2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3 * Copyright (c) 2006, 2007 Maciej W. Rozycki
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 * This driver is designed for the Broadcom SiByte SOC built-in
20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22 * Updated to the driver model and the PHY abstraction layer
23 * by Maciej W. Rozycki.
26 #include <linux/bug.h>
27 #include <linux/module.h>
28 #include <linux/kernel.h>
29 #include <linux/string.h>
30 #include <linux/timer.h>
31 #include <linux/errno.h>
32 #include <linux/ioport.h>
33 #include <linux/slab.h>
34 #include <linux/interrupt.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/bitops.h>
39 #include <linux/err.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/phy.h>
43 #include <linux/platform_device.h>
44 #include <linux/prefetch.h>
46 #include <asm/cache.h>
48 #include <asm/processor.h> /* Processor type for cache alignment. */
50 /* Operational parameters that usually are not changed. */
52 #define CONFIG_SBMAC_COALESCE
54 /* Time in jiffies before concluding the transmitter is hung. */
55 #define TX_TIMEOUT (2*HZ)
58 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
59 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
61 /* A few user-configurable values which may be modified when a driver
64 /* 1 normal messages, 0 quiet .. 7 verbose. */
66 module_param(debug
, int, S_IRUGO
);
67 MODULE_PARM_DESC(debug
, "Debug messages");
69 #ifdef CONFIG_SBMAC_COALESCE
70 static int int_pktcnt_tx
= 255;
71 module_param(int_pktcnt_tx
, int, S_IRUGO
);
72 MODULE_PARM_DESC(int_pktcnt_tx
, "TX packet count");
74 static int int_timeout_tx
= 255;
75 module_param(int_timeout_tx
, int, S_IRUGO
);
76 MODULE_PARM_DESC(int_timeout_tx
, "TX timeout value");
78 static int int_pktcnt_rx
= 64;
79 module_param(int_pktcnt_rx
, int, S_IRUGO
);
80 MODULE_PARM_DESC(int_pktcnt_rx
, "RX packet count");
82 static int int_timeout_rx
= 64;
83 module_param(int_timeout_rx
, int, S_IRUGO
);
84 MODULE_PARM_DESC(int_timeout_rx
, "RX timeout value");
87 #include <asm/sibyte/board.h>
88 #include <asm/sibyte/sb1250.h>
89 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
90 #include <asm/sibyte/bcm1480_regs.h>
91 #include <asm/sibyte/bcm1480_int.h>
92 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
93 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
94 #include <asm/sibyte/sb1250_regs.h>
95 #include <asm/sibyte/sb1250_int.h>
97 #error invalid SiByte MAC configuration
99 #include <asm/sibyte/sb1250_scd.h>
100 #include <asm/sibyte/sb1250_mac.h>
101 #include <asm/sibyte/sb1250_dma.h>
103 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
104 #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2))
105 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
106 #define UNIT_INT(n) (K_INT_MAC_0 + (n))
108 #error invalid SiByte MAC configuration
112 #define SBMAC_PHY_INT K_INT_PHY
114 #define SBMAC_PHY_INT PHY_POLL
117 /**********************************************************************
119 ********************************************************************* */
122 sbmac_speed_none
= 0,
123 sbmac_speed_10
= SPEED_10
,
124 sbmac_speed_100
= SPEED_100
,
125 sbmac_speed_1000
= SPEED_1000
,
129 sbmac_duplex_none
= -1,
130 sbmac_duplex_half
= DUPLEX_HALF
,
131 sbmac_duplex_full
= DUPLEX_FULL
,
150 /**********************************************************************
152 ********************************************************************* */
155 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
156 (d)->sbdma_dscrtable : (d)->f+1)
159 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
161 #define SBMAC_MAX_TXDESCR 256
162 #define SBMAC_MAX_RXDESCR 256
164 #define ENET_PACKET_SIZE 1518
165 /*#define ENET_PACKET_SIZE 9216 */
167 /**********************************************************************
168 * DMA Descriptor structure
169 ********************************************************************* */
176 /**********************************************************************
177 * DMA Controller structure
178 ********************************************************************* */
183 * This stuff is used to identify the channel and the registers
184 * associated with it.
186 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated
188 int sbdma_channel
; /* channel number */
189 int sbdma_txdir
; /* direction (1=transmit) */
190 int sbdma_maxdescr
; /* total # of descriptors
192 #ifdef CONFIG_SBMAC_COALESCE
193 int sbdma_int_pktcnt
;
194 /* # descriptors rx/tx
196 int sbdma_int_timeout
;
197 /* # usec rx/tx interrupt */
199 void __iomem
*sbdma_config0
; /* DMA config register 0 */
200 void __iomem
*sbdma_config1
; /* DMA config register 1 */
201 void __iomem
*sbdma_dscrbase
;
202 /* descriptor base address */
203 void __iomem
*sbdma_dscrcnt
; /* descriptor count register */
204 void __iomem
*sbdma_curdscr
; /* current descriptor
206 void __iomem
*sbdma_oodpktlost
;
207 /* pkt drop (rx only) */
210 * This stuff is for maintenance of the ring
212 void *sbdma_dscrtable_unaligned
;
213 struct sbdmadscr
*sbdma_dscrtable
;
214 /* base of descriptor table */
215 struct sbdmadscr
*sbdma_dscrtable_end
;
216 /* end of descriptor table */
217 struct sk_buff
**sbdma_ctxtable
;
218 /* context table, one
220 dma_addr_t sbdma_dscrtable_phys
;
221 /* and also the phys addr */
222 struct sbdmadscr
*sbdma_addptr
; /* next dscr for sw to add */
223 struct sbdmadscr
*sbdma_remptr
; /* next dscr for sw
228 /**********************************************************************
229 * Ethernet softc structure
230 ********************************************************************* */
235 * Linux-specific things
237 struct net_device
*sbm_dev
; /* pointer to linux device */
238 struct napi_struct napi
;
239 struct phy_device
*phy_dev
; /* the associated PHY device */
240 struct mii_bus
*mii_bus
; /* the MII bus */
241 int phy_irq
[PHY_MAX_ADDR
];
242 spinlock_t sbm_lock
; /* spin lock */
243 int sbm_devflags
; /* current device flags */
246 * Controller-specific things
248 void __iomem
*sbm_base
; /* MAC's base address */
249 enum sbmac_state sbm_state
; /* current state */
251 void __iomem
*sbm_macenable
; /* MAC Enable Register */
252 void __iomem
*sbm_maccfg
; /* MAC Config Register */
253 void __iomem
*sbm_fifocfg
; /* FIFO Config Register */
254 void __iomem
*sbm_framecfg
; /* Frame Config Register */
255 void __iomem
*sbm_rxfilter
; /* Receive Filter Register */
256 void __iomem
*sbm_isr
; /* Interrupt Status Register */
257 void __iomem
*sbm_imr
; /* Interrupt Mask Register */
258 void __iomem
*sbm_mdio
; /* MDIO Register */
260 enum sbmac_speed sbm_speed
; /* current speed */
261 enum sbmac_duplex sbm_duplex
; /* current duplex */
262 enum sbmac_fc sbm_fc
; /* cur. flow control setting */
263 int sbm_pause
; /* current pause setting */
264 int sbm_link
; /* current link state */
266 unsigned char sbm_hwaddr
[ETH_ALEN
];
268 struct sbmacdma sbm_txdma
; /* only channel 0 for now */
269 struct sbmacdma sbm_rxdma
;
275 /**********************************************************************
277 ********************************************************************* */
279 /**********************************************************************
281 ********************************************************************* */
283 static void sbdma_initctx(struct sbmacdma
*d
, struct sbmac_softc
*s
, int chan
,
284 int txrx
, int maxdescr
);
285 static void sbdma_channel_start(struct sbmacdma
*d
, int rxtx
);
286 static int sbdma_add_rcvbuffer(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
288 static int sbdma_add_txbuffer(struct sbmacdma
*d
, struct sk_buff
*m
);
289 static void sbdma_emptyring(struct sbmacdma
*d
);
290 static void sbdma_fillring(struct sbmac_softc
*sc
, struct sbmacdma
*d
);
291 static int sbdma_rx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
292 int work_to_do
, int poll
);
293 static void sbdma_tx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
295 static int sbmac_initctx(struct sbmac_softc
*s
);
296 static void sbmac_channel_start(struct sbmac_softc
*s
);
297 static void sbmac_channel_stop(struct sbmac_softc
*s
);
298 static enum sbmac_state
sbmac_set_channel_state(struct sbmac_softc
*,
300 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
, int onoff
);
301 static uint64_t sbmac_addr2reg(unsigned char *ptr
);
302 static irqreturn_t
sbmac_intr(int irq
, void *dev_instance
);
303 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
);
304 static void sbmac_setmulti(struct sbmac_softc
*sc
);
305 static int sbmac_init(struct platform_device
*pldev
, long long base
);
306 static int sbmac_set_speed(struct sbmac_softc
*s
, enum sbmac_speed speed
);
307 static int sbmac_set_duplex(struct sbmac_softc
*s
, enum sbmac_duplex duplex
,
310 static int sbmac_open(struct net_device
*dev
);
311 static void sbmac_tx_timeout (struct net_device
*dev
);
312 static void sbmac_set_rx_mode(struct net_device
*dev
);
313 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
314 static int sbmac_close(struct net_device
*dev
);
315 static int sbmac_poll(struct napi_struct
*napi
, int budget
);
317 static void sbmac_mii_poll(struct net_device
*dev
);
318 static int sbmac_mii_probe(struct net_device
*dev
);
320 static void sbmac_mii_sync(void __iomem
*sbm_mdio
);
321 static void sbmac_mii_senddata(void __iomem
*sbm_mdio
, unsigned int data
,
323 static int sbmac_mii_read(struct mii_bus
*bus
, int phyaddr
, int regidx
);
324 static int sbmac_mii_write(struct mii_bus
*bus
, int phyaddr
, int regidx
,
328 /**********************************************************************
330 ********************************************************************* */
332 static char sbmac_string
[] = "sb1250-mac";
334 static char sbmac_mdio_string
[] = "sb1250-mac-mdio";
337 /**********************************************************************
339 ********************************************************************* */
341 #define MII_COMMAND_START 0x01
342 #define MII_COMMAND_READ 0x02
343 #define MII_COMMAND_WRITE 0x01
344 #define MII_COMMAND_ACK 0x02
346 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */
351 /**********************************************************************
352 * SBMAC_MII_SYNC(sbm_mdio)
354 * Synchronize with the MII - send a pattern of bits to the MII
355 * that will guarantee that it is ready to accept a command.
