PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / gianfar.c
blobad5a5aadc7e15901a3722ac673f36a25a3a99884
1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/mpc85xx.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
104 #include "gianfar.h"
106 #define TX_TIMEOUT (1*HZ)
108 const char gfar_driver_version[] = "1.3";
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 static int gfar_poll_sq(struct napi_struct *napi, int budget);
134 #ifdef CONFIG_NET_POLL_CONTROLLER
135 static void gfar_netpoll(struct net_device *dev);
136 #endif
137 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
138 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
139 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
140 int amount_pull, struct napi_struct *napi);
141 void gfar_halt(struct net_device *dev);
142 static void gfar_halt_nodisable(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 dma_addr_t buf)
156 u32 lstatus;
158 bdp->bufPtr = buf;
160 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 lstatus |= BD_LFLAG(RXBD_WRAP);
164 eieio();
166 bdp->lstatus = lstatus;
169 static int gfar_init_bds(struct net_device *ndev)
171 struct gfar_private *priv = netdev_priv(ndev);
172 struct gfar_priv_tx_q *tx_queue = NULL;
173 struct gfar_priv_rx_q *rx_queue = NULL;
174 struct txbd8 *txbdp;
175 struct rxbd8 *rxbdp;
176 int i, j;
178 for (i = 0; i < priv->num_tx_queues; i++) {
179 tx_queue = priv->tx_queue[i];
180 /* Initialize some variables in our dev structure */
181 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182 tx_queue->dirty_tx = tx_queue->tx_bd_base;
183 tx_queue->cur_tx = tx_queue->tx_bd_base;
184 tx_queue->skb_curtx = 0;
185 tx_queue->skb_dirtytx = 0;
187 /* Initialize Transmit Descriptor Ring */
188 txbdp = tx_queue->tx_bd_base;
189 for (j = 0; j < tx_queue->tx_ring_size; j++) {
190 txbdp->lstatus = 0;
191 txbdp->bufPtr = 0;
192 txbdp++;
195 /* Set the last descriptor in the ring to indicate wrap */
196 txbdp--;
197 txbdp->status |= TXBD_WRAP;
200 for (i = 0; i < priv->num_rx_queues; i++) {
201 rx_queue = priv->rx_queue[i];
202 rx_queue->cur_rx = rx_queue->rx_bd_base;
203 rx_queue->skb_currx = 0;
204 rxbdp = rx_queue->rx_bd_base;
206 for (j = 0; j < rx_queue->rx_ring_size; j++) {
207 struct sk_buff *skb = rx_queue->rx_skbuff[j];
209 if (skb) {
210 gfar_init_rxbdp(rx_queue, rxbdp,
211 rxbdp->bufPtr);
212 } else {
213 skb = gfar_new_skb(ndev);
214 if (!skb) {
215 netdev_err(ndev, "Can't allocate RX buffers\n");
216 return -ENOMEM;
218 rx_queue->rx_skbuff[j] = skb;
220 gfar_new_rxbdp(rx_queue, rxbdp, skb);
223 rxbdp++;
228 return 0;
231 static int gfar_alloc_skb_resources(struct net_device *ndev)
233 void *vaddr;
234 dma_addr_t addr;
235 int i, j, k;
236 struct gfar_private *priv = netdev_priv(ndev);
237 struct device *dev = priv->dev;
238 struct gfar_priv_tx_q *tx_queue = NULL;
239 struct gfar_priv_rx_q *rx_queue = NULL;
241 priv->total_tx_ring_size = 0;
242 for (i = 0; i < priv->num_tx_queues; i++)
243 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
245 priv->total_rx_ring_size = 0;
246 for (i = 0; i < priv->num_rx_queues; i++)
247 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
249 /* Allocate memory for the buffer descriptors */
250 vaddr = dma_alloc_coherent(dev,
251 (priv->total_tx_ring_size *
252 sizeof(struct txbd8)) +
253 (priv->total_rx_ring_size *
254 sizeof(struct rxbd8)),
255 &addr, GFP_KERNEL);
256 if (!vaddr)
257 return -ENOMEM;
259 for (i = 0; i < priv->num_tx_queues; i++) {
260 tx_queue = priv->tx_queue[i];
261 tx_queue->tx_bd_base = vaddr;
262 tx_queue->tx_bd_dma_base = addr;
263 tx_queue->dev = ndev;
264 /* enet DMA only understands physical addresses */
265 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269 /* Start the rx descriptor ring where the tx ring leaves off */
270 for (i = 0; i < priv->num_rx_queues; i++) {
271 rx_queue = priv->rx_queue[i];
272 rx_queue->rx_bd_base = vaddr;
