2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/pci.h>
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4fw_api.h"
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's). Return an error if it doesn't
49 int t4vf_wait_dev_ready(struct adapter
*adapter
)
51 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
52 const u32 notready1
= 0xffffffff;
53 const u32 notready2
= 0xeeeeeeee;
56 val
= t4_read_reg(adapter
, whoami
);
57 if (val
!= notready1
&& val
!= notready2
)
60 val
= t4_read_reg(adapter
, whoami
);
61 if (val
!= notready1
&& val
!= notready2
)
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
71 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
74 for ( ; size
; size
-= 8, mbox_data
+= 8)
75 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
79 * Dump contents of mailbox with a leading tag.
81 static void dump_mbox(struct adapter
*adapter
, const char *tag
, u32 mbox_data
)
83 dev_err(adapter
->pdev_dev
,
84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag
,
85 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 0),
86 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 8),
87 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 16),
88 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 24),
89 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 32),
90 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 40),
91 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 48),
92 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 56));
96 * t4vf_wr_mbox_core - send a command to FW through the mailbox
97 * @adapter: the adapter
98 * @cmd: the command to write
99 * @size: command length in bytes
100 * @rpl: where to optionally store the reply
101 * @sleep_ok: if true we may sleep while awaiting command completion
103 * Sends the given command to FW through the mailbox and waits for the
104 * FW to execute the command. If @rpl is not %NULL it is used to store
105 * the FW's reply to the command. The command and its optional reply
106 * are of the same length. FW can take up to 500 ms to respond.
107 * @sleep_ok determines whether we may sleep while awaiting the response.
108 * If sleeping is allowed we use progressive backoff otherwise we spin.
110 * The return value is 0 on success or a negative errno on failure. A
111 * failure can happen either because we are not able to execute the
112 * command or FW executes it but signals an error. In the latter case
113 * the return value is the error code indicated by FW (negated).
115 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
116 void *rpl
, bool sleep_ok
)
118 static const int delay
[] = {
119 1, 1, 3, 5, 10, 10, 20, 50, 100
123 int i
, ms
, delay_idx
;
125 u32 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
126 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
129 * Commands must be multiples of 16 bytes in length and may not be
130 * larger than the size of the Mailbox Data register array.
132 if ((size
% 16) != 0 ||
133 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
137 * Loop trying to get ownership of the mailbox. Return an error
138 * if we can't gain ownership.
140 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
141 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
142 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
143 if (v
!= MBOX_OWNER_DRV
)
144 return v
== MBOX_OWNER_FW
? -EBUSY
: -ETIMEDOUT
;
147 * Write the command array into the Mailbox Data register array and
148 * transfer ownership of the mailbox to the firmware.
150 * For the VFs, the Mailbox Data "registers" are actually backed by
151 * T4's "MA" interface rather than PL Registers (as is the case for
152 * the PFs). Because these are in different coherency domains, the
153 * write to the VF's PL-register-backed Mailbox Control can race in
154 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 * So we need to do a read-back on at least one byte of the VF Mailbox
156 * Data registers before doing the write to the VF Mailbox Control
159 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
160 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
161 t4_read_reg(adapter
, mbox_data
); /* flush write */
163 t4_write_reg(adapter
, mbox_ctl
,
164 MBMSGVALID
| MBOWNER(MBOX_OWNER_FW
));
165 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
168 * Spin waiting for firmware to acknowledge processing our command.
173 for (i
= 0; i
< FW_CMD_MAX_TIMEOUT
; i
+= ms
) {
175 ms
= delay
[delay_idx
];
176 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
183 * If we're the owner, see if this is the reply we wanted.
185 v
= t4_read_reg(adapter
, mbox_ctl
);
186 if (MBOWNER_GET(v
) == MBOX_OWNER_DRV
) {
188 * If the Message Valid bit isn't on, revoke ownership
189 * of the mailbox and continue waiting for our reply.
191 if ((v
& MBMSGVALID
) == 0) {
192 t4_write_reg(adapter
, mbox_ctl
,
193 MBOWNER(MBOX_OWNER_NONE
));
198 * We now have our reply. Extract the command return
199 * value, copy the reply back to our caller's buffer
200 * (if specified) and revoke ownership of the mailbox.
