
->dev
, page
, 0, PAGE_SIZE
,
2715 PCI_DMA_FROMDEVICE
);
2716 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2722 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2723 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2724 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2729 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2731 struct bnx2_sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2732 struct page
*page
= rx_pg
->page
;
2737 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(rx_pg
, mapping
),
2738 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
2745 bnx2_alloc_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
, gfp_t gfp
)
2748 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2750 struct bnx2_rx_bd
*rxbd
=
2751 &rxr
->rx_desc_ring
[BNX2_RX_RING(index
)][BNX2_RX_IDX(index
)];
2753 data
= kmalloc(bp
->rx_buf_size
, gfp
);
2757 mapping
= dma_map_single(&bp
->pdev
->dev
,
2759 bp
->rx_buf_use_size
,
2760 PCI_DMA_FROMDEVICE
);
2761 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
2766 rx_buf
->data
= data
;
2767 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2769 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2770 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2772 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2778 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2780 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2781 u32 new_link_state
, old_link_state
;
2784 new_link_state
= sblk
->status_attn_bits
& event
;
2785 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2786 if (new_link_state
!= old_link_state
) {
2788 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2790 BNX2_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2798 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2800 spin_lock(&bp
->phy_lock
);
2802 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2804 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2805 bnx2_set_remote_link(bp
);
2807 spin_unlock(&bp
->phy_lock
);
2812 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2816 /* Tell compiler that status block fields can change. */
2818 cons
= *bnapi
->hw_tx_cons_ptr
;
2820 if (unlikely((cons
& BNX2_MAX_TX_DESC_CNT
) == BNX2_MAX_TX_DESC_CNT
))
2826 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2828 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2829 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2830 int tx_pkt
= 0, index
;
2831 unsigned int tx_bytes
= 0;
2832 struct netdev_queue
*txq
;
2834 index
= (bnapi
- bp
->bnx2_napi
);
2835 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2837 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2838 sw_cons
= txr
->tx_cons
;
2840 while (sw_cons
!= hw_cons
) {
2841 struct bnx2_sw_tx_bd
*tx_buf
;
2842 struct sk_buff
*skb
;
2845 sw_ring_cons
= BNX2_TX_RING_IDX(sw_cons
);
2847 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2850 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2851 prefetch(&skb
->end
);
2853 /* partial BD completions possible with TSO packets */
2854 if (tx_buf
->is_gso
) {
2855 u16 last_idx
, last_ring_idx
;
2857 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2858 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2859 if (unlikely(last_ring_idx
>= BNX2_MAX_TX_DESC_CNT
)) {
2862 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2867 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
2868 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2871 last
= tx_buf
->nr_frags
;
2873 for (i
= 0; i
< last
; i
++) {
2874 struct bnx2_sw_tx_bd
*tx_buf
;
2876 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2878 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(sw_cons
)];
2879 dma_unmap_page(&bp
->pdev
->dev
,
2880 dma_unmap_addr(tx_buf
, mapping
),
2881 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
2885 sw_cons
= BNX2_NEXT_TX_BD(sw_cons
);
2887 tx_bytes
+= skb
->len
;
2890 if (tx_pkt
== budget
)
2893 if (hw_cons
== sw_cons
)
2894 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2897 netdev_tx_completed_queue(txq
, tx_pkt
, tx_bytes
);
2898 txr
->hw_tx_cons
= hw_cons
;
2899 txr
->tx_cons
= sw_cons
;
2901 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2902 * before checking for netif_tx_queue_stopped(). Without the
2903 * memory barrier, there is a small possibility that bnx2_start_xmit()
2904 * will miss it and cause the queue to be stopped forever.
2908 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2909 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2910 __netif_tx_lock(txq
, smp_processor_id());
2911 if ((netif_tx_queue_stopped(txq
)) &&
2912 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2913 netif_tx_wake_queue(txq
);
2914 __netif_tx_unlock(txq
);
2921 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2922 struct sk_buff
*skb
, int count
)
2924 struct bnx2_sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2925 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2928 u16 cons
= rxr
->rx_pg_cons
;
2930 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2932 /* The caller was unable to allocate a new page to replace the
2933 * last one in the frags array, so we need to recycle that page
2934 * and then free the skb.
2938 struct skb_shared_info
*shinfo
;
2940 shinfo
= skb_shinfo(skb
);
2942 page
= skb_frag_page(&shinfo
->frags
[shinfo
->nr_frags
]);
2943 __skb_frag_set_page(&shinfo
->frags
[shinfo
->nr_frags
], NULL
);
2945 cons_rx_pg
->page
= page
;
2949 hw_prod
= rxr
->rx_pg_prod
;
2951 for (i
= 0; i
< count
; i
++) {
2952 prod
= BNX2_RX_PG_RING_IDX(hw_prod
);
2954 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2955 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2956 cons_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(cons
)]
2957 [BNX2_RX_IDX(cons
)];
2958 prod_bd
= &rxr
->rx_pg_desc_ring
[BNX2_RX_RING(prod
)]
2959 [BNX2_RX_IDX(prod
)];
2962 prod_rx_pg
->page
= cons_rx_pg
->page
;
2963 cons_rx_pg
->page
= NULL
;
2964 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2965 dma_unmap_addr(cons_rx_pg
, mapping
));
2967 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2968 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2971 cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons
));
2972 hw_prod
= BNX2_NEXT_RX_BD(hw_prod
);
2974 rxr
->rx_pg_prod
= hw_prod
;
2975 rxr
->rx_pg_cons
= cons
;
2979 bnx2_reuse_rx_data(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2980 u8
*data
, u16 cons
, u16 prod
)
2982 struct bnx2_sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2983 struct bnx2_rx_bd
*cons_bd
, *prod_bd
;
2985 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2986 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2988 dma_sync_single_for_device(&bp
->pdev
->dev
,
2989 dma_unmap_addr(cons_rx_buf
, mapping
),
2990 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2992 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2994 prod_rx_buf
->data
= data
;
2999 dma_unmap_addr_set(prod_rx_buf
, mapping
,
3000 dma_unmap_addr(cons_rx_buf
, mapping
));
3002 cons_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(cons
)][BNX2_RX_IDX(cons
)];
3003 prod_bd
= &rxr
->rx_desc_ring
[BNX2_RX_RING(prod
)][BNX2_RX_IDX(prod
)];
3004 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
3005 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
3008 static struct sk_buff
*
3009 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u8
*data
,
3010 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
3014 u16 prod
= ring_idx
& 0xffff;
3015 struct sk_buff
*skb
;
3017 err
= bnx2_alloc_rx_data(bp
, rxr
, prod
, GFP_ATOMIC
);
3018 if (unlikely(err
)) {
3019 bnx2_reuse_rx_data(bp
, rxr
, data
, (u16
) (ring_idx
>> 16), prod
);
3022 unsigned int raw_len
= len
+ 4;
3023 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
3025 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3030 dma_unmap_single(&bp
->pdev
->dev
, dma_addr
, bp
->rx_buf_use_size
,
3031 PCI_DMA_FROMDEVICE
);
3032 skb
= build_skb(data
, 0);
3037 skb_reserve(skb
, ((u8
*)get_l2_fhdr(data
) - data
) + BNX2_RX_OFFSET
);
3042 unsigned int i
, frag_len
, frag_size
, pages
;
3043 struct bnx2_sw_pg
*rx_pg
;
3044 u16 pg_cons
= rxr
->rx_pg_cons
;
3045 u16 pg_prod
= rxr
->rx_pg_prod
;
3047 frag_size
= len
+ 4 - hdr_len
;
3048 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
3049 skb_put(skb
, hdr_len
);
3051 for (i
= 0; i
< pages
; i
++) {
3052 dma_addr_t mapping_old
;
3054 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
3055 if (unlikely(frag_len
<= 4)) {
3056 unsigned int tail
= 4 - frag_len
;
3058 rxr
->rx_pg_cons
= pg_cons
;
3059 rxr
->rx_pg_prod
= pg_prod
;
3060 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3067 &skb_shinfo(skb
)->frags
[i
- 1];
3068 skb_frag_size_sub(frag
, tail
);
3069 skb
->data_len
-= tail
;
3073 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3075 /* Don't unmap yet. If we're unable to allocate a new
3076 * page, we need to recycle the page and the DMA addr.
3078 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3082 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3085 err
= bnx2_alloc_rx_page(bp
, rxr
,
3086 BNX2_RX_PG_RING_IDX(pg_prod
),
3088 if (unlikely(err
)) {
3089 rxr
->rx_pg_cons
= pg_cons
;
3090 rxr
->rx_pg_prod
= pg_prod
;
3091 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3096 dma_unmap_page(&bp
->pdev
->dev
, mapping_old
,
3097 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3099 frag_size
-= frag_len
;
3100 skb
->data_len
+= frag_len
;
3101 skb
->truesize
+= PAGE_SIZE
;
3102 skb
->len
+= frag_len
;
3104 pg_prod
= BNX2_NEXT_RX_BD(pg_prod
);
3105 pg_cons
= BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons
));
3107 rxr
->rx_pg_prod
= pg_prod
;
3108 rxr
->rx_pg_cons
= pg_cons
;
3114 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3118 /* Tell compiler that status block fields can change. */
3120 cons
= *bnapi
->hw_rx_cons_ptr
;
3122 if (unlikely((cons
& BNX2_MAX_RX_DESC_CNT
) == BNX2_MAX_RX_DESC_CNT
))
3128 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3130 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3131 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3132 struct l2_fhdr
*rx_hdr
;
3133 int rx_pkt
= 0, pg_ring_used
= 0;
3135 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3136 sw_cons
= rxr
->rx_cons
;
3137 sw_prod
= rxr
->rx_prod
;
3139 /* Memory barrier necessary as speculative reads of the rx
3140 * buffer can be ahead of the index in the status block
3143 while (sw_cons
!= hw_cons
) {
3144 unsigned int len
, hdr_len
;
3146 struct bnx2_sw_bd
*rx_buf
, *next_rx_buf
;
3147 struct sk_buff
*skb
;
3148 dma_addr_t dma_addr
;
3152 sw_ring_cons
= BNX2_RX_RING_IDX(sw_cons
);
3153 sw_ring_prod
= BNX2_RX_RING_IDX(sw_prod
);
3155 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3156 data
= rx_buf
->data
;
3157 rx_buf
->data
= NULL
;
3159 rx_hdr
= get_l2_fhdr(data
);
3162 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3164 dma_sync_single_for_cpu(&bp
->pdev
->dev
, dma_addr
,
3165 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3166 PCI_DMA_FROMDEVICE
);
3168 next_ring_idx
= BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons
));
3169 next_rx_buf
= &rxr
->rx_buf_ring
[next_ring_idx
];
3170 prefetch(get_l2_fhdr(next_rx_buf
->data
));
3172 len
= rx_hdr
->l2_fhdr_pkt_len
;
3173 status
= rx_hdr
->l2_fhdr_status
;
3176 if (status
& L2_FHDR_STATUS_SPLIT
) {
3177 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3179 } else if (len
> bp
->rx_jumbo_thresh
) {
3180 hdr_len
= bp
->rx_jumbo_thresh
;
3184 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3185 L2_FHDR_ERRORS_PHY_DECODE
|
3186 L2_FHDR_ERRORS_ALIGNMENT
|
3187 L2_FHDR_ERRORS_TOO_SHORT
|
3188 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3190 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3195 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3197 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3204 if (len
<= bp
->rx_copy_thresh
) {
3205 skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3207 bnx2_reuse_rx_data(bp
, rxr
, data
, sw_ring_cons
,
3214 (u8
*)rx_hdr
+ BNX2_RX_OFFSET
- 6,
3216 skb_reserve(skb
, 6);
3219 bnx2_reuse_rx_data(bp
, rxr
, data
,
3220 sw_ring_cons
, sw_ring_prod
);
3223 skb
= bnx2_rx_skb(bp
, rxr
, data
, len
, hdr_len
, dma_addr
,
3224 (sw_ring_cons
<< 16) | sw_ring_prod
);
3228 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3229 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
))
3230 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), rx_hdr
->l2_fhdr_vlan_tag
);
3232 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3234 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3235 (ntohs(skb
->protocol
) != 0x8100)) {
3242 skb_checksum_none_assert(skb
);
3243 if ((bp
->dev
->features
& NETIF_F_RXCSUM
) &&
3244 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3245 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3247 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3248 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3249 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3251 if ((bp
->dev
->features
& NETIF_F_RXHASH
) &&
3252 ((status
& L2_FHDR_STATUS_USE_RXHASH
) ==
3253 L2_FHDR_STATUS_USE_RXHASH
))
3254 skb_set_hash(skb
, rx_hdr
->l2_fhdr_hash
,
3257 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3258 napi_gro_receive(&bnapi
->napi
, skb
);
3262 sw_cons
= BNX2_NEXT_RX_BD(sw_cons
);
3263 sw_prod
= BNX2_NEXT_RX_BD(sw_prod
);
3265 if ((rx_pkt
== budget
))
3268 /* Refresh hw_cons to see if there is new work */
3269 if (sw_cons
== hw_cons
) {
3270 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3274 rxr
->rx_cons
= sw_cons
;
3275 rxr
->rx_prod
= sw_prod
;
3278 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3280 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3282 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3290 /* MSI ISR - The only difference between this and the INTx ISR
3291 * is that the MSI interrupt is always serviced.
3294 bnx2_msi(int irq
, void *dev_instance
)
3296 struct bnx2_napi
*bnapi
= dev_instance
;
3297 struct bnx2
*bp
= bnapi
->bp
;
3299 prefetch(bnapi
->status_blk
.msi
);
3300 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3301 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3302 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3304 /* Return here if interrupt is disabled. */
3305 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3308 napi_schedule(&bnapi
->napi
);
3314 bnx2_msi_1shot(int irq
, void *dev_instance
)
3316 struct bnx2_napi
*bnapi
= dev_instance
;
3317 struct bnx2
*bp
= bnapi
->bp
;
3319 prefetch(bnapi
->status_blk
.msi
);
3321 /* Return here if interrupt is disabled. */
3322 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3325 napi_schedule(&bnapi
->napi
);
3331 bnx2_interrupt(int irq
, void *dev_instance
)
3333 struct bnx2_napi
*bnapi
= dev_instance
;
3334 struct bnx2
*bp
= bnapi
->bp
;
3335 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3337 /* When using INTx, it is possible for the interrupt to arrive
3338 * at the CPU before the status block posted prior to the
3339 * interrupt. Reading a register will flush the status block.
3340 * When using MSI, the MSI message will always complete after
3341 * the status block write.
3343 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3344 (BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3345 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3348 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3349 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3350 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3352 /* Read back to deassert IRQ immediately to avoid too many
3353 * spurious interrupts.
3355 BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3357 /* Return here if interrupt is shared and is disabled. */
3358 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3361 if (napi_schedule_prep(&bnapi
->napi
)) {
3362 bnapi
->last_status_idx
= sblk
->status_idx
;
3363 __napi_schedule(&bnapi
->napi
);
3370 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3372 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3373 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3375 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3376 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3381 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3382 STATUS_ATTN_BITS_TIMER_ABORT)
3385 bnx2_has_work(struct bnx2_napi
*bnapi
)
3387 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3389 if (bnx2_has_fast_work(bnapi
))
3393 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3397 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3398 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3405 bnx2_chk_missed_msi(struct bnx2
*bp
)
3407 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3410 if (bnx2_has_work(bnapi
)) {
3411 msi_ctrl
= BNX2_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3412 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3415 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3416 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3417 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3418 BNX2_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3419 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3423 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3427 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3429 struct cnic_ops
*c_ops
;
3431 if (!bnapi
->cnic_present
)
3435 c_ops
= rcu_dereference(bp
->cnic_ops
);
3437 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3438 bnapi
->status_blk
.msi
);
3443 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3445 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3446 u32 status_attn_bits
= sblk
->status_attn_bits
;
3447 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3449 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3450 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3452 bnx2_phy_int(bp
, bnapi
);
3454 /* This is needed to take care of transient status
3455 * during link changes.