358 * sbm_mdio - address of the MAC's MDIO register
362 ********************************************************************* */
364 static void sbmac_mii_sync(void __iomem
*sbm_mdio
)
370 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
372 bits
= M_MAC_MDIO_DIR_OUTPUT
| M_MAC_MDIO_OUT
;
374 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
376 for (cnt
= 0; cnt
< 32; cnt
++) {
377 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, sbm_mdio
);
378 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
382 /**********************************************************************
383 * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
385 * Send some bits to the MII. The bits to be sent are right-
386 * justified in the 'data' parameter.
389 * sbm_mdio - address of the MAC's MDIO register
390 * data - data to send
391 * bitcnt - number of bits to send
392 ********************************************************************* */
394 static void sbmac_mii_senddata(void __iomem
*sbm_mdio
, unsigned int data
,
399 unsigned int curmask
;
402 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
404 bits
= M_MAC_MDIO_DIR_OUTPUT
;
405 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
407 curmask
= 1 << (bitcnt
- 1);
409 for (i
= 0; i
< bitcnt
; i
++) {
411 bits
|= M_MAC_MDIO_OUT
;
412 else bits
&= ~M_MAC_MDIO_OUT
;
413 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
414 __raw_writeq(bits
| M_MAC_MDC
| mac_mdio_genc
, sbm_mdio
);
415 __raw_writeq(bits
| mac_mdio_genc
, sbm_mdio
);
422 /**********************************************************************
423 * SBMAC_MII_READ(bus, phyaddr, regidx)
424 * Read a PHY register.
427 * bus - MDIO bus handle
428 * phyaddr - PHY's address
429 * regnum - index of register to read
432 * value read, or 0xffff if an error occurred.
433 ********************************************************************* */
435 static int sbmac_mii_read(struct mii_bus
*bus
, int phyaddr
, int regidx
)
437 struct sbmac_softc
*sc
= (struct sbmac_softc
*)bus
->priv
;
438 void __iomem
*sbm_mdio
= sc
->sbm_mdio
;
445 * Synchronize ourselves so that the PHY knows the next
446 * thing coming down is a command
448 sbmac_mii_sync(sbm_mdio
);
451 * Send the data to the PHY. The sequence is
452 * a "start" command (2 bits)
453 * a "read" command (2 bits)
454 * the PHY addr (5 bits)
455 * the register index (5 bits)
457 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_START
, 2);
458 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_READ
, 2);
459 sbmac_mii_senddata(sbm_mdio
, phyaddr
, 5);
460 sbmac_mii_senddata(sbm_mdio
, regidx
, 5);
462 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
465 * Switch the port around without a clock transition.
467 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
470 * Send out a clock pulse to signal we want the status
472 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
474 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
477 * If an error occurred, the PHY will signal '1' back
479 error
= __raw_readq(sbm_mdio
) & M_MAC_MDIO_IN
;
482 * Issue an 'idle' clock pulse, but keep the direction
485 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
487 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
491 for (idx
= 0; idx
< 16; idx
++) {
495 if (__raw_readq(sbm_mdio
) & M_MAC_MDIO_IN
)
499 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| M_MAC_MDC
| mac_mdio_genc
,
501 __raw_writeq(M_MAC_MDIO_DIR_INPUT
| mac_mdio_genc
, sbm_mdio
);
504 /* Switch back to output */
505 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, sbm_mdio
);
513 /**********************************************************************
514 * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
516 * Write a value to a PHY register.
519 * bus - MDIO bus handle
520 * phyaddr - PHY to use
521 * regidx - register within the PHY
522 * regval - data to write to register
526 ********************************************************************* */
528 static int sbmac_mii_write(struct mii_bus
*bus
, int phyaddr
, int regidx
,
531 struct sbmac_softc
*sc
= (struct sbmac_softc
*)bus
->priv
;
532 void __iomem
*sbm_mdio
= sc
->sbm_mdio
;
535 sbmac_mii_sync(sbm_mdio
);
537 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_START
, 2);
538 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_WRITE
, 2);
539 sbmac_mii_senddata(sbm_mdio
, phyaddr
, 5);
540 sbmac_mii_senddata(sbm_mdio
, regidx
, 5);
541 sbmac_mii_senddata(sbm_mdio
, MII_COMMAND_ACK
, 2);
542 sbmac_mii_senddata(sbm_mdio
, regval
, 16);
544 mac_mdio_genc
= __raw_readq(sbm_mdio
) & M_MAC_GENC
;
546 __raw_writeq(M_MAC_MDIO_DIR_OUTPUT
| mac_mdio_genc
, sbm_mdio
);
553 /**********************************************************************
554 * SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
556 * Initialize a DMA channel context. Since there are potentially
557 * eight DMA channels per MAC, it's nice to do this in a standard
561 * d - struct sbmacdma (DMA channel context)
562 * s - struct sbmac_softc (pointer to a MAC)
563 * chan - channel number (0..1 right now)
564 * txrx - Identifies DMA_TX or DMA_RX for channel direction
565 * maxdescr - number of descriptors
569 ********************************************************************* */
571 static void sbdma_initctx(struct sbmacdma
*d
, struct sbmac_softc
*s
, int chan
,
572 int txrx
, int maxdescr
)
574 #ifdef CONFIG_SBMAC_COALESCE
575 int int_pktcnt
, int_timeout
;
579 * Save away interesting stuff in the structure
583 d
->sbdma_channel
= chan
;
584 d
->sbdma_txdir
= txrx
;
588 s
->sbe_idx
=(s
->sbm_base
- A_MAC_BASE_0
)/MAC_SPACING
;
591 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_BYTES
);
592 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_COLLISIONS
);
593 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_LATE_COL
);
594 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_EX_COL
);
595 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_FCS_ERROR
);
596 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_ABORT
);
597 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_BAD
);
598 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_GOOD
);
599 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_RUNT
);
600 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_TX_OVERSIZE
);
601 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BYTES
);
602 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_MCAST
);
603 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BCAST
);
604 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_BAD
);
605 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_GOOD
);
606 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_RUNT
);
607 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_OVERSIZE
);
608 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_FCS_ERROR
);
609 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_LENGTH_ERROR
);
610 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_CODE_ERROR
);
611 __raw_writeq(0, s
->sbm_base
+ R_MAC_RMON_RX_ALIGN_ERROR
);
614 * initialize register pointers
618 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG0
);
620 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CONFIG1
);
622 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_BASE
);
624 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_DSCR_CNT
);
626 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_CUR_DSCRADDR
);
628 d
->sbdma_oodpktlost
= NULL
;
630 d
->sbdma_oodpktlost
=
631 s
->sbm_base
+ R_MAC_DMA_REGISTER(txrx
,chan
,R_MAC_DMA_OODPKTLOST_RX
);
634 * Allocate memory for the ring
637 d
->sbdma_maxdescr
= maxdescr
;
639 d
->sbdma_dscrtable_unaligned
= kcalloc(d
->sbdma_maxdescr
+ 1,
640 sizeof(*d
->sbdma_dscrtable
),
644 * The descriptor table must be aligned to at least 16 bytes or the
645 * MAC will corrupt it.