201 * We return the (negated) firmware command return
202 * code (this depends on FW_SUCCESS == 0).
205 /* return value in low-order little-endian word */
206 v
= t4_read_reg(adapter
, mbox_data
);
207 if (FW_CMD_RETVAL_GET(v
))
208 dump_mbox(adapter
, "FW Error", mbox_data
);
211 /* request bit in high-order BE word */
212 WARN_ON((be32_to_cpu(*(const u32
*)cmd
)
213 & FW_CMD_REQUEST
) == 0);
214 get_mbox_rpl(adapter
, rpl
, size
, mbox_data
);
215 WARN_ON((be32_to_cpu(*(u32
*)rpl
)
216 & FW_CMD_REQUEST
) != 0);
218 t4_write_reg(adapter
, mbox_ctl
,
219 MBOWNER(MBOX_OWNER_NONE
));
220 return -FW_CMD_RETVAL_GET(v
);
225 * We timed out. Return the error ...
227 dump_mbox(adapter
, "FW Timeout", mbox_data
);
232 * hash_mac_addr - return the hash value of a MAC address
233 * @addr: the 48-bit Ethernet MAC address
235 * Hashes a MAC address according to the hash function used by hardware
236 * inexact (hash) address matching.
238 static int hash_mac_addr(const u8
*addr
)
240 u32 a
= ((u32
)addr
[0] << 16) | ((u32
)addr
[1] << 8) | addr
[2];
241 u32 b
= ((u32
)addr
[3] << 16) | ((u32
)addr
[4] << 8) | addr
[5];
249 * init_link_config - initialize a link's SW state
250 * @lc: structure holding the link state
251 * @caps: link capabilities
253 * Initializes the SW state maintained for each link, including the link's
254 * capabilities and default speed/flow-control/autonegotiation settings.
256 static void init_link_config(struct link_config
*lc
, unsigned int caps
)
258 lc
->supported
= caps
;
259 lc
->requested_speed
= 0;
261 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
262 if (lc
->supported
& SUPPORTED_Autoneg
) {
263 lc
->advertising
= lc
->supported
;
264 lc
->autoneg
= AUTONEG_ENABLE
;
265 lc
->requested_fc
|= PAUSE_AUTONEG
;
268 lc
->autoneg
= AUTONEG_DISABLE
;
273 * t4vf_port_init - initialize port hardware/software state
274 * @adapter: the adapter
275 * @pidx: the adapter port index
277 int t4vf_port_init(struct adapter
*adapter
, int pidx
)
279 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
280 struct fw_vi_cmd vi_cmd
, vi_rpl
;
281 struct fw_port_cmd port_cmd
, port_rpl
;
286 * Execute a VI Read command to get our Virtual Interface information
287 * like MAC address, etc.
289 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
290 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
293 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
294 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(pi
->viid
));
295 v
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
299 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_GET(vi_rpl
.portid_pkd
));
300 pi
->rss_size
= FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl
.rsssize_pkd
));
301 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
304 * If we don't have read access to our port information, we're done
305 * now. Otherwise, execute a PORT Read command to get it ...
307 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
310 memset(&port_cmd
, 0, sizeof(port_cmd
));
311 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP(FW_PORT_CMD
) |
314 FW_PORT_CMD_PORTID(pi
->port_id
));
315 port_cmd
.action_to_len16
=
316 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO
) |
318 v
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
323 word
= be16_to_cpu(port_rpl
.u
.info
.pcap
);
324 if (word
& FW_PORT_CAP_SPEED_100M
)
325 v
|= SUPPORTED_100baseT_Full
;
326 if (word
& FW_PORT_CAP_SPEED_1G
)
327 v
|= SUPPORTED_1000baseT_Full
;
328 if (word
& FW_PORT_CAP_SPEED_10G
)
329 v
|= SUPPORTED_10000baseT_Full
;
330 if (word
& FW_PORT_CAP_ANEG
)
331 v
|= SUPPORTED_Autoneg
;
332 init_link_config(&pi
->link_cfg
, v
);
338 * t4vf_fw_reset - issue a reset to FW
339 * @adapter: the adapter
341 * Issues a reset command to FW. For a Physical Function this would
342 * result in the Firmware reseting all of its state. For a Virtual
343 * Function this just resets the state associated with the VF.