3457 BNX2_WR(bp
, BNX2_HC_COMMAND
,
3458 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3459 BNX2_RD(bp
, BNX2_HC_COMMAND
);
3463 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3464 int work_done
, int budget
)
3466 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3467 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3469 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3470 bnx2_tx_int(bp
, bnapi
, 0);
3472 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3473 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3478 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3480 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3481 struct bnx2
*bp
= bnapi
->bp
;
3483 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3486 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3487 if (unlikely(work_done
>= budget
))
3490 bnapi
->last_status_idx
= sblk
->status_idx
;
3491 /* status idx must be read before checking for more work. */
3493 if (likely(!bnx2_has_fast_work(bnapi
))) {
3495 napi_complete(napi
);
3496 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3497 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3498 bnapi
->last_status_idx
);
3505 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3507 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3508 struct bnx2
*bp
= bnapi
->bp
;
3510 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3513 bnx2_poll_link(bp
, bnapi
);
3515 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3518 bnx2_poll_cnic(bp
, bnapi
);
3521 /* bnapi->last_status_idx is used below to tell the hw how
3522 * much work has been processed, so we must read it before
3523 * checking for more work.
3525 bnapi
->last_status_idx
= sblk
->status_idx
;
3527 if (unlikely(work_done
>= budget
))
3531 if (likely(!bnx2_has_work(bnapi
))) {
3532 napi_complete(napi
);
3533 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3534 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3535 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3536 bnapi
->last_status_idx
);
3539 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3540 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3541 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3542 bnapi
->last_status_idx
);
3544 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3545 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3546 bnapi
->last_status_idx
);
3554 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3555 * from set_multicast.
3558 bnx2_set_rx_mode(struct net_device
*dev
)
3560 struct bnx2
*bp
= netdev_priv(dev
);
3561 u32 rx_mode
, sort_mode
;
3562 struct netdev_hw_addr
*ha
;
3565 if (!netif_running(dev
))
3568 spin_lock_bh(&bp
->phy_lock
);
3570 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3571 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3572 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3573 if (!(dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
) &&
3574 (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3575 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3576 if (dev
->flags
& IFF_PROMISC
) {
3577 /* Promiscuous mode. */
3578 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3579 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3580 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3582 else if (dev
->flags
& IFF_ALLMULTI
) {
3583 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3584 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3587 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3590 /* Accept one or more multicast(s). */
3591 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3596 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3598 netdev_for_each_mc_addr(ha
, dev
) {
3599 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3601 regidx
= (bit
& 0xe0) >> 5;
3603 mc_filter
[regidx
] |= (1 << bit
);
3606 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3607 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3611 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3614 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3615 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3616 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3617 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3618 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3619 /* Add all entries into to the match filter list */
3621 netdev_for_each_uc_addr(ha
, dev
) {
3622 bnx2_set_mac_addr(bp
, ha
->addr
,
3623 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3625 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3631 if (rx_mode
!= bp
->rx_mode
) {
3632 bp
->rx_mode
= rx_mode
;
3633 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3636 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3637 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3638 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3640 spin_unlock_bh(&bp
->phy_lock
);
3644 check_fw_section(const struct firmware
*fw
,
3645 const struct bnx2_fw_file_section
*section
,
3646 u32 alignment
, bool non_empty
)
3648 u32 offset
= be32_to_cpu(section
->offset
);
3649 u32 len
= be32_to_cpu(section
->len
);
3651 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3653 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3654 len
& (alignment
- 1))
3660 check_mips_fw_entry(const struct firmware
*fw
,
3661 const struct bnx2_mips_fw_file_entry
*entry
)
3663 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3664 check_fw_section(fw
, &entry
->data
, 4, false) ||
3665 check_fw_section(fw
, &entry
->rodata
, 4, false))
3670 static void bnx2_release_firmware(struct bnx2
*bp
)
3672 if (bp
->rv2p_firmware
) {
3673 release_firmware(bp
->mips_firmware
);
3674 release_firmware(bp
->rv2p_firmware
);
3675 bp
->rv2p_firmware
= NULL
;
3679 static int bnx2_request_uncached_firmware(struct bnx2
*bp
)
3681 const char *mips_fw_file
, *rv2p_fw_file
;
3682 const struct bnx2_mips_fw_file
*mips_fw
;
3683 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3686 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
3687 mips_fw_file
= FW_MIPS_FILE_09
;
3688 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A0
) ||
3689 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5709_A1
))
3690 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3692 rv2p_fw_file
= FW_RV2P_FILE_09
;
3694 mips_fw_file
= FW_MIPS_FILE_06
;
3695 rv2p_fw_file
= FW_RV2P_FILE_06
;
3698 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3700 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3704 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3706 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3707 goto err_release_mips_firmware
;
3709 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3710 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3711 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3712 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3713 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3714 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3715 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3716 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3717 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3719 goto err_release_firmware
;
3721 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3722 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3723 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3724 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3726 goto err_release_firmware
;
3731 err_release_firmware
:
3732 release_firmware(bp
->rv2p_firmware
);
3733 bp
->rv2p_firmware
= NULL
;
3734 err_release_mips_firmware
:
3735 release_firmware(bp
->mips_firmware
);
3739 static int bnx2_request_firmware(struct bnx2
*bp
)
3741 return bp
->rv2p_firmware
? 0 : bnx2_request_uncached_firmware(bp
);
3745 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3748 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3749 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3750 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3757 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3758 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3760 u32 rv2p_code_len
, file_offset
;
3765 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3766 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3768 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3770 if (rv2p_proc
== RV2P_PROC1
) {
3771 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3772 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3774 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3775 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3778 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3779 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3781 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3784 val
= (i
/ 8) | cmd
;
3785 BNX2_WR(bp
, addr
, val
);
3788 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3789 for (i
= 0; i
< 8; i
++) {
3792 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3793 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3794 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3795 BNX2_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3796 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3797 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3798 BNX2_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3800 val
= (loc
/ 2) | cmd
;
3801 BNX2_WR(bp
, addr
, val
);
3805 /* Reset the processor, un-stall is done later. */
3806 if (rv2p_proc
== RV2P_PROC1
) {
3807 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3810 BNX2_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3817 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3818 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3820 u32 addr
, len
, file_offset
;
3826 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3827 val
|= cpu_reg
->mode_value_halt
;
3828 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3829 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3831 /* Load the Text area. */
3832 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3833 len
= be32_to_cpu(fw_entry
->text
.len
);
3834 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3835 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3837 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3841 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3842 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3845 /* Load the Data area. */
3846 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3847 len
= be32_to_cpu(fw_entry
->data
.len
);
3848 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3849 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3851 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3855 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3856 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3859 /* Load the Read-Only area. */
3860 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3861 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3862 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3863 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3865 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3869 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3870 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3873 /* Clear the pre-fetch instruction. */
3874 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3876 val
= be32_to_cpu(fw_entry
->start_addr
);
3877 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3879 /* Start the CPU. */
3880 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3881 val
&= ~cpu_reg
->mode_value_halt
;
3882 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3883 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3889 bnx2_init_cpus(struct bnx2
*bp
)
3891 const struct bnx2_mips_fw_file
*mips_fw
=
3892 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3893 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3894 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3897 /* Initialize the RV2P processor. */
3898 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3899 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3901 /* Initialize the RX Processor. */
3902 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3906 /* Initialize the TX Processor. */
3907 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3911 /* Initialize the TX Patch-up Processor. */
3912 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3916 /* Initialize the Completion Processor. */
3917 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3921 /* Initialize the Command Processor. */
3922 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3929 bnx2_setup_wol(struct bnx2
*bp
)
3938 autoneg
= bp
->autoneg
;
3939 advertising
= bp
->advertising
;
3941 if (bp
->phy_port
== PORT_TP
) {
3942 bp
->autoneg
= AUTONEG_SPEED
;
3943 bp
->advertising
= ADVERTISED_10baseT_Half
|
3944 ADVERTISED_10baseT_Full
|
3945 ADVERTISED_100baseT_Half
|
3946 ADVERTISED_100baseT_Full
|
3950 spin_lock_bh(&bp
->phy_lock
);
3951 bnx2_setup_phy(bp
, bp
->phy_port
);
3952 spin_unlock_bh(&bp
->phy_lock
);
3954 bp
->autoneg
= autoneg
;
3955 bp
->advertising
= advertising
;
3957 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3959 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
3961 /* Enable port mode. */
3962 val
&= ~BNX2_EMAC_MODE_PORT
;
3963 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3964 BNX2_EMAC_MODE_ACPI_RCVD
|
3965 BNX2_EMAC_MODE_MPKT
;
3966 if (bp
->phy_port
== PORT_TP
) {
3967 val
|= BNX2_EMAC_MODE_PORT_MII
;
3969 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3970 if (bp
->line_speed
== SPEED_2500
)
3971 val
|= BNX2_EMAC_MODE_25G_MODE
;
3974 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
3976 /* receive all multicast */
3977 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3978 BNX2_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3981 BNX2_WR(bp
, BNX2_EMAC_RX_MODE
, BNX2_EMAC_RX_MODE_SORT_MODE
);
3983 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
| BNX2_RPM_SORT_USER0_MC_EN
;
3984 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3985 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3986 BNX2_WR(bp
, BNX2_RPM_SORT_USER0
, val
| BNX2_RPM_SORT_USER0_ENA
);
3988 /* Need to enable EMAC and RPM for WOL. */
3989 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3990 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3991 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3992 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3994 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
3995 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3996 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
3998 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
4000 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
4003 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
4004 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
, 1, 0);
4009 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
4015 pci_enable_wake(bp
->pdev
, PCI_D0
, false);
4016 pci_set_power_state(bp
->pdev
, PCI_D0
);
4018 val
= BNX2_RD(bp
, BNX2_EMAC_MODE
);
4019 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
4020 val
&= ~BNX2_EMAC_MODE_MPKT
;
4021 BNX2_WR(bp
, BNX2_EMAC_MODE
, val
);
4023 val
= BNX2_RD(bp
, BNX2_RPM_CONFIG
);
4024 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
4025 BNX2_WR(bp
, BNX2_RPM_CONFIG
, val
);
4030 pci_wake_from_d3(bp
->pdev
, bp
->wol
);
4031 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4032 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)) {
4035 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4037 pci_set_power_state(bp
->pdev
, PCI_D3hot
);
4040 /* No more memory access after this point until
4041 * device is brought back to D0.
4052 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4057 /* Request access to the flash interface. */
4058 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4059 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4060 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4061 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4067 if (j
>= NVRAM_TIMEOUT_COUNT
)
4074 bnx2_release_nvram_lock(struct bnx2
*bp
)
4079 /* Relinquish nvram interface. */
4080 BNX2_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4082 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4083 val
= BNX2_RD(bp
, BNX2_NVM_SW_ARB
);
4084 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4090 if (j
>= NVRAM_TIMEOUT_COUNT
)
4098 bnx2_enable_nvram_write(struct bnx2
*bp
)
4102 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4103 BNX2_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4105 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4108 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4109 BNX2_WR(bp
, BNX2_NVM_COMMAND
,
4110 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4112 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4115 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4116 if (val
& BNX2_NVM_COMMAND_DONE
)
4120 if (j
>= NVRAM_TIMEOUT_COUNT
)
4127 bnx2_disable_nvram_write(struct bnx2
*bp
)
4131 val
= BNX2_RD(bp
, BNX2_MISC_CFG
);
4132 BNX2_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4137 bnx2_enable_nvram_access(struct bnx2
*bp
)
4141 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4142 /* Enable both bits, even on read. */
4143 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4144 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4148 bnx2_disable_nvram_access(struct bnx2
*bp
)
4152 val
= BNX2_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4153 /* Disable both bits, even after read. */
4154 BNX2_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4155 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4156 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4160 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4165 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4166 /* Buffered flash, no erase needed */
4169 /* Build an erase command */
4170 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4171 BNX2_NVM_COMMAND_DOIT
;
4173 /* Need to clear DONE bit separately. */
4174 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4176 /* Address of the NVRAM to read from. */
4177 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4179 /* Issue an erase command. */
4180 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4182 /* Wait for completion. */
4183 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4188 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4189 if (val
& BNX2_NVM_COMMAND_DONE
)
4193 if (j
>= NVRAM_TIMEOUT_COUNT
)
4200 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4205 /* Build the command word. */
4206 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4208 /* Calculate an offset of a buffered flash, not needed for 5709. */
4209 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4210 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4211 bp
->flash_info
->page_bits
) +
4212 (offset
% bp
->flash_info
->page_size
);
4215 /* Need to clear DONE bit separately. */
4216 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4218 /* Address of the NVRAM to read from. */
4219 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4221 /* Issue a read command. */
4222 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4224 /* Wait for completion. */
4225 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4230 val
= BNX2_RD(bp
, BNX2_NVM_COMMAND
);
4231 if (val
& BNX2_NVM_COMMAND_DONE
) {
4232 __be32 v
= cpu_to_be32(BNX2_RD(bp
, BNX2_NVM_READ
));
4233 memcpy(ret_val
, &v
, 4);
4237 if (j
>= NVRAM_TIMEOUT_COUNT
)
4245 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4251 /* Build the command word. */
4252 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4254 /* Calculate an offset of a buffered flash, not needed for 5709. */
4255 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4256 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4257 bp
->flash_info
->page_bits
) +
4258 (offset
% bp
->flash_info
->page_size
);
4261 /* Need to clear DONE bit separately. */
4262 BNX2_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4264 memcpy(&val32
, val
, 4);
4266 /* Write the data. */
4267 BNX2_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4269 /* Address of the NVRAM to write to. */
4270 BNX2_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4272 /* Issue the write command. */
4273 BNX2_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4275 /* Wait for completion. */
4276 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4279 if (BNX2_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4282 if (j
>= NVRAM_TIMEOUT_COUNT
)
4289 bnx2_init_nvram(struct bnx2
*bp
)
4292 int j
, entry_count
, rc
= 0;
4293 const struct flash_spec
*flash
;
4295 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4296 bp
->flash_info
= &flash_5709
;
4297 goto get_flash_size
;
4300 /* Determine the selected interface. */
4301 val
= BNX2_RD(bp
, BNX2_NVM_CFG1
);
4303 entry_count
= ARRAY_SIZE(flash_table
);
4305 if (val
& 0x40000000) {
4307 /* Flash interface has been reconfigured */
4308 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4310 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4311 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4312 bp
->flash_info
= flash
;
4319 /* Not yet been reconfigured */
4321 if (val
& (1 << 23))
4322 mask
= FLASH_BACKUP_STRAP_MASK
;
4324 mask
= FLASH_STRAP_MASK
;
4326 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4329 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4330 bp
->flash_info
= flash
;
4332 /* Request access to the flash interface. */
4333 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4336 /* Enable access to flash interface */
4337 bnx2_enable_nvram_access(bp
);
4339 /* Reconfigure the flash interface */
4340 BNX2_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4341 BNX2_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4342 BNX2_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4343 BNX2_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4345 /* Disable access to flash interface */
4346 bnx2_disable_nvram_access(bp
);
4347 bnx2_release_nvram_lock(bp
);
4352 } /* if (val & 0x40000000) */
4354 if (j
== entry_count
) {
4355 bp
->flash_info
= NULL
;
4356 pr_alert("Unknown flash/EEPROM type\n");
4361 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4362 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4364 bp
->flash_size
= val
;
4366 bp
->flash_size
= bp
->flash_info
->total_size
;
4372 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4376 u32 cmd_flags
, offset32
, len32
, extra
;
4381 /* Request access to the flash interface. */
4382 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4385 /* Enable access to flash interface */
4386 bnx2_enable_nvram_access(bp
);
4399 pre_len
= 4 - (offset
& 3);
4401 if (pre_len
>= len32
) {
4403 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4404 BNX2_NVM_COMMAND_LAST
;
4407 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4410 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4415 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4422 extra
= 4 - (len32
& 3);
4423 len32
= (len32
+ 4) & ~3;
4430 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4432 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4433 BNX2_NVM_COMMAND_LAST
;
4435 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4437 memcpy(ret_buf
, buf
, 4 - extra
);
4439 else if (len32
> 0) {
4442 /* Read the first word. */
4446 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4448 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4450 /* Advance to the next dword. */
4455 while (len32
> 4 && rc
== 0) {
4456 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4458 /* Advance to the next dword. */
4467 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4468 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4470 memcpy(ret_buf
, buf
, 4 - extra
);
4473 /* Disable access to flash interface */
4474 bnx2_disable_nvram_access(bp
);
4476 bnx2_release_nvram_lock(bp
);
4482 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4485 u32 written
, offset32
, len32
;
4486 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4488 int align_start
, align_end
;
4493 align_start
= align_end
= 0;
4495 if ((align_start
= (offset32
& 3))) {
4497 len32
+= align_start
;
4500 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4505 align_end
= 4 - (len32
& 3);
4507 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4511 if (align_start
|| align_end
) {
4512 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4513 if (align_buf
== NULL
)
4516 memcpy(align_buf
, start
, 4);
4519 memcpy(align_buf
+ len32
- 4, end
, 4);
4521 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4525 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4526 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4527 if (flash_buffer
== NULL
) {
4529 goto nvram_write_end
;
4534 while ((written
< len32
) && (rc
== 0)) {
4535 u32 page_start
, page_end
, data_start
, data_end
;
4536 u32 addr
, cmd_flags
;
4539 /* Find the page_start addr */
4540 page_start
= offset32
+ written
;
4541 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4542 /* Find the page_end addr */
4543 page_end
= page_start
+ bp
->flash_info
->page_size
;
4544 /* Find the data_start addr */
4545 data_start
= (written
== 0) ? offset32
: page_start
;
4546 /* Find the data_end addr */
4547 data_end
= (page_end
> offset32
+ len32
) ?