647 d
->sbdma_dscrtable
= (struct sbdmadscr
*)
648 ALIGN((unsigned long)d
->sbdma_dscrtable_unaligned
,
649 sizeof(*d
->sbdma_dscrtable
));
651 d
->sbdma_dscrtable_end
= d
->sbdma_dscrtable
+ d
->sbdma_maxdescr
;
653 d
->sbdma_dscrtable_phys
= virt_to_phys(d
->sbdma_dscrtable
);
659 d
->sbdma_ctxtable
= kcalloc(d
->sbdma_maxdescr
,
660 sizeof(*d
->sbdma_ctxtable
), GFP_KERNEL
);
662 #ifdef CONFIG_SBMAC_COALESCE
664 * Setup Rx/Tx DMA coalescing defaults
667 int_pktcnt
= (txrx
== DMA_TX
) ? int_pktcnt_tx
: int_pktcnt_rx
;
669 d
->sbdma_int_pktcnt
= int_pktcnt
;
671 d
->sbdma_int_pktcnt
= 1;
674 int_timeout
= (txrx
== DMA_TX
) ? int_timeout_tx
: int_timeout_rx
;
676 d
->sbdma_int_timeout
= int_timeout
;
678 d
->sbdma_int_timeout
= 0;
684 /**********************************************************************
685 * SBDMA_CHANNEL_START(d)
687 * Initialize the hardware registers for a DMA channel.
690 * d - DMA channel to init (context must be previously init'd
691 * rxtx - DMA_RX or DMA_TX depending on what type of channel
695 ********************************************************************* */
697 static void sbdma_channel_start(struct sbmacdma
*d
, int rxtx
)
700 * Turn on the DMA channel
703 #ifdef CONFIG_SBMAC_COALESCE
704 __raw_writeq(V_DMA_INT_TIMEOUT(d
->sbdma_int_timeout
) |
705 0, d
->sbdma_config1
);
706 __raw_writeq(M_DMA_EOP_INT_EN
|
707 V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
708 V_DMA_INT_PKTCNT(d
->sbdma_int_pktcnt
) |
709 0, d
->sbdma_config0
);
711 __raw_writeq(0, d
->sbdma_config1
);
712 __raw_writeq(V_DMA_RINGSZ(d
->sbdma_maxdescr
) |
713 0, d
->sbdma_config0
);
716 __raw_writeq(d
->sbdma_dscrtable_phys
, d
->sbdma_dscrbase
);
719 * Initialize ring pointers
722 d
->sbdma_addptr
= d
->sbdma_dscrtable
;
723 d
->sbdma_remptr
= d
->sbdma_dscrtable
;
726 /**********************************************************************
727 * SBDMA_CHANNEL_STOP(d)
729 * Initialize the hardware registers for a DMA channel.
732 * d - DMA channel to init (context must be previously init'd
736 ********************************************************************* */
738 static void sbdma_channel_stop(struct sbmacdma
*d
)
741 * Turn off the DMA channel
744 __raw_writeq(0, d
->sbdma_config1
);
746 __raw_writeq(0, d
->sbdma_dscrbase
);
748 __raw_writeq(0, d
->sbdma_config0
);
754 d
->sbdma_addptr
= NULL
;
755 d
->sbdma_remptr
= NULL
;
758 static inline void sbdma_align_skb(struct sk_buff
*skb
,
759 unsigned int power2
, unsigned int offset
)
761 unsigned char *addr
= skb
->data
;
762 unsigned char *newaddr
= PTR_ALIGN(addr
, power2
);
764 skb_reserve(skb
, newaddr
- addr
+ offset
);
768 /**********************************************************************
769 * SBDMA_ADD_RCVBUFFER(d,sb)
771 * Add a buffer to the specified DMA channel. For receive channels,
772 * this queues a buffer for inbound packets.
775 * sc - softc structure
776 * d - DMA channel descriptor
777 * sb - sk_buff to add, or NULL if we should allocate one
780 * 0 if buffer could not be added (ring is full)
781 * 1 if buffer added successfully
782 ********************************************************************* */
785 static int sbdma_add_rcvbuffer(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
788 struct net_device
*dev
= sc
->sbm_dev
;
789 struct sbdmadscr
*dsc
;
790 struct sbdmadscr
*nextdsc
;
791 struct sk_buff
*sb_new
= NULL
;
792 int pktsize
= ENET_PACKET_SIZE
;
794 /* get pointer to our current place in the ring */
796 dsc
= d
->sbdma_addptr
;
797 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
800 * figure out if the ring is full - if the next descriptor
801 * is the same as the one that we're going to remove from
802 * the ring, the ring is full
805 if (nextdsc
== d
->sbdma_remptr
) {
810 * Allocate a sk_buff if we don't already have one.
811 * If we do have an sk_buff, reset it so that it's empty.
813 * Note: sk_buffs don't seem to be guaranteed to have any sort
814 * of alignment when they are allocated. Therefore, allocate enough
815 * extra space to make sure that:
817 * 1. the data does not start in the middle of a cache line.
818 * 2. The data does not end in the middle of a cache line
819 * 3. The buffer can be aligned such that the IP addresses are
822 * Remember, the SOCs MAC writes whole cache lines at a time,
823 * without reading the old contents first. So, if the sk_buff's
824 * data portion starts in the middle of a cache line, the SOC
825 * DMA will trash the beginning (and ending) portions.
829 sb_new
= netdev_alloc_skb(dev
, ENET_PACKET_SIZE
+
830 SMP_CACHE_BYTES
* 2 +
835 sbdma_align_skb(sb_new
, SMP_CACHE_BYTES
, NET_IP_ALIGN
);
840 * nothing special to reinit buffer, it's already aligned
841 * and sb->data already points to a good place.
846 * fill in the descriptor
849 #ifdef CONFIG_SBMAC_COALESCE
851 * Do not interrupt per DMA transfer.
853 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
854 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ NET_IP_ALIGN
)) | 0;
856 dsc
->dscr_a
= virt_to_phys(sb_new
->data
) |
857 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize
+ NET_IP_ALIGN
)) |
858 M_DMA_DSCRA_INTERRUPT
;
861 /* receiving: no options */
865 * fill in the context
868 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb_new
;
871 * point at next packet
874 d
->sbdma_addptr
= nextdsc
;
877 * Give the buffer to the DMA engine.
880 __raw_writeq(1, d
->sbdma_dscrcnt
);
882 return 0; /* we did it */
885 /**********************************************************************
886 * SBDMA_ADD_TXBUFFER(d,sb)
888 * Add a transmit buffer to the specified DMA channel, causing a
892 * d - DMA channel descriptor
893 * sb - sk_buff to add
896 * 0 transmit queued successfully
897 * otherwise error code
898 ********************************************************************* */
901 static int sbdma_add_txbuffer(struct sbmacdma
*d
, struct sk_buff
*sb
)
903 struct sbdmadscr
*dsc
;
904 struct sbdmadscr
*nextdsc
;
909 /* get pointer to our current place in the ring */
911 dsc
= d
->sbdma_addptr
;
912 nextdsc
= SBDMA_NEXTBUF(d
,sbdma_addptr
);
915 * figure out if the ring is full - if the next descriptor
916 * is the same as the one that we're going to remove from
917 * the ring, the ring is full
920 if (nextdsc
== d
->sbdma_remptr
) {
925 * Under Linux, it's not necessary to copy/coalesce buffers
926 * like it is on NetBSD. We think they're all contiguous,
927 * but that may not be true for GBE.
933 * fill in the descriptor. Note that the number of cache
934 * blocks in the descriptor is the number of blocks
935 * *spanned*, so we need to add in the offset (if any)
936 * while doing the calculation.