273 rx_queue->rx_bd_dma_base = addr;
274 rx_queue->dev = ndev;
275 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279 /* Setup the skbuff rings */
280 for (i = 0; i < priv->num_tx_queues; i++) {
281 tx_queue = priv->tx_queue[i];
282 tx_queue->tx_skbuff =
283 kmalloc_array(tx_queue->tx_ring_size,
284 sizeof(*tx_queue->tx_skbuff),
285 GFP_KERNEL);
286 if (!tx_queue->tx_skbuff)
287 goto cleanup;
289 for (k = 0; k < tx_queue->tx_ring_size; k++)
290 tx_queue->tx_skbuff[k] = NULL;
293 for (i = 0; i < priv->num_rx_queues; i++) {
294 rx_queue = priv->rx_queue[i];
295 rx_queue->rx_skbuff =
296 kmalloc_array(rx_queue->rx_ring_size,
297 sizeof(*rx_queue->rx_skbuff),
298 GFP_KERNEL);
299 if (!rx_queue->rx_skbuff)
300 goto cleanup;
302 for (j = 0; j < rx_queue->rx_ring_size; j++)
303 rx_queue->rx_skbuff[j] = NULL;
306 if (gfar_init_bds(ndev))
307 goto cleanup;
309 return 0;
311 cleanup:
312 free_skb_resources(priv);
313 return -ENOMEM;
316 static void gfar_init_tx_rx_base(struct gfar_private *priv)
318 struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 u32 __iomem *baddr;
320 int i;
322 baddr = &regs->tbase0;
323 for (i = 0; i < priv->num_tx_queues; i++) {
324 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
325 baddr += 2;
328 baddr = &regs->rbase0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
331 baddr += 2;
335 static void gfar_init_mac(struct net_device *ndev)
337 struct gfar_private *priv = netdev_priv(ndev);
338 struct gfar __iomem *regs = priv->gfargrp[0].regs;
339 u32 rctrl = 0;
340 u32 tctrl = 0;
341 u32 attrs = 0;
343 /* write the tx/rx base registers */
344 gfar_init_tx_rx_base(priv);
346 /* Configure the coalescing support */
347 gfar_configure_coalescing_all(priv);
349 /* set this when rx hw offload (TOE) functions are being used */
350 priv->uses_rxfcb = 0;
352 if (priv->rx_filer_enable) {
353 rctrl |= RCTRL_FILREN;
354 /* Program the RIR0 reg with the required distribution */
355 gfar_write(&regs->rir0, DEFAULT_RIR0);
358 /* Restore PROMISC mode */
359 if (ndev->flags & IFF_PROMISC)
360 rctrl |= RCTRL_PROM;
362 if (ndev->features & NETIF_F_RXCSUM) {
363 rctrl |= RCTRL_CHECKSUMMING;
364 priv->uses_rxfcb = 1;
367 if (priv->extended_hash) {
368 rctrl |= RCTRL_EXTHASH;
370 gfar_clear_exact_match(ndev);
371 rctrl |= RCTRL_EMEN;
374 if (priv->padding) {
375 rctrl &= ~RCTRL_PAL_MASK;
376 rctrl |= RCTRL_PADDING(priv->padding);
379 /* Insert receive time stamps into padding alignment bytes */
380 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
381 rctrl &= ~RCTRL_PAL_MASK;
382 rctrl |= RCTRL_PADDING(8);
383 priv->padding = 8;
386 /* Enable HW time stamping if requested from user space */
387 if (priv->hwts_rx_en) {
388 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
389 priv->uses_rxfcb = 1;
392 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
393 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394 priv->uses_rxfcb = 1;
397 /* Init rctrl based on our settings */
398 gfar_write(&regs->rctrl, rctrl);
400 if (ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
411 gfar_write(&regs->tctrl, tctrl);
413 /* Set the extraction length and index */
414 attrs = ATTRELI_EL(priv->rx_stash_size) |
415 ATTRELI_EI(priv->rx_stash_index);
417 gfar_write(&regs->attreli, attrs);
419 /* Start with defaults, and add stashing or locking
420 * depending on the approprate variables
422 attrs = ATTR_INIT_SETTINGS;
424 if (priv->bd_stash_en)
425 attrs |= ATTR_BDSTASH;
427 if (priv->rx_stash_size != 0)
428 attrs |= ATTR_BUFSTASH;
430 gfar_write(&regs->attr, attrs);
432 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
433 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
434 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
437 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
439 struct gfar_private *priv = netdev_priv(dev);
440 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