4548 (offset32
+ len32
) : page_end
;
4550 /* Request access to the flash interface. */
4551 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4552 goto nvram_write_end
;
4554 /* Enable access to flash interface */
4555 bnx2_enable_nvram_access(bp
);
4557 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4558 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4561 /* Read the whole page into the buffer
4562 * (non-buffer flash only) */
4563 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4564 if (j
== (bp
->flash_info
->page_size
- 4)) {
4565 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4567 rc
= bnx2_nvram_read_dword(bp
,
4573 goto nvram_write_end
;
4579 /* Enable writes to flash interface (unlock write-protect) */
4580 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4581 goto nvram_write_end
;
4583 /* Loop to write back the buffer data from page_start to
4586 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4587 /* Erase the page */
4588 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4589 goto nvram_write_end
;
4591 /* Re-enable the write again for the actual write */
4592 bnx2_enable_nvram_write(bp
);
4594 for (addr
= page_start
; addr
< data_start
;
4595 addr
+= 4, i
+= 4) {
4597 rc
= bnx2_nvram_write_dword(bp
, addr
,
4598 &flash_buffer
[i
], cmd_flags
);
4601 goto nvram_write_end
;
4607 /* Loop to write the new data from data_start to data_end */
4608 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4609 if ((addr
== page_end
- 4) ||
4610 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4611 (addr
== data_end
- 4))) {
4613 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4615 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4619 goto nvram_write_end
;
4625 /* Loop to write back the buffer data from data_end
4627 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4628 for (addr
= data_end
; addr
< page_end
;
4629 addr
+= 4, i
+= 4) {
4631 if (addr
== page_end
-4) {
4632 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4634 rc
= bnx2_nvram_write_dword(bp
, addr
,
4635 &flash_buffer
[i
], cmd_flags
);
4638 goto nvram_write_end
;
4644 /* Disable writes to flash interface (lock write-protect) */
4645 bnx2_disable_nvram_write(bp
);
4647 /* Disable access to flash interface */
4648 bnx2_disable_nvram_access(bp
);
4649 bnx2_release_nvram_lock(bp
);
4651 /* Increment written */
4652 written
+= data_end
- data_start
;
4656 kfree(flash_buffer
);
4662 bnx2_init_fw_cap(struct bnx2
*bp
)
4666 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4667 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4669 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4670 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4672 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4673 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4676 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4677 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4678 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4681 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4682 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4685 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4687 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4688 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4689 bp
->phy_port
= PORT_FIBRE
;
4691 bp
->phy_port
= PORT_TP
;
4693 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4694 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4697 if (netif_running(bp
->dev
) && sig
)
4698 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4702 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4704 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4706 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4707 BNX2_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4711 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4717 /* Wait for the current PCI transaction to complete before
4718 * issuing a reset. */
4719 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
4720 (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)) {
4721 BNX2_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4722 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4723 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4724 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4725 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4726 val
= BNX2_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4729 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4730 val
&= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4731 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4732 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4734 for (i
= 0; i
< 100; i
++) {
4736 val
= BNX2_RD(bp
, BNX2_PCICFG_DEVICE_CONTROL
);
4737 if (!(val
& BNX2_PCICFG_DEVICE_STATUS_NO_PEND
))
4742 /* Wait for the firmware to tell us it is ok to issue a reset. */
4743 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4745 /* Deposit a driver reset signature so the firmware knows that
4746 * this is a soft reset. */
4747 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4748 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4750 /* Do a dummy read to force the chip to complete all current transaction
4751 * before we issue a reset. */
4752 val
= BNX2_RD(bp
, BNX2_MISC_ID
);
4754 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4755 BNX2_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4756 BNX2_RD(bp
, BNX2_MISC_COMMAND
);
4759 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4760 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4762 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4765 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4766 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4767 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4770 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4772 /* Reading back any register after chip reset will hang the
4773 * bus on 5706 A0 and A1. The msleep below provides plenty
4774 * of margin for write posting.
4776 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
4777 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
))
4780 /* Reset takes approximate 30 usec */
4781 for (i
= 0; i
< 10; i
++) {
4782 val
= BNX2_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4783 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4784 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4789 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4790 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4791 pr_err("Chip reset did not complete\n");
4796 /* Make sure byte swapping is properly configured. */
4797 val
= BNX2_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4798 if (val
!= 0x01020304) {
4799 pr_err("Chip not in correct endian mode\n");
4803 /* Wait for the firmware to finish its initialization. */
4804 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4808 spin_lock_bh(&bp
->phy_lock
);
4809 old_port
= bp
->phy_port
;
4810 bnx2_init_fw_cap(bp
);
4811 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4812 old_port
!= bp
->phy_port
)
4813 bnx2_set_default_remote_link(bp
);
4814 spin_unlock_bh(&bp
->phy_lock
);
4816 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4817 /* Adjust the voltage regular to two steps lower. The default
4818 * of this register is 0x0000000e. */
4819 BNX2_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4821 /* Remove bad rbuf memory from the free pool. */
4822 rc
= bnx2_alloc_bad_rbuf(bp
);
4825 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4826 bnx2_setup_msix_tbl(bp
);
4827 /* Prevent MSIX table reads and write from timing out */
4828 BNX2_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4829 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4836 bnx2_init_chip(struct bnx2
*bp
)
4841 /* Make sure the interrupt is not active. */
4842 BNX2_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4844 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4845 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4847 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4849 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4850 DMA_READ_CHANS
<< 12 |
4851 DMA_WRITE_CHANS
<< 16;
4853 val
|= (0x2 << 20) | (1 << 11);
4855 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4858 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) &&
4859 (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
) &&
4860 !(bp
->flags
& BNX2_FLAG_PCIX
))
4861 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4863 BNX2_WR(bp
, BNX2_DMA_CONFIG
, val
);
4865 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
4866 val
= BNX2_RD(bp
, BNX2_TDMA_CONFIG
);
4867 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4868 BNX2_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4871 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4874 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4876 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4877 val16
& ~PCI_X_CMD_ERO
);
4880 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4881 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4882 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4883 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4885 /* Initialize context mapping and zero out the quick contexts. The
4886 * context block must have already been enabled. */
4887 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4888 rc
= bnx2_init_5709_context(bp
);
4892 bnx2_init_context(bp
);
4894 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4897 bnx2_init_nvram(bp
);
4899 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4901 val
= BNX2_RD(bp
, BNX2_MQ_CONFIG
);
4902 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4903 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4904 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
4905 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4906 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
4907 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4910 BNX2_WR(bp
, BNX2_MQ_CONFIG
, val
);
4912 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4913 BNX2_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4914 BNX2_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4916 val
= (BNX2_PAGE_BITS
- 8) << 24;
4917 BNX2_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4919 /* Configure page size. */
4920 val
= BNX2_RD(bp
, BNX2_TBDR_CONFIG
);
4921 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4922 val
|= (BNX2_PAGE_BITS
- 8) << 24 | 0x40;
4923 BNX2_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4925 val
= bp
->mac_addr
[0] +
4926 (bp
->mac_addr
[1] << 8) +
4927 (bp
->mac_addr
[2] << 16) +
4929 (bp
->mac_addr
[4] << 8) +
4930 (bp
->mac_addr
[5] << 16);
4931 BNX2_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4933 /* Program the MTU. Also include 4 bytes for CRC32. */
4935 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4936 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4937 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4938 BNX2_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4943 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4944 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4945 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4947 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4948 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4949 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4951 bp
->idle_chk_status_idx
= 0xffff;
4953 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4955 /* Set up how to generate a link change interrupt. */
4956 BNX2_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4958 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4959 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4960 BNX2_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4962 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4963 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4964 BNX2_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4965 (u64
) bp
->stats_blk_mapping
>> 32);
4967 BNX2_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4968 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4970 BNX2_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4971 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4973 BNX2_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4974 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4976 BNX2_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4978 BNX2_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4980 BNX2_WR(bp
, BNX2_HC_COM_TICKS
,
4981 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4983 BNX2_WR(bp
, BNX2_HC_CMD_TICKS
,
4984 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4986 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4987 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4989 BNX2_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4990 BNX2_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4992 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
)
4993 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4995 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4996 BNX2_HC_CONFIG_COLLECT_STATS
;
4999 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
5000 BNX2_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
5001 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
5003 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
5006 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
5007 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
5009 BNX2_WR(bp
, BNX2_HC_CONFIG
, val
);
5011 if (bp
->rx_ticks
< 25)
5012 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 1);
5014 bnx2_reg_wr_ind(bp
, BNX2_FW_RX_LOW_LATENCY
, 0);
5016 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
5017 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
5018 BNX2_HC_SB_CONFIG_1
;
5021 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
5022 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
5023 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
5025 BNX2_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
5026 (bp
->tx_quick_cons_trip_int
<< 16) |
5027 bp
->tx_quick_cons_trip
);
5029 BNX2_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
5030 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
5032 BNX2_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
5033 (bp
->rx_quick_cons_trip_int
<< 16) |
5034 bp
->rx_quick_cons_trip
);
5036 BNX2_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
5037 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
5040 /* Clear internal stats counters. */
5041 BNX2_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
5043 BNX2_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
5045 /* Initialize the receive filter. */
5046 bnx2_set_rx_mode(bp
->dev
);
5048 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5049 val
= BNX2_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
5050 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
5051 BNX2_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
5053 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
5056 BNX2_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
5057 BNX2_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5061 bp
->hc_cmd
= BNX2_RD(bp
, BNX2_HC_COMMAND
);
5067 bnx2_clear_ring_states(struct bnx2
*bp
)
5069 struct bnx2_napi
*bnapi
;
5070 struct bnx2_tx_ring_info
*txr
;
5071 struct bnx2_rx_ring_info
*rxr
;
5074 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5075 bnapi
= &bp
->bnx2_napi
[i
];
5076 txr
= &bnapi
->tx_ring
;
5077 rxr
= &bnapi
->rx_ring
;
5080 txr
->hw_tx_cons
= 0;
5081 rxr
->rx_prod_bseq
= 0;
5084 rxr
->rx_pg_prod
= 0;
5085 rxr
->rx_pg_cons
= 0;
5090 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5092 u32 val
, offset0
, offset1
, offset2
, offset3
;
5093 u32 cid_addr
= GET_CID_ADDR(cid
);
5095 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5096 offset0
= BNX2_L2CTX_TYPE_XI
;
5097 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5098 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5099 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5101 offset0
= BNX2_L2CTX_TYPE
;
5102 offset1
= BNX2_L2CTX_CMD_TYPE
;
5103 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5104 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5106 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5107 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5109 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5110 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5112 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5113 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5115 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5116 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5120 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5122 struct bnx2_tx_bd
*txbd
;
5124 struct bnx2_napi
*bnapi
;
5125 struct bnx2_tx_ring_info
*txr
;
5127 bnapi
= &bp
->bnx2_napi
[ring_num
];
5128 txr
= &bnapi
->tx_ring
;
5133 cid
= TX_TSS_CID
+ ring_num
- 1;
5135 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5137 txbd
= &txr
->tx_desc_ring
[BNX2_MAX_TX_DESC_CNT
];
5139 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5140 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5143 txr
->tx_prod_bseq
= 0;
5145 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5146 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5148 bnx2_init_tx_context(bp
, cid
, txr
);
5152 bnx2_init_rxbd_rings(struct bnx2_rx_bd
*rx_ring
[], dma_addr_t dma
[],
5153 u32 buf_size
, int num_rings
)
5156 struct bnx2_rx_bd
*rxbd
;
5158 for (i
= 0; i
< num_rings
; i
++) {
5161 rxbd
= &rx_ring
[i
][0];
5162 for (j
= 0; j
< BNX2_MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5163 rxbd
->rx_bd_len
= buf_size
;
5164 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5166 if (i
== (num_rings
- 1))
5170 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5171 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5176 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5179 u16 prod
, ring_prod
;
5180 u32 cid
, rx_cid_addr
, val
;
5181 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5182 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5187 cid
= RX_RSS_CID
+ ring_num
- 1;
5189 rx_cid_addr
= GET_CID_ADDR(cid
);
5191 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5192 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5194 bnx2_init_rx_context(bp
, cid
);
5196 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
5197 val
= BNX2_RD(bp
, BNX2_MQ_MAP_L2_5
);
