PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / fsl_pq_mdio.c
blob583e71ab7f51b7f9edb307814d1310d1beebb2ff
1 /*
2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3 * Provides Bus interface for MIIM regs
5 * Author: Andy Fleming <afleming@freescale.com>
6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/module.h>
25 #include <linux/mii.h>
26 #include <linux/of_address.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_device.h>
30 #include <asm/io.h>
31 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */
33 #include "gianfar.h"
35 #define MIIMIND_BUSY 0x00000001
36 #define MIIMIND_NOTVALID 0x00000004
37 #define MIIMCFG_INIT_VALUE 0x00000007
38 #define MIIMCFG_RESET 0x80000000
40 #define MII_READ_COMMAND 0x00000001
42 struct fsl_pq_mii {
43 u32 miimcfg; /* MII management configuration reg */
44 u32 miimcom; /* MII management command reg */
45 u32 miimadd; /* MII management address reg */
46 u32 miimcon; /* MII management control reg */
47 u32 miimstat; /* MII management status reg */
48 u32 miimind; /* MII management indication reg */
51 struct fsl_pq_mdio {
52 u8 res1[16];
53 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
54 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
55 u8 res2[4];
56 u32 emapm; /* MDIO Event mapping register (for etsec2)*/
57 u8 res3[1280];
58 struct fsl_pq_mii mii;
59 u8 res4[28];
60 u32 utbipar; /* TBI phy address reg (only on UCC) */
61 u8 res5[2728];
62 } __packed;
64 /* Number of microseconds to wait for an MII register to respond */
65 #define MII_TIMEOUT 1000
67 struct fsl_pq_mdio_priv {
68 void __iomem *map;
69 struct fsl_pq_mii __iomem *regs;
70 int irqs[PHY_MAX_ADDR];
74 * Per-device-type data. Each type of device tree node that we support gets
75 * one of these.
77 * @mii_offset: the offset of the MII registers within the memory map of the
78 * node. Some nodes define only the MII registers, and some define the whole
79 * MAC (which includes the MII registers).
81 * @get_tbipa: determines the address of the TBIPA register
83 * @ucc_configure: a special function for extra QE configuration
85 struct fsl_pq_mdio_data {
86 unsigned int mii_offset; /* offset of the MII registers */
87 uint32_t __iomem * (*get_tbipa)(void __iomem *p);
88 void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
92 * Write value to the PHY at mii_id at register regnum, on the bus attached
93 * to the local interface, which may be different from the generic mdio bus
94 * (tied to a single interface), waiting until the write is done before
95 * returning. This is helpful in programming interfaces like the TBI which
96 * control interfaces like onchip SERDES and are always tied to the local
97 * mdio pins, which may not be the same as system mdio bus, used for
98 * controlling the external PHYs, for example.
100 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
101 u16 value)
103 struct fsl_pq_mdio_priv *priv = bus->priv;
104 struct fsl_pq_mii __iomem *regs = priv->regs;
105 u32 status;
107 /* Set the PHY address and the register address we want to write */
108 out_be32(&regs->miimadd, (mii_id << 8) | regnum);
110 /* Write out the value we want */
111 out_be32(&regs->miimcon, value);
113 /* Wait for the transaction to finish */
114 status = spin_event_timeout(!(in_be32(&regs->miimind) & MIIMIND_BUSY),
115 MII_TIMEOUT, 0);
117 return status ? 0 : -ETIMEDOUT;
121 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
122 * Clears miimcom first.
124 * All PHY operation done on the bus attached to the local interface, which
125 * may be different from the generic mdio bus. This is helpful in programming
126 * interfaces like the TBI which, in turn, control interfaces like on-chip
127 * SERDES and are always tied to the local mdio pins, which may not be the
128 * same as system mdio bus, used for controlling the external PHYs, for eg.