441 unsigned long tx_packets = 0, tx_bytes = 0;
442 int i;
444 for (i = 0; i < priv->num_rx_queues; i++) {
445 rx_packets += priv->rx_queue[i]->stats.rx_packets;
446 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
447 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
450 dev->stats.rx_packets = rx_packets;
451 dev->stats.rx_bytes = rx_bytes;
452 dev->stats.rx_dropped = rx_dropped;
454 for (i = 0; i < priv->num_tx_queues; i++) {
455 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
456 tx_packets += priv->tx_queue[i]->stats.tx_packets;
459 dev->stats.tx_bytes = tx_bytes;
460 dev->stats.tx_packets = tx_packets;
462 return &dev->stats;
465 static const struct net_device_ops gfar_netdev_ops = {
466 .ndo_open = gfar_enet_open,
467 .ndo_start_xmit = gfar_start_xmit,
468 .ndo_stop = gfar_close,
469 .ndo_change_mtu = gfar_change_mtu,
470 .ndo_set_features = gfar_set_features,
471 .ndo_set_rx_mode = gfar_set_multi,
472 .ndo_tx_timeout = gfar_timeout,
473 .ndo_do_ioctl = gfar_ioctl,
474 .ndo_get_stats = gfar_get_stats,
475 .ndo_set_mac_address = eth_mac_addr,
476 .ndo_validate_addr = eth_validate_addr,
477 #ifdef CONFIG_NET_POLL_CONTROLLER
478 .ndo_poll_controller = gfar_netpoll,
479 #endif
482 void lock_rx_qs(struct gfar_private *priv)
484 int i;
486 for (i = 0; i < priv->num_rx_queues; i++)
487 spin_lock(&priv->rx_queue[i]->rxlock);
490 void lock_tx_qs(struct gfar_private *priv)
492 int i;
494 for (i = 0; i < priv->num_tx_queues; i++)
495 spin_lock(&priv->tx_queue[i]->txlock);
498 void unlock_rx_qs(struct gfar_private *priv)
500 int i;
502 for (i = 0; i < priv->num_rx_queues; i++)
503 spin_unlock(&priv->rx_queue[i]->rxlock);
506 void unlock_tx_qs(struct gfar_private *priv)
508 int i;
510 for (i = 0; i < priv->num_tx_queues; i++)
511 spin_unlock(&priv->tx_queue[i]->txlock);
514 static void free_tx_pointers(struct gfar_private *priv)
516 int i;
518 for (i = 0; i < priv->num_tx_queues; i++)
519 kfree(priv->tx_queue[i]);
522 static void free_rx_pointers(struct gfar_private *priv)
524 int i;
526 for (i = 0; i < priv->num_rx_queues; i++)
527 kfree(priv->rx_queue[i]);
530 static void unmap_group_regs(struct gfar_private *priv)
532 int i;
534 for (i = 0; i < MAXGROUPS; i++)
535 if (priv->gfargrp[i].regs)
536 iounmap(priv->gfargrp[i].regs);
539 static void free_gfar_dev(struct gfar_private *priv)
541 int i, j;
543 for (i = 0; i < priv->num_grps; i++)
544 for (j = 0; j < GFAR_NUM_IRQS; j++) {
545 kfree(priv->gfargrp[i].irqinfo[j]);
546 priv->gfargrp[i].irqinfo[j] = NULL;
549 free_netdev(priv->ndev);
552 static void disable_napi(struct gfar_private *priv)
554 int i;
556 for (i = 0; i < priv->num_grps; i++)
557 napi_disable(&priv->gfargrp[i].napi);
560 static void enable_napi(struct gfar_private *priv)
562 int i;
564 for (i = 0; i < priv->num_grps; i++)
565 napi_enable(&priv->gfargrp[i].napi);
568 static int gfar_parse_group(struct device_node *np,
569 struct gfar_private *priv, const char *model)
571 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
572 u32 *queue_mask;
573 int i;
575 for (i = 0; i < GFAR_NUM_IRQS; i++) {
576 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
577 GFP_KERNEL);
578 if (!grp->irqinfo[i])
579 return -ENOMEM;
582 grp->regs = of_iomap(np, 0);
583 if (!grp->regs)
584 return -ENOMEM;
586 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
588 /* If we aren't the FEC we have multiple interrupts */
589 if (model && strcasecmp(model, "FEC")) {
590 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
591 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
592 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
593 gfar_irq(grp, RX)->irq == NO_IRQ ||
594 gfar_irq(grp, ER)->irq == NO_IRQ)
595 return -EINVAL;
598 grp->priv = priv;
599 spin_lock_init(&grp->grplock);
600 if (priv->mode == MQ_MG_MODE) {
601 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
602 grp->rx_bit_map = queue_mask ?