5198 BNX2_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5201 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5202 if (bp
->rx_pg_ring_size
) {
5203 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5204 rxr
->rx_pg_desc_mapping
,
5205 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5206 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5207 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5208 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5209 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5211 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5212 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5214 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5215 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5217 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5218 BNX2_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5221 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5222 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5224 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5225 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5227 ring_prod
= prod
= rxr
->rx_pg_prod
;
5228 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5229 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5230 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5231 ring_num
, i
, bp
->rx_pg_ring_size
);
5234 prod
= BNX2_NEXT_RX_BD(prod
);
5235 ring_prod
= BNX2_RX_PG_RING_IDX(prod
);
5237 rxr
->rx_pg_prod
= prod
;
5239 ring_prod
= prod
= rxr
->rx_prod
;
5240 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5241 if (bnx2_alloc_rx_data(bp
, rxr
, ring_prod
, GFP_KERNEL
) < 0) {
5242 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5243 ring_num
, i
, bp
->rx_ring_size
);
5246 prod
= BNX2_NEXT_RX_BD(prod
);
5247 ring_prod
= BNX2_RX_RING_IDX(prod
);
5249 rxr
->rx_prod
= prod
;
5251 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5252 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5253 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5255 BNX2_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5256 BNX2_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5258 BNX2_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5262 bnx2_init_all_rings(struct bnx2
*bp
)
5267 bnx2_clear_ring_states(bp
);
5269 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5270 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5271 bnx2_init_tx_ring(bp
, i
);
5273 if (bp
->num_tx_rings
> 1)
5274 BNX2_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5277 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5278 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5280 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5281 bnx2_init_rx_ring(bp
, i
);
5283 if (bp
->num_rx_rings
> 1) {
5286 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5287 int shift
= (i
% 8) << 2;
5289 tbl_32
|= (i
% (bp
->num_rx_rings
- 1)) << shift
;
5291 BNX2_WR(bp
, BNX2_RLUP_RSS_DATA
, tbl_32
);
5292 BNX2_WR(bp
, BNX2_RLUP_RSS_COMMAND
, (i
>> 3) |
5293 BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK
|
5294 BNX2_RLUP_RSS_COMMAND_WRITE
|
5295 BNX2_RLUP_RSS_COMMAND_HASH_MASK
);
5300 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5301 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5303 BNX2_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5308 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5310 u32 max
, num_rings
= 1;
5312 while (ring_size
> BNX2_MAX_RX_DESC_CNT
) {
5313 ring_size
-= BNX2_MAX_RX_DESC_CNT
;
5316 /* round to next power of 2 */
5318 while ((max
& num_rings
) == 0)
5321 if (num_rings
!= max
)
5328 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5330 u32 rx_size
, rx_space
, jumbo_size
;
5332 /* 8 for CRC and VLAN */
5333 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5335 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5336 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5338 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5339 bp
->rx_pg_ring_size
= 0;
5340 bp
->rx_max_pg_ring
= 0;
5341 bp
->rx_max_pg_ring_idx
= 0;
5342 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5343 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5345 jumbo_size
= size
* pages
;
5346 if (jumbo_size
> BNX2_MAX_TOTAL_RX_PG_DESC_CNT
)
5347 jumbo_size
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
5349 bp
->rx_pg_ring_size
= jumbo_size
;
5350 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5351 BNX2_MAX_RX_PG_RINGS
);
5352 bp
->rx_max_pg_ring_idx
=
5353 (bp
->rx_max_pg_ring
* BNX2_RX_DESC_CNT
) - 1;
5354 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5355 bp
->rx_copy_thresh
= 0;
5358 bp
->rx_buf_use_size
= rx_size
;
5359 /* hw alignment + build_skb() overhead*/
5360 bp
->rx_buf_size
= SKB_DATA_ALIGN(bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
) +
5361 NET_SKB_PAD
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
5362 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5363 bp
->rx_ring_size
= size
;
5364 bp
->rx_max_ring
= bnx2_find_max_ring(size
, BNX2_MAX_RX_RINGS
);
5365 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* BNX2_RX_DESC_CNT
) - 1;
5369 bnx2_free_tx_skbs(struct bnx2
*bp
)
5373 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5374 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5375 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5378 if (txr
->tx_buf_ring
== NULL
)
5381 for (j
= 0; j
< BNX2_TX_DESC_CNT
; ) {
5382 struct bnx2_sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5383 struct sk_buff
*skb
= tx_buf
->skb
;
5387 j
= BNX2_NEXT_TX_BD(j
);
5391 dma_unmap_single(&bp
->pdev
->dev
,
5392 dma_unmap_addr(tx_buf
, mapping
),
5398 last
= tx_buf
->nr_frags
;
5399 j
= BNX2_NEXT_TX_BD(j
);
5400 for (k
= 0; k
< last
; k
++, j
= BNX2_NEXT_TX_BD(j
)) {
5401 tx_buf
= &txr
->tx_buf_ring
[BNX2_TX_RING_IDX(j
)];
5402 dma_unmap_page(&bp
->pdev
->dev
,
5403 dma_unmap_addr(tx_buf
, mapping
),
5404 skb_frag_size(&skb_shinfo(skb
)->frags
[k
]),
5409 netdev_tx_reset_queue(netdev_get_tx_queue(bp
->dev
, i
));
5414 bnx2_free_rx_skbs(struct bnx2
*bp
)
5418 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5419 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5420 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5423 if (rxr
->rx_buf_ring
== NULL
)
5426 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5427 struct bnx2_sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5428 u8
*data
= rx_buf
->data
;
5433 dma_unmap_single(&bp
->pdev
->dev
,
5434 dma_unmap_addr(rx_buf
, mapping
),
5435 bp
->rx_buf_use_size
,
5436 PCI_DMA_FROMDEVICE
);
5438 rx_buf
->data
= NULL
;
5442 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5443 bnx2_free_rx_page(bp
, rxr
, j
);
5448 bnx2_free_skbs(struct bnx2
*bp
)
5450 bnx2_free_tx_skbs(bp
);
5451 bnx2_free_rx_skbs(bp
);
5455 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5459 rc
= bnx2_reset_chip(bp
, reset_code
);
5464 if ((rc
= bnx2_init_chip(bp
)) != 0)
5467 bnx2_init_all_rings(bp
);
5472 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5476 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5479 spin_lock_bh(&bp
->phy_lock
);
5480 bnx2_init_phy(bp
, reset_phy
);
5482 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5483 bnx2_remote_phy_event(bp
);
5484 spin_unlock_bh(&bp
->phy_lock
);
5489 bnx2_shutdown_chip(struct bnx2
*bp
)
5493 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5494 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5496 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5498 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5500 return bnx2_reset_chip(bp
, reset_code
);
5504 bnx2_test_registers(struct bnx2
*bp
)
5508 static const struct {
5511 #define BNX2_FL_NOT_5709 1
5515 { 0x006c, 0, 0x00000000, 0x0000003f },
5516 { 0x0090, 0, 0xffffffff, 0x00000000 },
5517 { 0x0094, 0, 0x00000000, 0x00000000 },
5519 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5520 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5521 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5522 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5523 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5524 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5525 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5526 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5527 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5529 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5530 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5531 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5532 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5533 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5534 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5536 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5537 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5538 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5540 { 0x1000, 0, 0x00000000, 0x00000001 },
5541 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5543 { 0x1408, 0, 0x01c00800, 0x00000000 },
5544 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5545 { 0x14a8, 0, 0x00000000, 0x000001ff },
5546 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5547 { 0x14b0, 0, 0x00000002, 0x00000001 },
5548 { 0x14b8, 0, 0x00000000, 0x00000000 },
5549 { 0x14c0, 0, 0x00000000, 0x00000009 },
5550 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5551 { 0x14cc, 0, 0x00000000, 0x00000001 },
5552 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5554 { 0x1800, 0, 0x00000000, 0x00000001 },
5555 { 0x1804, 0, 0x00000000, 0x00000003 },
5557 { 0x2800, 0, 0x00000000, 0x00000001 },
5558 { 0x2804, 0, 0x00000000, 0x00003f01 },
5559 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5560 { 0x2810, 0, 0xffff0000, 0x00000000 },
5561 { 0x2814, 0, 0xffff0000, 0x00000000 },
5562 { 0x2818, 0, 0xffff0000, 0x00000000 },
5563 { 0x281c, 0, 0xffff0000, 0x00000000 },
5564 { 0x2834, 0, 0xffffffff, 0x00000000 },
5565 { 0x2840, 0, 0x00000000, 0xffffffff },
5566 { 0x2844, 0, 0x00000000, 0xffffffff },
5567 { 0x2848, 0, 0xffffffff, 0x00000000 },
5568 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5570 { 0x2c00, 0, 0x00000000, 0x00000011 },
5571 { 0x2c04, 0, 0x00000000, 0x00030007 },
5573 { 0x3c00, 0, 0x00000000, 0x00000001 },
5574 { 0x3c04, 0, 0x00000000, 0x00070000 },
5575 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5576 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5577 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5578 { 0x3c14, 0, 0x00000000, 0xffffffff },
5579 { 0x3c18, 0, 0x00000000, 0xffffffff },
5580 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5581 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5583 { 0x5004, 0, 0x00000000, 0x0000007f },
5584 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5586 { 0x5c00, 0, 0x00000000, 0x00000001 },
5587 { 0x5c04, 0, 0x00000000, 0x0003000f },
5588 { 0x5c08, 0, 0x00000003, 0x00000000 },
5589 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5590 { 0x5c10, 0, 0x00000000, 0xffffffff },
5591 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5592 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5593 { 0x5c88, 0, 0x00000000, 0x00077373 },
5594 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5596 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5597 { 0x680c, 0, 0xffffffff, 0x00000000 },
5598 { 0x6810, 0, 0xffffffff, 0x00000000 },
5599 { 0x6814, 0, 0xffffffff, 0x00000000 },
5600 { 0x6818, 0, 0xffffffff, 0x00000000 },
5601 { 0x681c, 0, 0xffffffff, 0x00000000 },
5602 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5603 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5604 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5605 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5606 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5607 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5608 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5609 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5610 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5611 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5612 { 0x684c, 0, 0xffffffff, 0x00000000 },
5613 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5614 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5615 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5616 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5617 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5618 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5620 { 0xffff, 0, 0x00000000, 0x00000000 },
5625 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5628 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5629 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5630 u16 flags
= reg_tbl
[i
].flags
;
5632 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5635 offset
= (u32
) reg_tbl
[i
].offset
;
5636 rw_mask
= reg_tbl
[i
].rw_mask
;
5637 ro_mask
= reg_tbl
[i
].ro_mask
;
5639 save_val
= readl(bp
->regview
+ offset
);
5641 writel(0, bp
->regview
+ offset
);
5643 val
= readl(bp
->regview
+ offset
);
5644 if ((val
& rw_mask
) != 0) {
5648 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5652 writel(0xffffffff, bp
->regview
+ offset
);
5654 val
= readl(bp
->regview
+ offset
);
5655 if ((val
& rw_mask
) != rw_mask
) {
5659 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5663 writel(save_val
, bp
->regview
+ offset
);
5667 writel(save_val
, bp
->regview
+ offset
);
5675 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5677 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5678 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5681 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5684 for (offset
= 0; offset
< size
; offset
+= 4) {
5686 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5688 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5698 bnx2_test_memory(struct bnx2
*bp
)
5702 static struct mem_entry
{
5705 } mem_tbl_5706
[] = {
5706 { 0x60000, 0x4000 },
5707 { 0xa0000, 0x3000 },
5708 { 0xe0000, 0x4000 },
5709 { 0x120000, 0x4000 },
5710 { 0x1a0000, 0x4000 },
5711 { 0x160000, 0x4000 },
5715 { 0x60000, 0x4000 },
5716 { 0xa0000, 0x3000 },
5717 { 0xe0000, 0x4000 },
5718 { 0x120000, 0x4000 },
5719 { 0x1a0000, 0x4000 },
5722 struct mem_entry
*mem_tbl
;
5724 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
5725 mem_tbl
= mem_tbl_5709
;
5727 mem_tbl
= mem_tbl_5706
;
5729 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5730 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5731 mem_tbl
[i
].len
)) != 0) {
5739 #define BNX2_MAC_LOOPBACK 0
5740 #define BNX2_PHY_LOOPBACK 1
5743 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5745 unsigned int pkt_size
, num_pkts
, i
;
5746 struct sk_buff
*skb
;
5748 unsigned char *packet
;
5749 u16 rx_start_idx
, rx_idx
;
5751 struct bnx2_tx_bd
*txbd
;
5752 struct bnx2_sw_bd
*rx_buf
;
5753 struct l2_fhdr
*rx_hdr
;
5755 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5756 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5757 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5761 txr
= &tx_napi
->tx_ring
;
5762 rxr
= &bnapi
->rx_ring
;
5763 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5764 bp
->loopback
= MAC_LOOPBACK
;
5765 bnx2_set_mac_loopback(bp
);
5767 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5768 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5771 bp
->loopback
= PHY_LOOPBACK
;
5772 bnx2_set_phy_loopback(bp
);
5777 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5778 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5781 packet
= skb_put(skb
, pkt_size
);
5782 memcpy(packet
, bp
->dev
->dev_addr
, ETH_ALEN
);
5783 memset(packet
+ ETH_ALEN
, 0x0, 8);
5784 for (i
= 14; i
< pkt_size
; i
++)
5785 packet
[i
] = (unsigned char) (i
& 0xff);
5787 map
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, pkt_size
,
5789 if (dma_mapping_error(&bp
->pdev
->dev
, map
)) {
5794 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5795 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5797 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5800 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5804 txbd
= &txr
->tx_desc_ring
[BNX2_TX_RING_IDX(txr
->tx_prod
)];
5806 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5807 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5808 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5809 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5812 txr
->tx_prod
= BNX2_NEXT_TX_BD(txr
->tx_prod
);
5813 txr
->tx_prod_bseq
+= pkt_size
;
5815 BNX2_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5816 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5820 BNX2_WR(bp
, BNX2_HC_COMMAND
,
5821 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5823 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5827 dma_unmap_single(&bp
->pdev
->dev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5830 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5831 goto loopback_test_done
;
5833 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5834 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5835 goto loopback_test_done
;
5838 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5839 data
= rx_buf
->data
;
5841 rx_hdr
= get_l2_fhdr(data
);
5842 data
= (u8
*)rx_hdr
+ BNX2_RX_OFFSET
;
5844 dma_sync_single_for_cpu(&bp
->pdev
->dev
,
5845 dma_unmap_addr(rx_buf
, mapping
),
5846 bp
->rx_buf_use_size
, PCI_DMA_FROMDEVICE
);
5848 if (rx_hdr
->l2_fhdr_status
&
5849 (L2_FHDR_ERRORS_BAD_CRC
|
5850 L2_FHDR_ERRORS_PHY_DECODE
|
5851 L2_FHDR_ERRORS_ALIGNMENT
|
5852 L2_FHDR_ERRORS_TOO_SHORT
|
5853 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5855 goto loopback_test_done
;
5858 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5859 goto loopback_test_done
;
5862 for (i
= 14; i
< pkt_size
; i
++) {
5863 if (*(data
+ i
) != (unsigned char) (i
& 0xff)) {
5864 goto loopback_test_done
;
5875 #define BNX2_MAC_LOOPBACK_FAILED 1
5876 #define BNX2_PHY_LOOPBACK_FAILED 2
5877 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5878 BNX2_PHY_LOOPBACK_FAILED)
5881 bnx2_test_loopback(struct bnx2
*bp
)
5885 if (!netif_running(bp
->dev
))
5886 return BNX2_LOOPBACK_FAILED
;
5888 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5889 spin_lock_bh(&bp
->phy_lock
);
5890 bnx2_init_phy(bp
, 1);
5891 spin_unlock_bh(&bp
->phy_lock
);
5892 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5893 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5894 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5895 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5899 #define NVRAM_SIZE 0x200
5900 #define CRC32_RESIDUAL 0xdebb20e3
5903 bnx2_test_nvram(struct bnx2
*bp
)
5905 __be32 buf
[NVRAM_SIZE
/ 4];
5906 u8
*data
= (u8
*) buf
;
