2 * Linux network driver for Brocade Converged Network Adapter.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
34 static DEFINE_MUTEX(bnad_fwimg_mutex
);
39 static uint bnad_msix_disable
;
40 module_param(bnad_msix_disable
, uint
, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable
, "Disable MSIX mode");
43 static uint bnad_ioc_auto_recover
= 1;
44 module_param(bnad_ioc_auto_recover
, uint
, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover
, "Enable / Disable auto recovery");
47 static uint bna_debugfs_enable
= 1;
48 module_param(bna_debugfs_enable
, uint
, S_IRUGO
| S_IWUSR
);
49 MODULE_PARM_DESC(bna_debugfs_enable
, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
55 static u32 bnad_rxqs_per_cq
= 2;
57 static struct mutex bnad_list_mutex
;
58 static LIST_HEAD(bnad_list
);
59 static const u8 bnad_bcast_addr
[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
78 bnad_add_to_list(struct bnad
*bnad
)
80 mutex_lock(&bnad_list_mutex
);
81 list_add_tail(&bnad
->list_entry
, &bnad_list
);
83 mutex_unlock(&bnad_list_mutex
);
87 bnad_remove_from_list(struct bnad
*bnad
)
89 mutex_lock(&bnad_list_mutex
);
90 list_del(&bnad
->list_entry
);
91 mutex_unlock(&bnad_list_mutex
);
95 * Reinitialize completions in CQ, once Rx is taken down
98 bnad_cq_cleanup(struct bnad
*bnad
, struct bna_ccb
*ccb
)
100 struct bna_cq_entry
*cmpl
;
103 for (i
= 0; i
< ccb
->q_depth
; i
++) {
104 cmpl
= &((struct bna_cq_entry
*)ccb
->sw_q
)[i
];
109 /* Tx Datapath functions */
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
114 bnad_tx_buff_unmap(struct bnad
*bnad
,
115 struct bnad_tx_unmap
*unmap_q
,
116 u32 q_depth
, u32 index
)
118 struct bnad_tx_unmap
*unmap
;
122 unmap
= &unmap_q
[index
];
123 nvecs
= unmap
->nvecs
;
128 dma_unmap_single(&bnad
->pcidev
->dev
,
129 dma_unmap_addr(&unmap
->vectors
[0], dma_addr
),
130 skb_headlen(skb
), DMA_TO_DEVICE
);
131 dma_unmap_addr_set(&unmap
->vectors
[0], dma_addr
, 0);
137 if (vector
== BFI_TX_MAX_VECTORS_PER_WI
) {
139 BNA_QE_INDX_INC(index
, q_depth
);
140 unmap
= &unmap_q
[index
];
143 dma_unmap_page(&bnad
->pcidev
->dev
,
144 dma_unmap_addr(&unmap
->vectors
[vector
], dma_addr
),
145 dma_unmap_len(&unmap
->vectors
[vector
], dma_len
),
147 dma_unmap_addr_set(&unmap
->vectors
[vector
], dma_addr
, 0);
151 BNA_QE_INDX_INC(index
, q_depth
);
157 * Frees all pending Tx Bufs
158 * At this point no activity is expected on the Q,
159 * so DMA unmap & freeing is fine.
162 bnad_txq_cleanup(struct bnad
*bnad
, struct bna_tcb
*tcb
)
164 struct bnad_tx_unmap
*unmap_q
= tcb
->unmap_q
;
168 for (i
= 0; i
< tcb
->q_depth
; i
++) {
169 skb
= unmap_q
[i
].skb
;
172 bnad_tx_buff_unmap(bnad
, unmap_q
, tcb
->q_depth
, i
);
174 dev_kfree_skb_any(skb
);
179 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
180 * Can be called in a) Interrupt context
184 bnad_txcmpl_process(struct bnad
*bnad
, struct bna_tcb
*tcb
)
186 u32 sent_packets
= 0, sent_bytes
= 0;
187 u32 wis
, unmap_wis
, hw_cons
, cons
, q_depth
;
188 struct bnad_tx_unmap
*unmap_q
= tcb
->unmap_q
;
189 struct bnad_tx_unmap
*unmap
;
192 /* Just return if TX is stopped */
193 if (!test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))
196 hw_cons
= *(tcb
->hw_consumer_index
);
197 cons
= tcb
->consumer_index
;
198 q_depth
= tcb
->q_depth
;
200 wis
= BNA_Q_INDEX_CHANGE(cons
, hw_cons
, q_depth
);
201 BUG_ON(!(wis
<= BNA_QE_IN_USE_CNT(tcb
, tcb
->q_depth
)));
204 unmap
= &unmap_q
[cons
];
209 sent_bytes
+= skb
->len
;
211 unmap_wis
= BNA_TXQ_WI_NEEDED(unmap
->nvecs
);
214 cons
= bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
, cons
);
215 dev_kfree_skb_any(skb
);
218 /* Update consumer pointers. */
219 tcb
->consumer_index
= hw_cons
;
221 tcb
->txq
->tx_packets
+= sent_packets
;
222 tcb
->txq
->tx_bytes
+= sent_bytes
;
228 bnad_tx_complete(struct bnad
*bnad
, struct bna_tcb
*tcb
)
230 struct net_device
*netdev
= bnad
->netdev
;
233 if (test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
))
236 sent
= bnad_txcmpl_process(bnad
, tcb
);
238 if (netif_queue_stopped(netdev
) &&
239 netif_carrier_ok(netdev
) &&
240 BNA_QE_FREE_CNT(tcb
, tcb
->q_depth
) >=
241 BNAD_NETIF_WAKE_THRESHOLD
) {
242 if (test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)) {
243 netif_wake_queue(netdev
);
244 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
249 if (likely(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
250 bna_ib_ack(tcb
->i_dbell
, sent
);
252 smp_mb__before_clear_bit();
253 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
258 /* MSIX Tx Completion Handler */
260 bnad_msix_tx(int irq
, void *data
)
262 struct bna_tcb
*tcb
= (struct bna_tcb
*)data
;
263 struct bnad
*bnad
= tcb
->bnad
;
265 bnad_tx_complete(bnad
, tcb
);
271 bnad_rxq_alloc_uninit(struct bnad
*bnad
, struct bna_rcb
*rcb
)
273 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
275 unmap_q
->reuse_pi
= -1;
276 unmap_q
->alloc_order
= -1;
277 unmap_q
->map_size
= 0;
278 unmap_q
->type
= BNAD_RXBUF_NONE
;
281 /* Default is page-based allocation. Multi-buffer support - TBD */
283 bnad_rxq_alloc_init(struct bnad
*bnad
, struct bna_rcb
*rcb
)
285 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
288 bnad_rxq_alloc_uninit(bnad
, rcb
);
290 order
= get_order(rcb
->rxq
->buffer_size
);
292 unmap_q
->type
= BNAD_RXBUF_PAGE
;
294 if (bna_is_small_rxq(rcb
->id
)) {
295 unmap_q
->alloc_order
= 0;
296 unmap_q
->map_size
= rcb
->rxq
->buffer_size
;
298 if (rcb
->rxq
->multi_buffer
) {
299 unmap_q
->alloc_order
= 0;
300 unmap_q
->map_size
= rcb
->rxq
->buffer_size
;
301 unmap_q
->type
= BNAD_RXBUF_MULTI_BUFF
;
303 unmap_q
->alloc_order
= order
;
305 (rcb
->rxq
->buffer_size
> 2048) ?
306 PAGE_SIZE
<< order
: 2048;
310 BUG_ON(((PAGE_SIZE
<< order
) % unmap_q
->map_size
));
316 bnad_rxq_cleanup_page(struct bnad
*bnad
, struct bnad_rx_unmap
*unmap
)
321 dma_unmap_page(&bnad
->pcidev
->dev
,
322 dma_unmap_addr(&unmap
->vector
, dma_addr
),
323 unmap
->vector
.len
, DMA_FROM_DEVICE
);
324 put_page(unmap
->page
);
326 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, 0);
327 unmap
->vector
.len
= 0;
331 bnad_rxq_cleanup_skb(struct bnad
*bnad
, struct bnad_rx_unmap
*unmap
)
336 dma_unmap_single(&bnad
->pcidev
->dev
,
337 dma_unmap_addr(&unmap
->vector
, dma_addr
),
338 unmap
->vector
.len
, DMA_FROM_DEVICE
);
339 dev_kfree_skb_any(unmap
->skb
);
341 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, 0);
342 unmap
->vector
.len
= 0;
346 bnad_rxq_cleanup(struct bnad
*bnad
, struct bna_rcb
*rcb
)
348 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
351 for (i
= 0; i
< rcb
->q_depth
; i
++) {
352 struct bnad_rx_unmap
*unmap
= &unmap_q
->unmap
[i
];
354 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
355 bnad_rxq_cleanup_skb(bnad
, unmap
);
357 bnad_rxq_cleanup_page(bnad
, unmap
);
359 bnad_rxq_alloc_uninit(bnad
, rcb
);
363 bnad_rxq_refill_page(struct bnad
*bnad
, struct bna_rcb
*rcb
, u32 nalloc
)
365 u32 alloced
, prod
, q_depth
;
366 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
367 struct bnad_rx_unmap
*unmap
, *prev
;
368 struct bna_rxq_entry
*rxent
;
370 u32 page_offset
, alloc_size
;
373 prod
= rcb
->producer_index
;
374 q_depth
= rcb
->q_depth
;
376 alloc_size
= PAGE_SIZE
<< unmap_q
->alloc_order
;
380 unmap
= &unmap_q
->unmap
[prod
];
382 if (unmap_q
->reuse_pi
< 0) {
383 page
= alloc_pages(GFP_ATOMIC
| __GFP_COMP
,
384 unmap_q
->alloc_order
);
387 prev
= &unmap_q
->unmap
[unmap_q
->reuse_pi
];
389 page_offset
= prev
->page_offset
+ unmap_q
->map_size
;
393 if (unlikely(!page
)) {
394 BNAD_UPDATE_CTR(bnad
, rxbuf_alloc_failed
);
395 rcb
->rxq
->rxbuf_alloc_failed
++;
399 dma_addr
= dma_map_page(&bnad
->pcidev
->dev
, page
, page_offset
,
400 unmap_q
->map_size
, DMA_FROM_DEVICE
);
403 unmap
->page_offset
= page_offset
;
404 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, dma_addr
);
405 unmap
->vector
.len
= unmap_q
->map_size
;
406 page_offset
+= unmap_q
->map_size
;
408 if (page_offset
< alloc_size
)
409 unmap_q
->reuse_pi
= prod
;
411 unmap_q
->reuse_pi
= -1;
413 rxent
= &((struct bna_rxq_entry
*)rcb
->sw_q
)[prod
];
414 BNA_SET_DMA_ADDR(dma_addr
, &rxent
->host_addr
);
415 BNA_QE_INDX_INC(prod
, q_depth
);
420 if (likely(alloced
)) {
421 rcb
->producer_index
= prod
;
423 if (likely(test_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
)))
424 bna_rxq_prod_indx_doorbell(rcb
);
431 bnad_rxq_refill_skb(struct bnad
*bnad
, struct bna_rcb
*rcb
, u32 nalloc
)
433 u32 alloced
, prod
, q_depth
, buff_sz
;
434 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
435 struct bnad_rx_unmap
*unmap
;
436 struct bna_rxq_entry
*rxent
;
440 buff_sz
= rcb
->rxq
->buffer_size
;
441 prod
= rcb
->producer_index
;
442 q_depth
= rcb
->q_depth
;
446 unmap
= &unmap_q
->unmap
[prod
];
448 skb
= netdev_alloc_skb_ip_align(bnad
->netdev
, buff_sz
);
450 if (unlikely(!skb
)) {
451 BNAD_UPDATE_CTR(bnad
, rxbuf_alloc_failed
);
452 rcb
->rxq
->rxbuf_alloc_failed
++;
455 dma_addr
= dma_map_single(&bnad
->pcidev
->dev
, skb
->data
,
456 buff_sz
, DMA_FROM_DEVICE
);
459 dma_unmap_addr_set(&unmap
->vector
, dma_addr
, dma_addr
);
460 unmap
->vector
.len
= buff_sz
;
462 rxent
= &((struct bna_rxq_entry
*)rcb
->sw_q
)[prod
];
463 BNA_SET_DMA_ADDR(dma_addr
, &rxent
->host_addr
);
464 BNA_QE_INDX_INC(prod
, q_depth
);
469 if (likely(alloced
)) {
470 rcb
->producer_index
= prod
;
472 if (likely(test_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
)))
473 bna_rxq_prod_indx_doorbell(rcb
);
480 bnad_rxq_post(struct bnad
*bnad
, struct bna_rcb
*rcb
)
482 struct bnad_rx_unmap_q
*unmap_q
= rcb
->unmap_q
;
485 to_alloc
= BNA_QE_FREE_CNT(rcb
, rcb
->q_depth
);
486 if (!(to_alloc
>> BNAD_RXQ_REFILL_THRESHOLD_SHIFT
))
489 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
490 bnad_rxq_refill_skb(bnad
, rcb
, to_alloc
);
492 bnad_rxq_refill_page(bnad
, rcb
, to_alloc
);
495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
497 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
498 BNA_CQ_EF_L4_CKSUM_OK)
500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
503 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
505 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
507 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
510 bnad_cq_drop_packet(struct bnad
*bnad
, struct bna_rcb
*rcb
,
511 u32 sop_ci
, u32 nvecs
)
513 struct bnad_rx_unmap_q
*unmap_q
;
514 struct bnad_rx_unmap
*unmap
;
517 unmap_q
= rcb
->unmap_q
;
518 for (vec
= 0, ci
= sop_ci
; vec
< nvecs
; vec
++) {
519 unmap
= &unmap_q
->unmap
[ci
];
520 BNA_QE_INDX_INC(ci
, rcb
->q_depth
);
522 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
523 bnad_rxq_cleanup_skb(bnad
, unmap
);
525 bnad_rxq_cleanup_page(bnad
, unmap
);
530 bnad_cq_setup_skb_frags(struct bna_rcb
*rcb
, struct sk_buff
*skb
,
531 u32 sop_ci
, u32 nvecs
, u32 last_fraglen
)
534 u32 ci
, vec
, len
, totlen
= 0;
535 struct bnad_rx_unmap_q
*unmap_q
;
536 struct bnad_rx_unmap
*unmap
;
538 unmap_q
= rcb
->unmap_q
;
541 /* prefetch header */
542 prefetch(page_address(unmap_q
->unmap
[sop_ci
].page
) +
543 unmap_q
->unmap
[sop_ci
].page_offset
);
545 for (vec
= 1, ci
= sop_ci
; vec
<= nvecs
; vec
++) {
546 unmap
= &unmap_q
->unmap
[ci
];
547 BNA_QE_INDX_INC(ci
, rcb
->q_depth
);
549 dma_unmap_page(&bnad
->pcidev
->dev
,
550 dma_unmap_addr(&unmap
->vector
, dma_addr
),
551 unmap
->vector
.len
, DMA_FROM_DEVICE
);
553 len
= (vec
== nvecs
) ?