603 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
604 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
605 grp->tx_bit_map = queue_mask ?
606 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
607 } else {
608 grp->rx_bit_map = 0xFF;
609 grp->tx_bit_map = 0xFF;
611 priv->num_grps++;
613 return 0;
616 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
618 const char *model;
619 const char *ctype;
620 const void *mac_addr;
621 int err = 0, i;
622 struct net_device *dev = NULL;
623 struct gfar_private *priv = NULL;
624 struct device_node *np = ofdev->dev.of_node;
625 struct device_node *child = NULL;
626 const u32 *stash;
627 const u32 *stash_len;
628 const u32 *stash_idx;
629 unsigned int num_tx_qs, num_rx_qs;
630 u32 *tx_queues, *rx_queues;
632 if (!np || !of_device_is_available(np))
633 return -ENODEV;
635 /* parse the num of tx and rx queues */
636 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
637 num_tx_qs = tx_queues ? *tx_queues : 1;
639 if (num_tx_qs > MAX_TX_QS) {
640 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
641 num_tx_qs, MAX_TX_QS);
642 pr_err("Cannot do alloc_etherdev, aborting\n");
643 return -EINVAL;
646 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
647 num_rx_qs = rx_queues ? *rx_queues : 1;
649 if (num_rx_qs > MAX_RX_QS) {
650 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
651 num_rx_qs, MAX_RX_QS);
652 pr_err("Cannot do alloc_etherdev, aborting\n");
653 return -EINVAL;
656 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
657 dev = *pdev;
658 if (NULL == dev)
659 return -ENOMEM;
661 priv = netdev_priv(dev);
662 priv->ndev = dev;
664 priv->num_tx_queues = num_tx_qs;
665 netif_set_real_num_rx_queues(dev, num_rx_qs);
666 priv->num_rx_queues = num_rx_qs;
667 priv->num_grps = 0x0;
669 /* Init Rx queue filer rule set linked list */
670 INIT_LIST_HEAD(&priv->rx_list.list);
671 priv->rx_list.count = 0;
672 mutex_init(&priv->rx_queue_access);
674 model = of_get_property(np, "model", NULL);
676 for (i = 0; i < MAXGROUPS; i++)
677 priv->gfargrp[i].regs = NULL;
679 /* Parse and initialize group specific information */
680 if (of_device_is_compatible(np, "fsl,etsec2")) {
681 priv->mode = MQ_MG_MODE;
682 for_each_child_of_node(np, child) {
683 err = gfar_parse_group(child, priv, model);
684 if (err)
685 goto err_grp_init;
687 } else {
688 priv->mode = SQ_SG_MODE;
689 err = gfar_parse_group(np, priv, model);
690 if (err)
691 goto err_grp_init;
694 for (i = 0; i < priv->num_tx_queues; i++)
695 priv->tx_queue[i] = NULL;
696 for (i = 0; i < priv->num_rx_queues; i++)
697 priv->rx_queue[i] = NULL;
699 for (i = 0; i < priv->num_tx_queues; i++) {
700 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
701 GFP_KERNEL);
702 if (!priv->tx_queue[i]) {
703 err = -ENOMEM;
704 goto tx_alloc_failed;
706 priv->tx_queue[i]->tx_skbuff = NULL;
707 priv->tx_queue[i]->qindex = i;
708 priv->tx_queue[i]->dev = dev;
709 spin_lock_init(&(priv->tx_queue[i]->txlock));
712 for (i = 0; i < priv->num_rx_queues; i++) {
713 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
714 GFP_KERNEL);
715 if (!priv->rx_queue[i]) {
716 err = -ENOMEM;
717 goto rx_alloc_failed;
719 priv->rx_queue[i]->rx_skbuff = NULL;
720 priv->rx_queue[i]->qindex = i;
721 priv->rx_queue[i]->dev = dev;
722 spin_lock_init(&(priv->rx_queue[i]->rxlock));
726 stash = of_get_property(np, "bd-stash", NULL);