5910 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5911 goto test_nvram_done
;
5913 magic
= be32_to_cpu(buf
[0]);
5914 if (magic
!= 0x669955aa) {
5916 goto test_nvram_done
;
5919 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5920 goto test_nvram_done
;
5922 csum
= ether_crc_le(0x100, data
);
5923 if (csum
!= CRC32_RESIDUAL
) {
5925 goto test_nvram_done
;
5928 csum
= ether_crc_le(0x100, data
+ 0x100);
5929 if (csum
!= CRC32_RESIDUAL
) {
5938 bnx2_test_link(struct bnx2
*bp
)
5942 if (!netif_running(bp
->dev
))
5945 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5950 spin_lock_bh(&bp
->phy_lock
);
5951 bnx2_enable_bmsr1(bp
);
5952 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5953 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5954 bnx2_disable_bmsr1(bp
);
5955 spin_unlock_bh(&bp
->phy_lock
);
5957 if (bmsr
& BMSR_LSTATUS
) {
5964 bnx2_test_intr(struct bnx2
*bp
)
5969 if (!netif_running(bp
->dev
))
5972 status_idx
= BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5974 /* This register is not touched during run-time. */
5975 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5976 BNX2_RD(bp
, BNX2_HC_COMMAND
);
5978 for (i
= 0; i
< 10; i
++) {
5979 if ((BNX2_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5985 msleep_interruptible(10);
5993 /* Determining link for parallel detection. */
5995 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5997 u32 mode_ctl
, an_dbg
, exp
;
5999 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
6002 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
6003 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
6005 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
6008 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6009 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6010 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
6012 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
6015 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
6016 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6017 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
6019 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
6026 bnx2_5706_serdes_timer(struct bnx2
*bp
)
6030 spin_lock(&bp
->phy_lock
);
6031 if (bp
->serdes_an_pending
) {
6032 bp
->serdes_an_pending
--;
6034 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6037 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6039 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6041 if (bmcr
& BMCR_ANENABLE
) {
6042 if (bnx2_5706_serdes_has_link(bp
)) {
6043 bmcr
&= ~BMCR_ANENABLE
;
6044 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
6045 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6046 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
6050 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
6051 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
6054 bnx2_write_phy(bp
, 0x17, 0x0f01);
6055 bnx2_read_phy(bp
, 0x15, &phy2
);
6059 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6060 bmcr
|= BMCR_ANENABLE
;
6061 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
6063 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
6066 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6071 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6072 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6073 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6075 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6076 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6077 bnx2_5706s_force_link_dn(bp
, 1);
6078 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6081 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6084 spin_unlock(&bp
->phy_lock
);
6088 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6090 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6093 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6094 bp
->serdes_an_pending
= 0;
6098 spin_lock(&bp
->phy_lock
);
6099 if (bp
->serdes_an_pending
)
6100 bp
->serdes_an_pending
--;
6101 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6104 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6105 if (bmcr
& BMCR_ANENABLE
) {
6106 bnx2_enable_forced_2g5(bp
);
6107 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6109 bnx2_disable_forced_2g5(bp
);
6110 bp
->serdes_an_pending
= 2;
6111 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6115 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6117 spin_unlock(&bp
->phy_lock
);
6121 bnx2_timer(unsigned long data
)
6123 struct bnx2
*bp
= (struct bnx2
*) data
;
6125 if (!netif_running(bp
->dev
))
6128 if (atomic_read(&bp
->intr_sem
) != 0)
6129 goto bnx2_restart_timer
;
6131 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6132 BNX2_FLAG_USING_MSI
)
6133 bnx2_chk_missed_msi(bp
);
6135 bnx2_send_heart_beat(bp
);
6137 bp
->stats_blk
->stat_FwRxDrop
=
6138 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6140 /* workaround occasional corrupted counters */
6141 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6142 BNX2_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6143 BNX2_HC_COMMAND_STATS_NOW
);
6145 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6146 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
)
6147 bnx2_5706_serdes_timer(bp
);
6149 bnx2_5708_serdes_timer(bp
);
6153 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6157 bnx2_request_irq(struct bnx2
*bp
)
6159 unsigned long flags
;
6160 struct bnx2_irq
*irq
;
6163 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6166 flags
= IRQF_SHARED
;
6168 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6169 irq
= &bp
->irq_tbl
[i
];
6170 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6180 __bnx2_free_irq(struct bnx2
*bp
)
6182 struct bnx2_irq
*irq
;
6185 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6186 irq
= &bp
->irq_tbl
[i
];
6188 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6194 bnx2_free_irq(struct bnx2
*bp
)
6197 __bnx2_free_irq(bp
);
6198 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6199 pci_disable_msi(bp
->pdev
);
6200 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6201 pci_disable_msix(bp
->pdev
);
6203 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6207 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6209 int i
, total_vecs
, rc
;
6210 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6211 struct net_device
*dev
= bp
->dev
;
6212 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6214 bnx2_setup_msix_tbl(bp
);
6215 BNX2_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6216 BNX2_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6217 BNX2_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6219 /* Need to flush the previous three writes to ensure MSI-X
6220 * is setup properly */
6221 BNX2_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6223 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6224 msix_ent
[i
].entry
= i
;
6225 msix_ent
[i
].vector
= 0;
6228 total_vecs
= msix_vecs
;
6233 while (total_vecs
>= BNX2_MIN_MSIX_VEC
) {
6234 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, total_vecs
);
6244 msix_vecs
= total_vecs
;
6248 bp
->irq_nvecs
= msix_vecs
;
6249 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6250 for (i
= 0; i
< total_vecs
; i
++) {
6251 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6252 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6253 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6258 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6260 int cpus
= netif_get_num_default_rss_queues();
6263 if (!bp
->num_req_rx_rings
)
6264 msix_vecs
= max(cpus
+ 1, bp
->num_req_tx_rings
);
6265 else if (!bp
->num_req_tx_rings
)
6266 msix_vecs
= max(cpus
, bp
->num_req_rx_rings
);
6268 msix_vecs
= max(bp
->num_req_rx_rings
, bp
->num_req_tx_rings
);
6270 msix_vecs
= min(msix_vecs
, RX_MAX_RINGS
);
6272 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6273 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6275 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6277 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
)
6278 bnx2_enable_msix(bp
, msix_vecs
);
6280 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6281 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6282 if (pci_enable_msi(bp
->pdev
) == 0) {
6283 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6284 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
6285 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6286 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6288 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6290 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6294 if (!bp
->num_req_tx_rings
)
6295 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6297 bp
->num_tx_rings
= min(bp
->irq_nvecs
, bp
->num_req_tx_rings
);
6299 if (!bp
->num_req_rx_rings
)
6300 bp
->num_rx_rings
= bp
->irq_nvecs
;
6302 bp
->num_rx_rings
= min(bp
->irq_nvecs
, bp
->num_req_rx_rings
);
6304 netif_set_real_num_tx_queues(bp
->dev
, bp
->num_tx_rings
);
6306 return netif_set_real_num_rx_queues(bp
->dev
, bp
->num_rx_rings
);
6309 /* Called with rtnl_lock */
6311 bnx2_open(struct net_device
*dev
)
6313 struct bnx2
*bp
= netdev_priv(dev
);
6316 rc
= bnx2_request_firmware(bp
);
6320 netif_carrier_off(dev
);
6322 bnx2_disable_int(bp
);
6324 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
6328 bnx2_napi_enable(bp
);
6329 rc
= bnx2_alloc_mem(bp
);
6333 rc
= bnx2_request_irq(bp
);
6337 rc
= bnx2_init_nic(bp
, 1);
6341 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6343 atomic_set(&bp
->intr_sem
, 0);
6345 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6347 bnx2_enable_int(bp
);
6349 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6350 /* Test MSI to make sure it is working
6351 * If MSI test fails, go back to INTx mode
6353 if (bnx2_test_intr(bp
) != 0) {
6354 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6356 bnx2_disable_int(bp
);
6359 bnx2_setup_int_mode(bp
, 1);
6361 rc
= bnx2_init_nic(bp
, 0);
6364 rc
= bnx2_request_irq(bp
);
6367 del_timer_sync(&bp
->timer
);
6370 bnx2_enable_int(bp
);
6373 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6374 netdev_info(dev
, "using MSI\n");
6375 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6376 netdev_info(dev
, "using MSIX\n");
6378 netif_tx_start_all_queues(dev
);
6383 bnx2_napi_disable(bp
);
6388 bnx2_release_firmware(bp
);
6393 bnx2_reset_task(struct work_struct
*work
)
6395 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6400 if (!netif_running(bp
->dev
)) {
6405 bnx2_netif_stop(bp
, true);
6407 pci_read_config_word(bp
->pdev
, PCI_COMMAND
, &pcicmd
);
6408 if (!(pcicmd
& PCI_COMMAND_MEMORY
)) {
6409 /* in case PCI block has reset */
6410 pci_restore_state(bp
->pdev
);
6411 pci_save_state(bp
->pdev
);
6413 rc
= bnx2_init_nic(bp
, 1);
6415 netdev_err(bp
->dev
, "failed to reset NIC, closing\n");
6416 bnx2_napi_enable(bp
);
6422 atomic_set(&bp
->intr_sem
, 1);
6423 bnx2_netif_start(bp
, true);
6427 #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
6430 bnx2_dump_ftq(struct bnx2
*bp
)
6433 u32 reg
, bdidx
, cid
, valid
;
6434 struct net_device
*dev
= bp
->dev
;
6435 static const struct ftq_reg
{
6439 BNX2_FTQ_ENTRY(RV2P_P
),
6440 BNX2_FTQ_ENTRY(RV2P_T
),
6441 BNX2_FTQ_ENTRY(RV2P_M
),
6442 BNX2_FTQ_ENTRY(TBDR_
),
6443 BNX2_FTQ_ENTRY(TDMA_
),
6444 BNX2_FTQ_ENTRY(TXP_
),
6445 BNX2_FTQ_ENTRY(TXP_
),
6446 BNX2_FTQ_ENTRY(TPAT_
),
6447 BNX2_FTQ_ENTRY(RXP_C
),
6448 BNX2_FTQ_ENTRY(RXP_
),
6449 BNX2_FTQ_ENTRY(COM_COMXQ_
),
6450 BNX2_FTQ_ENTRY(COM_COMTQ_
),
6451 BNX2_FTQ_ENTRY(COM_COMQ_
),
6452 BNX2_FTQ_ENTRY(CP_CPQ_
),
6455 netdev_err(dev
, "<--- start FTQ dump --->\n");
6456 for (i
= 0; i
< ARRAY_SIZE(ftq_arr
); i
++)
6457 netdev_err(dev
, "%s %08x\n", ftq_arr
[i
].name
,
6458 bnx2_reg_rd_ind(bp
, ftq_arr
[i
].off
));
6460 netdev_err(dev
, "CPU states:\n");
6461 for (reg
= BNX2_TXP_CPU_MODE
; reg
<= BNX2_CP_CPU_MODE
; reg
+= 0x40000)
6462 netdev_err(dev
, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
6463 reg
, bnx2_reg_rd_ind(bp
, reg
),
6464 bnx2_reg_rd_ind(bp
, reg
+ 4),
6465 bnx2_reg_rd_ind(bp
, reg
+ 8),
6466 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6467 bnx2_reg_rd_ind(bp
, reg
+ 0x1c),
6468 bnx2_reg_rd_ind(bp
, reg
+ 0x20));
6470 netdev_err(dev
, "<--- end FTQ dump --->\n");
6471 netdev_err(dev
, "<--- start TBDC dump --->\n");
6472 netdev_err(dev
, "TBDC free cnt: %ld\n",
6473 BNX2_RD(bp
, BNX2_TBDC_STATUS
) & BNX2_TBDC_STATUS_FREE_CNT
);
6474 netdev_err(dev
, "LINE CID BIDX CMD VALIDS\n");
6475 for (i
= 0; i
< 0x20; i
++) {
6478 BNX2_WR(bp
, BNX2_TBDC_BD_ADDR
, i
);
6479 BNX2_WR(bp
, BNX2_TBDC_CAM_OPCODE
,
6480 BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ
);
6481 BNX2_WR(bp
, BNX2_TBDC_COMMAND
, BNX2_TBDC_COMMAND_CMD_REG_ARB
);
6482 while ((BNX2_RD(bp
, BNX2_TBDC_COMMAND
) &
6483 BNX2_TBDC_COMMAND_CMD_REG_ARB
) && j
< 100)
6486 cid
= BNX2_RD(bp
, BNX2_TBDC_CID
);
6487 bdidx
= BNX2_RD(bp
, BNX2_TBDC_BIDX
);
6488 valid
= BNX2_RD(bp
, BNX2_TBDC_CAM_OPCODE
);
6489 netdev_err(dev
, "%02x %06x %04lx %02x [%x]\n",
6490 i
, cid
, bdidx
& BNX2_TBDC_BDIDX_BDIDX
,
6491 bdidx
>> 24, (valid
>> 8) & 0x0ff);
6493 netdev_err(dev
, "<--- end TBDC dump --->\n");
6497 bnx2_dump_state(struct bnx2
*bp
)
6499 struct net_device
*dev
= bp
->dev
;
6502 pci_read_config_dword(bp
->pdev
, PCI_COMMAND
, &val1
);
6503 netdev_err(dev
, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
6504 atomic_read(&bp
->intr_sem
), val1
);
6505 pci_read_config_dword(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &val1
);
6506 pci_read_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, &val2
);
6507 netdev_err(dev
, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1
, val2
);
6508 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6509 BNX2_RD(bp
, BNX2_EMAC_TX_STATUS
),
6510 BNX2_RD(bp
, BNX2_EMAC_RX_STATUS
));
6511 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6512 BNX2_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6513 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6514 BNX2_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6515 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6516 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6517 BNX2_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6521 bnx2_tx_timeout(struct net_device
*dev
)
6523 struct bnx2
*bp
= netdev_priv(dev
);
6526 bnx2_dump_state(bp
);
6527 bnx2_dump_mcp_state(bp
);
6529 /* This allows the netif to be shutdown gracefully before resetting */
6530 schedule_work(&bp
->reset_task
);
6533 /* Called with netif_tx_lock.
6534 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6535 * netif_wake_queue().
6538 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6540 struct bnx2
*bp
= netdev_priv(dev
);
6542 struct bnx2_tx_bd
*txbd
;
6543 struct bnx2_sw_tx_bd
*tx_buf
;
6544 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6545 u16 prod
, ring_prod
;
6547 struct bnx2_napi
*bnapi
;
6548 struct bnx2_tx_ring_info
*txr
;
6549 struct netdev_queue
*txq
;
6551 /* Determine which tx ring we will be placed on */
6552 i
= skb_get_queue_mapping(skb
);
6553 bnapi
= &bp
->bnx2_napi
[i
];
6554 txr
= &bnapi
->tx_ring
;
6555 txq
= netdev_get_tx_queue(dev
, i
);
6557 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6558 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6559 netif_tx_stop_queue(txq
);
6560 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6562 return NETDEV_TX_BUSY
;
6564 len
= skb_headlen(skb
);
6565 prod
= txr
->tx_prod
;
6566 ring_prod
= BNX2_TX_RING_IDX(prod
);
6569 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6570 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6573 if (vlan_tx_tag_present(skb
)) {
6575 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6578 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6582 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6584 tcp_opt_len
= tcp_optlen(skb
);
6586 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6587 u32 tcp_off
= skb_transport_offset(skb
) -
6588 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6590 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6591 TX_BD_FLAGS_SW_FLAGS
;
6592 if (likely(tcp_off
== 0))
6593 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6596 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6597 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6598 ((tcp_off
& 0x10) <<
6599 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6600 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6604 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6605 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6606 (tcp_opt_len
>> 2)) << 8;
6612 mapping
= dma_map_single(&bp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6613 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
)) {
6615 return NETDEV_TX_OK
;
6618 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6620 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6622 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6624 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6625 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6626 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6627 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6629 last_frag
= skb_shinfo(skb
)->nr_frags
;
6630 tx_buf
->nr_frags
= last_frag
;
6631 tx_buf
->is_gso
= skb_is_gso(skb
);
6633 for (i
= 0; i
< last_frag
; i
++) {
6634 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6636 prod
= BNX2_NEXT_TX_BD(prod
);
6637 ring_prod
= BNX2_TX_RING_IDX(prod
);
6638 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6640 len
= skb_frag_size(frag
);
6641 mapping
= skb_frag_dma_map(&bp
->pdev
->dev
, frag
, 0, len
,
6643 if (dma_mapping_error(&bp
->pdev
->dev
, mapping
))
6645 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6648 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6649 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6650 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6651 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6654 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6656 /* Sync BD data before updating TX mailbox */
6659 netdev_tx_sent_queue(txq
, skb
->len
);
6661 prod
= BNX2_NEXT_TX_BD(prod
);
6662 txr
->tx_prod_bseq
+= skb
->len
;
6664 BNX2_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6665 BNX2_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6669 txr
->tx_prod
= prod
;
6671 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6672 netif_tx_stop_queue(txq
);
6674 /* netif_tx_stop_queue() must be done before checking
6675 * tx index in bnx2_tx_avail() below, because in
6676 * bnx2_tx_int(), we update tx index before checking for
6677 * netif_tx_queue_stopped().