554 last_fraglen
: unmap
->vector
.len
;
557 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
558 unmap
->page
, unmap
->page_offset
, len
);
561 unmap
->vector
.len
= 0;
565 skb
->data_len
+= totlen
;
566 skb
->truesize
+= totlen
;
570 bnad_cq_setup_skb(struct bnad
*bnad
, struct sk_buff
*skb
,
571 struct bnad_rx_unmap
*unmap
, u32 len
)
575 dma_unmap_single(&bnad
->pcidev
->dev
,
576 dma_unmap_addr(&unmap
->vector
, dma_addr
),
577 unmap
->vector
.len
, DMA_FROM_DEVICE
);
580 skb
->protocol
= eth_type_trans(skb
, bnad
->netdev
);
583 unmap
->vector
.len
= 0;
587 bnad_cq_process(struct bnad
*bnad
, struct bna_ccb
*ccb
, int budget
)
589 struct bna_cq_entry
*cq
, *cmpl
, *next_cmpl
;
590 struct bna_rcb
*rcb
= NULL
;
591 struct bnad_rx_unmap_q
*unmap_q
;
592 struct bnad_rx_unmap
*unmap
= NULL
;
593 struct sk_buff
*skb
= NULL
;
594 struct bna_pkt_rate
*pkt_rt
= &ccb
->pkt_rate
;
595 struct bnad_rx_ctrl
*rx_ctrl
= ccb
->ctrl
;
596 u32 packets
= 0, len
= 0, totlen
= 0;
597 u32 pi
, vec
, sop_ci
= 0, nvecs
= 0;
598 u32 flags
, masked_flags
;
600 prefetch(bnad
->netdev
);
603 cmpl
= &cq
[ccb
->producer_index
];
605 while (packets
< budget
) {
608 /* The 'valid' field is set by the adapter, only after writing
609 * the other fields of completion entry. Hence, do not load
610 * other fields of completion entry *before* the 'valid' is
611 * loaded. Adding the rmb() here prevents the compiler and/or
612 * CPU from reordering the reads which would potentially result
613 * in reading stale values in completion entry.
617 BNA_UPDATE_PKT_CNT(pkt_rt
, ntohs(cmpl
->length
));
619 if (bna_is_small_rxq(cmpl
->rxq_id
))
624 unmap_q
= rcb
->unmap_q
;
626 /* start of packet ci */
627 sop_ci
= rcb
->consumer_index
;
629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
)) {
630 unmap
= &unmap_q
->unmap
[sop_ci
];
633 skb
= napi_get_frags(&rx_ctrl
->napi
);
639 flags
= ntohl(cmpl
->flags
);
640 len
= ntohs(cmpl
->length
);
644 /* Check all the completions for this frame.
645 * busy-wait doesn't help much, break here.
647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q
->type
) &&
648 (flags
& BNA_CQ_EF_EOP
) == 0) {
649 pi
= ccb
->producer_index
;
651 BNA_QE_INDX_INC(pi
, ccb
->q_depth
);
654 if (!next_cmpl
->valid
)
656 /* The 'valid' field is set by the adapter, only
657 * after writing the other fields of completion
658 * entry. Hence, do not load other fields of
659 * completion entry *before* the 'valid' is
660 * loaded. Adding the rmb() here prevents the
661 * compiler and/or CPU from reordering the reads
662 * which would potentially result in reading
663 * stale values in completion entry.
667 len
= ntohs(next_cmpl
->length
);
668 flags
= ntohl(next_cmpl
->flags
);
672 } while ((flags
& BNA_CQ_EF_EOP
) == 0);
674 if (!next_cmpl
->valid
)
678 /* TODO: BNA_CQ_EF_LOCAL ? */
679 if (unlikely(flags
& (BNA_CQ_EF_MAC_ERROR
|
680 BNA_CQ_EF_FCS_ERROR
|
681 BNA_CQ_EF_TOO_LONG
))) {
682 bnad_cq_drop_packet(bnad
, rcb
, sop_ci
, nvecs
);
683 rcb
->rxq
->rx_packets_with_error
++;
688 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
689 bnad_cq_setup_skb(bnad
, skb
, unmap
, len
);
691 bnad_cq_setup_skb_frags(rcb
, skb
, sop_ci
, nvecs
, len
);
694 rcb
->rxq
->rx_packets
++;
695 rcb
->rxq
->rx_bytes
+= totlen
;
696 ccb
->bytes_per_intr
+= totlen
;
698 masked_flags
= flags
& flags_cksum_prot_mask
;
701 ((bnad
->netdev
->features
& NETIF_F_RXCSUM
) &&
702 ((masked_flags
== flags_tcp4
) ||
703 (masked_flags
== flags_udp4
) ||
704 (masked_flags
== flags_tcp6
) ||
705 (masked_flags
== flags_udp6
))))
706 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
708 skb_checksum_none_assert(skb
);
710 if (flags
& BNA_CQ_EF_VLAN
)
711 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), ntohs(cmpl
->vlan_tag
));
713 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q
->type
))
714 netif_receive_skb(skb
);
716 napi_gro_frags(&rx_ctrl
->napi
);
719 BNA_QE_INDX_ADD(rcb
->consumer_index
, nvecs
, rcb
->q_depth
);
720 for (vec
= 0; vec
< nvecs
; vec
++) {
721 cmpl
= &cq
[ccb
->producer_index
];
723 BNA_QE_INDX_INC(ccb
->producer_index
, ccb
->q_depth
);
725 cmpl
= &cq
[ccb
->producer_index
];
728 napi_gro_flush(&rx_ctrl
->napi
, false);
729 if (likely(test_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[0]->flags
)))
730 bna_ib_ack_disable_irq(ccb
->i_dbell
, packets
);
732 bnad_rxq_post(bnad
, ccb
->rcb
[0]);
734 bnad_rxq_post(bnad
, ccb
->rcb
[1]);
740 bnad_netif_rx_schedule_poll(struct bnad
*bnad
, struct bna_ccb
*ccb
)
742 struct bnad_rx_ctrl
*rx_ctrl
= (struct bnad_rx_ctrl
*)(ccb
->ctrl
);
743 struct napi_struct
*napi
= &rx_ctrl
->napi
;
745 if (likely(napi_schedule_prep(napi
))) {
746 __napi_schedule(napi
);
747 rx_ctrl
->rx_schedule
++;
751 /* MSIX Rx Path Handler */
753 bnad_msix_rx(int irq
, void *data
)
755 struct bna_ccb
*ccb
= (struct bna_ccb
*)data
;
758 ((struct bnad_rx_ctrl
*)(ccb
->ctrl
))->rx_intr_ctr
++;
759 bnad_netif_rx_schedule_poll(ccb
->bnad
, ccb
);
765 /* Interrupt handlers */
767 /* Mbox Interrupt Handlers */
769 bnad_msix_mbox_handler(int irq
, void *data
)
773 struct bnad
*bnad
= (struct bnad
*)data
;
775 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
776 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
))) {
777 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
781 bna_intr_status_get(&bnad
->bna
, intr_status
);
783 if (BNA_IS_MBOX_ERR_INTR(&bnad
->bna
, intr_status
))
784 bna_mbox_handler(&bnad
->bna
, intr_status
);
786 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
792 bnad_isr(int irq
, void *data
)
797 struct bnad
*bnad
= (struct bnad
*)data
;
798 struct bnad_rx_info
*rx_info
;
799 struct bnad_rx_ctrl
*rx_ctrl
;
800 struct bna_tcb
*tcb
= NULL
;
802 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
803 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
))) {
804 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
808 bna_intr_status_get(&bnad
->bna
, intr_status
);
810 if (unlikely(!intr_status
)) {
811 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
815 if (BNA_IS_MBOX_ERR_INTR(&bnad
->bna
, intr_status
))
816 bna_mbox_handler(&bnad
->bna
, intr_status
);
818 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
820 if (!BNA_IS_INTX_DATA_INTR(intr_status
))
823 /* Process data interrupts */
825 for (i
= 0; i
< bnad
->num_tx
; i
++) {
826 for (j
= 0; j
< bnad
->num_txq_per_tx
; j
++) {
827 tcb
= bnad
->tx_info
[i
].tcb
[j
];
828 if (tcb
&& test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))
829 bnad_tx_complete(bnad
, bnad
->tx_info
[i
].tcb
[j
]);
833 for (i
= 0; i
< bnad
->num_rx
; i
++) {
834 rx_info
= &bnad
->rx_info
[i
];
837 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
838 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
840 bnad_netif_rx_schedule_poll(bnad
,
848 * Called in interrupt / callback context
849 * with bna_lock held, so cfg_flags access is OK
852 bnad_enable_mbox_irq(struct bnad
*bnad
)
854 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
856 BNAD_UPDATE_CTR(bnad
, mbox_intr_enabled
);
860 * Called with bnad->bna_lock held b'cos of
861 * bnad->cfg_flags access.
864 bnad_disable_mbox_irq(struct bnad
*bnad
)
866 set_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
868 BNAD_UPDATE_CTR(bnad
, mbox_intr_disabled
);
872 bnad_set_netdev_perm_addr(struct bnad
*bnad
)
874 struct net_device
*netdev
= bnad
->netdev
;
876 memcpy(netdev
->perm_addr
, &bnad
->perm_addr
, netdev
->addr_len
);
877 if (is_zero_ether_addr(netdev
->dev_addr
))
878 memcpy(netdev
->dev_addr
, &bnad
->perm_addr
, netdev
->addr_len
);
881 /* Control Path Handlers */
885 bnad_cb_mbox_intr_enable(struct bnad
*bnad
)
887 bnad_enable_mbox_irq(bnad
);
891 bnad_cb_mbox_intr_disable(struct bnad
*bnad
)
893 bnad_disable_mbox_irq(bnad
);
897 bnad_cb_ioceth_ready(struct bnad
*bnad
)
899 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_SUCCESS
;
900 complete(&bnad
->bnad_completions
.ioc_comp
);
904 bnad_cb_ioceth_failed(struct bnad
*bnad
)
906 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_FAIL
;
907 complete(&bnad
->bnad_completions
.ioc_comp
);
911 bnad_cb_ioceth_disabled(struct bnad
*bnad
)
913 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_SUCCESS
;
914 complete(&bnad
->bnad_completions
.ioc_comp
);
918 bnad_cb_enet_disabled(void *arg
)
920 struct bnad
*bnad
= (struct bnad
*)arg
;
922 netif_carrier_off(bnad
->netdev
);
923 complete(&bnad
->bnad_completions
.enet_comp
);
927 bnad_cb_ethport_link_status(struct bnad
*bnad
,
928 enum bna_link_status link_status
)
930 bool link_up
= false;
932 link_up
= (link_status
== BNA_LINK_UP
) || (link_status
== BNA_CEE_UP
);
934 if (link_status
== BNA_CEE_UP
) {
935 if (!test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
))
936 BNAD_UPDATE_CTR(bnad
, cee_toggle
);
937 set_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
);
939 if (test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
))
940 BNAD_UPDATE_CTR(bnad
, cee_toggle
);
941 clear_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
);
945 if (!netif_carrier_ok(bnad
->netdev
)) {
947 printk(KERN_WARNING
"bna: %s link up\n",
949 netif_carrier_on(bnad
->netdev
);
950 BNAD_UPDATE_CTR(bnad
, link_toggle
);
951 for (tx_id
= 0; tx_id
< bnad
->num_tx
; tx_id
++) {
952 for (tcb_id
= 0; tcb_id
< bnad
->num_txq_per_tx
;
954 struct bna_tcb
*tcb
=
955 bnad
->tx_info
[tx_id
].tcb
[tcb_id
];
962 if (test_bit(BNAD_TXQ_TX_STARTED
,
966 * Transmit Schedule */
967 printk(KERN_INFO
"bna: %s %d "
974 BNAD_UPDATE_CTR(bnad
,
980 BNAD_UPDATE_CTR(bnad
,
987 if (netif_carrier_ok(bnad
->netdev
)) {
988 printk(KERN_WARNING
"bna: %s link down\n",
990 netif_carrier_off(bnad
->netdev
);
991 BNAD_UPDATE_CTR(bnad
, link_toggle
);
997 bnad_cb_tx_disabled(void *arg
, struct bna_tx
*tx
)
999 struct bnad
*bnad
= (struct bnad
*)arg
;
1001 complete(&bnad
->bnad_completions
.tx_comp
);
1005 bnad_cb_tcb_setup(struct bnad
*bnad
, struct bna_tcb
*tcb
)
1007 struct bnad_tx_info
*tx_info
=
1008 (struct bnad_tx_info
*)tcb
->txq
->tx
->priv
;
1011 tx_info
->tcb
[tcb
->id
] = tcb
;
1015 bnad_cb_tcb_destroy(struct bnad
*bnad
, struct bna_tcb
*tcb
)
1017 struct bnad_tx_info
*tx_info
=
1018 (struct bnad_tx_info
*)tcb
->txq
->tx
->priv
;
1020 tx_info
->tcb
[tcb
->id
] = NULL
;
1025 bnad_cb_ccb_setup(struct bnad
*bnad
, struct bna_ccb
*ccb
)
1027 struct bnad_rx_info
*rx_info
=
1028 (struct bnad_rx_info
*)ccb
->cq
->rx
->priv
;
1030 rx_info
->rx_ctrl
[ccb
->id
].ccb
= ccb
;
1031 ccb
->ctrl
= &rx_info
->rx_ctrl
[ccb
->id
];
1035 bnad_cb_ccb_destroy(struct bnad
*bnad
, struct bna_ccb
*ccb
)
1037 struct bnad_rx_info
*rx_info
=
1038 (struct bnad_rx_info
*)ccb
->cq
->rx
->priv
;
1040 rx_info
->rx_ctrl
[ccb
->id
].ccb
= NULL
;
1044 bnad_cb_tx_stall(struct bnad
*bnad
, struct bna_tx
*tx
)
1046 struct bnad_tx_info
*tx_info
=
1047 (struct bnad_tx_info
*)tx
->priv
;
1048 struct bna_tcb
*tcb
;
1052 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1053 tcb
= tx_info
->tcb
[i
];
1057 clear_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
);
1058 netif_stop_subqueue(bnad
->netdev
, txq_id
);
1059 printk(KERN_INFO
"bna: %s %d TXQ_STOPPED\n",
1060 bnad
->netdev
->name
, txq_id
);
1065 bnad_cb_tx_resume(struct bnad
*bnad
, struct bna_tx
*tx
)
1067 struct bnad_tx_info
*tx_info
= (struct bnad_tx_info
*)tx
->priv
;
1068 struct bna_tcb
*tcb
;
1072 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1073 tcb
= tx_info
->tcb
[i
];
1078 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
));
1079 set_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
);
1080 BUG_ON(*(tcb
->hw_consumer_index
) != 0);
1082 if (netif_carrier_ok(bnad
->netdev
)) {
1083 printk(KERN_INFO
"bna: %s %d TXQ_STARTED\n",