939 phys
= virt_to_phys(sb
->data
);
940 ncb
= NUMCACHEBLKS(length
+(phys
& (SMP_CACHE_BYTES
- 1)));
943 V_DMA_DSCRA_A_SIZE(ncb
) |
944 #ifndef CONFIG_SBMAC_COALESCE
945 M_DMA_DSCRA_INTERRUPT
|
949 /* transmitting: set outbound options and length */
951 dsc
->dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
952 V_DMA_DSCRB_PKT_SIZE(length
);
955 * fill in the context
958 d
->sbdma_ctxtable
[dsc
-d
->sbdma_dscrtable
] = sb
;
961 * point at next packet
964 d
->sbdma_addptr
= nextdsc
;
967 * Give the buffer to the DMA engine.
970 __raw_writeq(1, d
->sbdma_dscrcnt
);
972 return 0; /* we did it */
978 /**********************************************************************
981 * Free all allocated sk_buffs on the specified DMA channel;
988 ********************************************************************* */
990 static void sbdma_emptyring(struct sbmacdma
*d
)
995 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
996 sb
= d
->sbdma_ctxtable
[idx
];
999 d
->sbdma_ctxtable
[idx
] = NULL
;
1005 /**********************************************************************
1008 * Fill the specified DMA channel (must be receive channel)
1012 * sc - softc structure
1017 ********************************************************************* */
1019 static void sbdma_fillring(struct sbmac_softc
*sc
, struct sbmacdma
*d
)
1023 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
- 1; idx
++) {
1024 if (sbdma_add_rcvbuffer(sc
, d
, NULL
) != 0)
1029 #ifdef CONFIG_NET_POLL_CONTROLLER
1030 static void sbmac_netpoll(struct net_device
*netdev
)
1032 struct sbmac_softc
*sc
= netdev_priv(netdev
);
1033 int irq
= sc
->sbm_dev
->irq
;
1035 __raw_writeq(0, sc
->sbm_imr
);
1037 sbmac_intr(irq
, netdev
);
1039 #ifdef CONFIG_SBMAC_COALESCE
1040 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1041 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
),
1044 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1045 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), sc
->sbm_imr
);
1050 /**********************************************************************
1051 * SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1053 * Process "completed" receive buffers on the specified DMA channel.
1056 * sc - softc structure
1057 * d - DMA channel context
1058 * work_to_do - no. of packets to process before enabling interrupt
1060 * poll - 1: using polling (for NAPI)
1064 ********************************************************************* */
1066 static int sbdma_rx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
1067 int work_to_do
, int poll
)
1069 struct net_device
*dev
= sc
->sbm_dev
;
1072 struct sbdmadscr
*dsc
;
1081 /* Check if the HW dropped any frames */
1082 dev
->stats
.rx_fifo_errors
1083 += __raw_readq(sc
->sbm_rxdma
.sbdma_oodpktlost
) & 0xffff;
1084 __raw_writeq(0, sc
->sbm_rxdma
.sbdma_oodpktlost
);
1086 while (work_to_do
-- > 0) {
1088 * figure out where we are (as an index) and where
1089 * the hardware is (also as an index)
1091 * This could be done faster if (for example) the
1092 * descriptor table was page-aligned and contiguous in
1093 * both virtual and physical memory -- you could then
1094 * just compare the low-order bits of the virtual address
1095 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1098 dsc
= d
->sbdma_remptr
;
1099 curidx
= dsc
- d
->sbdma_dscrtable
;
1102 prefetch(&d
->sbdma_ctxtable
[curidx
]);
1104 hwidx
= ((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1105 d
->sbdma_dscrtable_phys
) /
1106 sizeof(*d
->sbdma_dscrtable
);
1109 * If they're the same, that means we've processed all
1110 * of the descriptors up to (but not including) the one that
1111 * the hardware is working on right now.
1114 if (curidx
== hwidx
)
1118 * Otherwise, get the packet's sk_buff ptr back
1121 sb
= d
->sbdma_ctxtable
[curidx
];
1122 d
->sbdma_ctxtable
[curidx
] = NULL
;
1124 len
= (int)G_DMA_DSCRB_PKT_SIZE(dsc
->dscr_b
) - 4;
1127 * Check packet status. If good, process it.
1128 * If not, silently drop it and put it back on the
1132 if (likely (!(dsc
->dscr_a
& M_DMA_ETHRX_BAD
))) {
1135 * Add a new buffer to replace the old one. If we fail
1136 * to allocate a buffer, we're going to drop this
1137 * packet and put it right back on the receive ring.
1140 if (unlikely(sbdma_add_rcvbuffer(sc
, d
, NULL
) ==
1142 dev
->stats
.rx_dropped
++;
1143 /* Re-add old buffer */
1144 sbdma_add_rcvbuffer(sc
, d
, sb
);
1145 /* No point in continuing at the moment */
1146 printk(KERN_ERR
"dropped packet (1)\n");
1147 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1151 * Set length into the packet
1156 * Buffer has been replaced on the
1157 * receive ring. Pass the buffer to
1160 sb
->protocol
= eth_type_trans(sb
,d
->sbdma_eth
->sbm_dev
);
1161 /* Check hw IPv4/TCP checksum if supported */
1162 if (sc
->rx_hw_checksum
== ENABLE
) {
1163 if (!((dsc
->dscr_a
) & M_DMA_ETHRX_BADIP4CS
) &&
1164 !((dsc
->dscr_a
) & M_DMA_ETHRX_BADTCPCS
)) {
1165 sb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1166 /* don't need to set sb->csum */
1168 skb_checksum_none_assert(sb
);
1172 prefetch((const void *)(((char *)sb
->data
)+32));
1174 dropped
= netif_receive_skb(sb
);
1176 dropped
= netif_rx(sb
);
1178 if (dropped
== NET_RX_DROP
) {
1179 dev
->stats
.rx_dropped
++;
1180 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1184 dev
->stats
.rx_bytes
+= len
;
1185 dev
->stats
.rx_packets
++;
1190 * Packet was mangled somehow. Just drop it and
1191 * put it back on the receive ring.
1193 dev
->stats
.rx_errors
++;
1194 sbdma_add_rcvbuffer(sc
, d
, sb
);
1199 * .. and advance to the next buffer.
1202 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1207 goto again
; /* collect fifo drop statistics again */
1213 /**********************************************************************
1214 * SBDMA_TX_PROCESS(sc,d)
1216 * Process "completed" transmit buffers on the specified DMA channel.
1217 * This is normally called within the interrupt service routine.
1218 * Note that this isn't really ideal for priority channels, since
1219 * it processes all of the packets on a given channel before
1223 * sc - softc structure
1224 * d - DMA channel context
1225 * poll - 1: using polling (for NAPI)
1229 ********************************************************************* */
1231 static void sbdma_tx_process(struct sbmac_softc
*sc
, struct sbmacdma
*d
,
1234 struct net_device
*dev
= sc
->sbm_dev
;
1237 struct sbdmadscr
*dsc
;
1239 unsigned long flags
;
1240 int packets_handled
= 0;
1242 spin_lock_irqsave(&(sc
->sbm_lock
), flags
);
1244 if (d
->sbdma_remptr
== d
->sbdma_addptr
)
1247 hwidx
= ((__raw_readq(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1248 d
->sbdma_dscrtable_phys
) / sizeof(*d
->sbdma_dscrtable
);
1252 * figure out where we are (as an index) and where
1253 * the hardware is (also as an index)
1255 * This could be done faster if (for example) the
1256 * descriptor table was page-aligned and contiguous in
1257 * both virtual and physical memory -- you could then
1258 * just compare the low-order bits of the virtual address
1259 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1262 curidx
= d
->sbdma_remptr
- d
->sbdma_dscrtable
;
1265 * If they're the same, that means we've processed all
1266 * of the descriptors up to (but not including) the one that
1267 * the hardware is working on right now.
1270 if (curidx
== hwidx
)
1274 * Otherwise, get the packet's sk_buff ptr back
1277 dsc
= &(d
->sbdma_dscrtable
[curidx
]);
1278 sb
= d
->sbdma_ctxtable
[curidx
];
1279 d
->sbdma_ctxtable
[curidx
] = NULL
;
1285 dev
->stats
.tx_bytes
+= sb
->len
;
1286 dev
->stats
.tx_packets
++;
1289 * for transmits, we just free buffers.
1292 dev_kfree_skb_irq(sb
);
1295 * .. and advance to the next buffer.
1298 d
->sbdma_remptr
= SBDMA_NEXTBUF(d
,sbdma_remptr
);
1305 * Decide if we should wake up the protocol or not.
1306 * Other drivers seem to do this when we reach a low
1307 * watermark on the transmit queue.