6680 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6681 netif_tx_wake_queue(txq
);
6684 return NETDEV_TX_OK
;
6686 /* save value of frag that failed */
6689 /* start back at beginning and unmap skb */
6690 prod
= txr
->tx_prod
;
6691 ring_prod
= BNX2_TX_RING_IDX(prod
);
6692 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6694 dma_unmap_single(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6695 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6697 /* unmap remaining mapped pages */
6698 for (i
= 0; i
< last_frag
; i
++) {
6699 prod
= BNX2_NEXT_TX_BD(prod
);
6700 ring_prod
= BNX2_TX_RING_IDX(prod
);
6701 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6702 dma_unmap_page(&bp
->pdev
->dev
, dma_unmap_addr(tx_buf
, mapping
),
6703 skb_frag_size(&skb_shinfo(skb
)->frags
[i
]),
6708 return NETDEV_TX_OK
;
6711 /* Called with rtnl_lock */
6713 bnx2_close(struct net_device
*dev
)
6715 struct bnx2
*bp
= netdev_priv(dev
);
6717 bnx2_disable_int_sync(bp
);
6718 bnx2_napi_disable(bp
);
6719 netif_tx_disable(dev
);
6720 del_timer_sync(&bp
->timer
);
6721 bnx2_shutdown_chip(bp
);
6727 netif_carrier_off(bp
->dev
);
6732 bnx2_save_stats(struct bnx2
*bp
)
6734 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6735 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6738 /* The 1st 10 counters are 64-bit counters */
6739 for (i
= 0; i
< 20; i
+= 2) {
6743 hi
= temp_stats
[i
] + hw_stats
[i
];
6744 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6745 if (lo
> 0xffffffff)
6748 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6751 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6752 temp_stats
[i
] += hw_stats
[i
];
6755 #define GET_64BIT_NET_STATS64(ctr) \
6756 (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
6758 #define GET_64BIT_NET_STATS(ctr) \
6759 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6760 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6762 #define GET_32BIT_NET_STATS(ctr) \
6763 (unsigned long) (bp->stats_blk->ctr + \
6764 bp->temp_stats_blk->ctr)
6766 static struct rtnl_link_stats64
*
6767 bnx2_get_stats64(struct net_device
*dev
, struct rtnl_link_stats64
*net_stats
)
6769 struct bnx2
*bp
= netdev_priv(dev
);
6771 if (bp
->stats_blk
== NULL
)
6774 net_stats
->rx_packets
=
6775 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6776 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6777 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6779 net_stats
->tx_packets
=
6780 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6781 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6782 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6784 net_stats
->rx_bytes
=
6785 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6787 net_stats
->tx_bytes
=
6788 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6790 net_stats
->multicast
=
6791 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
);
6793 net_stats
->collisions
=
6794 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6796 net_stats
->rx_length_errors
=
6797 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6798 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6800 net_stats
->rx_over_errors
=
6801 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6802 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6804 net_stats
->rx_frame_errors
=
6805 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6807 net_stats
->rx_crc_errors
=
6808 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6810 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6811 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6812 net_stats
->rx_crc_errors
;
6814 net_stats
->tx_aborted_errors
=
6815 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6816 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6818 if ((BNX2_CHIP(bp
) == BNX2_CHIP_5706
) ||
6819 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
6820 net_stats
->tx_carrier_errors
= 0;
6822 net_stats
->tx_carrier_errors
=
6823 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6826 net_stats
->tx_errors
=
6827 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6828 net_stats
->tx_aborted_errors
+
6829 net_stats
->tx_carrier_errors
;
6831 net_stats
->rx_missed_errors
=
6832 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6833 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6834 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6839 /* All ethtool functions called with rtnl_lock */
6842 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6844 struct bnx2
*bp
= netdev_priv(dev
);
6845 int support_serdes
= 0, support_copper
= 0;
6847 cmd
->supported
= SUPPORTED_Autoneg
;
6848 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6851 } else if (bp
->phy_port
== PORT_FIBRE
)
6856 if (support_serdes
) {
6857 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6859 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6860 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6863 if (support_copper
) {
6864 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6865 SUPPORTED_10baseT_Full
|
6866 SUPPORTED_100baseT_Half
|
6867 SUPPORTED_100baseT_Full
|
6868 SUPPORTED_1000baseT_Full
|
6873 spin_lock_bh(&bp
->phy_lock
);
6874 cmd
->port
= bp
->phy_port
;
6875 cmd
->advertising
= bp
->advertising
;
6877 if (bp
->autoneg
& AUTONEG_SPEED
) {
6878 cmd
->autoneg
= AUTONEG_ENABLE
;
6880 cmd
->autoneg
= AUTONEG_DISABLE
;
6883 if (netif_carrier_ok(dev
)) {
6884 ethtool_cmd_speed_set(cmd
, bp
->line_speed
);
6885 cmd
->duplex
= bp
->duplex
;
6886 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
)) {
6887 if (bp
->phy_flags
& BNX2_PHY_FLAG_MDIX
)
6888 cmd
->eth_tp_mdix
= ETH_TP_MDI_X
;
6890 cmd
->eth_tp_mdix
= ETH_TP_MDI
;
6894 ethtool_cmd_speed_set(cmd
, -1);
6897 spin_unlock_bh(&bp
->phy_lock
);
6899 cmd
->transceiver
= XCVR_INTERNAL
;
6900 cmd
->phy_address
= bp
->phy_addr
;
6906 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6908 struct bnx2
*bp
= netdev_priv(dev
);
6909 u8 autoneg
= bp
->autoneg
;
6910 u8 req_duplex
= bp
->req_duplex
;
6911 u16 req_line_speed
= bp
->req_line_speed
;
6912 u32 advertising
= bp
->advertising
;
6915 spin_lock_bh(&bp
->phy_lock
);
6917 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6918 goto err_out_unlock
;
6920 if (cmd
->port
!= bp
->phy_port
&&
6921 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6922 goto err_out_unlock
;
6924 /* If device is down, we can store the settings only if the user
6925 * is setting the currently active port.
6927 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6928 goto err_out_unlock
;
6930 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6931 autoneg
|= AUTONEG_SPEED
;
6933 advertising
= cmd
->advertising
;
6934 if (cmd
->port
== PORT_TP
) {
6935 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6937 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6939 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6941 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6943 advertising
|= ADVERTISED_Autoneg
;
6946 u32 speed
= ethtool_cmd_speed(cmd
);
6947 if (cmd
->port
== PORT_FIBRE
) {
6948 if ((speed
!= SPEED_1000
&&
6949 speed
!= SPEED_2500
) ||
6950 (cmd
->duplex
!= DUPLEX_FULL
))
6951 goto err_out_unlock
;
6953 if (speed
== SPEED_2500
&&
6954 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6955 goto err_out_unlock
;
6956 } else if (speed
== SPEED_1000
|| speed
== SPEED_2500
)
6957 goto err_out_unlock
;
6959 autoneg
&= ~AUTONEG_SPEED
;
6960 req_line_speed
= speed
;
6961 req_duplex
= cmd
->duplex
;
6965 bp
->autoneg
= autoneg
;
6966 bp
->advertising
= advertising
;
6967 bp
->req_line_speed
= req_line_speed
;
6968 bp
->req_duplex
= req_duplex
;
6971 /* If device is down, the new settings will be picked up when it is
6974 if (netif_running(dev
))
6975 err
= bnx2_setup_phy(bp
, cmd
->port
);
6978 spin_unlock_bh(&bp
->phy_lock
);
6984 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6986 struct bnx2
*bp
= netdev_priv(dev
);
6988 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
6989 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
6990 strlcpy(info
->bus_info
, pci_name(bp
->pdev
), sizeof(info
->bus_info
));
6991 strlcpy(info
->fw_version
, bp
->fw_version
, sizeof(info
->fw_version
));
6994 #define BNX2_REGDUMP_LEN (32 * 1024)
6997 bnx2_get_regs_len(struct net_device
*dev
)
6999 return BNX2_REGDUMP_LEN
;
7003 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
7005 u32
*p
= _p
, i
, offset
;
7007 struct bnx2
*bp
= netdev_priv(dev
);
7008 static const u32 reg_boundaries
[] = {
7009 0x0000, 0x0098, 0x0400, 0x045c,
7010 0x0800, 0x0880, 0x0c00, 0x0c10,
7011 0x0c30, 0x0d08, 0x1000, 0x101c,
7012 0x1040, 0x1048, 0x1080, 0x10a4,
7013 0x1400, 0x1490, 0x1498, 0x14f0,
7014 0x1500, 0x155c, 0x1580, 0x15dc,
7015 0x1600, 0x1658, 0x1680, 0x16d8,
7016 0x1800, 0x1820, 0x1840, 0x1854,
7017 0x1880, 0x1894, 0x1900, 0x1984,
7018 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
7019 0x1c80, 0x1c94, 0x1d00, 0x1d84,
7020 0x2000, 0x2030, 0x23c0, 0x2400,
7021 0x2800, 0x2820, 0x2830, 0x2850,
7022 0x2b40, 0x2c10, 0x2fc0, 0x3058,
7023 0x3c00, 0x3c94, 0x4000, 0x4010,
7024 0x4080, 0x4090, 0x43c0, 0x4458,
7025 0x4c00, 0x4c18, 0x4c40, 0x4c54,
7026 0x4fc0, 0x5010, 0x53c0, 0x5444,
7027 0x5c00, 0x5c18, 0x5c80, 0x5c90,
7028 0x5fc0, 0x6000, 0x6400, 0x6428,
7029 0x6800, 0x6848, 0x684c, 0x6860,
7030 0x6888, 0x6910, 0x8000
7035 memset(p
, 0, BNX2_REGDUMP_LEN
);
7037 if (!netif_running(bp
->dev
))
7041 offset
= reg_boundaries
[0];
7043 while (offset
< BNX2_REGDUMP_LEN
) {
7044 *p
++ = BNX2_RD(bp
, offset
);
7046 if (offset
== reg_boundaries
[i
+ 1]) {
7047 offset
= reg_boundaries
[i
+ 2];
7048 p
= (u32
*) (orig_p
+ offset
);
7055 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7057 struct bnx2
*bp
= netdev_priv(dev
);
7059 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
7064 wol
->supported
= WAKE_MAGIC
;
7066 wol
->wolopts
= WAKE_MAGIC
;
7070 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
7074 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
7076 struct bnx2
*bp
= netdev_priv(dev
);
7078 if (wol
->wolopts
& ~WAKE_MAGIC
)
7081 if (wol
->wolopts
& WAKE_MAGIC
) {
7082 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
7091 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
7097 bnx2_nway_reset(struct net_device
*dev
)
7099 struct bnx2
*bp
= netdev_priv(dev
);
7102 if (!netif_running(dev
))
7105 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
7109 spin_lock_bh(&bp
->phy_lock
);
7111 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
7114 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
7115 spin_unlock_bh(&bp
->phy_lock
);
7119 /* Force a link down visible on the other side */
7120 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
7121 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
7122 spin_unlock_bh(&bp
->phy_lock
);
7126 spin_lock_bh(&bp
->phy_lock
);
7128 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
7129 bp
->serdes_an_pending
= 1;
7130 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
7133 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
7134 bmcr
&= ~BMCR_LOOPBACK
;
7135 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
7137 spin_unlock_bh(&bp
->phy_lock
);
7143 bnx2_get_link(struct net_device
*dev
)
7145 struct bnx2
*bp
= netdev_priv(dev
);
7151 bnx2_get_eeprom_len(struct net_device
*dev
)
7153 struct bnx2
*bp
= netdev_priv(dev
);
7155 if (bp
->flash_info
== NULL
)
7158 return (int) bp
->flash_size
;
7162 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7165 struct bnx2
*bp
= netdev_priv(dev
);
7168 /* parameters already validated in ethtool_get_eeprom */
7170 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7176 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7179 struct bnx2
*bp
= netdev_priv(dev
);
7182 /* parameters already validated in ethtool_set_eeprom */
7184 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7190 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7192 struct bnx2
*bp
= netdev_priv(dev
);
7194 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7196 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7197 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7198 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7199 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7201 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7202 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7203 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7204 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7206 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7212 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7214 struct bnx2
*bp
= netdev_priv(dev
);
7216 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7217 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7219 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7220 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7222 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7223 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7225 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7226 if (bp
->rx_quick_cons_trip_int
> 0xff)
7227 bp
->rx_quick_cons_trip_int
= 0xff;
7229 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7230 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7232 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7233 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7235 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7236 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7238 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7239 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7242 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7243 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7244 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7245 bp
->stats_ticks
= USEC_PER_SEC
;
7247 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7248 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7249 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7251 if (netif_running(bp
->dev
)) {
7252 bnx2_netif_stop(bp
, true);
7253 bnx2_init_nic(bp
, 0);
7254 bnx2_netif_start(bp
, true);
7261 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7263 struct bnx2
*bp
= netdev_priv(dev
);
7265 ering
->rx_max_pending
= BNX2_MAX_TOTAL_RX_DESC_CNT
;
7266 ering
->rx_jumbo_max_pending
= BNX2_MAX_TOTAL_RX_PG_DESC_CNT
;
7268 ering
->rx_pending
= bp
->rx_ring_size
;
7269 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7271 ering
->tx_max_pending
= BNX2_MAX_TX_DESC_CNT
;
7272 ering
->tx_pending
= bp
->tx_ring_size
;
7276 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
, bool reset_irq
)
7278 if (netif_running(bp
->dev
)) {
7279 /* Reset will erase chipset stats; save them */
7280 bnx2_save_stats(bp
);
7282 bnx2_netif_stop(bp
, true);
7283 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7288 __bnx2_free_irq(bp
);
7294 bnx2_set_rx_ring_size(bp
, rx
);
7295 bp
->tx_ring_size
= tx
;
7297 if (netif_running(bp
->dev
)) {
7301 rc
= bnx2_setup_int_mode(bp
, disable_msi
);
7306 rc
= bnx2_alloc_mem(bp
);
7309 rc
= bnx2_request_irq(bp
);
7312 rc
= bnx2_init_nic(bp
, 0);
7315 bnx2_napi_enable(bp
);
7320 mutex_lock(&bp
->cnic_lock
);
7321 /* Let cnic know about the new status block. */
7322 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7323 bnx2_setup_cnic_irq_info(bp
);
7324 mutex_unlock(&bp
->cnic_lock
);
7326 bnx2_netif_start(bp
, true);
7332 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7334 struct bnx2
*bp
= netdev_priv(dev
);
7337 if ((ering
->rx_pending
> BNX2_MAX_TOTAL_RX_DESC_CNT
) ||
7338 (ering
->tx_pending
> BNX2_MAX_TX_DESC_CNT
) ||
7339 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7343 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
,
7349 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7351 struct bnx2
*bp
= netdev_priv(dev
);
7353 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7354 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7355 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7359 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7361 struct bnx2
*bp
= netdev_priv(dev
);
7363 bp
->req_flow_ctrl
= 0;
7364 if (epause
->rx_pause
)
7365 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7366 if (epause
->tx_pause
)
7367 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7369 if (epause
->autoneg
) {
7370 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7373 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7376 if (netif_running(dev
)) {
7377 spin_lock_bh(&bp
->phy_lock
);
7378 bnx2_setup_phy(bp
, bp
->phy_port
);
7379 spin_unlock_bh(&bp
->phy_lock
);
7386 char string
[ETH_GSTRING_LEN
];
7387 } bnx2_stats_str_arr
[] = {
7389 { "rx_error_bytes" },
7391 { "tx_error_bytes" },
7392 { "rx_ucast_packets" },
7393 { "rx_mcast_packets" },
7394 { "rx_bcast_packets" },
7395 { "tx_ucast_packets" },
7396 { "tx_mcast_packets" },
7397 { "tx_bcast_packets" },
7398 { "tx_mac_errors" },
7399 { "tx_carrier_errors" },
7400 { "rx_crc_errors" },
7401 { "rx_align_errors" },
7402 { "tx_single_collisions" },
7403 { "tx_multi_collisions" },
7405 { "tx_excess_collisions" },
7406 { "tx_late_collisions" },
7407 { "tx_total_collisions" },
7410 { "rx_undersize_packets" },
7411 { "rx_oversize_packets" },
7412 { "rx_64_byte_packets" },
7413 { "rx_65_to_127_byte_packets" },
7414 { "rx_128_to_255_byte_packets" },
7415 { "rx_256_to_511_byte_packets" },
7416 { "rx_512_to_1023_byte_packets" },
7417 { "rx_1024_to_1522_byte_packets" },
7418 { "rx_1523_to_9022_byte_packets" },
7419 { "tx_64_byte_packets" },
7420 { "tx_65_to_127_byte_packets" },
7421 { "tx_128_to_255_byte_packets" },
7422 { "tx_256_to_511_byte_packets" },
7423 { "tx_512_to_1023_byte_packets" },
7424 { "tx_1024_to_1522_byte_packets" },
7425 { "tx_1523_to_9022_byte_packets" },
7426 { "rx_xon_frames" },
7427 { "rx_xoff_frames" },
7428 { "tx_xon_frames" },
7429 { "tx_xoff_frames" },
7430 { "rx_mac_ctrl_frames" },
7431 { "rx_filtered_packets" },
7432 { "rx_ftq_discards" },
7434 { "rx_fw_discards" },
7437 #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
7439 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7441 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7442 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7443 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7444 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7445 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7446 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7447 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7448 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7449 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7450 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7451 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7452 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7453 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7454 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7455 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7456 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7457 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7458 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7459 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7460 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7461 STATS_OFFSET32(stat_EtherStatsCollisions
),
7462 STATS_OFFSET32(stat_EtherStatsFragments
),
7463 STATS_OFFSET32(stat_EtherStatsJabbers
),
7464 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7465 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7466 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7467 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7468 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7469 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7470 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7471 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7472 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7473 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7474 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7475 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7476 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7477 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7478 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7479 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7480 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7481 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7482 STATS_OFFSET32(stat_OutXonSent
),
7483 STATS_OFFSET32(stat_OutXoffSent
),
7484 STATS_OFFSET32(stat_MacControlFramesReceived
),
7485 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7486 STATS_OFFSET32(stat_IfInFTQDiscards
),
7487 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7488 STATS_OFFSET32(stat_FwRxDrop
),
7491 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7492 * skipped because of errata.