1084 bnad
->netdev
->name
, txq_id
);
1085 netif_wake_subqueue(bnad
->netdev
, txq_id
);
1086 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
1091 * Workaround for first ioceth enable failure & we
1092 * get a 0 MAC address. We try to get the MAC address
1095 if (is_zero_ether_addr(&bnad
->perm_addr
.mac
[0])) {
1096 bna_enet_perm_mac_get(&bnad
->bna
.enet
, &bnad
->perm_addr
);
1097 bnad_set_netdev_perm_addr(bnad
);
1102 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1105 bnad_tx_cleanup(struct delayed_work
*work
)
1107 struct bnad_tx_info
*tx_info
=
1108 container_of(work
, struct bnad_tx_info
, tx_cleanup_work
);
1109 struct bnad
*bnad
= NULL
;
1110 struct bna_tcb
*tcb
;
1111 unsigned long flags
;
1114 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1115 tcb
= tx_info
->tcb
[i
];
1121 if (test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
)) {
1126 bnad_txq_cleanup(bnad
, tcb
);
1128 smp_mb__before_clear_bit();
1129 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
1133 queue_delayed_work(bnad
->work_q
, &tx_info
->tx_cleanup_work
,
1134 msecs_to_jiffies(1));
1138 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1139 bna_tx_cleanup_complete(tx_info
->tx
);
1140 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1144 bnad_cb_tx_cleanup(struct bnad
*bnad
, struct bna_tx
*tx
)
1146 struct bnad_tx_info
*tx_info
= (struct bnad_tx_info
*)tx
->priv
;
1147 struct bna_tcb
*tcb
;
1150 for (i
= 0; i
< BNAD_MAX_TXQ_PER_TX
; i
++) {
1151 tcb
= tx_info
->tcb
[i
];
1156 queue_delayed_work(bnad
->work_q
, &tx_info
->tx_cleanup_work
, 0);
1160 bnad_cb_rx_stall(struct bnad
*bnad
, struct bna_rx
*rx
)
1162 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1163 struct bna_ccb
*ccb
;
1164 struct bnad_rx_ctrl
*rx_ctrl
;
1167 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1168 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1173 clear_bit(BNAD_RXQ_POST_OK
, &ccb
->rcb
[0]->flags
);
1176 clear_bit(BNAD_RXQ_POST_OK
, &ccb
->rcb
[1]->flags
);
1181 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1184 bnad_rx_cleanup(void *work
)
1186 struct bnad_rx_info
*rx_info
=
1187 container_of(work
, struct bnad_rx_info
, rx_cleanup_work
);
1188 struct bnad_rx_ctrl
*rx_ctrl
;
1189 struct bnad
*bnad
= NULL
;
1190 unsigned long flags
;
1193 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1194 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1199 bnad
= rx_ctrl
->ccb
->bnad
;
1202 * Wait till the poll handler has exited
1203 * and nothing can be scheduled anymore
1205 napi_disable(&rx_ctrl
->napi
);
1207 bnad_cq_cleanup(bnad
, rx_ctrl
->ccb
);
1208 bnad_rxq_cleanup(bnad
, rx_ctrl
->ccb
->rcb
[0]);
1209 if (rx_ctrl
->ccb
->rcb
[1])
1210 bnad_rxq_cleanup(bnad
, rx_ctrl
->ccb
->rcb
[1]);
1213 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1214 bna_rx_cleanup_complete(rx_info
->rx
);
1215 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1219 bnad_cb_rx_cleanup(struct bnad
*bnad
, struct bna_rx
*rx
)
1221 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1222 struct bna_ccb
*ccb
;
1223 struct bnad_rx_ctrl
*rx_ctrl
;
1226 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1227 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1232 clear_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[0]->flags
);
1235 clear_bit(BNAD_RXQ_STARTED
, &ccb
->rcb
[1]->flags
);
1238 queue_work(bnad
->work_q
, &rx_info
->rx_cleanup_work
);
1242 bnad_cb_rx_post(struct bnad
*bnad
, struct bna_rx
*rx
)
1244 struct bnad_rx_info
*rx_info
= (struct bnad_rx_info
*)rx
->priv
;
1245 struct bna_ccb
*ccb
;
1246 struct bna_rcb
*rcb
;
1247 struct bnad_rx_ctrl
*rx_ctrl
;
1250 for (i
= 0; i
< BNAD_MAX_RXP_PER_RX
; i
++) {
1251 rx_ctrl
= &rx_info
->rx_ctrl
[i
];
1256 napi_enable(&rx_ctrl
->napi
);
1258 for (j
= 0; j
< BNAD_MAX_RXQ_PER_RXP
; j
++) {
1263 bnad_rxq_alloc_init(bnad
, rcb
);
1264 set_bit(BNAD_RXQ_STARTED
, &rcb
->flags
);
1265 set_bit(BNAD_RXQ_POST_OK
, &rcb
->flags
);
1266 bnad_rxq_post(bnad
, rcb
);
1272 bnad_cb_rx_disabled(void *arg
, struct bna_rx
*rx
)
1274 struct bnad
*bnad
= (struct bnad
*)arg
;
1276 complete(&bnad
->bnad_completions
.rx_comp
);
1280 bnad_cb_rx_mcast_add(struct bnad
*bnad
, struct bna_rx
*rx
)
1282 bnad
->bnad_completions
.mcast_comp_status
= BNA_CB_SUCCESS
;
1283 complete(&bnad
->bnad_completions
.mcast_comp
);
1287 bnad_cb_stats_get(struct bnad
*bnad
, enum bna_cb_status status
,
1288 struct bna_stats
*stats
)
1290 if (status
== BNA_CB_SUCCESS
)
1291 BNAD_UPDATE_CTR(bnad
, hw_stats_updates
);
1293 if (!netif_running(bnad
->netdev
) ||
1294 !test_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1297 mod_timer(&bnad
->stats_timer
,
1298 jiffies
+ msecs_to_jiffies(BNAD_STATS_TIMER_FREQ
));
1302 bnad_cb_enet_mtu_set(struct bnad
*bnad
)
1304 bnad
->bnad_completions
.mtu_comp_status
= BNA_CB_SUCCESS
;
1305 complete(&bnad
->bnad_completions
.mtu_comp
);
1309 bnad_cb_completion(void *arg
, enum bfa_status status
)
1311 struct bnad_iocmd_comp
*iocmd_comp
=
1312 (struct bnad_iocmd_comp
*)arg
;
1314 iocmd_comp
->comp_status
= (u32
) status
;
1315 complete(&iocmd_comp
->comp
);
1318 /* Resource allocation, free functions */
1321 bnad_mem_free(struct bnad
*bnad
,
1322 struct bna_mem_info
*mem_info
)
1327 if (mem_info
->mdl
== NULL
)
1330 for (i
= 0; i
< mem_info
->num
; i
++) {
1331 if (mem_info
->mdl
[i
].kva
!= NULL
) {
1332 if (mem_info
->mem_type
== BNA_MEM_T_DMA
) {
1333 BNA_GET_DMA_ADDR(&(mem_info
->mdl
[i
].dma
),
1335 dma_free_coherent(&bnad
->pcidev
->dev
,
1336 mem_info
->mdl
[i
].len
,
1337 mem_info
->mdl
[i
].kva
, dma_pa
);
1339 kfree(mem_info
->mdl
[i
].kva
);
1342 kfree(mem_info
->mdl
);
1343 mem_info
->mdl
= NULL
;
1347 bnad_mem_alloc(struct bnad
*bnad
,
1348 struct bna_mem_info
*mem_info
)
1353 if ((mem_info
->num
== 0) || (mem_info
->len
== 0)) {
1354 mem_info
->mdl
= NULL
;
1358 mem_info
->mdl
= kcalloc(mem_info
->num
, sizeof(struct bna_mem_descr
),
1360 if (mem_info
->mdl
== NULL
)
1363 if (mem_info
->mem_type
== BNA_MEM_T_DMA
) {
1364 for (i
= 0; i
< mem_info
->num
; i
++) {
1365 mem_info
->mdl
[i
].len
= mem_info
->len
;
1366 mem_info
->mdl
[i
].kva
=
1367 dma_alloc_coherent(&bnad
->pcidev
->dev
,
1368 mem_info
->len
, &dma_pa
,
1370 if (mem_info
->mdl
[i
].kva
== NULL
)
1373 BNA_SET_DMA_ADDR(dma_pa
,
1374 &(mem_info
->mdl
[i
].dma
));
1377 for (i
= 0; i
< mem_info
->num
; i
++) {
1378 mem_info
->mdl
[i
].len
= mem_info
->len
;
1379 mem_info
->mdl
[i
].kva
= kzalloc(mem_info
->len
,
1381 if (mem_info
->mdl
[i
].kva
== NULL
)
1389 bnad_mem_free(bnad
, mem_info
);
1393 /* Free IRQ for Mailbox */
1395 bnad_mbox_irq_free(struct bnad
*bnad
)
1398 unsigned long flags
;
1400 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1401 bnad_disable_mbox_irq(bnad
);
1402 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1404 irq
= BNAD_GET_MBOX_IRQ(bnad
);
1405 free_irq(irq
, bnad
);
1409 * Allocates IRQ for Mailbox, but keep it disabled
1410 * This will be enabled once we get the mbox enable callback
1414 bnad_mbox_irq_alloc(struct bnad
*bnad
)
1417 unsigned long irq_flags
, flags
;
1419 irq_handler_t irq_handler
;
1421 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1422 if (bnad
->cfg_flags
& BNAD_CF_MSIX
) {
1423 irq_handler
= (irq_handler_t
)bnad_msix_mbox_handler
;
1424 irq
= bnad
->msix_table
[BNAD_MAILBOX_MSIX_INDEX
].vector
;
1427 irq_handler
= (irq_handler_t
)bnad_isr
;
1428 irq
= bnad
->pcidev
->irq
;
1429 irq_flags
= IRQF_SHARED
;
1432 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1433 sprintf(bnad
->mbox_irq_name
, "%s", BNAD_NAME
);
1436 * Set the Mbox IRQ disable flag, so that the IRQ handler
1437 * called from request_irq() for SHARED IRQs do not execute
1439 set_bit(BNAD_RF_MBOX_IRQ_DISABLED
, &bnad
->run_flags
);
1441 BNAD_UPDATE_CTR(bnad
, mbox_intr_disabled
);
1443 err
= request_irq(irq
, irq_handler
, irq_flags
,
1444 bnad
->mbox_irq_name
, bnad
);
1450 bnad_txrx_irq_free(struct bnad
*bnad
, struct bna_intr_info
*intr_info
)
1452 kfree(intr_info
->idl
);
1453 intr_info
->idl
= NULL
;
1456 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1458 bnad_txrx_irq_alloc(struct bnad
*bnad
, enum bnad_intr_source src
,
1459 u32 txrx_id
, struct bna_intr_info
*intr_info
)
1461 int i
, vector_start
= 0;
1463 unsigned long flags
;
1465 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1466 cfg_flags
= bnad
->cfg_flags
;
1467 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1469 if (cfg_flags
& BNAD_CF_MSIX
) {
1470 intr_info
->intr_type
= BNA_INTR_T_MSIX
;
1471 intr_info
->idl
= kcalloc(intr_info
->num
,
1472 sizeof(struct bna_intr_descr
),
1474 if (!intr_info
->idl
)
1479 vector_start
= BNAD_MAILBOX_MSIX_VECTORS
+ txrx_id
;
1483 vector_start
= BNAD_MAILBOX_MSIX_VECTORS
+
1484 (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
1492 for (i
= 0; i
< intr_info
->num
; i
++)
1493 intr_info
->idl
[i
].vector
= vector_start
+ i
;
1495 intr_info
->intr_type
= BNA_INTR_T_INTX
;
1497 intr_info
->idl
= kcalloc(intr_info
->num
,
1498 sizeof(struct bna_intr_descr
),
1500 if (!intr_info
->idl
)
1505 intr_info
->idl
[0].vector
= BNAD_INTX_TX_IB_BITMASK
;
1509 intr_info
->idl
[0].vector
= BNAD_INTX_RX_IB_BITMASK
;
1516 /* NOTE: Should be called for MSIX only
1517 * Unregisters Tx MSIX vector(s) from the kernel
1520 bnad_tx_msix_unregister(struct bnad
*bnad
, struct bnad_tx_info
*tx_info
,
1526 for (i
= 0; i
< num_txqs
; i
++) {
1527 if (tx_info
->tcb
[i
] == NULL
)
1530 vector_num
= tx_info
->tcb
[i
]->intr_vector
;
1531 free_irq(bnad
->msix_table
[vector_num
].vector
, tx_info
->tcb
[i
]);
1535 /* NOTE: Should be called for MSIX only
1536 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1539 bnad_tx_msix_register(struct bnad
*bnad
, struct bnad_tx_info
*tx_info
,
1540 u32 tx_id
, int num_txqs
)
1546 for (i
= 0; i
< num_txqs
; i
++) {
1547 vector_num
= tx_info
->tcb
[i
]->intr_vector
;
1548 sprintf(tx_info
->tcb
[i
]->name
, "%s TXQ %d", bnad
->netdev
->name
,
1549 tx_id
+ tx_info
->tcb
[i
]->id
);
1550 err
= request_irq(bnad
->msix_table
[vector_num
].vector
,
1551 (irq_handler_t
)bnad_msix_tx
, 0,
1552 tx_info
->tcb
[i
]->name
,
1562 bnad_tx_msix_unregister(bnad
, tx_info
, (i
- 1));
1566 /* NOTE: Should be called for MSIX only
1567 * Unregisters Rx MSIX vector(s) from the kernel
1570 bnad_rx_msix_unregister(struct bnad
*bnad
, struct bnad_rx_info
*rx_info
,
1576 for (i
= 0; i
< num_rxps
; i
++) {
1577 if (rx_info
->rx_ctrl
[i
].ccb
== NULL
)
1580 vector_num
= rx_info
->rx_ctrl
[i
].ccb
->intr_vector
;
1581 free_irq(bnad
->msix_table
[vector_num
].vector
,
1582 rx_info
->rx_ctrl
[i
].ccb
);
1586 /* NOTE: Should be called for MSIX only
1587 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1590 bnad_rx_msix_register(struct bnad
*bnad
, struct bnad_rx_info
*rx_info
,
1591 u32 rx_id
, int num_rxps
)
1597 for (i
= 0; i
< num_rxps
; i
++) {
1598 vector_num
= rx_info
->rx_ctrl
[i
].ccb
->intr_vector
;
1599 sprintf(rx_info
->rx_ctrl
[i
].ccb
->name
, "%s CQ %d",
1601 rx_id
+ rx_info
->rx_ctrl
[i
].ccb
->id
);
1602 err
= request_irq(bnad
->msix_table
[vector_num
].vector
,
1603 (irq_handler_t
)bnad_msix_rx
, 0,
1604 rx_info
->rx_ctrl
[i
].ccb
->name
,
1605 rx_info
->rx_ctrl
[i
].ccb
);
1614 bnad_rx_msix_unregister(bnad
, rx_info
, (i
- 1));
1618 /* Free Tx object Resources */
1620 bnad_tx_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
)
1624 for (i
= 0; i
< BNA_TX_RES_T_MAX
; i
++) {
1625 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1626 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
1627 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1628 bnad_txrx_irq_free(bnad
, &res_info
[i
].res_u
.intr_info
);