345 int t4vf_fw_reset(struct adapter
*adapter
)
347 struct fw_reset_cmd cmd
;
349 memset(&cmd
, 0, sizeof(cmd
));
350 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RESET_CMD
) |
352 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
353 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
357 * t4vf_query_params - query FW or device parameters
358 * @adapter: the adapter
359 * @nparams: the number of parameters
360 * @params: the parameter names
361 * @vals: the parameter values
363 * Reads the values of firmware or device parameters. Up to 7 parameters
364 * can be queried at once.
366 static int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
367 const u32
*params
, u32
*vals
)
370 struct fw_params_cmd cmd
, rpl
;
371 struct fw_params_param
*p
;
377 memset(&cmd
, 0, sizeof(cmd
));
378 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
381 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
382 param
[nparams
].mnem
), 16);
383 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
384 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
385 p
->mnem
= htonl(*params
++);
387 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
389 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
390 *vals
++ = be32_to_cpu(p
->val
);
395 * t4vf_set_params - sets FW or device parameters
396 * @adapter: the adapter
397 * @nparams: the number of parameters
398 * @params: the parameter names
399 * @vals: the parameter values
401 * Sets the values of firmware or device parameters. Up to 7 parameters
402 * can be specified at once.
404 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
405 const u32
*params
, const u32
*vals
)
408 struct fw_params_cmd cmd
;
409 struct fw_params_param
*p
;
415 memset(&cmd
, 0, sizeof(cmd
));
416 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
419 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
420 param
[nparams
]), 16);
421 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
422 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
423 p
->mnem
= cpu_to_be32(*params
++);
424 p
->val
= cpu_to_be32(*vals
++);
427 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
431 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
432 * @adapter: the adapter
434 * Retrieves various core SGE parameters in the form of hardware SGE
435 * register values. The caller is responsible for decoding these as
436 * needed. The SGE parameters are stored in @adapter->params.sge.
438 int t4vf_get_sge_params(struct adapter
*adapter
)
440 struct sge_params
*sge_params
= &adapter
->params
.sge
;
441 u32 params
[7], vals
[7];
444 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
445 FW_PARAMS_PARAM_XYZ(SGE_CONTROL
));
446 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
447 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE
));
448 params
[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
449 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0
));
450 params
[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1
));
452 params
[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
453 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1
));
454 params
[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3
));
456 params
[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5
));
458 v
= t4vf_query_params(adapter
, 7, params
, vals
);
461 sge_params
->sge_control
= vals
[0];
462 sge_params
->sge_host_page_size
= vals
[1];
463 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
464 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
465 sge_params
->sge_timer_value_0_and_1
= vals
[4];
466 sge_params
->sge_timer_value_2_and_3
= vals
[5];
467 sge_params
->sge_timer_value_4_and_5
= vals
[6];
469 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
470 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD
));
471 v
= t4vf_query_params(adapter
, 1, params
, vals
);
474 sge_params
->sge_ingress_rx_threshold
= vals
[0];
480 * t4vf_get_vpd_params - retrieve device VPD paremeters
481 * @adapter: the adapter
483 * Retrives various device Vital Product Data parameters. The parameters
484 * are stored in @adapter->params.vpd.
486 int t4vf_get_vpd_params(struct adapter
*adapter
)
488 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
489 u32 params
[7], vals
[7];
492 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
493 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK
));
494 v
= t4vf_query_params(adapter
, 1, params
, vals
);
497 vpd_params
->cclk
= vals
[0];
503 * t4vf_get_dev_params - retrieve device paremeters
504 * @adapter: the adapter
506 * Retrives various device parameters. The parameters are stored in
507 * @adapter->params.dev.
509 int t4vf_get_dev_params(struct adapter
*adapter
)
511 struct dev_params
*dev_params
= &adapter
->params
.dev
;
512 u32 params
[7], vals
[7];
515 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
516 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV
));
517 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
518 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV
));
519 v
= t4vf_query_params(adapter
, 2, params
, vals
);
522 dev_params
->fwrev
= vals
[0];
523 dev_params
->tprev
= vals
[1];
529 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
530 * @adapter: the adapter
532 * Retrieves global RSS mode and parameters with which we have to live
533 * and stores them in the @adapter's RSS parameters.