130 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
132 struct fsl_pq_mdio_priv *priv = bus->priv;
133 struct fsl_pq_mii __iomem *regs = priv->regs;
134 u32 status;
135 u16 value;
137 /* Set the PHY address and the register address we want to read */
138 out_be32(&regs->miimadd, (mii_id << 8) | regnum);
140 /* Clear miimcom, and then initiate a read */
141 out_be32(&regs->miimcom, 0);
142 out_be32(&regs->miimcom, MII_READ_COMMAND);
144 /* Wait for the transaction to finish, normally less than 100us */
145 status = spin_event_timeout(!(in_be32(&regs->miimind) &
146 (MIIMIND_NOTVALID | MIIMIND_BUSY)),
147 MII_TIMEOUT, 0);
148 if (!status)
149 return -ETIMEDOUT;
151 /* Grab the value of the register from miimstat */
152 value = in_be32(&regs->miimstat);
154 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
155 return value;
158 /* Reset the MIIM registers, and wait for the bus to free */
159 static int fsl_pq_mdio_reset(struct mii_bus *bus)
161 struct fsl_pq_mdio_priv *priv = bus->priv;
162 struct fsl_pq_mii __iomem *regs = priv->regs;
163 u32 status;
165 mutex_lock(&bus->mdio_lock);
167 /* Reset the management interface */
168 out_be32(&regs->miimcfg, MIIMCFG_RESET);
170 /* Setup the MII Mgmt clock speed */
171 out_be32(&regs->miimcfg, MIIMCFG_INIT_VALUE);
173 /* Wait until the bus is free */
174 status = spin_event_timeout(!(in_be32(&regs->miimind) & MIIMIND_BUSY),
175 MII_TIMEOUT, 0);
177 mutex_unlock(&bus->mdio_lock);
179 if (!status) {
180 dev_err(&bus->dev, "timeout waiting for MII bus\n");
181 return -EBUSY;
184 return 0;
187 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
189 * This is mildly evil, but so is our hardware for doing this.
190 * Also, we have to cast back to struct gfar because of
191 * definition weirdness done in gianfar.h.
193 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p)
195 struct gfar __iomem *enet_regs = p;
197 return &enet_regs->tbipa;
201 * Return the TBIPAR address for an eTSEC2 node
203 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
205 return p;
207 #endif
209 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
211 * Return the TBIPAR address for a QE MDIO node
213 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
215 struct fsl_pq_mdio __iomem *mdio = p;
217 return &mdio->utbipar;
221 * Find the UCC node that controls the given MDIO node
223 * For some reason, the QE MDIO nodes are not children of the UCC devices
224 * that control them. Therefore, we need to scan all UCC nodes looking for
225 * the one that encompases the given MDIO node. We do this by comparing
226 * physical addresses. The 'start' and 'end' addresses of the MDIO node are
227 * passed, and the correct UCC node will cover the entire address range.
229 * This assumes that there is only one QE MDIO node in the entire device tree.
231 static void ucc_configure(phys_addr_t start, phys_addr_t end)
233 static bool found_mii_master;
234 struct device_node *np = NULL;
236 if (found_mii_master)
237 return;
239 for_each_compatible_node(np, NULL, "ucc_geth") {
240 struct resource res;
241 const uint32_t *iprop;
242 uint32_t id;
243 int ret;
245 ret = of_address_to_resource(np, 0, &res);
246 if (ret < 0) {
247 pr_debug("fsl-pq-mdio: no address range in node %s\n",
248 np->full_name);
249 continue;
252 /* if our mdio regs fall within this UCC regs range */
253 if ((start < res.start) || (end > res.end))
254 continue;
256 iprop = of_get_property(np, "cell-index", NULL);
257 if (!iprop) {
258 iprop = of_get_property(np, "device-id", NULL);
259 if (!iprop) {
260 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
261 np->full_name);
262 continue;
266 id = be32_to_cpup(iprop);
269 * cell-index and device-id for QE nodes are
270 * numbered from 1, not 0.