1632 /* Allocates memory and interrupt resources for Tx object */
1634 bnad_tx_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
1639 for (i
= 0; i
< BNA_TX_RES_T_MAX
; i
++) {
1640 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1641 err
= bnad_mem_alloc(bnad
,
1642 &res_info
[i
].res_u
.mem_info
);
1643 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1644 err
= bnad_txrx_irq_alloc(bnad
, BNAD_INTR_TX
, tx_id
,
1645 &res_info
[i
].res_u
.intr_info
);
1652 bnad_tx_res_free(bnad
, res_info
);
1656 /* Free Rx object Resources */
1658 bnad_rx_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
)
1662 for (i
= 0; i
< BNA_RX_RES_T_MAX
; i
++) {
1663 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1664 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
1665 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1666 bnad_txrx_irq_free(bnad
, &res_info
[i
].res_u
.intr_info
);
1670 /* Allocates memory and interrupt resources for Rx object */
1672 bnad_rx_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
1677 /* All memory needs to be allocated before setup_ccbs */
1678 for (i
= 0; i
< BNA_RX_RES_T_MAX
; i
++) {
1679 if (res_info
[i
].res_type
== BNA_RES_T_MEM
)
1680 err
= bnad_mem_alloc(bnad
,
1681 &res_info
[i
].res_u
.mem_info
);
1682 else if (res_info
[i
].res_type
== BNA_RES_T_INTR
)
1683 err
= bnad_txrx_irq_alloc(bnad
, BNAD_INTR_RX
, rx_id
,
1684 &res_info
[i
].res_u
.intr_info
);
1691 bnad_rx_res_free(bnad
, res_info
);
1695 /* Timer callbacks */
1698 bnad_ioc_timeout(unsigned long data
)
1700 struct bnad
*bnad
= (struct bnad
*)data
;
1701 unsigned long flags
;
1703 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1704 bfa_nw_ioc_timeout((void *) &bnad
->bna
.ioceth
.ioc
);
1705 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1709 bnad_ioc_hb_check(unsigned long data
)
1711 struct bnad
*bnad
= (struct bnad
*)data
;
1712 unsigned long flags
;
1714 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1715 bfa_nw_ioc_hb_check((void *) &bnad
->bna
.ioceth
.ioc
);
1716 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1720 bnad_iocpf_timeout(unsigned long data
)
1722 struct bnad
*bnad
= (struct bnad
*)data
;
1723 unsigned long flags
;
1725 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1726 bfa_nw_iocpf_timeout((void *) &bnad
->bna
.ioceth
.ioc
);
1727 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1731 bnad_iocpf_sem_timeout(unsigned long data
)
1733 struct bnad
*bnad
= (struct bnad
*)data
;
1734 unsigned long flags
;
1736 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1737 bfa_nw_iocpf_sem_timeout((void *) &bnad
->bna
.ioceth
.ioc
);
1738 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1742 * All timer routines use bnad->bna_lock to protect against
1743 * the following race, which may occur in case of no locking:
1751 /* b) Dynamic Interrupt Moderation Timer */
1753 bnad_dim_timeout(unsigned long data
)
1755 struct bnad
*bnad
= (struct bnad
*)data
;
1756 struct bnad_rx_info
*rx_info
;
1757 struct bnad_rx_ctrl
*rx_ctrl
;
1759 unsigned long flags
;
1761 if (!netif_carrier_ok(bnad
->netdev
))
1764 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1765 for (i
= 0; i
< bnad
->num_rx
; i
++) {
1766 rx_info
= &bnad
->rx_info
[i
];
1769 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
1770 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
1773 bna_rx_dim_update(rx_ctrl
->ccb
);
1777 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1778 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
))
1779 mod_timer(&bnad
->dim_timer
,
1780 jiffies
+ msecs_to_jiffies(BNAD_DIM_TIMER_FREQ
));
1781 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1784 /* c) Statistics Timer */
1786 bnad_stats_timeout(unsigned long data
)
1788 struct bnad
*bnad
= (struct bnad
*)data
;
1789 unsigned long flags
;
1791 if (!netif_running(bnad
->netdev
) ||
1792 !test_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1795 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1796 bna_hw_stats_get(&bnad
->bna
);
1797 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1801 * Set up timer for DIM
1802 * Called with bnad->bna_lock held
1805 bnad_dim_timer_start(struct bnad
*bnad
)
1807 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
&&
1808 !test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
)) {
1809 setup_timer(&bnad
->dim_timer
, bnad_dim_timeout
,
1810 (unsigned long)bnad
);
1811 set_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
);
1812 mod_timer(&bnad
->dim_timer
,
1813 jiffies
+ msecs_to_jiffies(BNAD_DIM_TIMER_FREQ
));
1818 * Set up timer for statistics
1819 * Called with mutex_lock(&bnad->conf_mutex) held
1822 bnad_stats_timer_start(struct bnad
*bnad
)
1824 unsigned long flags
;
1826 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1827 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
)) {
1828 setup_timer(&bnad
->stats_timer
, bnad_stats_timeout
,
1829 (unsigned long)bnad
);
1830 mod_timer(&bnad
->stats_timer
,
1831 jiffies
+ msecs_to_jiffies(BNAD_STATS_TIMER_FREQ
));
1833 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1837 * Stops the stats timer
1838 * Called with mutex_lock(&bnad->conf_mutex) held
1841 bnad_stats_timer_stop(struct bnad
*bnad
)
1844 unsigned long flags
;
1846 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1847 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING
, &bnad
->run_flags
))
1849 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1851 del_timer_sync(&bnad
->stats_timer
);
1857 bnad_netdev_mc_list_get(struct net_device
*netdev
, u8
*mc_list
)
1859 int i
= 1; /* Index 0 has broadcast address */
1860 struct netdev_hw_addr
*mc_addr
;
1862 netdev_for_each_mc_addr(mc_addr
, netdev
) {
1863 memcpy(&mc_list
[i
* ETH_ALEN
], &mc_addr
->addr
[0],
1870 bnad_napi_poll_rx(struct napi_struct
*napi
, int budget
)
1872 struct bnad_rx_ctrl
*rx_ctrl
=
1873 container_of(napi
, struct bnad_rx_ctrl
, napi
);
1874 struct bnad
*bnad
= rx_ctrl
->bnad
;
1877 rx_ctrl
->rx_poll_ctr
++;
1879 if (!netif_carrier_ok(bnad
->netdev
))
1882 rcvd
= bnad_cq_process(bnad
, rx_ctrl
->ccb
, budget
);
1887 napi_complete(napi
);
1889 rx_ctrl
->rx_complete
++;
1892 bnad_enable_rx_irq_unsafe(rx_ctrl
->ccb
);
1897 #define BNAD_NAPI_POLL_QUOTA 64
1899 bnad_napi_add(struct bnad
*bnad
, u32 rx_id
)
1901 struct bnad_rx_ctrl
*rx_ctrl
;
1904 /* Initialize & enable NAPI */
1905 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++) {
1906 rx_ctrl
= &bnad
->rx_info
[rx_id
].rx_ctrl
[i
];
1907 netif_napi_add(bnad
->netdev
, &rx_ctrl
->napi
,
1908 bnad_napi_poll_rx
, BNAD_NAPI_POLL_QUOTA
);
1913 bnad_napi_delete(struct bnad
*bnad
, u32 rx_id
)
1917 /* First disable and then clean up */
1918 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++)
1919 netif_napi_del(&bnad
->rx_info
[rx_id
].rx_ctrl
[i
].napi
);
1922 /* Should be held with conf_lock held */
1924 bnad_destroy_tx(struct bnad
*bnad
, u32 tx_id
)
1926 struct bnad_tx_info
*tx_info
= &bnad
->tx_info
[tx_id
];
1927 struct bna_res_info
*res_info
= &bnad
->tx_res_info
[tx_id
].res_info
[0];
1928 unsigned long flags
;
1933 init_completion(&bnad
->bnad_completions
.tx_comp
);
1934 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1935 bna_tx_disable(tx_info
->tx
, BNA_HARD_CLEANUP
, bnad_cb_tx_disabled
);
1936 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1937 wait_for_completion(&bnad
->bnad_completions
.tx_comp
);
1939 if (tx_info
->tcb
[0]->intr_type
== BNA_INTR_T_MSIX
)
1940 bnad_tx_msix_unregister(bnad
, tx_info
,
1941 bnad
->num_txq_per_tx
);
1943 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1944 bna_tx_destroy(tx_info
->tx
);
1945 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1950 bnad_tx_res_free(bnad
, res_info
);
1953 /* Should be held with conf_lock held */
1955 bnad_setup_tx(struct bnad
*bnad
, u32 tx_id
)
1958 struct bnad_tx_info
*tx_info
= &bnad
->tx_info
[tx_id
];
1959 struct bna_res_info
*res_info
= &bnad
->tx_res_info
[tx_id
].res_info
[0];
1960 struct bna_intr_info
*intr_info
=
1961 &res_info
[BNA_TX_RES_INTR_T_TXCMPL
].res_u
.intr_info
;
1962 struct bna_tx_config
*tx_config
= &bnad
->tx_config
[tx_id
];
1963 static const struct bna_tx_event_cbfn tx_cbfn
= {
1964 .tcb_setup_cbfn
= bnad_cb_tcb_setup
,
1965 .tcb_destroy_cbfn
= bnad_cb_tcb_destroy
,
1966 .tx_stall_cbfn
= bnad_cb_tx_stall
,
1967 .tx_resume_cbfn
= bnad_cb_tx_resume
,
1968 .tx_cleanup_cbfn
= bnad_cb_tx_cleanup
,
1972 unsigned long flags
;
1974 tx_info
->tx_id
= tx_id
;
1976 /* Initialize the Tx object configuration */
1977 tx_config
->num_txq
= bnad
->num_txq_per_tx
;
1978 tx_config
->txq_depth
= bnad
->txq_depth
;
1979 tx_config
->tx_type
= BNA_TX_T_REGULAR
;
1980 tx_config
->coalescing_timeo
= bnad
->tx_coalescing_timeo
;
1982 /* Get BNA's resource requirement for one tx object */
1983 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
1984 bna_tx_res_req(bnad
->num_txq_per_tx
,
1985 bnad
->txq_depth
, res_info
);
1986 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
1988 /* Fill Unmap Q memory requirements */
1989 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_TX_RES_MEM_T_UNMAPQ
],
1990 bnad
->num_txq_per_tx
, (sizeof(struct bnad_tx_unmap
) *
1993 /* Allocate resources */
1994 err
= bnad_tx_res_alloc(bnad
, res_info
, tx_id
);
1998 /* Ask BNA to create one Tx object, supplying required resources */
1999 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2000 tx
= bna_tx_create(&bnad
->bna
, bnad
, tx_config
, &tx_cbfn
, res_info
,
2002 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2009 INIT_DELAYED_WORK(&tx_info
->tx_cleanup_work
,
2010 (work_func_t
)bnad_tx_cleanup
);
2012 /* Register ISR for the Tx object */
2013 if (intr_info
->intr_type
== BNA_INTR_T_MSIX
) {
2014 err
= bnad_tx_msix_register(bnad
, tx_info
,
2015 tx_id
, bnad
->num_txq_per_tx
);
2020 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2022 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2027 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2028 bna_tx_destroy(tx_info
->tx
);
2029 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2033 bnad_tx_res_free(bnad
, res_info
);
2037 /* Setup the rx config for bna_rx_create */
2038 /* bnad decides the configuration */
2040 bnad_init_rx_config(struct bnad
*bnad
, struct bna_rx_config
*rx_config
)
2042 memset(rx_config
, 0, sizeof(*rx_config
));
2043 rx_config
->rx_type
= BNA_RX_T_REGULAR
;
2044 rx_config
->num_paths
= bnad
->num_rxp_per_rx
;
2045 rx_config
->coalescing_timeo
= bnad
->rx_coalescing_timeo
;
2047 if (bnad
->num_rxp_per_rx
> 1) {
2048 rx_config
->rss_status
= BNA_STATUS_T_ENABLED
;
2049 rx_config
->rss_config
.hash_type
=
2050 (BFI_ENET_RSS_IPV6
|
2051 BFI_ENET_RSS_IPV6_TCP
|
2053 BFI_ENET_RSS_IPV4_TCP
);
2054 rx_config
->rss_config
.hash_mask
=
2055 bnad
->num_rxp_per_rx
- 1;
2056 get_random_bytes(rx_config
->rss_config
.toeplitz_hash_key
,
2057 sizeof(rx_config
->rss_config
.toeplitz_hash_key
));
2059 rx_config
->rss_status
= BNA_STATUS_T_DISABLED
;
2060 memset(&rx_config
->rss_config
, 0,
2061 sizeof(rx_config
->rss_config
));
2064 rx_config
->frame_size
= BNAD_FRAME_SIZE(bnad
->netdev
->mtu
);
2065 rx_config
->q0_multi_buf
= BNA_STATUS_T_DISABLED
;
2067 /* BNA_RXP_SINGLE - one data-buffer queue
2068 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2069 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2071 /* TODO: configurable param for queue type */
2072 rx_config
->rxp_type
= BNA_RXP_SLR
;
2074 if (BNAD_PCI_DEV_IS_CAT2(bnad
) &&
2075 rx_config
->frame_size
> 4096) {
2076 /* though size_routing_enable is set in SLR,
2077 * small packets may get routed to same rxq.
2078 * set buf_size to 2048 instead of PAGE_SIZE.