1310 if (packets_handled
)
1311 netif_wake_queue(d
->sbdma_eth
->sbm_dev
);
1314 spin_unlock_irqrestore(&(sc
->sbm_lock
), flags
);
1320 /**********************************************************************
1323 * Initialize an Ethernet context structure - this is called
1324 * once per MAC on the 1250. Memory is allocated here, so don't
1325 * call it again from inside the ioctl routines that bring the
1329 * s - sbmac context structure
1333 ********************************************************************* */
1335 static int sbmac_initctx(struct sbmac_softc
*s
)
1339 * figure out the addresses of some ports
1342 s
->sbm_macenable
= s
->sbm_base
+ R_MAC_ENABLE
;
1343 s
->sbm_maccfg
= s
->sbm_base
+ R_MAC_CFG
;
1344 s
->sbm_fifocfg
= s
->sbm_base
+ R_MAC_THRSH_CFG
;
1345 s
->sbm_framecfg
= s
->sbm_base
+ R_MAC_FRAMECFG
;
1346 s
->sbm_rxfilter
= s
->sbm_base
+ R_MAC_ADFILTER_CFG
;
1347 s
->sbm_isr
= s
->sbm_base
+ R_MAC_STATUS
;
1348 s
->sbm_imr
= s
->sbm_base
+ R_MAC_INT_MASK
;
1349 s
->sbm_mdio
= s
->sbm_base
+ R_MAC_MDIO
;
1352 * Initialize the DMA channels. Right now, only one per MAC is used
1353 * Note: Only do this _once_, as it allocates memory from the kernel!
1356 sbdma_initctx(&(s
->sbm_txdma
),s
,0,DMA_TX
,SBMAC_MAX_TXDESCR
);
1357 sbdma_initctx(&(s
->sbm_rxdma
),s
,0,DMA_RX
,SBMAC_MAX_RXDESCR
);
1360 * initial state is OFF
1363 s
->sbm_state
= sbmac_state_off
;
1369 static void sbdma_uninitctx(struct sbmacdma
*d
)
1371 if (d
->sbdma_dscrtable_unaligned
) {
1372 kfree(d
->sbdma_dscrtable_unaligned
);
1373 d
->sbdma_dscrtable_unaligned
= d
->sbdma_dscrtable
= NULL
;
1376 if (d
->sbdma_ctxtable
) {
1377 kfree(d
->sbdma_ctxtable
);
1378 d
->sbdma_ctxtable
= NULL
;
1383 static void sbmac_uninitctx(struct sbmac_softc
*sc
)
1385 sbdma_uninitctx(&(sc
->sbm_txdma
));
1386 sbdma_uninitctx(&(sc
->sbm_rxdma
));
1390 /**********************************************************************
1391 * SBMAC_CHANNEL_START(s)
1393 * Start packet processing on this MAC.
1396 * s - sbmac structure
1400 ********************************************************************* */
1402 static void sbmac_channel_start(struct sbmac_softc
*s
)
1406 uint64_t cfg
,fifo
,framecfg
;
1410 * Don't do this if running
1413 if (s
->sbm_state
== sbmac_state_on
)
1417 * Bring the controller out of reset, but leave it off.
1420 __raw_writeq(0, s
->sbm_macenable
);
1423 * Ignore all received packets
1426 __raw_writeq(0, s
->sbm_rxfilter
);
1429 * Calculate values for various control registers.
1432 cfg
= M_MAC_RETRY_EN
|
1433 M_MAC_TX_HOLD_SOP_EN
|
1434 V_MAC_TX_PAUSE_CNT_16K
|
1441 * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1442 * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1443 * Use a larger RD_THRSH for gigabit
1445 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2)
1450 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1451 ((s
->sbm_speed
== sbmac_speed_1000
)
1452 ? V_MAC_TX_RD_THRSH(th_value
) : V_MAC_TX_RD_THRSH(4)) |
1453 V_MAC_TX_RL_THRSH(4) |
1454 V_MAC_RX_PL_THRSH(4) |
1455 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1456 V_MAC_RX_RL_THRSH(8) |
1459 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1460 V_MAC_MAX_FRAMESZ_DEFAULT
|
1461 V_MAC_BACKOFF_SEL(1);
1464 * Clear out the hash address map
1467 port
= s
->sbm_base
+ R_MAC_HASH_BASE
;
1468 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1469 __raw_writeq(0, port
);
1470 port
+= sizeof(uint64_t);
1474 * Clear out the exact-match table
1477 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1478 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1479 __raw_writeq(0, port
);
1480 port
+= sizeof(uint64_t);
1484 * Clear out the DMA Channel mapping table registers
1487 port
= s
->sbm_base
+ R_MAC_CHUP0_BASE
;
1488 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1489 __raw_writeq(0, port
);
1490 port
+= sizeof(uint64_t);
1494 port
= s
->sbm_base
+ R_MAC_CHLO0_BASE
;
1495 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1496 __raw_writeq(0, port
);
1497 port
+= sizeof(uint64_t);
1501 * Program the hardware address. It goes into the hardware-address
1502 * register as well as the first filter register.
1505 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1507 port
= s
->sbm_base
+ R_MAC_ADDR_BASE
;
1508 __raw_writeq(reg
, port
);
1509 port
= s
->sbm_base
+ R_MAC_ETHERNET_ADDR
;
1511 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1513 * Pass1 SOCs do not receive packets addressed to the
1514 * destination address in the R_MAC_ETHERNET_ADDR register.
1515 * Set the value to zero.
1517 __raw_writeq(0, port
);
1519 __raw_writeq(reg
, port
);
1523 * Set the receive filter for no packets, and write values
1524 * to the various config registers
1527 __raw_writeq(0, s
->sbm_rxfilter
);
1528 __raw_writeq(0, s
->sbm_imr
);
1529 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1530 __raw_writeq(fifo
, s
->sbm_fifocfg
);
1531 __raw_writeq(cfg
, s
->sbm_maccfg
);
1534 * Initialize DMA channels (rings should be ok now)
1537 sbdma_channel_start(&(s
->sbm_rxdma
), DMA_RX
);
1538 sbdma_channel_start(&(s
->sbm_txdma
), DMA_TX
);
1541 * Configure the speed, duplex, and flow control
1544 sbmac_set_speed(s
,s
->sbm_speed
);
1545 sbmac_set_duplex(s
,s
->sbm_duplex
,s
->sbm_fc
);
1548 * Fill the receive ring
1551 sbdma_fillring(s
, &(s
->sbm_rxdma
));
1554 * Turn on the rest of the bits in the enable register
1557 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1558 __raw_writeq(M_MAC_RXDMA_EN0
|
1559 M_MAC_TXDMA_EN0
, s
->sbm_macenable
);
1560 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1561 __raw_writeq(M_MAC_RXDMA_EN0
|
1564 M_MAC_TX_ENABLE
, s
->sbm_macenable
);
1566 #error invalid SiByte MAC configuration
1569 #ifdef CONFIG_SBMAC_COALESCE
1570 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
1571 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
), s
->sbm_imr
);
1573 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1574 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), s
->sbm_imr
);
1578 * Enable receiving unicasts and broadcasts
1581 __raw_writeq(M_MAC_UCAST_EN
| M_MAC_BCAST_EN
, s
->sbm_rxfilter
);
1584 * we're running now.
1587 s
->sbm_state
= sbmac_state_on
;
1590 * Program multicast addresses
1596 * If channel was in promiscuous mode before, turn that on
1599 if (s
->sbm_devflags
& IFF_PROMISC
) {
1600 sbmac_promiscuous_mode(s
,1);
1606 /**********************************************************************
1607 * SBMAC_CHANNEL_STOP(s)
1609 * Stop packet processing on this MAC.