535 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
537 struct rss_params
*rss
= &adapter
->params
.rss
;
538 struct fw_rss_glb_config_cmd cmd
, rpl
;
542 * Execute an RSS Global Configuration read command to retrieve
543 * our RSS configuration.
545 memset(&cmd
, 0, sizeof(cmd
));
546 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD
) |
549 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
550 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
555 * Transate the big-endian RSS Global Configuration into our
556 * cpu-endian format based on the RSS mode. We also do first level
557 * filtering at this point to weed out modes which don't support
560 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_GET(
561 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
563 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
564 u32 word
= be32_to_cpu(
565 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
567 rss
->u
.basicvirtual
.synmapen
=
568 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN
) != 0);
569 rss
->u
.basicvirtual
.syn4tupenipv6
=
570 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6
) != 0);
571 rss
->u
.basicvirtual
.syn2tupenipv6
=
572 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6
) != 0);
573 rss
->u
.basicvirtual
.syn4tupenipv4
=
574 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4
) != 0);
575 rss
->u
.basicvirtual
.syn2tupenipv4
=
576 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4
) != 0);
578 rss
->u
.basicvirtual
.ofdmapen
=
579 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN
) != 0);
581 rss
->u
.basicvirtual
.tnlmapen
=
582 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN
) != 0);
583 rss
->u
.basicvirtual
.tnlalllookup
=
584 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP
) != 0);
586 rss
->u
.basicvirtual
.hashtoeplitz
=
587 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ
) != 0);
589 /* we need at least Tunnel Map Enable to be set */
590 if (!rss
->u
.basicvirtual
.tnlmapen
)
596 /* all unknown/unsupported RSS modes result in an error */
604 * t4vf_get_vfres - retrieve VF resource limits
605 * @adapter: the adapter
607 * Retrieves configured resource limits and capabilities for a virtual
608 * function. The results are stored in @adapter->vfres.
610 int t4vf_get_vfres(struct adapter
*adapter
)
612 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
613 struct fw_pfvf_cmd cmd
, rpl
;
618 * Execute PFVF Read command to get VF resource limits; bail out early
619 * with error on command failure.
621 memset(&cmd
, 0, sizeof(cmd
));
622 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD
) |
625 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
626 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
631 * Extract VF resource limits and return success.
633 word
= be32_to_cpu(rpl
.niqflint_niq
);
634 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_GET(word
);
635 vfres
->niq
= FW_PFVF_CMD_NIQ_GET(word
);
637 word
= be32_to_cpu(rpl
.type_to_neq
);
638 vfres
->neq
= FW_PFVF_CMD_NEQ_GET(word
);
639 vfres
->pmask
= FW_PFVF_CMD_PMASK_GET(word
);
641 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
642 vfres
->tc
= FW_PFVF_CMD_TC_GET(word
);
643 vfres
->nvi
= FW_PFVF_CMD_NVI_GET(word
);
644 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_GET(word
);
646 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
647 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_GET(word
);
648 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_GET(word
);
649 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_GET(word
);
655 * t4vf_read_rss_vi_config - read a VI's RSS configuration
656 * @adapter: the adapter
657 * @viid: Virtual Interface ID
658 * @config: pointer to host-native VI RSS Configuration buffer
660 * Reads the Virtual Interface's RSS configuration information and
661 * translates it into CPU-native format.
663 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
664 union rss_vi_config
*config
)
666 struct fw_rss_vi_config_cmd cmd
, rpl
;
669 memset(&cmd
, 0, sizeof(cmd
));
670 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
673 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
674 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
675 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
679 switch (adapter
->params
.rss
.mode
) {
680 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
681 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
683 config
->basicvirtual
.ip6fourtupen
=
684 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
) != 0);
685 config
->basicvirtual
.ip6twotupen
=
686 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
) != 0);
687 config
->basicvirtual
.ip4fourtupen
=
688 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
) != 0);
689 config
->basicvirtual
.ip4twotupen
=
690 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
) != 0);
691 config
->basicvirtual
.udpen
=
692 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN
) != 0);
693 config
->basicvirtual
.defaultq
=
694 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word
);
706 * t4vf_write_rss_vi_config - write a VI's RSS configuration
707 * @adapter: the adapter
708 * @viid: Virtual Interface ID
709 * @config: pointer to host-native VI RSS Configuration buffer
711 * Write the Virtual Interface's RSS configuration information
712 * (translating it into firmware-native format before writing).