728 if (stash) {
729 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
730 priv->bd_stash_en = 1;
733 stash_len = of_get_property(np, "rx-stash-len", NULL);
735 if (stash_len)
736 priv->rx_stash_size = *stash_len;
738 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
740 if (stash_idx)
741 priv->rx_stash_index = *stash_idx;
743 if (stash_len || stash_idx)
744 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
746 mac_addr = of_get_mac_address(np);
748 if (mac_addr)
749 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
751 if (model && !strcasecmp(model, "TSEC"))
752 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
753 FSL_GIANFAR_DEV_HAS_COALESCE |
754 FSL_GIANFAR_DEV_HAS_RMON |
755 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
757 if (model && !strcasecmp(model, "eTSEC"))
758 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
759 FSL_GIANFAR_DEV_HAS_COALESCE |
760 FSL_GIANFAR_DEV_HAS_RMON |
761 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
762 FSL_GIANFAR_DEV_HAS_PADDING |
763 FSL_GIANFAR_DEV_HAS_CSUM |
764 FSL_GIANFAR_DEV_HAS_VLAN |
765 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
766 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
767 FSL_GIANFAR_DEV_HAS_TIMER;
769 ctype = of_get_property(np, "phy-connection-type", NULL);
771 /* We only care about rgmii-id. The rest are autodetected */
772 if (ctype && !strcmp(ctype, "rgmii-id"))
773 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
774 else
775 priv->interface = PHY_INTERFACE_MODE_MII;
777 if (of_get_property(np, "fsl,magic-packet", NULL))
778 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
780 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
782 /* Find the TBI PHY. If it's not there, we don't support SGMII */
783 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
785 return 0;
787 rx_alloc_failed:
788 free_rx_pointers(priv);
789 tx_alloc_failed:
790 free_tx_pointers(priv);
791 err_grp_init:
792 unmap_group_regs(priv);
793 free_gfar_dev(priv);
794 return err;
797 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
799 struct hwtstamp_config config;
800 struct gfar_private *priv = netdev_priv(netdev);
802 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
803 return -EFAULT;
805 /* reserved for future extensions */
806 if (config.flags)
807 return -EINVAL;
809 switch (config.tx_type) {
810 case HWTSTAMP_TX_OFF:
811 priv->hwts_tx_en = 0;
812 break;
813 case HWTSTAMP_TX_ON:
814 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
815 return -ERANGE;
816 priv->hwts_tx_en = 1;
817 break;
818 default:
819 return -ERANGE;
822 switch (config.rx_filter) {
823 case HWTSTAMP_FILTER_NONE:
824 if (priv->hwts_rx_en) {
825 stop_gfar(netdev);
826 priv->hwts_rx_en = 0;
827 startup_gfar(netdev);
829 break;
830 default:
831 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
832 return -ERANGE;
833 if (!priv->hwts_rx_en) {
834 stop_gfar(netdev);
835 priv->hwts_rx_en = 1;
836 startup_gfar(netdev);
838 config.rx_filter = HWTSTAMP_FILTER_ALL;
839 break;
842 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
843 -EFAULT : 0;
846 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
848 struct hwtstamp_config config;
849 struct gfar_private *priv = netdev_priv(netdev);
851 config.flags = 0;
852 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
853 config.rx_filter = (priv->hwts_rx_en ?