2080 rx_config
->q0_buf_size
= 2048;
2081 /* this should be in multiples of 2 */
2082 rx_config
->q0_num_vecs
= 4;
2083 rx_config
->q0_depth
= bnad
->rxq_depth
* rx_config
->q0_num_vecs
;
2084 rx_config
->q0_multi_buf
= BNA_STATUS_T_ENABLED
;
2086 rx_config
->q0_buf_size
= rx_config
->frame_size
;
2087 rx_config
->q0_num_vecs
= 1;
2088 rx_config
->q0_depth
= bnad
->rxq_depth
;
2091 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2092 if (rx_config
->rxp_type
== BNA_RXP_SLR
) {
2093 rx_config
->q1_depth
= bnad
->rxq_depth
;
2094 rx_config
->q1_buf_size
= BFI_SMALL_RXBUF_SIZE
;
2097 rx_config
->vlan_strip_status
= BNA_STATUS_T_ENABLED
;
2101 bnad_rx_ctrl_init(struct bnad
*bnad
, u32 rx_id
)
2103 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2106 for (i
= 0; i
< bnad
->num_rxp_per_rx
; i
++)
2107 rx_info
->rx_ctrl
[i
].bnad
= bnad
;
2110 /* Called with mutex_lock(&bnad->conf_mutex) held */
2112 bnad_reinit_rx(struct bnad
*bnad
)
2114 struct net_device
*netdev
= bnad
->netdev
;
2115 u32 err
= 0, current_err
= 0;
2116 u32 rx_id
= 0, count
= 0;
2117 unsigned long flags
;
2119 /* destroy and create new rx objects */
2120 for (rx_id
= 0; rx_id
< bnad
->num_rx
; rx_id
++) {
2121 if (!bnad
->rx_info
[rx_id
].rx
)
2123 bnad_destroy_rx(bnad
, rx_id
);
2126 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2127 bna_enet_mtu_set(&bnad
->bna
.enet
,
2128 BNAD_FRAME_SIZE(bnad
->netdev
->mtu
), NULL
);
2129 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2131 for (rx_id
= 0; rx_id
< bnad
->num_rx
; rx_id
++) {
2133 current_err
= bnad_setup_rx(bnad
, rx_id
);
2134 if (current_err
&& !err
) {
2136 pr_err("RXQ:%u setup failed\n", rx_id
);
2140 /* restore rx configuration */
2141 if (bnad
->rx_info
[0].rx
&& !err
) {
2142 bnad_restore_vlans(bnad
, 0);
2143 bnad_enable_default_bcast(bnad
);
2144 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2145 bnad_mac_addr_set_locked(bnad
, netdev
->dev_addr
);
2146 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2147 bnad_set_rx_mode(netdev
);
2153 /* Called with bnad_conf_lock() held */
2155 bnad_destroy_rx(struct bnad
*bnad
, u32 rx_id
)
2157 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2158 struct bna_rx_config
*rx_config
= &bnad
->rx_config
[rx_id
];
2159 struct bna_res_info
*res_info
= &bnad
->rx_res_info
[rx_id
].res_info
[0];
2160 unsigned long flags
;
2167 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2168 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
&&
2169 test_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
)) {
2170 clear_bit(BNAD_RF_DIM_TIMER_RUNNING
, &bnad
->run_flags
);
2173 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2175 del_timer_sync(&bnad
->dim_timer
);
2178 init_completion(&bnad
->bnad_completions
.rx_comp
);
2179 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2180 bna_rx_disable(rx_info
->rx
, BNA_HARD_CLEANUP
, bnad_cb_rx_disabled
);
2181 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2182 wait_for_completion(&bnad
->bnad_completions
.rx_comp
);
2184 if (rx_info
->rx_ctrl
[0].ccb
->intr_type
== BNA_INTR_T_MSIX
)
2185 bnad_rx_msix_unregister(bnad
, rx_info
, rx_config
->num_paths
);
2187 bnad_napi_delete(bnad
, rx_id
);
2189 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2190 bna_rx_destroy(rx_info
->rx
);
2194 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2196 bnad_rx_res_free(bnad
, res_info
);
2199 /* Called with mutex_lock(&bnad->conf_mutex) held */
2201 bnad_setup_rx(struct bnad
*bnad
, u32 rx_id
)
2204 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[rx_id
];
2205 struct bna_res_info
*res_info
= &bnad
->rx_res_info
[rx_id
].res_info
[0];
2206 struct bna_intr_info
*intr_info
=
2207 &res_info
[BNA_RX_RES_T_INTR
].res_u
.intr_info
;
2208 struct bna_rx_config
*rx_config
= &bnad
->rx_config
[rx_id
];
2209 static const struct bna_rx_event_cbfn rx_cbfn
= {
2210 .rcb_setup_cbfn
= NULL
,
2211 .rcb_destroy_cbfn
= NULL
,
2212 .ccb_setup_cbfn
= bnad_cb_ccb_setup
,
2213 .ccb_destroy_cbfn
= bnad_cb_ccb_destroy
,
2214 .rx_stall_cbfn
= bnad_cb_rx_stall
,
2215 .rx_cleanup_cbfn
= bnad_cb_rx_cleanup
,
2216 .rx_post_cbfn
= bnad_cb_rx_post
,
2219 unsigned long flags
;
2221 rx_info
->rx_id
= rx_id
;
2223 /* Initialize the Rx object configuration */
2224 bnad_init_rx_config(bnad
, rx_config
);
2226 /* Get BNA's resource requirement for one Rx object */
2227 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2228 bna_rx_res_req(rx_config
, res_info
);
2229 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2231 /* Fill Unmap Q memory requirements */
2232 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_RX_RES_MEM_T_UNMAPDQ
],
2233 rx_config
->num_paths
,
2234 (rx_config
->q0_depth
*
2235 sizeof(struct bnad_rx_unmap
)) +
2236 sizeof(struct bnad_rx_unmap_q
));
2238 if (rx_config
->rxp_type
!= BNA_RXP_SINGLE
) {
2239 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info
[BNA_RX_RES_MEM_T_UNMAPHQ
],
2240 rx_config
->num_paths
,
2241 (rx_config
->q1_depth
*
2242 sizeof(struct bnad_rx_unmap
) +
2243 sizeof(struct bnad_rx_unmap_q
)));
2245 /* Allocate resource */
2246 err
= bnad_rx_res_alloc(bnad
, res_info
, rx_id
);
2250 bnad_rx_ctrl_init(bnad
, rx_id
);
2252 /* Ask BNA to create one Rx object, supplying required resources */
2253 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2254 rx
= bna_rx_create(&bnad
->bna
, bnad
, rx_config
, &rx_cbfn
, res_info
,
2258 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2262 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2264 INIT_WORK(&rx_info
->rx_cleanup_work
,
2265 (work_func_t
)(bnad_rx_cleanup
));
2268 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2269 * so that IRQ handler cannot schedule NAPI at this point.
2271 bnad_napi_add(bnad
, rx_id
);
2273 /* Register ISR for the Rx object */
2274 if (intr_info
->intr_type
== BNA_INTR_T_MSIX
) {
2275 err
= bnad_rx_msix_register(bnad
, rx_info
, rx_id
,
2276 rx_config
->num_paths
);
2281 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2283 /* Set up Dynamic Interrupt Moderation Vector */
2284 if (bnad
->cfg_flags
& BNAD_CF_DIM_ENABLED
)
2285 bna_rx_dim_reconfig(&bnad
->bna
, bna_napi_dim_vector
);
2287 /* Enable VLAN filtering only on the default Rx */
2288 bna_rx_vlanfilter_enable(rx
);
2290 /* Start the DIM timer */
2291 bnad_dim_timer_start(bnad
);
2295 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2300 bnad_destroy_rx(bnad
, rx_id
);
2304 /* Called with conf_lock & bnad->bna_lock held */
2306 bnad_tx_coalescing_timeo_set(struct bnad
*bnad
)
2308 struct bnad_tx_info
*tx_info
;
2310 tx_info
= &bnad
->tx_info
[0];
2314 bna_tx_coalescing_timeo_set(tx_info
->tx
, bnad
->tx_coalescing_timeo
);
2317 /* Called with conf_lock & bnad->bna_lock held */
2319 bnad_rx_coalescing_timeo_set(struct bnad
*bnad
)
2321 struct bnad_rx_info
*rx_info
;
2324 for (i
= 0; i
< bnad
->num_rx
; i
++) {
2325 rx_info
= &bnad
->rx_info
[i
];
2328 bna_rx_coalescing_timeo_set(rx_info
->rx
,
2329 bnad
->rx_coalescing_timeo
);
2334 * Called with bnad->bna_lock held
2337 bnad_mac_addr_set_locked(struct bnad
*bnad
, u8
*mac_addr
)
2341 if (!is_valid_ether_addr(mac_addr
))
2342 return -EADDRNOTAVAIL
;
2344 /* If datapath is down, pretend everything went through */
2345 if (!bnad
->rx_info
[0].rx
)
2348 ret
= bna_rx_ucast_set(bnad
->rx_info
[0].rx
, mac_addr
, NULL
);
2349 if (ret
!= BNA_CB_SUCCESS
)
2350 return -EADDRNOTAVAIL
;
2355 /* Should be called with conf_lock held */
2357 bnad_enable_default_bcast(struct bnad
*bnad
)
2359 struct bnad_rx_info
*rx_info
= &bnad
->rx_info
[0];
2361 unsigned long flags
;
2363 init_completion(&bnad
->bnad_completions
.mcast_comp
);
2365 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2366 ret
= bna_rx_mcast_add(rx_info
->rx
, (u8
*)bnad_bcast_addr
,
2367 bnad_cb_rx_mcast_add
);
2368 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2370 if (ret
== BNA_CB_SUCCESS
)
2371 wait_for_completion(&bnad
->bnad_completions
.mcast_comp
);
2375 if (bnad
->bnad_completions
.mcast_comp_status
!= BNA_CB_SUCCESS
)
2381 /* Called with mutex_lock(&bnad->conf_mutex) held */
2383 bnad_restore_vlans(struct bnad
*bnad
, u32 rx_id
)
2386 unsigned long flags
;
2388 for_each_set_bit(vid
, bnad
->active_vlans
, VLAN_N_VID
) {
2389 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2390 bna_rx_vlan_add(bnad
->rx_info
[rx_id
].rx
, vid
);
2391 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2395 /* Statistics utilities */
2397 bnad_netdev_qstats_fill(struct bnad
*bnad
, struct rtnl_link_stats64
*stats
)
2401 for (i
= 0; i
< bnad
->num_rx
; i
++) {
2402 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
2403 if (bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
) {
2404 stats
->rx_packets
+= bnad
->rx_info
[i
].
2405 rx_ctrl
[j
].ccb
->rcb
[0]->rxq
->rx_packets
;
2406 stats
->rx_bytes
+= bnad
->rx_info
[i
].
2407 rx_ctrl
[j
].ccb
->rcb
[0]->rxq
->rx_bytes
;
2408 if (bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
->rcb
[1] &&
2409 bnad
->rx_info
[i
].rx_ctrl
[j
].ccb
->
2411 stats
->rx_packets
+=
2412 bnad
->rx_info
[i
].rx_ctrl
[j
].
2413 ccb
->rcb
[1]->rxq
->rx_packets
;
2415 bnad
->rx_info
[i
].rx_ctrl
[j
].
2416 ccb
->rcb
[1]->rxq
->rx_bytes
;
2421 for (i
= 0; i
< bnad
->num_tx
; i
++) {
2422 for (j
= 0; j
< bnad
->num_txq_per_tx
; j
++) {
2423 if (bnad
->tx_info
[i
].tcb
[j
]) {
2424 stats
->tx_packets
+=
2425 bnad
->tx_info
[i
].tcb
[j
]->txq
->tx_packets
;
2427 bnad
->tx_info
[i
].tcb
[j
]->txq
->tx_bytes
;
2434 * Must be called with the bna_lock held.
2437 bnad_netdev_hwstats_fill(struct bnad
*bnad
, struct rtnl_link_stats64
*stats
)
2439 struct bfi_enet_stats_mac
*mac_stats
;
2443 mac_stats
= &bnad
->stats
.bna_stats
->hw_stats
.mac_stats
;
2445 mac_stats
->rx_fcs_error
+ mac_stats
->rx_alignment_error
+
2446 mac_stats
->rx_frame_length_error
+ mac_stats
->rx_code_error
+
2447 mac_stats
->rx_undersize
;
2448 stats
->tx_errors
= mac_stats
->tx_fcs_error
+
2449 mac_stats
->tx_undersize
;
2450 stats
->rx_dropped
= mac_stats
->rx_drop
;
2451 stats
->tx_dropped
= mac_stats
->tx_drop
;
2452 stats
->multicast
= mac_stats
->rx_multicast
;
2453 stats
->collisions
= mac_stats
->tx_total_collision
;
2455 stats
->rx_length_errors
= mac_stats
->rx_frame_length_error
;
2457 /* receive ring buffer overflow ?? */
2459 stats
->rx_crc_errors
= mac_stats
->rx_fcs_error
;
2460 stats
->rx_frame_errors
= mac_stats
->rx_alignment_error
;
2461 /* recv'r fifo overrun */
2462 bmap
= bna_rx_rid_mask(&bnad
->bna
);
2463 for (i
= 0; bmap
; i
++) {
2465 stats
->rx_fifo_errors
+=
2466 bnad
->stats
.bna_stats
->
2467 hw_stats
.rxf_stats
[i
].frame_drops
;
2475 bnad_mbox_irq_sync(struct bnad
*bnad
)
2478 unsigned long flags
;
2480 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2481 if (bnad
->cfg_flags
& BNAD_CF_MSIX
)
2482 irq
= bnad
->msix_table
[BNAD_MAILBOX_MSIX_INDEX
].vector
;
2484 irq
= bnad
->pcidev
->irq
;
2485 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2487 synchronize_irq(irq
);
2490 /* Utility used by bnad_start_xmit, for doing TSO */
2492 bnad_tso_prepare(struct bnad
*bnad
, struct sk_buff
*skb
)
2496 if (skb_header_cloned(skb
)) {
2497 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2499 BNAD_UPDATE_CTR(bnad
, tso_err
);
2505 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2506 * excluding the length field.