1612 * s - sbmac structure
1616 ********************************************************************* */
1618 static void sbmac_channel_stop(struct sbmac_softc
*s
)
1620 /* don't do this if already stopped */
1622 if (s
->sbm_state
== sbmac_state_off
)
1625 /* don't accept any packets, disable all interrupts */
1627 __raw_writeq(0, s
->sbm_rxfilter
);
1628 __raw_writeq(0, s
->sbm_imr
);
1630 /* Turn off ticker */
1634 /* turn off receiver and transmitter */
1636 __raw_writeq(0, s
->sbm_macenable
);
1638 /* We're stopped now. */
1640 s
->sbm_state
= sbmac_state_off
;
1643 * Stop DMA channels (rings should be ok now)
1646 sbdma_channel_stop(&(s
->sbm_rxdma
));
1647 sbdma_channel_stop(&(s
->sbm_txdma
));
1649 /* Empty the receive and transmit rings */
1651 sbdma_emptyring(&(s
->sbm_rxdma
));
1652 sbdma_emptyring(&(s
->sbm_txdma
));
1656 /**********************************************************************
1657 * SBMAC_SET_CHANNEL_STATE(state)
1659 * Set the channel's state ON or OFF
1666 ********************************************************************* */
1667 static enum sbmac_state
sbmac_set_channel_state(struct sbmac_softc
*sc
,
1668 enum sbmac_state state
)
1670 enum sbmac_state oldstate
= sc
->sbm_state
;
1673 * If same as previous state, return
1676 if (state
== oldstate
) {
1681 * If new state is ON, turn channel on
1684 if (state
== sbmac_state_on
) {
1685 sbmac_channel_start(sc
);
1688 sbmac_channel_stop(sc
);
1692 * Return previous state
1699 /**********************************************************************
1700 * SBMAC_PROMISCUOUS_MODE(sc,onoff)
1702 * Turn on or off promiscuous mode
1706 * onoff - 1 to turn on, 0 to turn off
1710 ********************************************************************* */
1712 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
,int onoff
)
1716 if (sc
->sbm_state
!= sbmac_state_on
)
1720 reg
= __raw_readq(sc
->sbm_rxfilter
);
1721 reg
|= M_MAC_ALLPKT_EN
;
1722 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1725 reg
= __raw_readq(sc
->sbm_rxfilter
);
1726 reg
&= ~M_MAC_ALLPKT_EN
;
1727 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1731 /**********************************************************************
1732 * SBMAC_SETIPHDR_OFFSET(sc,onoff)
1734 * Set the iphdr offset as 15 assuming ethernet encapsulation
1741 ********************************************************************* */
1743 static void sbmac_set_iphdr_offset(struct sbmac_softc
*sc
)
1747 /* Hard code the off set to 15 for now */
1748 reg
= __raw_readq(sc
->sbm_rxfilter
);
1749 reg
&= ~M_MAC_IPHDR_OFFSET
| V_MAC_IPHDR_OFFSET(15);
1750 __raw_writeq(reg
, sc
->sbm_rxfilter
);
1752 /* BCM1250 pass1 didn't have hardware checksum. Everything
1754 if (soc_type
== K_SYS_SOC_TYPE_BCM1250
&& periph_rev
< 2) {
1755 sc
->rx_hw_checksum
= DISABLE
;
1757 sc
->rx_hw_checksum
= ENABLE
;
1762 /**********************************************************************
1763 * SBMAC_ADDR2REG(ptr)
1765 * Convert six bytes into the 64-bit register value that
1766 * we typically write into the SBMAC's address/mcast registers
1769 * ptr - pointer to 6 bytes
1773 ********************************************************************* */
1775 static uint64_t sbmac_addr2reg(unsigned char *ptr
)
1781 reg
|= (uint64_t) *(--ptr
);
1783 reg
|= (uint64_t) *(--ptr
);
1785 reg
|= (uint64_t) *(--ptr
);
1787 reg
|= (uint64_t) *(--ptr
);
1789 reg
|= (uint64_t) *(--ptr
);
1791 reg
|= (uint64_t) *(--ptr
);
1797 /**********************************************************************
1798 * SBMAC_SET_SPEED(s,speed)
1800 * Configure LAN speed for the specified MAC.
1801 * Warning: must be called when MAC is off!
1804 * s - sbmac structure
1805 * speed - speed to set MAC to (see enum sbmac_speed)
1809 * 0 indicates invalid parameters
1810 ********************************************************************* */
1812 static int sbmac_set_speed(struct sbmac_softc
*s
, enum sbmac_speed speed
)
1818 * Save new current values
1821 s
->sbm_speed
= speed
;
1823 if (s
->sbm_state
== sbmac_state_on
)
1824 return 0; /* save for next restart */
1827 * Read current register values
1830 cfg
= __raw_readq(s
->sbm_maccfg
);
1831 framecfg
= __raw_readq(s
->sbm_framecfg
);
1834 * Mask out the stuff we want to change
1837 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1838 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1842 * Now add in the new bits
1846 case sbmac_speed_10
:
1847 framecfg
|= V_MAC_IFG_RX_10
|
1849 K_MAC_IFG_THRSH_10
|
1851 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1854 case sbmac_speed_100
:
1855 framecfg
|= V_MAC_IFG_RX_100
|
1857 V_MAC_IFG_THRSH_100
|
1858 V_MAC_SLOT_SIZE_100
;
1859 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1862 case sbmac_speed_1000
:
1863 framecfg
|= V_MAC_IFG_RX_1000
|
1865 V_MAC_IFG_THRSH_1000
|
1866 V_MAC_SLOT_SIZE_1000
;
1867 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1875 * Send the bits back to the hardware
1878 __raw_writeq(framecfg
, s
->sbm_framecfg
);
1879 __raw_writeq(cfg
, s
->sbm_maccfg
);
1884 /**********************************************************************
1885 * SBMAC_SET_DUPLEX(s,duplex,fc)
1887 * Set Ethernet duplex and flow control options for this MAC
1888 * Warning: must be called when MAC is off!
1891 * s - sbmac structure
1892 * duplex - duplex setting (see enum sbmac_duplex)
1893 * fc - flow control setting (see enum sbmac_fc)
1897 * 0 if an invalid parameter combination was specified
1898 ********************************************************************* */
1900 static int sbmac_set_duplex(struct sbmac_softc
*s
, enum sbmac_duplex duplex
,
1906 * Save new current values
1909 s
->sbm_duplex
= duplex
;
1912 if (s
->sbm_state
== sbmac_state_on
)
1913 return 0; /* save for next restart */
1916 * Read current register values
1919 cfg
= __raw_readq(s
->sbm_maccfg
);
1922 * Mask off the stuff we're about to change
1925 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
1929 case sbmac_duplex_half
:
1931 case sbmac_fc_disabled
:
1932 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
1935 case sbmac_fc_collision
:
1936 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
1939 case sbmac_fc_carrier
:
1940 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
1943 case sbmac_fc_frame
: /* not valid in half duplex */
1944 default: /* invalid selection */
1949 case sbmac_duplex_full
:
1951 case sbmac_fc_disabled
:
1952 cfg
|= V_MAC_FC_CMD_DISABLED
;
1955 case sbmac_fc_frame
:
1956 cfg
|= V_MAC_FC_CMD_ENABLED
;
1959 case sbmac_fc_collision
: /* not valid in full duplex */
1960 case sbmac_fc_carrier
: /* not valid in full duplex */
1970 * Send the bits back to the hardware
1973 __raw_writeq(cfg
, s
->sbm_maccfg
);
1981 /**********************************************************************
1984 * Interrupt handler for MAC interrupts
1991 ********************************************************************* */
1992 static irqreturn_t
sbmac_intr(int irq
,void *dev_instance
)
1994 struct net_device
*dev
= (struct net_device
*) dev_instance
;
1995 struct sbmac_softc
*sc
= netdev_priv(dev
);
2000 * Read the ISR (this clears the bits in the real
2001 * register, except for counter addr)
2004 isr
= __raw_readq(sc
->sbm_isr
) & ~M_MAC_COUNTER_ADDR
;
2007 return IRQ_RETVAL(0);
2011 * Transmits on channel 0
2014 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
))
2015 sbdma_tx_process(sc
,&(sc
->sbm_txdma
), 0);
2017 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
2018 if (napi_schedule_prep(&sc
->napi
)) {
2019 __raw_writeq(0, sc
->sbm_imr
);
2020 __napi_schedule(&sc
->napi
);
2021 /* Depend on the exit from poll to reenable intr */
2024 /* may leave some packets behind */
2025 sbdma_rx_process(sc
,&(sc
->sbm_rxdma
),
2026 SBMAC_MAX_RXDESCR
* 2, 0);
2029 return IRQ_RETVAL(handled
);
2032 /**********************************************************************
2033 * SBMAC_START_TX(skb,dev)
2035 * Start output on the specified interface. Basically, we
2036 * queue as many buffers as we can until the ring fills up, or
2037 * we run off the end of the queue, whichever comes first.
2044 ********************************************************************* */
2045 static int sbmac_start_tx(struct sk_buff
*skb
, struct net_device
*dev
)
2047 struct sbmac_softc
*sc
= netdev_priv(dev
);
2048 unsigned long flags
;
2051 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2054 * Put the buffer on the transmit ring. If we
2055 * don't have room, stop the queue.