7494 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7495 8,0,8,8,8,8,8,8,8,8,
7496 4,0,4,4,4,4,4,4,4,4,
7497 4,4,4,4,4,4,4,4,4,4,
7498 4,4,4,4,4,4,4,4,4,4,
7502 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7503 8,0,8,8,8,8,8,8,8,8,
7504 4,4,4,4,4,4,4,4,4,4,
7505 4,4,4,4,4,4,4,4,4,4,
7506 4,4,4,4,4,4,4,4,4,4,
7510 #define BNX2_NUM_TESTS 6
7513 char string
[ETH_GSTRING_LEN
];
7514 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7515 { "register_test (offline)" },
7516 { "memory_test (offline)" },
7517 { "loopback_test (offline)" },
7518 { "nvram_test (online)" },
7519 { "interrupt_test (online)" },
7520 { "link_test (online)" },
7524 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7528 return BNX2_NUM_TESTS
;
7530 return BNX2_NUM_STATS
;
7537 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7539 struct bnx2
*bp
= netdev_priv(dev
);
7541 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7542 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7545 bnx2_netif_stop(bp
, true);
7546 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7549 if (bnx2_test_registers(bp
) != 0) {
7551 etest
->flags
|= ETH_TEST_FL_FAILED
;
7553 if (bnx2_test_memory(bp
) != 0) {
7555 etest
->flags
|= ETH_TEST_FL_FAILED
;
7557 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7558 etest
->flags
|= ETH_TEST_FL_FAILED
;
7560 if (!netif_running(bp
->dev
))
7561 bnx2_shutdown_chip(bp
);
7563 bnx2_init_nic(bp
, 1);
7564 bnx2_netif_start(bp
, true);
7567 /* wait for link up */
7568 for (i
= 0; i
< 7; i
++) {
7571 msleep_interruptible(1000);
7575 if (bnx2_test_nvram(bp
) != 0) {
7577 etest
->flags
|= ETH_TEST_FL_FAILED
;
7579 if (bnx2_test_intr(bp
) != 0) {
7581 etest
->flags
|= ETH_TEST_FL_FAILED
;
7584 if (bnx2_test_link(bp
) != 0) {
7586 etest
->flags
|= ETH_TEST_FL_FAILED
;
7592 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7594 switch (stringset
) {
7596 memcpy(buf
, bnx2_stats_str_arr
,
7597 sizeof(bnx2_stats_str_arr
));
7600 memcpy(buf
, bnx2_tests_str_arr
,
7601 sizeof(bnx2_tests_str_arr
));
7607 bnx2_get_ethtool_stats(struct net_device
*dev
,
7608 struct ethtool_stats
*stats
, u64
*buf
)
7610 struct bnx2
*bp
= netdev_priv(dev
);
7612 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7613 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7614 u8
*stats_len_arr
= NULL
;
7616 if (hw_stats
== NULL
) {
7617 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7621 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) ||
7622 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) ||
7623 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A2
) ||
7624 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
))
7625 stats_len_arr
= bnx2_5706_stats_len_arr
;
7627 stats_len_arr
= bnx2_5708_stats_len_arr
;
7629 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7630 unsigned long offset
;
7632 if (stats_len_arr
[i
] == 0) {
7633 /* skip this counter */
7638 offset
= bnx2_stats_offset_arr
[i
];
7639 if (stats_len_arr
[i
] == 4) {
7640 /* 4-byte counter */
7641 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7642 *(temp_stats
+ offset
);
7645 /* 8-byte counter */
7646 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7647 *(hw_stats
+ offset
+ 1) +
7648 (((u64
) *(temp_stats
+ offset
)) << 32) +
7649 *(temp_stats
+ offset
+ 1);
7654 bnx2_set_phys_id(struct net_device
*dev
, enum ethtool_phys_id_state state
)
7656 struct bnx2
*bp
= netdev_priv(dev
);
7659 case ETHTOOL_ID_ACTIVE
:
7660 bp
->leds_save
= BNX2_RD(bp
, BNX2_MISC_CFG
);
7661 BNX2_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7662 return 1; /* cycle on/off once per second */
7665 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7666 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7667 BNX2_EMAC_LED_100MB_OVERRIDE
|
7668 BNX2_EMAC_LED_10MB_OVERRIDE
|
7669 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7670 BNX2_EMAC_LED_TRAFFIC
);
7673 case ETHTOOL_ID_OFF
:
7674 BNX2_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7677 case ETHTOOL_ID_INACTIVE
:
7678 BNX2_WR(bp
, BNX2_EMAC_LED
, 0);
7679 BNX2_WR(bp
, BNX2_MISC_CFG
, bp
->leds_save
);
7686 static netdev_features_t
7687 bnx2_fix_features(struct net_device
*dev
, netdev_features_t features
)
7689 struct bnx2
*bp
= netdev_priv(dev
);
7691 if (!(bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
7692 features
|= NETIF_F_HW_VLAN_CTAG_RX
;
7698 bnx2_set_features(struct net_device
*dev
, netdev_features_t features
)
7700 struct bnx2
*bp
= netdev_priv(dev
);
7702 /* TSO with VLAN tag won't work with current firmware */
7703 if (features
& NETIF_F_HW_VLAN_CTAG_TX
)
7704 dev
->vlan_features
|= (dev
->hw_features
& NETIF_F_ALL_TSO
);
7706 dev
->vlan_features
&= ~NETIF_F_ALL_TSO
;
7708 if ((!!(features
& NETIF_F_HW_VLAN_CTAG_RX
) !=
7709 !!(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) &&
7710 netif_running(dev
)) {
7711 bnx2_netif_stop(bp
, false);
7712 dev
->features
= features
;
7713 bnx2_set_rx_mode(dev
);
7714 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
7715 bnx2_netif_start(bp
, false);
7722 static void bnx2_get_channels(struct net_device
*dev
,
7723 struct ethtool_channels
*channels
)
7725 struct bnx2
*bp
= netdev_priv(dev
);
7726 u32 max_rx_rings
= 1;
7727 u32 max_tx_rings
= 1;
7729 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7730 max_rx_rings
= RX_MAX_RINGS
;
7731 max_tx_rings
= TX_MAX_RINGS
;
7734 channels
->max_rx
= max_rx_rings
;
7735 channels
->max_tx
= max_tx_rings
;
7736 channels
->max_other
= 0;
7737 channels
->max_combined
= 0;
7738 channels
->rx_count
= bp
->num_rx_rings
;
7739 channels
->tx_count
= bp
->num_tx_rings
;
7740 channels
->other_count
= 0;
7741 channels
->combined_count
= 0;
7744 static int bnx2_set_channels(struct net_device
*dev
,
7745 struct ethtool_channels
*channels
)
7747 struct bnx2
*bp
= netdev_priv(dev
);
7748 u32 max_rx_rings
= 1;
7749 u32 max_tx_rings
= 1;
7752 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !disable_msi
) {
7753 max_rx_rings
= RX_MAX_RINGS
;
7754 max_tx_rings
= TX_MAX_RINGS
;
7756 if (channels
->rx_count
> max_rx_rings
||
7757 channels
->tx_count
> max_tx_rings
)
7760 bp
->num_req_rx_rings
= channels
->rx_count
;
7761 bp
->num_req_tx_rings
= channels
->tx_count
;
7763 if (netif_running(dev
))
7764 rc
= bnx2_change_ring_size(bp
, bp
->rx_ring_size
,
7765 bp
->tx_ring_size
, true);
7770 static const struct ethtool_ops bnx2_ethtool_ops
= {
7771 .get_settings
= bnx2_get_settings
,
7772 .set_settings
= bnx2_set_settings
,
7773 .get_drvinfo
= bnx2_get_drvinfo
,
7774 .get_regs_len
= bnx2_get_regs_len
,
7775 .get_regs
= bnx2_get_regs
,
7776 .get_wol
= bnx2_get_wol
,
7777 .set_wol
= bnx2_set_wol
,
7778 .nway_reset
= bnx2_nway_reset
,
7779 .get_link
= bnx2_get_link
,
7780 .get_eeprom_len
= bnx2_get_eeprom_len
,
7781 .get_eeprom
= bnx2_get_eeprom
,
7782 .set_eeprom
= bnx2_set_eeprom
,
7783 .get_coalesce
= bnx2_get_coalesce
,
7784 .set_coalesce
= bnx2_set_coalesce
,
7785 .get_ringparam
= bnx2_get_ringparam
,
7786 .set_ringparam
= bnx2_set_ringparam
,
7787 .get_pauseparam
= bnx2_get_pauseparam
,
7788 .set_pauseparam
= bnx2_set_pauseparam
,
7789 .self_test
= bnx2_self_test
,
7790 .get_strings
= bnx2_get_strings
,
7791 .set_phys_id
= bnx2_set_phys_id
,
7792 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7793 .get_sset_count
= bnx2_get_sset_count
,
7794 .get_channels
= bnx2_get_channels
,
7795 .set_channels
= bnx2_set_channels
,
7798 /* Called with rtnl_lock */
7800 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7802 struct mii_ioctl_data
*data
= if_mii(ifr
);
7803 struct bnx2
*bp
= netdev_priv(dev
);
7808 data
->phy_id
= bp
->phy_addr
;
7814 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7817 if (!netif_running(dev
))
7820 spin_lock_bh(&bp
->phy_lock
);
7821 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7822 spin_unlock_bh(&bp
->phy_lock
);
7824 data
->val_out
= mii_regval
;
7830 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7833 if (!netif_running(dev
))
7836 spin_lock_bh(&bp
->phy_lock
);
7837 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7838 spin_unlock_bh(&bp
->phy_lock
);
7849 /* Called with rtnl_lock */
7851 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7853 struct sockaddr
*addr
= p
;
7854 struct bnx2
*bp
= netdev_priv(dev
);
7856 if (!is_valid_ether_addr(addr
->sa_data
))
7857 return -EADDRNOTAVAIL
;
7859 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7860 if (netif_running(dev
))
7861 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7866 /* Called with rtnl_lock */
7868 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7870 struct bnx2
*bp
= netdev_priv(dev
);
7872 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7873 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7877 return bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
,
7881 #ifdef CONFIG_NET_POLL_CONTROLLER
7883 poll_bnx2(struct net_device
*dev
)
7885 struct bnx2
*bp
= netdev_priv(dev
);
7888 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7889 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7891 disable_irq(irq
->vector
);
7892 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7893 enable_irq(irq
->vector
);
7899 bnx2_get_5709_media(struct bnx2
*bp
)
7901 u32 val
= BNX2_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7902 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7905 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7907 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7908 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7912 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7913 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7915 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7917 if (bp
->func
== 0) {
7922 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7930 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7937 bnx2_get_pci_speed(struct bnx2
*bp
)
7941 reg
= BNX2_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7942 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7945 bp
->flags
|= BNX2_FLAG_PCIX
;
7947 clkreg
= BNX2_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7949 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7951 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7952 bp
->bus_speed_mhz
= 133;
7955 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7956 bp
->bus_speed_mhz
= 100;
7959 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7960 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7961 bp
->bus_speed_mhz
= 66;
7964 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7965 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7966 bp
->bus_speed_mhz
= 50;
7969 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7970 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7971 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7972 bp
->bus_speed_mhz
= 33;
7977 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7978 bp
->bus_speed_mhz
= 66;
7980 bp
->bus_speed_mhz
= 33;
7983 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7984 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7989 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7993 unsigned int block_end
, rosize
, len
;
7995 #define BNX2_VPD_NVRAM_OFFSET 0x300
7996 #define BNX2_VPD_LEN 128
7997 #define BNX2_MAX_VER_SLEN 30
7999 data
= kmalloc(256, GFP_KERNEL
);
8003 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
8008 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
8009 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
8010 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
8011 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
8012 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
8015 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
8019 rosize
= pci_vpd_lrdt_size(&data
[i
]);
8020 i
+= PCI_VPD_LRDT_TAG_SIZE
;
8021 block_end
= i
+ rosize
;
8023 if (block_end
> BNX2_VPD_LEN
)
8026 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8027 PCI_VPD_RO_KEYWORD_MFR_ID
);
8031 len
= pci_vpd_info_field_size(&data
[j
]);
8033 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8034 if (j
+ len
> block_end
|| len
!= 4 ||
8035 memcmp(&data
[j
], "1028", 4))
8038 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
8039 PCI_VPD_RO_KEYWORD_VENDOR0
);
8043 len
= pci_vpd_info_field_size(&data
[j
]);
8045 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
8046 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
8049 memcpy(bp
->fw_version
, &data
[j
], len
);
8050 bp
->fw_version
[len
] = ' ';
8057 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
8062 u64 dma_mask
, persist_dma_mask
;
8065 SET_NETDEV_DEV(dev
, &pdev
->dev
);
8066 bp
= netdev_priv(dev
);
8071 bp
->temp_stats_blk
=
8072 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
8074 if (bp
->temp_stats_blk
== NULL
) {
8079 /* enable device (incl. PCI PM wakeup), and bus-mastering */
8080 rc
= pci_enable_device(pdev
);
8082 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
8086 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
8088 "Cannot find PCI device base address, aborting\n");
8090 goto err_out_disable
;
8093 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
8095 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
8096 goto err_out_disable
;
8099 pci_set_master(pdev
);
8101 bp
->pm_cap
= pdev
->pm_cap
;
8102 if (bp
->pm_cap
== 0) {
8104 "Cannot find power management capability, aborting\n");
8106 goto err_out_release
;
8112 spin_lock_init(&bp
->phy_lock
);
8113 spin_lock_init(&bp
->indirect_lock
);
8115 mutex_init(&bp
->cnic_lock
);
8117 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
8119 bp
->regview
= pci_iomap(pdev
, 0, MB_GET_CID_ADDR(TX_TSS_CID
+
8120 TX_MAX_TSS_RINGS
+ 1));
8122 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
8124 goto err_out_release
;
8127 /* Configure byte swap and enable write to the reg_window registers.