2508 if (skb
->protocol
== htons(ETH_P_IP
)) {
2509 struct iphdr
*iph
= ip_hdr(skb
);
2511 /* Do we really need these? */
2515 tcp_hdr(skb
)->check
=
2516 ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, 0,
2518 BNAD_UPDATE_CTR(bnad
, tso4
);
2520 struct ipv6hdr
*ipv6h
= ipv6_hdr(skb
);
2522 ipv6h
->payload_len
= 0;
2523 tcp_hdr(skb
)->check
=
2524 ~csum_ipv6_magic(&ipv6h
->saddr
, &ipv6h
->daddr
, 0,
2526 BNAD_UPDATE_CTR(bnad
, tso6
);
2533 * Initialize Q numbers depending on Rx Paths
2534 * Called with bnad->bna_lock held, because of cfg_flags
2538 bnad_q_num_init(struct bnad
*bnad
)
2542 rxps
= min((uint
)num_online_cpus(),
2543 (uint
)(BNAD_MAX_RX
* BNAD_MAX_RXP_PER_RX
));
2545 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
))
2546 rxps
= 1; /* INTx */
2550 bnad
->num_rxp_per_rx
= rxps
;
2551 bnad
->num_txq_per_tx
= BNAD_TXQ_NUM
;
2555 * Adjusts the Q numbers, given a number of msix vectors
2556 * Give preference to RSS as opposed to Tx priority Queues,
2557 * in such a case, just use 1 Tx Q
2558 * Called with bnad->bna_lock held b'cos of cfg_flags access
2561 bnad_q_num_adjust(struct bnad
*bnad
, int msix_vectors
, int temp
)
2563 bnad
->num_txq_per_tx
= 1;
2564 if ((msix_vectors
>= (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
2565 bnad_rxqs_per_cq
+ BNAD_MAILBOX_MSIX_VECTORS
) &&
2566 (bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
2567 bnad
->num_rxp_per_rx
= msix_vectors
-
2568 (bnad
->num_tx
* bnad
->num_txq_per_tx
) -
2569 BNAD_MAILBOX_MSIX_VECTORS
;
2571 bnad
->num_rxp_per_rx
= 1;
2574 /* Enable / disable ioceth */
2576 bnad_ioceth_disable(struct bnad
*bnad
)
2578 unsigned long flags
;
2581 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2582 init_completion(&bnad
->bnad_completions
.ioc_comp
);
2583 bna_ioceth_disable(&bnad
->bna
.ioceth
, BNA_HARD_CLEANUP
);
2584 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2586 wait_for_completion_timeout(&bnad
->bnad_completions
.ioc_comp
,
2587 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT
));
2589 err
= bnad
->bnad_completions
.ioc_comp_status
;
2594 bnad_ioceth_enable(struct bnad
*bnad
)
2597 unsigned long flags
;
2599 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2600 init_completion(&bnad
->bnad_completions
.ioc_comp
);
2601 bnad
->bnad_completions
.ioc_comp_status
= BNA_CB_WAITING
;
2602 bna_ioceth_enable(&bnad
->bna
.ioceth
);
2603 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2605 wait_for_completion_timeout(&bnad
->bnad_completions
.ioc_comp
,
2606 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT
));
2608 err
= bnad
->bnad_completions
.ioc_comp_status
;
2613 /* Free BNA resources */
2615 bnad_res_free(struct bnad
*bnad
, struct bna_res_info
*res_info
,
2620 for (i
= 0; i
< res_val_max
; i
++)
2621 bnad_mem_free(bnad
, &res_info
[i
].res_u
.mem_info
);
2624 /* Allocates memory and interrupt resources for BNA */
2626 bnad_res_alloc(struct bnad
*bnad
, struct bna_res_info
*res_info
,
2631 for (i
= 0; i
< res_val_max
; i
++) {
2632 err
= bnad_mem_alloc(bnad
, &res_info
[i
].res_u
.mem_info
);
2639 bnad_res_free(bnad
, res_info
, res_val_max
);
2643 /* Interrupt enable / disable */
2645 bnad_enable_msix(struct bnad
*bnad
)
2648 unsigned long flags
;
2650 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2651 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
2652 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2655 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2657 if (bnad
->msix_table
)
2661 kcalloc(bnad
->msix_num
, sizeof(struct msix_entry
), GFP_KERNEL
);
2663 if (!bnad
->msix_table
)
2666 for (i
= 0; i
< bnad
->msix_num
; i
++)
2667 bnad
->msix_table
[i
].entry
= i
;
2669 ret
= pci_enable_msix(bnad
->pcidev
, bnad
->msix_table
, bnad
->msix_num
);
2671 /* Not enough MSI-X vectors. */
2672 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2673 ret
, bnad
->msix_num
);
2675 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2676 /* ret = #of vectors that we got */
2677 bnad_q_num_adjust(bnad
, (ret
- BNAD_MAILBOX_MSIX_VECTORS
) / 2,
2678 (ret
- BNAD_MAILBOX_MSIX_VECTORS
) / 2);
2679 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2681 bnad
->msix_num
= BNAD_NUM_TXQ
+ BNAD_NUM_RXP
+
2682 BNAD_MAILBOX_MSIX_VECTORS
;
2684 if (bnad
->msix_num
> ret
)
2687 /* Try once more with adjusted numbers */
2688 /* If this fails, fall back to INTx */
2689 ret
= pci_enable_msix(bnad
->pcidev
, bnad
->msix_table
,
2697 pci_intx(bnad
->pcidev
, 0);
2702 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2704 kfree(bnad
->msix_table
);
2705 bnad
->msix_table
= NULL
;
2707 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2708 bnad
->cfg_flags
&= ~BNAD_CF_MSIX
;
2709 bnad_q_num_init(bnad
);
2710 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2714 bnad_disable_msix(struct bnad
*bnad
)
2717 unsigned long flags
;
2719 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2720 cfg_flags
= bnad
->cfg_flags
;
2721 if (bnad
->cfg_flags
& BNAD_CF_MSIX
)
2722 bnad
->cfg_flags
&= ~BNAD_CF_MSIX
;
2723 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2725 if (cfg_flags
& BNAD_CF_MSIX
) {
2726 pci_disable_msix(bnad
->pcidev
);
2727 kfree(bnad
->msix_table
);
2728 bnad
->msix_table
= NULL
;
2732 /* Netdev entry points */
2734 bnad_open(struct net_device
*netdev
)
2737 struct bnad
*bnad
= netdev_priv(netdev
);
2738 struct bna_pause_config pause_config
;
2739 unsigned long flags
;
2741 mutex_lock(&bnad
->conf_mutex
);
2744 err
= bnad_setup_tx(bnad
, 0);
2749 err
= bnad_setup_rx(bnad
, 0);
2754 pause_config
.tx_pause
= 0;
2755 pause_config
.rx_pause
= 0;
2757 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2758 bna_enet_mtu_set(&bnad
->bna
.enet
,
2759 BNAD_FRAME_SIZE(bnad
->netdev
->mtu
), NULL
);
2760 bna_enet_pause_config(&bnad
->bna
.enet
, &pause_config
, NULL
);
2761 bna_enet_enable(&bnad
->bna
.enet
);
2762 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2764 /* Enable broadcast */
2765 bnad_enable_default_bcast(bnad
);
2767 /* Restore VLANs, if any */
2768 bnad_restore_vlans(bnad
, 0);
2770 /* Set the UCAST address */
2771 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2772 bnad_mac_addr_set_locked(bnad
, netdev
->dev_addr
);
2773 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2775 /* Start the stats timer */
2776 bnad_stats_timer_start(bnad
);
2778 mutex_unlock(&bnad
->conf_mutex
);
2783 bnad_destroy_tx(bnad
, 0);
2786 mutex_unlock(&bnad
->conf_mutex
);
2791 bnad_stop(struct net_device
*netdev
)
2793 struct bnad
*bnad
= netdev_priv(netdev
);
2794 unsigned long flags
;
2796 mutex_lock(&bnad
->conf_mutex
);
2798 /* Stop the stats timer */
2799 bnad_stats_timer_stop(bnad
);
2801 init_completion(&bnad
->bnad_completions
.enet_comp
);
2803 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
2804 bna_enet_disable(&bnad
->bna
.enet
, BNA_HARD_CLEANUP
,
2805 bnad_cb_enet_disabled
);
2806 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
2808 wait_for_completion(&bnad
->bnad_completions
.enet_comp
);
2810 bnad_destroy_tx(bnad
, 0);
2811 bnad_destroy_rx(bnad
, 0);
2813 /* Synchronize mailbox IRQ */
2814 bnad_mbox_irq_sync(bnad
);
2816 mutex_unlock(&bnad
->conf_mutex
);
2822 /* Returns 0 for success */
2824 bnad_txq_wi_prepare(struct bnad
*bnad
, struct bna_tcb
*tcb
,
2825 struct sk_buff
*skb
, struct bna_txq_entry
*txqent
)
2831 if (vlan_tx_tag_present(skb
)) {
2832 vlan_tag
= (u16
)vlan_tx_tag_get(skb
);
2833 flags
|= (BNA_TXQ_WI_CF_INS_PRIO
| BNA_TXQ_WI_CF_INS_VLAN
);
2835 if (test_bit(BNAD_RF_CEE_RUNNING
, &bnad
->run_flags
)) {
2836 vlan_tag
= ((tcb
->priority
& 0x7) << VLAN_PRIO_SHIFT
)
2837 | (vlan_tag
& 0x1fff);
2838 flags
|= (BNA_TXQ_WI_CF_INS_PRIO
| BNA_TXQ_WI_CF_INS_VLAN
);
2840 txqent
->hdr
.wi
.vlan_tag
= htons(vlan_tag
);
2842 if (skb_is_gso(skb
)) {
2843 gso_size
= skb_shinfo(skb
)->gso_size
;
2844 if (unlikely(gso_size
> bnad
->netdev
->mtu
)) {
2845 BNAD_UPDATE_CTR(bnad
, tx_skb_mss_too_long
);
2848 if (unlikely((gso_size
+ skb_transport_offset(skb
) +
2849 tcp_hdrlen(skb
)) >= skb
->len
)) {
2850 txqent
->hdr
.wi
.opcode
=
2851 __constant_htons(BNA_TXQ_WI_SEND
);
2852 txqent
->hdr
.wi
.lso_mss
= 0;
2853 BNAD_UPDATE_CTR(bnad
, tx_skb_tso_too_short
);
2855 txqent
->hdr
.wi
.opcode
=
2856 __constant_htons(BNA_TXQ_WI_SEND_LSO
);
2857 txqent
->hdr
.wi
.lso_mss
= htons(gso_size
);
2860 if (bnad_tso_prepare(bnad
, skb
)) {
2861 BNAD_UPDATE_CTR(bnad
, tx_skb_tso_prepare
);
2865 flags
|= (BNA_TXQ_WI_CF_IP_CKSUM
| BNA_TXQ_WI_CF_TCP_CKSUM
);
2866 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2867 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2868 tcp_hdrlen(skb
) >> 2, skb_transport_offset(skb
)));
2870 txqent
->hdr
.wi
.opcode
= __constant_htons(BNA_TXQ_WI_SEND
);
2871 txqent
->hdr
.wi
.lso_mss
= 0;
2873 if (unlikely(skb
->len
> (bnad
->netdev
->mtu
+ ETH_HLEN
))) {
2874 BNAD_UPDATE_CTR(bnad
, tx_skb_non_tso_too_long
);
2878 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2881 if (skb
->protocol
== __constant_htons(ETH_P_IP
))
2882 proto
= ip_hdr(skb
)->protocol
;
2883 #ifdef NETIF_F_IPV6_CSUM
2884 else if (skb
->protocol
==
2885 __constant_htons(ETH_P_IPV6
)) {
2886 /* nexthdr may not be TCP immediately. */
2887 proto
= ipv6_hdr(skb
)->nexthdr
;
2890 if (proto
== IPPROTO_TCP
) {
2891 flags
|= BNA_TXQ_WI_CF_TCP_CKSUM
;
2892 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2893 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2894 (0, skb_transport_offset(skb
)));
2896 BNAD_UPDATE_CTR(bnad
, tcpcsum_offload
);
2898 if (unlikely(skb_headlen(skb
) <
2899 skb_transport_offset(skb
) +
2901 BNAD_UPDATE_CTR(bnad
, tx_skb_tcp_hdr
);
2904 } else if (proto
== IPPROTO_UDP
) {
2905 flags
|= BNA_TXQ_WI_CF_UDP_CKSUM
;
2906 txqent
->hdr
.wi
.l4_hdr_size_n_offset
=
2907 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2908 (0, skb_transport_offset(skb
)));
2910 BNAD_UPDATE_CTR(bnad
, udpcsum_offload
);
2911 if (unlikely(skb_headlen(skb
) <
2912 skb_transport_offset(skb
) +
2913 sizeof(struct udphdr
))) {
2914 BNAD_UPDATE_CTR(bnad
, tx_skb_udp_hdr
);
2919 BNAD_UPDATE_CTR(bnad
, tx_skb_csum_err
);
2923 txqent
->hdr
.wi
.l4_hdr_size_n_offset
= 0;
2926 txqent
->hdr
.wi
.flags
= htons(flags
);
2927 txqent
->hdr
.wi
.frame_length
= htonl(skb
->len
);
2933 * bnad_start_xmit : Netdev entry point for Transmit
2934 * Called under lock held by net_device
2937 bnad_start_xmit(struct sk_buff
*skb
, struct net_device
*netdev
)
2939 struct bnad
*bnad
= netdev_priv(netdev
);
2941 struct bna_tcb
*tcb
= NULL
;
2942 struct bnad_tx_unmap
*unmap_q
, *unmap
, *head_unmap
;
2943 u32 prod
, q_depth
, vect_id
;
2944 u32 wis
, vectors
, len
;
2946 dma_addr_t dma_addr
;
2947 struct bna_txq_entry
*txqent
;
2949 len
= skb_headlen(skb
);
2951 /* Sanity checks for the skb */
2953 if (unlikely(skb
->len
<= ETH_HLEN
)) {
2955 BNAD_UPDATE_CTR(bnad
, tx_skb_too_short
);
2956 return NETDEV_TX_OK
;
2958 if (unlikely(len
> BFI_TX_MAX_DATA_PER_VECTOR
)) {
2960 BNAD_UPDATE_CTR(bnad
, tx_skb_headlen_zero
);
2961 return NETDEV_TX_OK
;
2963 if (unlikely(len
== 0)) {
2965 BNAD_UPDATE_CTR(bnad
, tx_skb_headlen_zero
);
2966 return NETDEV_TX_OK
;
2969 tcb
= bnad
->tx_info
[0].tcb
[txq_id
];
2972 * Takes care of the Tx that is scheduled between clearing the flag
2973 * and the netif_tx_stop_all_queues() call.