2058 if (sbdma_add_txbuffer(&(sc
->sbm_txdma
),skb
)) {
2059 /* XXX save skb that we could not send */
2060 netif_stop_queue(dev
);
2061 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2063 return NETDEV_TX_BUSY
;
2066 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2068 return NETDEV_TX_OK
;
2071 /**********************************************************************
2072 * SBMAC_SETMULTI(sc)
2074 * Reprogram the multicast table into the hardware, given
2075 * the list of multicasts associated with the interface
2083 ********************************************************************* */
2085 static void sbmac_setmulti(struct sbmac_softc
*sc
)
2090 struct netdev_hw_addr
*ha
;
2091 struct net_device
*dev
= sc
->sbm_dev
;
2094 * Clear out entire multicast table. We do this by nuking
2095 * the entire hash table and all the direct matches except
2096 * the first one, which is used for our station address
2099 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
2100 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t));
2101 __raw_writeq(0, port
);
2104 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
2105 port
= sc
->sbm_base
+ R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t));
2106 __raw_writeq(0, port
);
2110 * Clear the filter to say we don't want any multicasts.
2113 reg
= __raw_readq(sc
->sbm_rxfilter
);
2114 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2115 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2117 if (dev
->flags
& IFF_ALLMULTI
) {
2119 * Enable ALL multicasts. Do this by inverting the
2120 * multicast enable bit.
2122 reg
= __raw_readq(sc
->sbm_rxfilter
);
2123 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
2124 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2130 * Progam new multicast entries. For now, only use the
2131 * perfect filter. In the future we'll need to use the
2132 * hash filter if the perfect filter overflows
2135 /* XXX only using perfect filter for now, need to use hash
2136 * XXX if the table overflows */
2138 idx
= 1; /* skip station address */
2139 netdev_for_each_mc_addr(ha
, dev
) {
2140 if (idx
== MAC_ADDR_COUNT
)
2142 reg
= sbmac_addr2reg(ha
->addr
);
2143 port
= sc
->sbm_base
+ R_MAC_ADDR_BASE
+(idx
* sizeof(uint64_t));
2144 __raw_writeq(reg
, port
);
2149 * Enable the "accept multicast bits" if we programmed at least one
2154 reg
= __raw_readq(sc
->sbm_rxfilter
);
2155 reg
|= M_MAC_MCAST_EN
;
2156 __raw_writeq(reg
, sc
->sbm_rxfilter
);
2160 static int sb1250_change_mtu(struct net_device
*_dev
, int new_mtu
)
2162 if (new_mtu
> ENET_PACKET_SIZE
)
2164 _dev
->mtu
= new_mtu
;
2165 pr_info("changing the mtu to %d\n", new_mtu
);
2169 static const struct net_device_ops sbmac_netdev_ops
= {
2170 .ndo_open
= sbmac_open
,
2171 .ndo_stop
= sbmac_close
,
2172 .ndo_start_xmit
= sbmac_start_tx
,
2173 .ndo_set_rx_mode
= sbmac_set_rx_mode
,
2174 .ndo_tx_timeout
= sbmac_tx_timeout
,
2175 .ndo_do_ioctl
= sbmac_mii_ioctl
,
2176 .ndo_change_mtu
= sb1250_change_mtu
,
2177 .ndo_validate_addr
= eth_validate_addr
,
2178 .ndo_set_mac_address
= eth_mac_addr
,
2179 #ifdef CONFIG_NET_POLL_CONTROLLER
2180 .ndo_poll_controller
= sbmac_netpoll
,
2184 /**********************************************************************
2187 * Attach routine - init hardware and hook ourselves into linux
2190 * dev - net_device structure
2194 ********************************************************************* */
2196 static int sbmac_init(struct platform_device
*pldev
, long long base
)
2198 struct net_device
*dev
= platform_get_drvdata(pldev
);
2199 int idx
= pldev
->id
;
2200 struct sbmac_softc
*sc
= netdev_priv(dev
);
2201 unsigned char *eaddr
;
2209 eaddr
= sc
->sbm_hwaddr
;
2212 * Read the ethernet address. The firmware left this programmed
2213 * for us in the ethernet address register for each mac.
2216 ea_reg
= __raw_readq(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2217 __raw_writeq(0, sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
2218 for (i
= 0; i
< 6; i
++) {
2219 eaddr
[i
] = (uint8_t) (ea_reg
& 0xFF);
2223 for (i
= 0; i
< 6; i
++) {
2224 dev
->dev_addr
[i
] = eaddr
[i
];
2228 * Initialize context (get pointers to registers and stuff), then
2229 * allocate the memory for the descriptor tables.
2235 * Set up Linux device callins
2238 spin_lock_init(&(sc
->sbm_lock
));
2240 dev
->netdev_ops
= &sbmac_netdev_ops
;
2241 dev
->watchdog_timeo
= TX_TIMEOUT
;
2243 netif_napi_add(dev
, &sc
->napi
, sbmac_poll
, 16);
2245 dev
->irq
= UNIT_INT(idx
);
2247 /* This is needed for PASS2 for Rx H/W checksum feature */
2248 sbmac_set_iphdr_offset(sc
);
2250 sc
->mii_bus
= mdiobus_alloc();
2251 if (sc
->mii_bus
== NULL
) {
2256 sc
->mii_bus
->name
= sbmac_mdio_string
;
2257 snprintf(sc
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%s-%x",
2259 sc
->mii_bus
->priv
= sc
;
2260 sc
->mii_bus
->read
= sbmac_mii_read
;
2261 sc
->mii_bus
->write
= sbmac_mii_write
;
2262 sc
->mii_bus
->irq
= sc
->phy_irq
;
2263 for (i
= 0; i
< PHY_MAX_ADDR
; ++i
)
2264 sc
->mii_bus
->irq
[i
] = SBMAC_PHY_INT
;
2266 sc
->mii_bus
->parent
= &pldev
->dev
;
2270 err
= mdiobus_register(sc
->mii_bus
);
2272 printk(KERN_ERR
"%s: unable to register MDIO bus\n",
2276 platform_set_drvdata(pldev
, sc
->mii_bus
);
2278 err
= register_netdev(dev
);
2280 printk(KERN_ERR
"%s.%d: unable to register netdev\n",
2285 pr_info("%s.%d: registered as %s\n", sbmac_string
, idx
, dev
->name
);
2287 if (sc
->rx_hw_checksum
== ENABLE
)
2288 pr_info("%s: enabling TCP rcv checksum\n", dev
->name
);
2291 * Display Ethernet address (this is called during the config
2292 * process so we need to finish off the config message that
2293 * was being displayed)
2295 pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2296 dev
->name
, base
, eaddr
);
2300 mdiobus_unregister(sc
->mii_bus
);
2302 mdiobus_free(sc
->mii_bus
);
2304 sbmac_uninitctx(sc
);
2309 static int sbmac_open(struct net_device
*dev
)
2311 struct sbmac_softc
*sc
= netdev_priv(dev
);
2315 pr_debug("%s: sbmac_open() irq %d.\n", dev
->name
, dev
->irq
);
2318 * map/route interrupt (clear status first, in case something
2319 * weird is pending; we haven't initialized the mac registers
2323 __raw_readq(sc
->sbm_isr
);
2324 err
= request_irq(dev
->irq
, sbmac_intr
, IRQF_SHARED
, dev
->name
, dev
);
2326 printk(KERN_ERR
"%s: unable to get IRQ %d\n", dev
->name
,
2331 sc
->sbm_speed
= sbmac_speed_none
;
2332 sc
->sbm_duplex
= sbmac_duplex_none
;
2333 sc
->sbm_fc
= sbmac_fc_none
;
2340 err
= sbmac_mii_probe(dev
);
2342 goto out_unregister
;
2345 * Turn on the channel
2348 sbmac_set_channel_state(sc
,sbmac_state_on
);
2350 netif_start_queue(dev
);
2352 sbmac_set_rx_mode(dev
);
2354 phy_start(sc
->phy_dev
);
2356 napi_enable(&sc
->napi
);
2361 free_irq(dev