272 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
273 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
274 np->full_name);
275 continue;
278 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
279 found_mii_master = true;
283 #endif
285 static struct of_device_id fsl_pq_mdio_match[] = {
286 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
288 .compatible = "fsl,gianfar-tbi",
289 .data = &(struct fsl_pq_mdio_data) {
290 .mii_offset = 0,
291 .get_tbipa = get_gfar_tbipa,
295 .compatible = "fsl,gianfar-mdio",
296 .data = &(struct fsl_pq_mdio_data) {
297 .mii_offset = 0,
298 .get_tbipa = get_gfar_tbipa,
302 .type = "mdio",
303 .compatible = "gianfar",
304 .data = &(struct fsl_pq_mdio_data) {
305 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
306 .get_tbipa = get_gfar_tbipa,
310 .compatible = "fsl,etsec2-tbi",
311 .data = &(struct fsl_pq_mdio_data) {
312 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
313 .get_tbipa = get_etsec_tbipa,
317 .compatible = "fsl,etsec2-mdio",
318 .data = &(struct fsl_pq_mdio_data) {
319 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
320 .get_tbipa = get_etsec_tbipa,
323 #endif
324 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
326 .compatible = "fsl,ucc-mdio",
327 .data = &(struct fsl_pq_mdio_data) {
328 .mii_offset = 0,
329 .get_tbipa = get_ucc_tbipa,
330 .ucc_configure = ucc_configure,
334 /* Legacy UCC MDIO node */
335 .type = "mdio",
336 .compatible = "ucc_geth_phy",
337 .data = &(struct fsl_pq_mdio_data) {
338 .mii_offset = 0,
339 .get_tbipa = get_ucc_tbipa,
340 .ucc_configure = ucc_configure,
343 #endif
344 /* No Kconfig option for Fman support yet */
346 .compatible = "fsl,fman-mdio",
347 .data = &(struct fsl_pq_mdio_data) {
348 .mii_offset = 0,
349 /* Fman TBI operations are handled elsewhere */
355 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
357 static int fsl_pq_mdio_probe(struct platform_device *pdev)
359 const struct of_device_id *id =
360 of_match_device(fsl_pq_mdio_match, &pdev->dev);
361 const struct fsl_pq_mdio_data *data = id->data;
362 struct device_node *np = pdev->dev.of_node;
363 struct resource res;
364 struct device_node *tbi;
365 struct fsl_pq_mdio_priv *priv;
366 struct mii_bus *new_bus;
367 int err;
369 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
371 new_bus = mdiobus_alloc_size(sizeof(*priv));
372 if (!new_bus)
373 return -ENOMEM;
375 priv = new_bus->priv;
376 new_bus->name = "Freescale PowerQUICC MII Bus",
377 new_bus->read = &fsl_pq_mdio_read;
378 new_bus->write = &fsl_pq_mdio_write;
379 new_bus->reset = &fsl_pq_mdio_reset;
380 new_bus->irq = priv->irqs;
382 err = of_address_to_resource(np, 0, &res);
383 if (err < 0) {
384 dev_err(&pdev->dev, "could not obtain address information\n");
385 goto error;
388 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
389 (unsigned long long)res.start);
391 priv->map = of_iomap(np, 0);
392 if (!priv->map) {
393 err = -ENOMEM;
394 goto error;
398 * Some device tree nodes represent only the MII registers, and
399 * others represent the MAC and MII registers. The 'mii_offset' field
400 * contains the offset of the MII registers inside the mapped register
401 * space.
403 if (data->mii_offset > resource_size(&res)) {
404 dev_err(&pdev->dev, "invalid register map\n");
405 err = -EINVAL;
406 goto error;
408 priv->regs = priv->map + data->mii_offset;
410 new_bus->parent = &pdev->dev;
411 platform_set_drvdata(pdev, new_bus);
413 if (data->get_tbipa) {
414 for_each_child_of_node(np, tbi) {
415 if (strcmp(tbi->type, "tbi-phy") == 0) {
416 dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
417 strrchr(tbi->full_name, '/') + 1);
418 break;
422 if (tbi) {
423 const u32 *prop = of_get_property(tbi, "reg", NULL);
424 uint32_t __iomem *tbipa;
426 if (!prop) {
427 dev_err(&pdev->dev,
428 "missing 'reg' property in node %s\n",
429 tbi->full_name);
430 err = -EBUSY;
431 goto error;
434 tbipa = data->get_tbipa(priv->map);
436 out_be32(tbipa, be32_to_cpup(prop));
440 if (data->ucc_configure)
441 data->ucc_configure(res.start, res.end);
443 err = of_mdiobus_register(new_bus, np);
444 if (err) {
445 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
446 new_bus->name);
447 goto error;
450 return 0;
452 error:
453 if (priv->map)
454 iounmap(priv->map);
456 kfree(new_bus);
458 return err;
462 static int fsl_pq_mdio_remove(struct platform_device *pdev)
464 struct device *device = &pdev->dev;
465 struct mii_bus *bus = dev_get_drvdata(device);
466 struct fsl_pq_mdio_priv *priv = bus->priv;
468 mdiobus_unregister(bus);
470 iounmap(priv->map);
471 mdiobus_free(bus);
473 return 0;
476 static struct platform_driver fsl_pq_mdio_driver = {
477 .driver = {
478 .name = "fsl-pq_mdio",
479 .owner = THIS_MODULE,
480 .of_match_table = fsl_pq_mdio_match,
482 .probe = fsl_pq_mdio_probe,
483 .remove = fsl_pq_mdio_remove,
486 module_platform_driver(fsl_pq_mdio_driver);
488 MODULE_LICENSE("GPL");