2975 if (unlikely(!tcb
|| !test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
))) {
2977 BNAD_UPDATE_CTR(bnad
, tx_skb_stopping
);
2978 return NETDEV_TX_OK
;
2981 q_depth
= tcb
->q_depth
;
2982 prod
= tcb
->producer_index
;
2983 unmap_q
= tcb
->unmap_q
;
2985 vectors
= 1 + skb_shinfo(skb
)->nr_frags
;
2986 wis
= BNA_TXQ_WI_NEEDED(vectors
); /* 4 vectors per work item */
2988 if (unlikely(vectors
> BFI_TX_MAX_VECTORS_PER_PKT
)) {
2990 BNAD_UPDATE_CTR(bnad
, tx_skb_max_vectors
);
2991 return NETDEV_TX_OK
;
2994 /* Check for available TxQ resources */
2995 if (unlikely(wis
> BNA_QE_FREE_CNT(tcb
, q_depth
))) {
2996 if ((*tcb
->hw_consumer_index
!= tcb
->consumer_index
) &&
2997 !test_and_set_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
)) {
2999 sent
= bnad_txcmpl_process(bnad
, tcb
);
3000 if (likely(test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
3001 bna_ib_ack(tcb
->i_dbell
, sent
);
3002 smp_mb__before_clear_bit();
3003 clear_bit(BNAD_TXQ_FREE_SENT
, &tcb
->flags
);
3005 netif_stop_queue(netdev
);
3006 BNAD_UPDATE_CTR(bnad
, netif_queue_stop
);
3011 * Check again to deal with race condition between
3012 * netif_stop_queue here, and netif_wake_queue in
3013 * interrupt handler which is not inside netif tx lock.
3015 if (likely(wis
> BNA_QE_FREE_CNT(tcb
, q_depth
))) {
3016 BNAD_UPDATE_CTR(bnad
, netif_queue_stop
);
3017 return NETDEV_TX_BUSY
;
3019 netif_wake_queue(netdev
);
3020 BNAD_UPDATE_CTR(bnad
, netif_queue_wakeup
);
3024 txqent
= &((struct bna_txq_entry
*)tcb
->sw_q
)[prod
];
3025 head_unmap
= &unmap_q
[prod
];
3027 /* Program the opcode, flags, frame_len, num_vectors in WI */
3028 if (bnad_txq_wi_prepare(bnad
, tcb
, skb
, txqent
)) {
3030 return NETDEV_TX_OK
;
3032 txqent
->hdr
.wi
.reserved
= 0;
3033 txqent
->hdr
.wi
.num_vectors
= vectors
;
3035 head_unmap
->skb
= skb
;
3036 head_unmap
->nvecs
= 0;
3038 /* Program the vectors */
3040 dma_addr
= dma_map_single(&bnad
->pcidev
->dev
, skb
->data
,
3041 len
, DMA_TO_DEVICE
);
3042 BNA_SET_DMA_ADDR(dma_addr
, &txqent
->vector
[0].host_addr
);
3043 txqent
->vector
[0].length
= htons(len
);
3044 dma_unmap_addr_set(&unmap
->vectors
[0], dma_addr
, dma_addr
);
3045 head_unmap
->nvecs
++;
3047 for (i
= 0, vect_id
= 0; i
< vectors
- 1; i
++) {
3048 const struct skb_frag_struct
*frag
= &skb_shinfo(skb
)->frags
[i
];
3049 u32 size
= skb_frag_size(frag
);
3051 if (unlikely(size
== 0)) {
3052 /* Undo the changes starting at tcb->producer_index */
3053 bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
,
3054 tcb
->producer_index
);
3056 BNAD_UPDATE_CTR(bnad
, tx_skb_frag_zero
);
3057 return NETDEV_TX_OK
;
3063 if (vect_id
== BFI_TX_MAX_VECTORS_PER_WI
) {
3065 BNA_QE_INDX_INC(prod
, q_depth
);
3066 txqent
= &((struct bna_txq_entry
*)tcb
->sw_q
)[prod
];
3067 txqent
->hdr
.wi_ext
.opcode
=
3068 __constant_htons(BNA_TXQ_WI_EXTENSION
);
3069 unmap
= &unmap_q
[prod
];
3072 dma_addr
= skb_frag_dma_map(&bnad
->pcidev
->dev
, frag
,
3073 0, size
, DMA_TO_DEVICE
);
3074 dma_unmap_len_set(&unmap
->vectors
[vect_id
], dma_len
, size
);
3075 BNA_SET_DMA_ADDR(dma_addr
, &txqent
->vector
[vect_id
].host_addr
);
3076 txqent
->vector
[vect_id
].length
= htons(size
);
3077 dma_unmap_addr_set(&unmap
->vectors
[vect_id
], dma_addr
,
3079 head_unmap
->nvecs
++;
3082 if (unlikely(len
!= skb
->len
)) {
3083 /* Undo the changes starting at tcb->producer_index */
3084 bnad_tx_buff_unmap(bnad
, unmap_q
, q_depth
, tcb
->producer_index
);
3086 BNAD_UPDATE_CTR(bnad
, tx_skb_len_mismatch
);
3087 return NETDEV_TX_OK
;
3090 BNA_QE_INDX_INC(prod
, q_depth
);
3091 tcb
->producer_index
= prod
;
3095 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED
, &tcb
->flags
)))
3096 return NETDEV_TX_OK
;
3098 skb_tx_timestamp(skb
);
3100 bna_txq_prod_indx_doorbell(tcb
);
3103 return NETDEV_TX_OK
;
3107 * Used spin_lock to synchronize reading of stats structures, which
3108 * is written by BNA under the same lock.
3110 static struct rtnl_link_stats64
*
3111 bnad_get_stats64(struct net_device
*netdev
, struct rtnl_link_stats64
*stats
)
3113 struct bnad
*bnad
= netdev_priv(netdev
);
3114 unsigned long flags
;
3116 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3118 bnad_netdev_qstats_fill(bnad
, stats
);
3119 bnad_netdev_hwstats_fill(bnad
, stats
);
3121 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3127 bnad_set_rx_ucast_fltr(struct bnad
*bnad
)
3129 struct net_device
*netdev
= bnad
->netdev
;
3130 int uc_count
= netdev_uc_count(netdev
);
3131 enum bna_cb_status ret
;
3133 struct netdev_hw_addr
*ha
;
3136 if (netdev_uc_empty(bnad
->netdev
)) {
3137 bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, 0, NULL
, NULL
);
3141 if (uc_count
> bna_attr(&bnad
->bna
)->num_ucmac
)
3144 mac_list
= kzalloc(uc_count
* ETH_ALEN
, GFP_ATOMIC
);
3145 if (mac_list
== NULL
)
3149 netdev_for_each_uc_addr(ha
, netdev
) {
3150 memcpy(&mac_list
[entry
* ETH_ALEN
],
3151 &ha
->addr
[0], ETH_ALEN
);
3155 ret
= bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, entry
,
3159 if (ret
!= BNA_CB_SUCCESS
)
3164 /* ucast packets not in UCAM are routed to default function */
3166 bnad
->cfg_flags
|= BNAD_CF_DEFAULT
;
3167 bna_rx_ucast_listset(bnad
->rx_info
[0].rx
, 0, NULL
, NULL
);
3171 bnad_set_rx_mcast_fltr(struct bnad
*bnad
)
3173 struct net_device
*netdev
= bnad
->netdev
;
3174 int mc_count
= netdev_mc_count(netdev
);
3175 enum bna_cb_status ret
;
3178 if (netdev
->flags
& IFF_ALLMULTI
)
3181 if (netdev_mc_empty(netdev
))
3184 if (mc_count
> bna_attr(&bnad
->bna
)->num_mcmac
)
3187 mac_list
= kzalloc((mc_count
+ 1) * ETH_ALEN
, GFP_ATOMIC
);
3189 if (mac_list
== NULL
)
3192 memcpy(&mac_list
[0], &bnad_bcast_addr
[0], ETH_ALEN
);
3194 /* copy rest of the MCAST addresses */
3195 bnad_netdev_mc_list_get(netdev
, mac_list
);
3196 ret
= bna_rx_mcast_listset(bnad
->rx_info
[0].rx
, mc_count
+ 1,
3200 if (ret
!= BNA_CB_SUCCESS
)
3206 bnad
->cfg_flags
|= BNAD_CF_ALLMULTI
;
3207 bna_rx_mcast_delall(bnad
->rx_info
[0].rx
, NULL
);
3211 bnad_set_rx_mode(struct net_device
*netdev
)
3213 struct bnad
*bnad
= netdev_priv(netdev
);
3214 enum bna_rxmode new_mode
, mode_mask
;
3215 unsigned long flags
;
3217 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3219 if (bnad
->rx_info
[0].rx
== NULL
) {
3220 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3224 /* clear bnad flags to update it with new settings */
3225 bnad
->cfg_flags
&= ~(BNAD_CF_PROMISC
| BNAD_CF_DEFAULT
|
3229 if (netdev
->flags
& IFF_PROMISC
) {
3230 new_mode
|= BNAD_RXMODE_PROMISC_DEFAULT
;
3231 bnad
->cfg_flags
|= BNAD_CF_PROMISC
;
3233 bnad_set_rx_mcast_fltr(bnad
);
3235 if (bnad
->cfg_flags
& BNAD_CF_ALLMULTI
)
3236 new_mode
|= BNA_RXMODE_ALLMULTI
;
3238 bnad_set_rx_ucast_fltr(bnad
);
3240 if (bnad
->cfg_flags
& BNAD_CF_DEFAULT
)
3241 new_mode
|= BNA_RXMODE_DEFAULT
;
3244 mode_mask
= BNA_RXMODE_PROMISC
| BNA_RXMODE_DEFAULT
|
3245 BNA_RXMODE_ALLMULTI
;
3246 bna_rx_mode_set(bnad
->rx_info
[0].rx
, new_mode
, mode_mask
, NULL
);
3248 if (bnad
->cfg_flags
& BNAD_CF_PROMISC
)
3249 bna_rx_vlan_strip_disable(bnad
->rx_info
[0].rx
);
3251 bna_rx_vlan_strip_enable(bnad
->rx_info
[0].rx
);
3253 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3257 * bna_lock is used to sync writes to netdev->addr
3258 * conf_lock cannot be used since this call may be made
3259 * in a non-blocking context.
3262 bnad_set_mac_address(struct net_device
*netdev
, void *mac_addr
)
3265 struct bnad
*bnad
= netdev_priv(netdev
);
3266 struct sockaddr
*sa
= (struct sockaddr
*)mac_addr
;
3267 unsigned long flags
;
3269 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3271 err
= bnad_mac_addr_set_locked(bnad
, sa
->sa_data
);
3274 memcpy(netdev
->dev_addr
, sa
->sa_data
, netdev
->addr_len
);
3276 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3282 bnad_mtu_set(struct bnad
*bnad
, int frame_size
)
3284 unsigned long flags
;
3286 init_completion(&bnad
->bnad_completions
.mtu_comp
);
3288 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3289 bna_enet_mtu_set(&bnad
->bna
.enet
, frame_size
, bnad_cb_enet_mtu_set
);
3290 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3292 wait_for_completion(&bnad
->bnad_completions
.mtu_comp
);
3294 return bnad
->bnad_completions
.mtu_comp_status
;
3298 bnad_change_mtu(struct net_device
*netdev
, int new_mtu
)
3301 struct bnad
*bnad
= netdev_priv(netdev
);
3302 u32 rx_count
= 0, frame
, new_frame
;
3304 if (new_mtu
+ ETH_HLEN
< ETH_ZLEN
|| new_mtu
> BNAD_JUMBO_MTU
)
3307 mutex_lock(&bnad
->conf_mutex
);
3310 netdev
->mtu
= new_mtu
;
3312 frame
= BNAD_FRAME_SIZE(mtu
);
3313 new_frame
= BNAD_FRAME_SIZE(new_mtu
);
3315 /* check if multi-buffer needs to be enabled */
3316 if (BNAD_PCI_DEV_IS_CAT2(bnad
) &&
3317 netif_running(bnad
->netdev
)) {
3318 /* only when transition is over 4K */
3319 if ((frame
<= 4096 && new_frame
> 4096) ||
3320 (frame
> 4096 && new_frame
<= 4096))
3321 rx_count
= bnad_reinit_rx(bnad
);
3324 /* rx_count > 0 - new rx created
3325 * - Linux set err = 0 and return
3327 err
= bnad_mtu_set(bnad
, new_frame
);
3331 mutex_unlock(&bnad
->conf_mutex
);
3336 bnad_vlan_rx_add_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3338 struct bnad
*bnad
= netdev_priv(netdev
);
3339 unsigned long flags
;
3341 if (!bnad
->rx_info
[0].rx
)
3344 mutex_lock(&bnad
->conf_mutex
);
3346 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3347 bna_rx_vlan_add(bnad
->rx_info
[0].rx
, vid
);
3348 set_bit(vid
, bnad
->active_vlans
);
3349 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3351 mutex_unlock(&bnad
->conf_mutex
);
3357 bnad_vlan_rx_kill_vid(struct net_device
*netdev
, __be16 proto
, u16 vid
)
3359 struct bnad
*bnad
= netdev_priv(netdev
);
3360 unsigned long flags
;
3362 if (!bnad
->rx_info
[0].rx
)
3365 mutex_lock(&bnad
->conf_mutex
);
3367 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3368 clear_bit(vid
, bnad
->active_vlans
);
3369 bna_rx_vlan_del(bnad
->rx_info
[0].rx
, vid
);
3370 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3372 mutex_unlock(&bnad
->conf_mutex
);
3377 #ifdef CONFIG_NET_POLL_CONTROLLER
3379 bnad_netpoll(struct net_device
*netdev
)
3381 struct bnad
*bnad
= netdev_priv(netdev
);
3382 struct bnad_rx_info
*rx_info
;
3383 struct bnad_rx_ctrl
*rx_ctrl
;
3387 if (!(bnad
->cfg_flags
& BNAD_CF_MSIX
)) {
3388 bna_intx_disable(&bnad
->bna
, curr_mask
);
3389 bnad_isr(bnad
->pcidev
->irq
, netdev
);
3390 bna_intx_enable(&bnad
->bna
, curr_mask
);
3393 * Tx processing may happen in sending context, so no need
3394 * to explicitly process completions here
3398 for (i
= 0; i
< bnad
->num_rx
; i
++) {
3399 rx_info
= &bnad
->rx_info
[i
];
3402 for (j
= 0; j
< bnad
->num_rxp_per_rx
; j
++) {
3403 rx_ctrl
= &rx_info
->rx_ctrl
[j
];
3405 bnad_netif_rx_schedule_poll(bnad
,
3413 static const struct net_device_ops bnad_netdev_ops
= {
3414 .ndo_open
= bnad_open
,
3415 .ndo_stop
= bnad_stop
,
3416 .ndo_start_xmit
= bnad_start_xmit
,
3417 .ndo_get_stats64
= bnad_get_stats64
,
3418 .ndo_set_rx_mode
= bnad_set_rx_mode
,
3419 .ndo_validate_addr
= eth_validate_addr
,
3420 .ndo_set_mac_address
= bnad_set_mac_address
,
3421 .ndo_change_mtu
= bnad_change_mtu
,
3422 .ndo_vlan_rx_add_vid
= bnad_vlan_rx_add_vid
,
3423 .ndo_vlan_rx_kill_vid
= bnad_vlan_rx_kill_vid
,
3424 #ifdef CONFIG_NET_POLL_CONTROLLER
3425 .ndo_poll_controller
= bnad_netpoll
3430 bnad_netdev_init(struct bnad
*bnad
, bool using_dac
)
3432 struct net_device
*netdev
= bnad
->netdev
;
3434 netdev
->hw_features
= NETIF_F_SG
| NETIF_F_RXCSUM
|
3435 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3436 NETIF_F_TSO
| NETIF_F_TSO6
| NETIF_F_HW_VLAN_CTAG_TX
;
3438 netdev
->vlan_features
= NETIF_F_SG
| NETIF_F_HIGHDMA
|
3439 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
3440 NETIF_F_TSO
| NETIF_F_TSO6
;
3442 netdev
->features
|= netdev
->hw_features
|
3443 NETIF_F_HW_VLAN_CTAG_RX
| NETIF_F_HW_VLAN_CTAG_FILTER
;
3446 netdev
->features
|= NETIF_F_HIGHDMA
;
3448 netdev
->mem_start
= bnad
->mmio_start
;
3449 netdev
->mem_end
= bnad
->mmio_start
+ bnad
->mmio_len
- 1;
3451 netdev
->netdev_ops
= &bnad_netdev_ops
;
3452 bnad_set_ethtool_ops(netdev
);
3456 * 1. Initialize the bnad structure
3457 * 2. Setup netdev pointer in pci_dev
3458 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3459 * 4. Initialize work queue.