->irq
, dev
);
2366 static int sbmac_mii_probe(struct net_device
*dev
)
2368 struct sbmac_softc
*sc
= netdev_priv(dev
);
2369 struct phy_device
*phy_dev
;
2372 for (i
= 0; i
< PHY_MAX_ADDR
; i
++) {
2373 phy_dev
= sc
->mii_bus
->phy_map
[i
];
2378 printk(KERN_ERR
"%s: no PHY found\n", dev
->name
);
2382 phy_dev
= phy_connect(dev
, dev_name(&phy_dev
->dev
), &sbmac_mii_poll
,
2383 PHY_INTERFACE_MODE_GMII
);
2384 if (IS_ERR(phy_dev
)) {
2385 printk(KERN_ERR
"%s: could not attach to PHY\n", dev
->name
);
2386 return PTR_ERR(phy_dev
);
2389 /* Remove any features not supported by the controller */
2390 phy_dev
->supported
&= SUPPORTED_10baseT_Half
|
2391 SUPPORTED_10baseT_Full
|
2392 SUPPORTED_100baseT_Half
|
2393 SUPPORTED_100baseT_Full
|
2394 SUPPORTED_1000baseT_Half
|
2395 SUPPORTED_1000baseT_Full
|
2399 SUPPORTED_Asym_Pause
;
2400 phy_dev
->advertising
= phy_dev
->supported
;
2402 pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2403 dev
->name
, phy_dev
->drv
->name
,
2404 dev_name(&phy_dev
->dev
), phy_dev
->irq
);
2406 sc
->phy_dev
= phy_dev
;
2412 static void sbmac_mii_poll(struct net_device
*dev
)
2414 struct sbmac_softc
*sc
= netdev_priv(dev
);
2415 struct phy_device
*phy_dev
= sc
->phy_dev
;
2416 unsigned long flags
;
2418 int link_chg
, speed_chg
, duplex_chg
, pause_chg
, fc_chg
;
2420 link_chg
= (sc
->sbm_link
!= phy_dev
->link
);
2421 speed_chg
= (sc
->sbm_speed
!= phy_dev
->speed
);
2422 duplex_chg
= (sc
->sbm_duplex
!= phy_dev
->duplex
);
2423 pause_chg
= (sc
->sbm_pause
!= phy_dev
->pause
);
2425 if (!link_chg
&& !speed_chg
&& !duplex_chg
&& !pause_chg
)
2426 return; /* Hmmm... */
2428 if (!phy_dev
->link
) {
2430 sc
->sbm_link
= phy_dev
->link
;
2431 sc
->sbm_speed
= sbmac_speed_none
;
2432 sc
->sbm_duplex
= sbmac_duplex_none
;
2433 sc
->sbm_fc
= sbmac_fc_disabled
;
2435 pr_info("%s: link unavailable\n", dev
->name
);
2440 if (phy_dev
->duplex
== DUPLEX_FULL
) {
2442 fc
= sbmac_fc_frame
;
2444 fc
= sbmac_fc_disabled
;
2446 fc
= sbmac_fc_collision
;
2447 fc_chg
= (sc
->sbm_fc
!= fc
);
2449 pr_info("%s: link available: %dbase-%cD\n", dev
->name
, phy_dev
->speed
,
2450 phy_dev
->duplex
== DUPLEX_FULL
? 'F' : 'H');
2452 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2454 sc
->sbm_speed
= phy_dev
->speed
;
2455 sc
->sbm_duplex
= phy_dev
->duplex
;
2457 sc
->sbm_pause
= phy_dev
->pause
;
2458 sc
->sbm_link
= phy_dev
->link
;
2460 if ((speed_chg
|| duplex_chg
|| fc_chg
) &&
2461 sc
->sbm_state
!= sbmac_state_off
) {
2463 * something changed, restart the channel
2466 pr_debug("%s: restarting channel "
2467 "because PHY state changed\n", dev
->name
);
2468 sbmac_channel_stop(sc
);
2469 sbmac_channel_start(sc
);
2472 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2476 static void sbmac_tx_timeout (struct net_device
*dev
)
2478 struct sbmac_softc
*sc
= netdev_priv(dev
);
2479 unsigned long flags
;
2481 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2484 dev
->trans_start
= jiffies
; /* prevent tx timeout */
2485 dev
->stats
.tx_errors
++;
2487 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2489 printk (KERN_WARNING
"%s: Transmit timed out\n",dev
->name
);
2495 static void sbmac_set_rx_mode(struct net_device
*dev
)
2497 unsigned long flags
;
2498 struct sbmac_softc
*sc
= netdev_priv(dev
);
2500 spin_lock_irqsave(&sc
->sbm_lock
, flags
);
2501 if ((dev
->flags
^ sc
->sbm_devflags
) & IFF_PROMISC
) {
2503 * Promiscuous changed.
2506 if (dev
->flags
& IFF_PROMISC
) {
2507 sbmac_promiscuous_mode(sc
,1);
2510 sbmac_promiscuous_mode(sc
,0);
2513 spin_unlock_irqrestore(&sc
->sbm_lock
, flags
);
2516 * Program the multicasts. Do this every time.
2523 static int sbmac_mii_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
2525 struct sbmac_softc
*sc
= netdev_priv(dev
);
2527 if (!netif_running(dev
) || !sc
->phy_dev
)
2530 return phy_mii_ioctl(sc
->phy_dev
, rq
, cmd
);
2533 static int sbmac_close(struct net_device
*dev
)
2535 struct sbmac_softc
*sc
= netdev_priv(dev
);
2537 napi_disable(&sc
->napi
);
2539 phy_stop(sc
->phy_dev
);
2541 sbmac_set_channel_state(sc
, sbmac_state_off
);
2543 netif_stop_queue(dev
);
2546 pr_debug("%s: Shutting down ethercard\n", dev
->name
);
2548 phy_disconnect(sc
->phy_dev
);
2550 free_irq(dev
->irq
, dev
);
2552 sbdma_emptyring(&(sc
->sbm_txdma
));
2553 sbdma_emptyring(&(sc
->sbm_rxdma
));
2558 static int sbmac_poll(struct napi_struct
*napi
, int budget
)
2560 struct sbmac_softc
*sc
= container_of(napi
, struct sbmac_softc
, napi
);
2563 work_done
= sbdma_rx_process(sc
, &(sc
->sbm_rxdma
), budget
, 1);
2564 sbdma_tx_process(sc
, &(sc
->sbm_txdma
), 1);
2566 if (work_done
< budget
) {
2567 napi_complete(napi
);
2569 #ifdef CONFIG_SBMAC_COALESCE
2570 __raw_writeq(((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_TX_CH0
) |
2571 ((M_MAC_INT_EOP_COUNT
| M_MAC_INT_EOP_TIMER
) << S_MAC_RX_CH0
),
2574 __raw_writeq((M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
2575 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
), sc
->sbm_imr
);
2583 static int sbmac_probe(struct platform_device
*pldev
)
2585 struct net_device
*dev
;
2586 struct sbmac_softc
*sc
;
2587 void __iomem
*sbm_base
;
2588 struct resource
*res
;
2589 u64 sbmac_orig_hwaddr
;
2592 res
= platform_get_resource(pldev
, IORESOURCE_MEM
, 0);
2594 sbm_base
= ioremap_nocache(res
->start
, resource_size(res
));
2596 printk(KERN_ERR
"%s: unable to map device registers\n",
2597 dev_name(&pldev
->dev
));
2603 * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2604 * value for us by the firmware if we're going to use this MAC.
2605 * If we find a zero, skip this MAC.
2607 sbmac_orig_hwaddr
= __raw_readq(sbm_base
+ R_MAC_ETHERNET_ADDR
);
2608 pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev
->dev
),
2609 sbmac_orig_hwaddr
? "" : "not ", (long long)res
->start
);
2610 if (sbmac_orig_hwaddr
== 0) {
2616 * Okay, cool. Initialize this MAC.
2618 dev
= alloc_etherdev(sizeof(struct sbmac_softc
));
2624 platform_set_drvdata(pldev
, dev
);
2625 SET_NETDEV_DEV(dev
, &pldev
->dev
);
2627 sc
= netdev_priv(dev
);
2628 sc
->sbm_base
= sbm_base
;
2630 err
= sbmac_init(pldev
, res
->start
);
2638 __raw_writeq(sbmac_orig_hwaddr
, sbm_base
+ R_MAC_ETHERNET_ADDR
);
2647 static int __exit
sbmac_remove(struct platform_device
*pldev
)
2649 struct net_device
*dev
= platform_get_drvdata(pldev
);
2650 struct sbmac_softc
*sc
= netdev_priv(dev
);
2652 unregister_netdev(dev
);
2653 sbmac_uninitctx(sc
);
2654 mdiobus_unregister(sc
->mii_bus
);
2655 mdiobus_free(sc
->mii_bus
);
2656 iounmap(sc
->sbm_base
);
2662 static struct platform_driver sbmac_driver
= {
2663 .probe
= sbmac_probe
,
2664 .remove
= __exit_p(sbmac_remove
),
2666 .name
= sbmac_string
,
2667 .owner
= THIS_MODULE
,
2671 module_platform_driver(sbmac_driver
);