714 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
715 union rss_vi_config
*config
)
717 struct fw_rss_vi_config_cmd cmd
, rpl
;
719 memset(&cmd
, 0, sizeof(cmd
));
720 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
723 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
724 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
725 switch (adapter
->params
.rss
.mode
) {
726 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
729 if (config
->basicvirtual
.ip6fourtupen
)
730 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
;
731 if (config
->basicvirtual
.ip6twotupen
)
732 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
;
733 if (config
->basicvirtual
.ip4fourtupen
)
734 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
;
735 if (config
->basicvirtual
.ip4twotupen
)
736 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
;
737 if (config
->basicvirtual
.udpen
)
738 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN
;
739 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
740 config
->basicvirtual
.defaultq
);
741 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
749 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
753 * t4vf_config_rss_range - configure a portion of the RSS mapping table
754 * @adapter: the adapter
755 * @viid: Virtual Interface of RSS Table Slice
756 * @start: starting entry in the table to write
757 * @n: how many table entries to write
758 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
759 * @nrspq: number of values in @rspq
761 * Programs the selected part of the VI's RSS mapping table with the
762 * provided values. If @nrspq < @n the supplied values are used repeatedly
763 * until the full table range is populated.
765 * The caller must ensure the values in @rspq are in the range 0..1023.
767 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
768 int start
, int n
, const u16
*rspq
, int nrspq
)
770 const u16
*rsp
= rspq
;
771 const u16
*rsp_end
= rspq
+nrspq
;
772 struct fw_rss_ind_tbl_cmd cmd
;
775 * Initialize firmware command template to write the RSS table.
777 memset(&cmd
, 0, sizeof(cmd
));
778 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD
) |
781 FW_RSS_IND_TBL_CMD_VIID(viid
));
782 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
785 * Each firmware RSS command can accommodate up to 32 RSS Ingress
786 * Queue Identifiers. These Ingress Queue IDs are packed three to
787 * a 32-bit word as 10-bit values with the upper remaining 2 bits
791 __be32
*qp
= &cmd
.iq0_to_iq2
;
796 * Set up the firmware RSS command header to send the next
797 * "nq" Ingress Queue IDs to the firmware.
799 cmd
.niqid
= cpu_to_be16(nq
);
800 cmd
.startidx
= cpu_to_be16(start
);
803 * "nq" more done for the start of the next loop.
809 * While there are still Ingress Queue IDs to stuff into the
810 * current firmware RSS command, retrieve them from the
811 * Ingress Queue ID array and insert them into the command.
815 * Grab up to the next 3 Ingress Queue IDs (wrapping
816 * around the Ingress Queue ID array if necessary) and
817 * insert them into the firmware RSS command at the
818 * current 3-tuple position within the commad.
822 int nqbuf
= min(3, nq
);
825 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
832 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf
[0]) |
833 FW_RSS_IND_TBL_CMD_IQ1(qbuf
[1]) |
834 FW_RSS_IND_TBL_CMD_IQ2(qbuf
[2]));
838 * Send this portion of the RRS table update to the firmware;
839 * bail out on any errors.
841 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
849 * t4vf_alloc_vi - allocate a virtual interface on a port
850 * @adapter: the adapter
851 * @port_id: physical port associated with the VI
853 * Allocate a new Virtual Interface and bind it to the indicated
854 * physical port. Return the new Virtual Interface Identifier on
855 * success, or a [negative] error number on failure.
857 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
859 struct fw_vi_cmd cmd
, rpl
;
863 * Execute a VI command to allocate Virtual Interface and return its
866 memset(&cmd
, 0, sizeof(cmd
));
867 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
871 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
873 cmd
.portid_pkd
= FW_VI_CMD_PORTID(port_id
);
874 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
878 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl
.type_viid
));
882 * t4vf_free_vi -- free a virtual interface
883 * @adapter: the adapter
884 * @viid: the virtual interface identifier
886 * Free a previously allocated Virtual Interface. Return an error on
889 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
891 struct fw_vi_cmd cmd
;
894 * Execute a VI command to free the Virtual Interface.