854 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
856 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
857 -EFAULT : 0;
860 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
862 struct gfar_private *priv = netdev_priv(dev);
864 if (!netif_running(dev))
865 return -EINVAL;
867 if (cmd == SIOCSHWTSTAMP)
868 return gfar_hwtstamp_set(dev, rq);
869 if (cmd == SIOCGHWTSTAMP)
870 return gfar_hwtstamp_get(dev, rq);
872 if (!priv->phydev)
873 return -ENODEV;
875 return phy_mii_ioctl(priv->phydev, rq, cmd);
878 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
880 unsigned int new_bit_map = 0x0;
881 int mask = 0x1 << (max_qs - 1), i;
883 for (i = 0; i < max_qs; i++) {
884 if (bit_map & mask)
885 new_bit_map = new_bit_map + (1 << i);
886 mask = mask >> 0x1;
888 return new_bit_map;
891 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
892 u32 class)
894 u32 rqfpr = FPR_FILER_MASK;
895 u32 rqfcr = 0x0;
897 rqfar--;
898 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
899 priv->ftp_rqfpr[rqfar] = rqfpr;
900 priv->ftp_rqfcr[rqfar] = rqfcr;
901 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
903 rqfar--;
904 rqfcr = RQFCR_CMP_NOMATCH;
905 priv->ftp_rqfpr[rqfar] = rqfpr;
906 priv->ftp_rqfcr[rqfar] = rqfcr;
907 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909 rqfar--;
910 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
911 rqfpr = class;
912 priv->ftp_rqfcr[rqfar] = rqfcr;
913 priv->ftp_rqfpr[rqfar] = rqfpr;
914 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
916 rqfar--;
917 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
918 rqfpr = class;
919 priv->ftp_rqfcr[rqfar] = rqfcr;
920 priv->ftp_rqfpr[rqfar] = rqfpr;
921 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
923 return rqfar;
926 static void gfar_init_filer_table(struct gfar_private *priv)
928 int i = 0x0;
929 u32 rqfar = MAX_FILER_IDX;
930 u32 rqfcr = 0x0;
931 u32 rqfpr = FPR_FILER_MASK;
933 /* Default rule */
934 rqfcr = RQFCR_CMP_MATCH;
935 priv->ftp_rqfcr[rqfar] = rqfcr;
936 priv->ftp_rqfpr[rqfar] = rqfpr;
937 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
939 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
940 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
941 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
942 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
943 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
944 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
946 /* cur_filer_idx indicated the first non-masked rule */
947 priv->cur_filer_idx = rqfar;
949 /* Rest are masked rules */
950 rqfcr = RQFCR_CMP_NOMATCH;
951 for (i = 0; i < rqfar; i++) {
952 priv->ftp_rqfcr[i] = rqfcr;
953 priv->ftp_rqfpr[i] = rqfpr;
954 gfar_write_filer(priv, i, rqfcr, rqfpr);
958 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
960 unsigned int pvr = mfspr(SPRN_PVR);
961 unsigned int svr = mfspr(SPRN_SVR);
962 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
963 unsigned int rev = svr & 0xffff;
965 /* MPC8313 Rev 2.0 and higher; All MPC837x */
966 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
967 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
968 priv->errata |= GFAR_ERRATA_74;
970 /* MPC8313 and MPC837x all rev */
971 if ((pvr == 0x80850010 && mod == 0x80b0) ||
972 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
973 priv->errata |= GFAR_ERRATA_76;
975 /* MPC8313 Rev < 2.0 */
976 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
977 priv->errata |= GFAR_ERRATA_12;
980 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
982 unsigned int svr = mfspr(SPRN_SVR);
984 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
985 priv->errata |= GFAR_ERRATA_12;
986 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
987 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
988 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
991 static void gfar_detect_errata(struct gfar_private *priv)
993 struct device *dev = &priv->ofdev->dev;
995 /* no plans to fix */
996 priv->errata |= GFAR_ERRATA_A002;
998 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
999 __gfar_detect_errata_85xx(priv);
1000 else /* non-mpc85xx parts, i.e. e300 core based */
1001 __gfar_detect_errata_83xx(priv);
1003 if (priv->errata)
1004 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1005 priv->errata);
1008 /* Set up the ethernet device structure, private data,
1009 * and anything else we need before we start
1011 static int gfar_probe(struct platform_device *ofdev)
1013 u32 tempval;
1014 struct net_device *dev = NULL;
1015 struct gfar_private *priv = NULL;
1016 struct gfar __iomem *regs = NULL;
1017 int err = 0, i, grp_idx = 0;
1018 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
1019 u32 isrg = 0;
1020 u32 __iomem *baddr;
1022 err = gfar_of_init(ofdev, &dev);
1024 if (err)
1025 return err;
1027 priv = netdev_priv(dev);
1028 priv->ndev = dev;
1029 priv->ofdev = ofdev;
1030 priv->dev = &ofdev->dev;
1031 SET_NETDEV_DEV(dev, &ofdev->dev);
1033 spin_lock_init(&priv->bflock);
1034 INIT_WORK(&priv->reset_task, gfar_reset_task);
1036 platform_set_drvdata(ofdev, priv);
1037 regs = priv->gfargrp[0].regs;
1039 gfar_detect_errata(priv);
1041 /* Stop the DMA engine now, in case it was running before
1042 * (The firmware could have used it, and left it running).