8128 * Rely on CPU to do target byte swapping on big endian systems
8129 * The chip's target access swapping will not swap all accesses
8131 BNX2_WR(bp
, BNX2_PCICFG_MISC_CONFIG
,
8132 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
8133 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
8135 bp
->chip_id
= BNX2_RD(bp
, BNX2_MISC_ID
);
8137 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
) {
8138 if (!pci_is_pcie(pdev
)) {
8139 dev_err(&pdev
->dev
, "Not PCIE, aborting\n");
8143 bp
->flags
|= BNX2_FLAG_PCIE
;
8144 if (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
)
8145 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
8147 /* AER (Advanced Error Reporting) hooks */
8148 err
= pci_enable_pcie_error_reporting(pdev
);
8150 bp
->flags
|= BNX2_FLAG_AER_ENABLED
;
8153 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
8154 if (bp
->pcix_cap
== 0) {
8156 "Cannot find PCIX capability, aborting\n");
8160 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
8163 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8164 BNX2_CHIP_REV(bp
) != BNX2_CHIP_REV_Ax
) {
8166 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
8169 if (BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A0
&&
8170 BNX2_CHIP_ID(bp
) != BNX2_CHIP_ID_5706_A1
) {
8172 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
8175 /* 5708 cannot support DMA addresses > 40-bit. */
8176 if (BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8177 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
8179 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
8181 /* Configure DMA attributes. */
8182 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
8183 dev
->features
|= NETIF_F_HIGHDMA
;
8184 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
8187 "pci_set_consistent_dma_mask failed, aborting\n");
8190 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
8191 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
8195 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
8196 bnx2_get_pci_speed(bp
);
8198 /* 5706A0 may falsely detect SERR and PERR. */
8199 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8200 reg
= BNX2_RD(bp
, PCI_COMMAND
);
8201 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
8202 BNX2_WR(bp
, PCI_COMMAND
, reg
);
8203 } else if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A1
) &&
8204 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
8207 "5706 A1 can only be used in a PCIX bus, aborting\n");
8211 bnx2_init_nvram(bp
);
8213 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8215 if (bnx2_reg_rd_ind(bp
, BNX2_MCP_TOE_ID
) & BNX2_MCP_TOE_ID_FUNCTION_ID
)
8218 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8219 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8220 u32 off
= bp
->func
<< 2;
8222 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8224 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8226 /* Get the permanent MAC address. First we need to make sure the
8227 * firmware is actually running.
8229 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8231 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8232 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8233 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8238 bnx2_read_vpd_fw_ver(bp
);
8240 j
= strlen(bp
->fw_version
);
8241 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8242 for (i
= 0; i
< 3 && j
< 24; i
++) {
8246 bp
->fw_version
[j
++] = 'b';
8247 bp
->fw_version
[j
++] = 'c';
8248 bp
->fw_version
[j
++] = ' ';
8250 num
= (u8
) (reg
>> (24 - (i
* 8)));
8251 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8252 if (num
>= k
|| !skip0
|| k
== 1) {
8253 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8258 bp
->fw_version
[j
++] = '.';
8260 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8261 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8264 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8265 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8267 for (i
= 0; i
< 30; i
++) {
8268 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8269 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8274 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8275 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8276 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8277 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8278 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8281 bp
->fw_version
[j
++] = ' ';
8282 for (i
= 0; i
< 3 && j
< 28; i
++) {
8283 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8284 reg
= be32_to_cpu(reg
);
8285 memcpy(&bp
->fw_version
[j
], ®
, 4);
8290 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8291 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8292 bp
->mac_addr
[1] = (u8
) reg
;
8294 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8295 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8296 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8297 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8298 bp
->mac_addr
[5] = (u8
) reg
;
8300 bp
->tx_ring_size
= BNX2_MAX_TX_DESC_CNT
;
8301 bnx2_set_rx_ring_size(bp
, 255);
8303 bp
->tx_quick_cons_trip_int
= 2;
8304 bp
->tx_quick_cons_trip
= 20;
8305 bp
->tx_ticks_int
= 18;
8308 bp
->rx_quick_cons_trip_int
= 2;
8309 bp
->rx_quick_cons_trip
= 12;
8310 bp
->rx_ticks_int
= 18;
8313 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8315 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8319 /* Disable WOL support if we are running on a SERDES chip. */
8320 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8321 bnx2_get_5709_media(bp
);
8322 else if (BNX2_CHIP_BOND(bp
) & BNX2_CHIP_BOND_SERDES_BIT
)
8323 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8325 bp
->phy_port
= PORT_TP
;
8326 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8327 bp
->phy_port
= PORT_FIBRE
;
8328 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8329 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8330 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8333 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
) {
8334 /* Don't do parallel detect on this board because of
8335 * some board problems. The link will not go down
8336 * if we do parallel detect.
8338 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8339 pdev
->subsystem_device
== 0x310c)
8340 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8343 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8344 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8346 } else if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
||
8347 BNX2_CHIP(bp
) == BNX2_CHIP_5708
)
8348 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8349 else if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
&&
8350 (BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Ax
||
8351 BNX2_CHIP_REV(bp
) == BNX2_CHIP_REV_Bx
))
8352 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8354 bnx2_init_fw_cap(bp
);
8356 if ((BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_A0
) ||
8357 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B0
) ||
8358 (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5708_B1
) ||
8359 !(BNX2_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8360 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8364 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
8365 device_set_wakeup_capable(&bp
->pdev
->dev
, false);
8367 device_set_wakeup_enable(&bp
->pdev
->dev
, bp
->wol
);
8369 if (BNX2_CHIP_ID(bp
) == BNX2_CHIP_ID_5706_A0
) {
8370 bp
->tx_quick_cons_trip_int
=
8371 bp
->tx_quick_cons_trip
;
8372 bp
->tx_ticks_int
= bp
->tx_ticks
;
8373 bp
->rx_quick_cons_trip_int
=
8374 bp
->rx_quick_cons_trip
;
8375 bp
->rx_ticks_int
= bp
->rx_ticks
;
8376 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8377 bp
->com_ticks_int
= bp
->com_ticks
;
8378 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8381 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8383 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8384 * with byte enables disabled on the unused 32-bit word. This is legal
8385 * but causes problems on the AMD 8132 which will eventually stop
8386 * responding after a while.
8388 * AMD believes this incompatibility is unique to the 5706, and
8389 * prefers to locally disable MSI rather than globally disabling it.
8391 if (BNX2_CHIP(bp
) == BNX2_CHIP_5706
&& disable_msi
== 0) {
8392 struct pci_dev
*amd_8132
= NULL
;
8394 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8395 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8398 if (amd_8132
->revision
>= 0x10 &&
8399 amd_8132
->revision
<= 0x13) {
8401 pci_dev_put(amd_8132
);
8407 bnx2_set_default_link(bp
);
8408 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8410 init_timer(&bp
->timer
);
8411 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8412 bp
->timer
.data
= (unsigned long) bp
;
8413 bp
->timer
.function
= bnx2_timer
;
8416 if (bnx2_shmem_rd(bp
, BNX2_ISCSI_INITIATOR
) & BNX2_ISCSI_INITIATOR_EN
)
8417 bp
->cnic_eth_dev
.max_iscsi_conn
=
8418 (bnx2_shmem_rd(bp
, BNX2_ISCSI_MAX_CONN
) &
8419 BNX2_ISCSI_MAX_CONN_MASK
) >> BNX2_ISCSI_MAX_CONN_SHIFT
;
8420 bp
->cnic_probe
= bnx2_cnic_probe
;
8422 pci_save_state(pdev
);
8427 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8428 pci_disable_pcie_error_reporting(pdev
);
8429 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8432 pci_iounmap(pdev
, bp
->regview
);
8436 pci_release_regions(pdev
);
8439 pci_disable_device(pdev
);
8446 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8450 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8451 s
+= sprintf(s
, "PCI Express");
8453 s
+= sprintf(s
, "PCI");
8454 if (bp
->flags
& BNX2_FLAG_PCIX
)
8455 s
+= sprintf(s
, "-X");
8456 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8457 s
+= sprintf(s
, " 32-bit");
8459 s
+= sprintf(s
, " 64-bit");
8460 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8466 bnx2_del_napi(struct bnx2
*bp
)
8470 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8471 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8475 bnx2_init_napi(struct bnx2
*bp
)
8479 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8480 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8481 int (*poll
)(struct napi_struct
*, int);
8486 poll
= bnx2_poll_msix
;
8488 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8493 static const struct net_device_ops bnx2_netdev_ops
= {
8494 .ndo_open
= bnx2_open
,
8495 .ndo_start_xmit
= bnx2_start_xmit
,
8496 .ndo_stop
= bnx2_close
,
8497 .ndo_get_stats64
= bnx2_get_stats64
,
8498 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8499 .ndo_do_ioctl
= bnx2_ioctl
,
8500 .ndo_validate_addr
= eth_validate_addr
,
8501 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8502 .ndo_change_mtu
= bnx2_change_mtu
,
8503 .ndo_fix_features
= bnx2_fix_features
,
8504 .ndo_set_features
= bnx2_set_features
,
8505 .ndo_tx_timeout
= bnx2_tx_timeout
,
8506 #ifdef CONFIG_NET_POLL_CONTROLLER
8507 .ndo_poll_controller
= poll_bnx2
,
8512 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8514 static int version_printed
= 0;
8515 struct net_device
*dev
;
8520 if (version_printed
++ == 0)
8521 pr_info("%s", version
);
8523 /* dev zeroed in init_etherdev */
8524 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8528 rc
= bnx2_init_board(pdev
, dev
);
8532 dev
->netdev_ops
= &bnx2_netdev_ops
;
8533 dev
->watchdog_timeo
= TX_TIMEOUT
;
8534 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8536 bp
= netdev_priv(dev
);
8538 pci_set_drvdata(pdev
, dev
);
8540 memcpy(dev
->dev_addr
, bp
->mac_addr
, ETH_ALEN
);
8542 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
8543 NETIF_F_TSO
| NETIF_F_TSO_ECN
|
8544 NETIF_F_RXHASH
| NETIF_F_RXCSUM
;
8546 if (BNX2_CHIP(bp
) == BNX2_CHIP_5709
)
8547 dev
->hw_features
|= NETIF_F_IPV6_CSUM
| NETIF_F_TSO6
;
8549 dev
->vlan_features
= dev
->hw_features
;
8550 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
| NETIF_F_HW_VLAN_CTAG_RX
;
8551 dev
->features
|= dev
->hw_features
;
8552 dev
->priv_flags
|= IFF_UNICAST_FLT
;
8554 if ((rc
= register_netdev(dev
))) {
8555 dev_err(&pdev
->dev
, "Cannot register net device\n");
8559 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, "
8560 "node addr %pM\n", board_info
[ent
->driver_data
].name
,
8561 ((BNX2_CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8562 ((BNX2_CHIP_ID(bp
) & 0x0ff0) >> 4),
8563 bnx2_bus_string(bp
, str
), (long)pci_resource_start(pdev
, 0),
8564 pdev
->irq
, dev
->dev_addr
);
8569 pci_iounmap(pdev
, bp
->regview
);
8570 pci_release_regions(pdev
);
8571 pci_disable_device(pdev
);
8578 bnx2_remove_one(struct pci_dev
*pdev
)
8580 struct net_device
*dev
= pci_get_drvdata(pdev
);
8581 struct bnx2
*bp
= netdev_priv(dev
);
8583 unregister_netdev(dev
);
8585 del_timer_sync(&bp
->timer
);
8586 cancel_work_sync(&bp
->reset_task
);
8588 pci_iounmap(bp
->pdev
, bp
->regview
);
8590 kfree(bp
->temp_stats_blk
);
8592 if (bp
->flags
& BNX2_FLAG_AER_ENABLED
) {
8593 pci_disable_pcie_error_reporting(pdev
);
8594 bp
->flags
&= ~BNX2_FLAG_AER_ENABLED
;
8597 bnx2_release_firmware(bp
);
8601 pci_release_regions(pdev
);
8602 pci_disable_device(pdev
);
8606 bnx2_suspend(struct device
*device
)
8608 struct pci_dev
*pdev
= to_pci_dev(device
);
8609 struct net_device
*dev
= pci_get_drvdata(pdev
);
8610 struct bnx2
*bp
= netdev_priv(dev
);
8612 if (netif_running(dev
)) {
8613 cancel_work_sync(&bp
->reset_task
);
8614 bnx2_netif_stop(bp
, true);
8615 netif_device_detach(dev
);
8616 del_timer_sync(&bp
->timer
);
8617 bnx2_shutdown_chip(bp
);
8618 __bnx2_free_irq(bp
);
8626 bnx2_resume(struct device
*device
)
8628 struct pci_dev
*pdev
= to_pci_dev(device
);
8629 struct net_device
*dev
= pci_get_drvdata(pdev
);
8630 struct bnx2
*bp
= netdev_priv(dev
);
8632 if (!netif_running(dev
))
8635 bnx2_set_power_state(bp
, PCI_D0
);
8636 netif_device_attach(dev
);
8637 bnx2_request_irq(bp
);
8638 bnx2_init_nic(bp
, 1);
8639 bnx2_netif_start(bp
, true);
8643 #ifdef CONFIG_PM_SLEEP
8644 static SIMPLE_DEV_PM_OPS(bnx2_pm_ops
, bnx2_suspend
, bnx2_resume
);
8645 #define BNX2_PM_OPS (&bnx2_pm_ops)
8649 #define BNX2_PM_OPS NULL
8651 #endif /* CONFIG_PM_SLEEP */
8653 * bnx2_io_error_detected - called when PCI error is detected
8654 * @pdev: Pointer to PCI device
8655 * @state: The current pci connection state
8657 * This function is called after a PCI bus error affecting
8658 * this device has been detected.
8660 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8661 pci_channel_state_t state
)
8663 struct net_device
*dev
= pci_get_drvdata(pdev
);
8664 struct bnx2
*bp
= netdev_priv(dev
);
8667 netif_device_detach(dev
);
8669 if (state
== pci_channel_io_perm_failure
) {
8671 return PCI_ERS_RESULT_DISCONNECT
;
8674 if (netif_running(dev
)) {
8675 bnx2_netif_stop(bp
, true);
8676 del_timer_sync(&bp
->timer
);
8677 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8680 pci_disable_device(pdev
);
8683 /* Request a slot slot reset. */
8684 return PCI_ERS_RESULT_NEED_RESET
;
8688 * bnx2_io_slot_reset - called after the pci bus has been reset.
8689 * @pdev: Pointer to PCI device
8691 * Restart the card from scratch, as if from a cold-boot.
8693 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8695 struct net_device
*dev
= pci_get_drvdata(pdev
);
8696 struct bnx2
*bp
= netdev_priv(dev
);
8697 pci_ers_result_t result
= PCI_ERS_RESULT_DISCONNECT
;
8701 if (pci_enable_device(pdev
)) {
8703 "Cannot re-enable PCI device after reset\n");
8705 pci_set_master(pdev
);
8706 pci_restore_state(pdev
);
8707 pci_save_state(pdev
);
8709 if (netif_running(dev
))
8710 err
= bnx2_init_nic(bp
, 1);
8713 result
= PCI_ERS_RESULT_RECOVERED
;
8716 if (result
!= PCI_ERS_RESULT_RECOVERED
&& netif_running(dev
)) {
8717 bnx2_napi_enable(bp
);
8722 if (!(bp
->flags
& BNX2_FLAG_AER_ENABLED
))
8725 err
= pci_cleanup_aer_uncorrect_error_status(pdev
);
8728 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8729 err
); /* non-fatal, continue */
8736 * bnx2_io_resume - called when traffic can start flowing again.
8737 * @pdev: Pointer to PCI device
8739 * This callback is called when the error recovery driver tells us that
8740 * its OK to resume normal operation.
8742 static void bnx2_io_resume(struct pci_dev
*pdev
)
8744 struct net_device
*dev
= pci_get_drvdata(pdev
);
8745 struct bnx2
*bp
= netdev_priv(dev
);
8748 if (netif_running(dev
))
8749 bnx2_netif_start(bp
, true);
8751 netif_device_attach(dev
);
8755 static void bnx2_shutdown(struct pci_dev
*pdev
)
8757 struct net_device
*dev
= pci_get_drvdata(pdev
);
8763 bp
= netdev_priv(dev
);
8768 if (netif_running(dev
))
8771 if (system_state
== SYSTEM_POWER_OFF
)
8772 bnx2_set_power_state(bp
, PCI_D3hot
);
8777 static const struct pci_error_handlers bnx2_err_handler
= {
8778 .error_detected
= bnx2_io_error_detected
,
8779 .slot_reset
= bnx2_io_slot_reset
,
8780 .resume
= bnx2_io_resume
,
8783 static struct pci_driver bnx2_pci_driver
= {
8784 .name
= DRV_MODULE_NAME
,
8785 .id_table
= bnx2_pci_tbl
,
8786 .probe
= bnx2_init_one
,
8787 .remove
= bnx2_remove_one
,
8788 .driver
.pm
= BNX2_PM_OPS
,
8789 .err_handler
= &bnx2_err_handler
,
8790 .shutdown
= bnx2_shutdown
,
8793 module_pci_driver(bnx2_pci_driver
);