3462 bnad_init(struct bnad
*bnad
,
3463 struct pci_dev
*pdev
, struct net_device
*netdev
)
3465 unsigned long flags
;
3467 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
3468 pci_set_drvdata(pdev
, netdev
);
3470 bnad
->netdev
= netdev
;
3471 bnad
->pcidev
= pdev
;
3472 bnad
->mmio_start
= pci_resource_start(pdev
, 0);
3473 bnad
->mmio_len
= pci_resource_len(pdev
, 0);
3474 bnad
->bar0
= ioremap_nocache(bnad
->mmio_start
, bnad
->mmio_len
);
3476 dev_err(&pdev
->dev
, "ioremap for bar0 failed\n");
3479 pr_info("bar0 mapped to %p, len %llu\n", bnad
->bar0
,
3480 (unsigned long long) bnad
->mmio_len
);
3482 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3483 if (!bnad_msix_disable
)
3484 bnad
->cfg_flags
= BNAD_CF_MSIX
;
3486 bnad
->cfg_flags
|= BNAD_CF_DIM_ENABLED
;
3488 bnad_q_num_init(bnad
);
3489 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3491 bnad
->msix_num
= (bnad
->num_tx
* bnad
->num_txq_per_tx
) +
3492 (bnad
->num_rx
* bnad
->num_rxp_per_rx
) +
3493 BNAD_MAILBOX_MSIX_VECTORS
;
3495 bnad
->txq_depth
= BNAD_TXQ_DEPTH
;
3496 bnad
->rxq_depth
= BNAD_RXQ_DEPTH
;
3498 bnad
->tx_coalescing_timeo
= BFI_TX_COALESCING_TIMEO
;
3499 bnad
->rx_coalescing_timeo
= BFI_RX_COALESCING_TIMEO
;
3501 sprintf(bnad
->wq_name
, "%s_wq_%d", BNAD_NAME
, bnad
->id
);
3502 bnad
->work_q
= create_singlethread_workqueue(bnad
->wq_name
);
3503 if (!bnad
->work_q
) {
3504 iounmap(bnad
->bar0
);
3512 * Must be called after bnad_pci_uninit()
3513 * so that iounmap() and pci_set_drvdata(NULL)
3514 * happens only after PCI uninitialization.
3517 bnad_uninit(struct bnad
*bnad
)
3520 flush_workqueue(bnad
->work_q
);
3521 destroy_workqueue(bnad
->work_q
);
3522 bnad
->work_q
= NULL
;
3526 iounmap(bnad
->bar0
);
3531 a) Per ioceth mutes used for serializing configuration
3532 changes from OS interface
3533 b) spin lock used to protect bna state machine
3536 bnad_lock_init(struct bnad
*bnad
)
3538 spin_lock_init(&bnad
->bna_lock
);
3539 mutex_init(&bnad
->conf_mutex
);
3540 mutex_init(&bnad_list_mutex
);
3544 bnad_lock_uninit(struct bnad
*bnad
)
3546 mutex_destroy(&bnad
->conf_mutex
);
3547 mutex_destroy(&bnad_list_mutex
);
3550 /* PCI Initialization */
3552 bnad_pci_init(struct bnad
*bnad
,
3553 struct pci_dev
*pdev
, bool *using_dac
)
3557 err
= pci_enable_device(pdev
);
3560 err
= pci_request_regions(pdev
, BNAD_NAME
);
3562 goto disable_device
;
3563 if (!dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64))) {
3566 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
3568 goto release_regions
;
3571 pci_set_master(pdev
);
3575 pci_release_regions(pdev
);
3577 pci_disable_device(pdev
);
3583 bnad_pci_uninit(struct pci_dev
*pdev
)
3585 pci_release_regions(pdev
);
3586 pci_disable_device(pdev
);
3590 bnad_pci_probe(struct pci_dev
*pdev
,
3591 const struct pci_device_id
*pcidev_id
)
3597 struct net_device
*netdev
;
3598 struct bfa_pcidev pcidev_info
;
3599 unsigned long flags
;
3601 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3602 pdev
, pcidev_id
, PCI_FUNC(pdev
->devfn
));
3604 mutex_lock(&bnad_fwimg_mutex
);
3605 if (!cna_get_firmware_buf(pdev
)) {
3606 mutex_unlock(&bnad_fwimg_mutex
);
3607 pr_warn("Failed to load Firmware Image!\n");
3610 mutex_unlock(&bnad_fwimg_mutex
);
3613 * Allocates sizeof(struct net_device + struct bnad)
3614 * bnad = netdev->priv
3616 netdev
= alloc_etherdev(sizeof(struct bnad
));
3621 bnad
= netdev_priv(netdev
);
3622 bnad_lock_init(bnad
);
3623 bnad_add_to_list(bnad
);
3625 mutex_lock(&bnad
->conf_mutex
);
3627 * PCI initialization
3628 * Output : using_dac = 1 for 64 bit DMA
3629 * = 0 for 32 bit DMA
3632 err
= bnad_pci_init(bnad
, pdev
, &using_dac
);
3637 * Initialize bnad structure
3638 * Setup relation between pci_dev & netdev
3640 err
= bnad_init(bnad
, pdev
, netdev
);
3644 /* Initialize netdev structure, set up ethtool ops */
3645 bnad_netdev_init(bnad
, using_dac
);
3647 /* Set link to down state */
3648 netif_carrier_off(netdev
);
3650 /* Setup the debugfs node for this bfad */
3651 if (bna_debugfs_enable
)
3652 bnad_debugfs_init(bnad
);
3654 /* Get resource requirement form bna */
3655 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3656 bna_res_req(&bnad
->res_info
[0]);
3657 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3659 /* Allocate resources from bna */
3660 err
= bnad_res_alloc(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3666 /* Setup pcidev_info for bna_init() */
3667 pcidev_info
.pci_slot
= PCI_SLOT(bnad
->pcidev
->devfn
);
3668 pcidev_info
.pci_func
= PCI_FUNC(bnad
->pcidev
->devfn
);
3669 pcidev_info
.device_id
= bnad
->pcidev
->device
;
3670 pcidev_info
.pci_bar_kva
= bnad
->bar0
;
3672 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3673 bna_init(bna
, bnad
, &pcidev_info
, &bnad
->res_info
[0]);
3674 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3676 bnad
->stats
.bna_stats
= &bna
->stats
;
3678 bnad_enable_msix(bnad
);
3679 err
= bnad_mbox_irq_alloc(bnad
);
3684 setup_timer(&bnad
->bna
.ioceth
.ioc
.ioc_timer
, bnad_ioc_timeout
,
3685 ((unsigned long)bnad
));
3686 setup_timer(&bnad
->bna
.ioceth
.ioc
.hb_timer
, bnad_ioc_hb_check
,
3687 ((unsigned long)bnad
));
3688 setup_timer(&bnad
->bna
.ioceth
.ioc
.iocpf_timer
, bnad_iocpf_timeout
,
3689 ((unsigned long)bnad
));
3690 setup_timer(&bnad
->bna
.ioceth
.ioc
.sem_timer
, bnad_iocpf_sem_timeout
,
3691 ((unsigned long)bnad
));
3693 /* Now start the timer before calling IOC */
3694 mod_timer(&bnad
->bna
.ioceth
.ioc
.iocpf_timer
,
3695 jiffies
+ msecs_to_jiffies(BNA_IOC_TIMER_FREQ
));
3699 * If the call back comes with error, we bail out.
3700 * This is a catastrophic error.
3702 err
= bnad_ioceth_enable(bnad
);
3704 pr_err("BNA: Initialization failed err=%d\n",
3709 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3710 if (bna_num_txq_set(bna
, BNAD_NUM_TXQ
+ 1) ||
3711 bna_num_rxp_set(bna
, BNAD_NUM_RXP
+ 1)) {
3712 bnad_q_num_adjust(bnad
, bna_attr(bna
)->num_txq
- 1,
3713 bna_attr(bna
)->num_rxp
- 1);
3714 if (bna_num_txq_set(bna
, BNAD_NUM_TXQ
+ 1) ||
3715 bna_num_rxp_set(bna
, BNAD_NUM_RXP
+ 1))
3718 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3720 goto disable_ioceth
;
3722 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3723 bna_mod_res_req(&bnad
->bna
, &bnad
->mod_res_info
[0]);
3724 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3726 err
= bnad_res_alloc(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3729 goto disable_ioceth
;
3732 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3733 bna_mod_init(&bnad
->bna
, &bnad
->mod_res_info
[0]);
3734 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3736 /* Get the burnt-in mac */
3737 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3738 bna_enet_perm_mac_get(&bna
->enet
, &bnad
->perm_addr
);
3739 bnad_set_netdev_perm_addr(bnad
);
3740 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3742 mutex_unlock(&bnad
->conf_mutex
);
3744 /* Finally, reguister with net_device layer */
3745 err
= register_netdev(netdev
);
3747 pr_err("BNA : Registering with netdev failed\n");
3750 set_bit(BNAD_RF_NETDEV_REGISTERED
, &bnad
->run_flags
);
3755 mutex_unlock(&bnad
->conf_mutex
);
3759 mutex_lock(&bnad
->conf_mutex
);
3760 bnad_res_free(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3762 bnad_ioceth_disable(bnad
);
3763 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.ioc_timer
);
3764 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.sem_timer
);
3765 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.hb_timer
);
3766 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3768 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3769 bnad_mbox_irq_free(bnad
);
3770 bnad_disable_msix(bnad
);
3772 bnad_res_free(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3774 /* Remove the debugfs node for this bnad */
3775 kfree(bnad
->regdata
);
3776 bnad_debugfs_uninit(bnad
);
3779 bnad_pci_uninit(pdev
);
3781 mutex_unlock(&bnad
->conf_mutex
);
3782 bnad_remove_from_list(bnad
);
3783 bnad_lock_uninit(bnad
);
3784 free_netdev(netdev
);
3789 bnad_pci_remove(struct pci_dev
*pdev
)
3791 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3794 unsigned long flags
;
3799 pr_info("%s bnad_pci_remove\n", netdev
->name
);
3800 bnad
= netdev_priv(netdev
);
3803 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED
, &bnad
->run_flags
))
3804 unregister_netdev(netdev
);
3806 mutex_lock(&bnad
->conf_mutex
);
3807 bnad_ioceth_disable(bnad
);
3808 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.ioc_timer
);
3809 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.sem_timer
);
3810 del_timer_sync(&bnad
->bna
.ioceth
.ioc
.hb_timer
);
3811 spin_lock_irqsave(&bnad
->bna_lock
, flags
);
3813 spin_unlock_irqrestore(&bnad
->bna_lock
, flags
);
3815 bnad_res_free(bnad
, &bnad
->mod_res_info
[0], BNA_MOD_RES_T_MAX
);
3816 bnad_res_free(bnad
, &bnad
->res_info
[0], BNA_RES_T_MAX
);
3817 bnad_mbox_irq_free(bnad
);
3818 bnad_disable_msix(bnad
);
3819 bnad_pci_uninit(pdev
);
3820 mutex_unlock(&bnad
->conf_mutex
);
3821 bnad_remove_from_list(bnad
);
3822 bnad_lock_uninit(bnad
);
3823 /* Remove the debugfs node for this bnad */
3824 kfree(bnad
->regdata
);
3825 bnad_debugfs_uninit(bnad
);
3827 free_netdev(netdev
);
3830 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table
) = {
3832 PCI_DEVICE(PCI_VENDOR_ID_BROCADE
,
3833 PCI_DEVICE_ID_BROCADE_CT
),
3834 .class = PCI_CLASS_NETWORK_ETHERNET
<< 8,
3835 .class_mask
= 0xffff00
3838 PCI_DEVICE(PCI_VENDOR_ID_BROCADE
,
3839 BFA_PCI_DEVICE_ID_CT2
),
3840 .class = PCI_CLASS_NETWORK_ETHERNET
<< 8,
3841 .class_mask
= 0xffff00
3846 MODULE_DEVICE_TABLE(pci
, bnad_pci_id_table
);
3848 static struct pci_driver bnad_pci_driver
= {
3850 .id_table
= bnad_pci_id_table
,
3851 .probe
= bnad_pci_probe
,
3852 .remove
= bnad_pci_remove
,
3856 bnad_module_init(void)
3860 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3863 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover
);
3865 err
= pci_register_driver(&bnad_pci_driver
);
3867 pr_err("bna : PCI registration failed in module init "
3876 bnad_module_exit(void)
3878 pci_unregister_driver(&bnad_pci_driver
);
3879 release_firmware(bfi_fw
);
3882 module_init(bnad_module_init
);
3883 module_exit(bnad_module_exit
);
3885 MODULE_AUTHOR("Brocade");
3886 MODULE_LICENSE("GPL");
3887 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3888 MODULE_VERSION(BNAD_VERSION
);
3889 MODULE_FIRMWARE(CNA_FW_FILE_CT
);
3890 MODULE_FIRMWARE(CNA_FW_FILE_CT2
);