1044 gfar_halt(dev);
1046 /* Reset MAC layer */
1047 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1049 /* We need to delay at least 3 TX clocks */
1050 udelay(2);
1052 tempval = 0;
1053 if (!priv->pause_aneg_en && priv->tx_pause_en)
1054 tempval |= MACCFG1_TX_FLOW;
1055 if (!priv->pause_aneg_en && priv->rx_pause_en)
1056 tempval |= MACCFG1_RX_FLOW;
1057 /* the soft reset bit is not self-resetting, so we need to
1058 * clear it before resuming normal operation
1060 gfar_write(&regs->maccfg1, tempval);
1062 /* Initialize MACCFG2. */
1063 tempval = MACCFG2_INIT_SETTINGS;
1064 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1065 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1066 gfar_write(&regs->maccfg2, tempval);
1068 /* Initialize ECNTRL */
1069 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1071 /* Set the dev->base_addr to the gfar reg region */
1072 dev->base_addr = (unsigned long) regs;
1074 /* Fill in the dev structure */
1075 dev->watchdog_timeo = TX_TIMEOUT;
1076 dev->mtu = 1500;
1077 dev->netdev_ops = &gfar_netdev_ops;
1078 dev->ethtool_ops = &gfar_ethtool_ops;
1080 /* Register for napi ...We are registering NAPI for each grp */
1081 if (priv->mode == SQ_SG_MODE)
1082 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1083 GFAR_DEV_WEIGHT);
1084 else
1085 for (i = 0; i < priv->num_grps; i++)
1086 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1087 GFAR_DEV_WEIGHT);
1089 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1090 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1091 NETIF_F_RXCSUM;
1092 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1093 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1096 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1097 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1098 NETIF_F_HW_VLAN_CTAG_RX;
1099 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1102 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1103 priv->extended_hash = 1;
1104 priv->hash_width = 9;
1106 priv->hash_regs[0] = &regs->igaddr0;
1107 priv->hash_regs[1] = &regs->igaddr1;
1108 priv->hash_regs[2] = &regs->igaddr2;
1109 priv->hash_regs[3] = &regs->igaddr3;
1110 priv->hash_regs[4] = &regs->igaddr4;
1111 priv->hash_regs[5] = &regs->igaddr5;
1112 priv->hash_regs[6] = &regs->igaddr6;
1113 priv->hash_regs[7] = &regs->igaddr7;
1114 priv->hash_regs[8] = &regs->gaddr0;
1115 priv->hash_regs[9] = &regs->gaddr1;
1116 priv->hash_regs[10] = &regs->gaddr2;
1117 priv->hash_regs[11] = &regs->gaddr3;
1118 priv->hash_regs[12] = &regs->gaddr4;
1119 priv->hash_regs[13] = &regs->gaddr5;
1120 priv->hash_regs[14] = &regs->gaddr6;
1121 priv->hash_regs[15] = &regs->gaddr7;
1123 } else {
1124 priv->extended_hash = 0;
1125 priv->hash_width = 8;
1127 priv->hash_regs[0] = &regs->gaddr0;
1128 priv->hash_regs[1] = &regs->gaddr1;
1129 priv->hash_regs[2] = &regs->gaddr2;
1130 priv->hash_regs[3] = &regs->gaddr3;
1131 priv->hash_regs[4] = &regs->gaddr4;
1132 priv->hash_regs[5] = &regs->gaddr5;
1133 priv->hash_regs[6] = &regs->gaddr6;
1134 priv->hash_regs[7] = &regs->gaddr7;
1137 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1138 priv->padding = DEFAULT_PADDING;
1139 else
1140 priv->padding = 0;
1142 if (dev->features & NETIF_F_IP_CSUM ||
1143 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1144 dev->needed_headroom = GMAC_FCB_LEN;
1146 /* Program the isrg regs only if number of grps > 1 */
1147 if (priv->num_grps > 1) {
1148 baddr = &regs->isrg0;
1149 for (i = 0; i < priv->num_grps; i++) {
1150 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1151 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1152 gfar_write(baddr, isrg);
1153 baddr++;
1154 isrg = 0x0;
1158 /* Need to reverse the bit maps as bit_map's MSB is q0
1159 * but, for_each_set_bit parses from right to left, which
1160 * basically reverses the queue numbers
1162 for (i = 0; i< priv->num_grps; i++) {
1163 priv->gfargrp[i].tx_bit_map =