896 memset(&cmd
, 0, sizeof(cmd
));
897 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
900 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
902 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(viid
));
903 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
907 * t4vf_enable_vi - enable/disable a virtual interface
908 * @adapter: the adapter
909 * @viid: the Virtual Interface ID
910 * @rx_en: 1=enable Rx, 0=disable Rx
911 * @tx_en: 1=enable Tx, 0=disable Tx
913 * Enables/disables a virtual interface.
915 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
916 bool rx_en
, bool tx_en
)
918 struct fw_vi_enable_cmd cmd
;
920 memset(&cmd
, 0, sizeof(cmd
));
921 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
924 FW_VI_ENABLE_CMD_VIID(viid
));
925 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en
) |
926 FW_VI_ENABLE_CMD_EEN(tx_en
) |
928 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
932 * t4vf_identify_port - identify a VI's port by blinking its LED
933 * @adapter: the adapter
934 * @viid: the Virtual Interface ID
935 * @nblinks: how many times to blink LED at 2.5 Hz
937 * Identifies a VI's port by blinking its LED.
939 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
940 unsigned int nblinks
)
942 struct fw_vi_enable_cmd cmd
;
944 memset(&cmd
, 0, sizeof(cmd
));
945 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
948 FW_VI_ENABLE_CMD_VIID(viid
));
949 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED
|
951 cmd
.blinkdur
= cpu_to_be16(nblinks
);
952 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
956 * t4vf_set_rxmode - set Rx properties of a virtual interface
957 * @adapter: the adapter
959 * @mtu: the new MTU or -1 for no change
960 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
961 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
962 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
963 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
966 * Sets Rx properties of a virtual interface.
968 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
969 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
972 struct fw_vi_rxmode_cmd cmd
;
974 /* convert to FW values */
976 mtu
= FW_VI_RXMODE_CMD_MTU_MASK
;
978 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_MASK
;
980 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_MASK
;
982 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_MASK
;
984 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_MASK
;
986 memset(&cmd
, 0, sizeof(cmd
));
987 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD
) |
990 FW_VI_RXMODE_CMD_VIID(viid
));
991 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
992 cmd
.mtu_to_vlanexen
=
993 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu
) |
994 FW_VI_RXMODE_CMD_PROMISCEN(promisc
) |
995 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi
) |
996 FW_VI_RXMODE_CMD_BROADCASTEN(bcast
) |
997 FW_VI_RXMODE_CMD_VLANEXEN(vlanex
));
998 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1002 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1003 * @adapter: the adapter
1004 * @viid: the Virtual Interface Identifier
1005 * @free: if true any existing filters for this VI id are first removed
1006 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1007 * @addr: the MAC address(es)
1008 * @idx: where to store the index of each allocated filter
1009 * @hash: pointer to hash address filter bitmap
1010 * @sleep_ok: call is allowed to sleep
1012 * Allocates an exact-match filter for each of the supplied addresses and
1013 * sets it to the corresponding address. If @idx is not %NULL it should
1014 * have at least @naddr entries, each of which will be set to the index of
1015 * the filter allocated for the corresponding MAC address. If a filter
1016 * could not be allocated for an address its index is set to 0xffff.
1017 * If @hash is not %NULL addresses that fail to allocate an exact filter
1018 * are hashed and update the hash filter bitmap pointed at by @hash.
1020 * Returns a negative error number or the number of filters allocated.
1022 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
1023 unsigned int naddr
, const u8
**addr
, u16
*idx
,
1024 u64
*hash
, bool sleep_ok
)
1026 int offset
, ret
= 0;
1027 unsigned nfilters
= 0;
1028 unsigned int rem
= naddr
;
1029 struct fw_vi_mac_cmd cmd
, rpl
;
1030 unsigned int max_naddr
= is_t4(adapter
->params
.chip
) ?
1031 NUM_MPS_CLS_SRAM_L_INSTANCES
:
1032 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
1034 if (naddr
> max_naddr
)
1037 for (offset
= 0; offset
< naddr
; /**/) {
1038 unsigned int fw_naddr
= (rem
< ARRAY_SIZE(cmd
.u
.exact
)
1040 : ARRAY_SIZE(cmd
.u
.exact
));
1041 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1042 u
.exact
[fw_naddr
]), 16);
1043 struct fw_vi_mac_exact
*p
;
1046 memset(&cmd
, 0, sizeof(cmd
));
1047 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1050 (free
? FW_CMD_EXEC
: 0) |
1051 FW_VI_MAC_CMD_VIID(viid
));
1052 cmd
.freemacs_to_len16
=
1053 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free
) |
1054 FW_CMD_LEN16(len16
));
1056 for (i
= 0, p
= cmd
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1057 p
->valid_to_idx
= cpu_to_be16(
1058 FW_VI_MAC_CMD_VALID
|
1059 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC
));
1060 memcpy(p
->macaddr
, addr
[offset
+i
], sizeof(p
->macaddr
));
1064 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
,
1066 if (ret
&& ret
!= -ENOMEM
)
1069 for (i
= 0, p
= rpl
.u
.exact
; i
< fw_naddr
; i
++, p
++) {
1070 u16 index
= FW_VI_MAC_CMD_IDX_GET(
1071 be16_to_cpu(p
->valid_to_idx
));
1078 if (index
< max_naddr
)
1081 *hash
|= (1ULL << hash_mac_addr(addr
[offset
+i
]));
1090 * If there were no errors or we merely ran out of room in our MAC
1091 * address arena, return the number of filters actually written.
1093 if (ret
== 0 || ret
== -ENOMEM
)
1099 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1100 * @adapter: the adapter
1101 * @viid: the Virtual Interface ID
1102 * @idx: index of existing filter for old value of MAC address, or -1
1103 * @addr: the new MAC address value
1104 * @persist: if idx < 0, the new MAC allocation should be persistent
1106 * Modifies an exact-match filter and sets it to the new MAC address.
1107 * Note that in general it is not possible to modify the value of a given
1108 * filter so the generic way to modify an address filter is to free the
1109 * one being used by the old address value and allocate a new filter for
1110 * the new address value. @idx can be -1 if the address is a new
1113 * Returns a negative error number or the index of the filter with the new
1116 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1117 int idx
, const u8
*addr
, bool persist
)
1120 struct fw_vi_mac_cmd cmd
, rpl
;
1121 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1122 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1124 unsigned int max_naddr
= is_t4(adapter
->params
.chip
) ?
1125 NUM_MPS_CLS_SRAM_L_INSTANCES
:
1126 NUM_MPS_T5_CLS_SRAM_L_INSTANCES
;
1129 * If this is a new allocation, determine whether it should be
1130 * persistent (across a "freemacs" operation) or not.
1133 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1135 memset(&cmd
, 0, sizeof(cmd
));
1136 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1139 FW_VI_MAC_CMD_VIID(viid
));
1140 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1141 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID
|
1142 FW_VI_MAC_CMD_IDX(idx
));
1143 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1145 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1147 p
= &rpl
.u
.exact
[0];
1148 ret
= FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p
->valid_to_idx
));
1149 if (ret
>= max_naddr
)
1156 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1157 * @adapter: the adapter
1158 * @viid: the Virtual Interface Identifier
1159 * @ucast: whether the hash filter should also match unicast addresses
1160 * @vec: the value to be written to the hash filter
1161 * @sleep_ok: call is allowed to sleep
1163 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1165 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1166 bool ucast
, u64 vec
, bool sleep_ok
)
1168 struct fw_vi_mac_cmd cmd
;
1169 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1172 memset(&cmd
, 0, sizeof(cmd
));
1173 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1176 FW_VI_ENABLE_CMD_VIID(viid
));
1177 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN
|
1178 FW_VI_MAC_CMD_HASHUNIEN(ucast
) |
1179 FW_CMD_LEN16(len16
));
1180 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1181 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1185 * t4vf_get_port_stats - collect "port" statistics
1186 * @adapter: the adapter
1187 * @pidx: the port index
1188 * @s: the stats structure to fill
1190 * Collect statistics for the "port"'s Virtual Interface.
1192 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1193 struct t4vf_port_stats
*s
)
1195 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1196 struct fw_vi_stats_vf fwstats
;
1197 unsigned int rem
= VI_VF_NUM_STATS
;
1198 __be64
*fwsp
= (__be64
*)&fwstats
;
1201 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1202 * commands. We could use a Work Request and get all of them at once
1203 * but that's an asynchronous interface which is awkward to use.
1206 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1207 unsigned int nstats
= min(6U, rem
);
1208 struct fw_vi_stats_cmd cmd
, rpl
;
1209 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1210 sizeof(struct fw_vi_stats_ctl
));
1211 size_t len16
= DIV_ROUND_UP(len
, 16);
1214 memset(&cmd
, 0, sizeof(cmd
));
1215 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD
) |
1216 FW_VI_STATS_CMD_VIID(pi
->viid
) |
1219 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1220 cmd
.u
.ctl
.nstats_ix
=
1221 cpu_to_be16(FW_VI_STATS_CMD_IX(ix
) |
1222 FW_VI_STATS_CMD_NSTATS(nstats
));
1223 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1227 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1234 * Translate firmware statistics into host native statistics.
1236 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1237 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1238 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1239 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1240 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1241 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1242 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1243 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1244 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1246 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1247 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1248 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1249 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1250 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1251 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1253 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1259 * t4vf_iq_free - free an ingress queue and its free lists
1260 * @adapter: the adapter
1261 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1262 * @iqid: ingress queue ID
1263 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1264 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1266 * Frees an ingress queue and its associated free lists, if any.
1268 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1269 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1271 struct fw_iq_cmd cmd
;
1273 memset(&cmd
, 0, sizeof(cmd
));
1274 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_IQ_CMD
) |
1277 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE
|
1279 cmd
.type_to_iqandstindex
=
1280 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype
));
1282 cmd
.iqid
= cpu_to_be16(iqid
);
1283 cmd
.fl0id
= cpu_to_be16(fl0id
);
1284 cmd
.fl1id
= cpu_to_be16(fl1id
);
1285 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1289 * t4vf_eth_eq_free - free an Ethernet egress queue
1290 * @adapter: the adapter
1291 * @eqid: egress queue ID
1293 * Frees an Ethernet egress queue.
1295 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1297 struct fw_eq_eth_cmd cmd
;
1299 memset(&cmd
, 0, sizeof(cmd
));
1300 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD
) |
1303 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE
|
1305 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid
));
1306 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1310 * t4vf_handle_fw_rpl - process a firmware reply message
1311 * @adapter: the adapter
1312 * @rpl: start of the firmware message
1314 * Processes a firmware message, such as link state change messages.
1316 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
1318 const struct fw_cmd_hdr
*cmd_hdr
= (const struct fw_cmd_hdr
*)rpl
;
1319 u8 opcode
= FW_CMD_OP_GET(be32_to_cpu(cmd_hdr
->hi
));
1324 * Link/module state change message.
1326 const struct fw_port_cmd
*port_cmd
=
1327 (const struct fw_port_cmd
*)rpl
;
1329 int action
, port_id
, link_ok
, speed
, fc
, pidx
;
1332 * Extract various fields from port status change message.
1334 action
= FW_PORT_CMD_ACTION_GET(
1335 be32_to_cpu(port_cmd
->action_to_len16
));
1336 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
) {
1337 dev_err(adapter
->pdev_dev
,
1338 "Unknown firmware PORT reply action %x\n",
1343 port_id
= FW_PORT_CMD_PORTID_GET(
1344 be32_to_cpu(port_cmd
->op_to_portid
));
1346 word
= be32_to_cpu(port_cmd
->u
.info
.lstatus_to_modtype
);
1347 link_ok
= (word
& FW_PORT_CMD_LSTATUS
) != 0;
1350 if (word
& FW_PORT_CMD_RXPAUSE
)
1352 if (word
& FW_PORT_CMD_TXPAUSE
)
1354 if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M
))
1356 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G
))
1358 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G
))
1359 speed
= SPEED_10000
;
1362 * Scan all of our "ports" (Virtual Interfaces) looking for
1363 * those bound to the physical port which has changed. If
1364 * our recorded state doesn't match the current state,
1365 * signal that change to the OS code.
1367 for_each_port(adapter
, pidx
) {
1368 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1369 struct link_config
*lc
;
1371 if (pi
->port_id
!= port_id
)
1375 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
1377 /* something changed */
1378 lc
->link_ok
= link_ok
;
1381 t4vf_os_link_changed(adapter
, pidx
, link_ok
);
1388 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",