1164 reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1165 priv->gfargrp[i].rx_bit_map =
1166 reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1169 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1170 * also assign queues to groups
1172 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1173 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1175 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1176 priv->num_rx_queues) {
1177 priv->gfargrp[grp_idx].num_rx_queues++;
1178 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1179 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1180 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1182 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1184 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1185 priv->num_tx_queues) {
1186 priv->gfargrp[grp_idx].num_tx_queues++;
1187 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1188 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1189 tqueue = tqueue | (TQUEUE_EN0 >> i);
1191 priv->gfargrp[grp_idx].rstat = rstat;
1192 priv->gfargrp[grp_idx].tstat = tstat;
1193 rstat = tstat =0;
1196 gfar_write(&regs->rqueue, rqueue);
1197 gfar_write(&regs->tqueue, tqueue);
1199 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1201 /* Initializing some of the rx/tx queue level parameters */
1202 for (i = 0; i < priv->num_tx_queues; i++) {
1203 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1204 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1205 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1206 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1209 for (i = 0; i < priv->num_rx_queues; i++) {
1210 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1211 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1212 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1215 /* always enable rx filer */
1216 priv->rx_filer_enable = 1;
1217 /* Enable most messages by default */
1218 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1219 /* use pritority h/w tx queue scheduling for single queue devices */
1220 if (priv->num_tx_queues == 1)
1221 priv->prio_sched_en = 1;
1223 /* Carrier starts down, phylib will bring it up */
1224 netif_carrier_off(dev);
1226 err = register_netdev(dev);
1228 if (err) {
1229 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1230 goto register_fail;
1233 device_init_wakeup(&dev->dev,
1234 priv->device_flags &
1235 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1237 /* fill out IRQ number and name fields */
1238 for (i = 0; i < priv->num_grps; i++) {
1239 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1240 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1241 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1242 dev->name, "_g", '0' + i, "_tx");
1243 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1244 dev->name, "_g", '0' + i, "_rx");
1245 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1246 dev->name, "_g", '0' + i, "_er");
1247 } else
1248 strcpy(gfar_irq(grp, TX)->name, dev->name);
1251 /* Initialize the filer table */
1252 gfar_init_filer_table(priv);
1254 /* Create all the sysfs files */
1255 gfar_init_sysfs(dev);
1257 /* Print out the device info */
1258 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1260 /* Even more device info helps when determining which kernel
1261 * provided which set of benchmarks.
1263 netdev_info(dev, "Running with NAPI enabled\n");
1264 for (i = 0; i < priv->num_rx_queues; i++)
1265 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1266 i, priv->rx_queue[i]->rx_ring_size);
1267 for (i = 0; i < priv->num_tx_queues; i++)
1268 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1269 i, priv->tx_queue[i]->tx_ring_size);
1271 return 0;
1273 register_fail:
1274 unmap_group_regs(priv);
1275 free_tx_pointers(priv);
1276 free_rx_pointers(priv);
1277 if (priv->phy_node)
1278 of_node_put(priv->phy_node);
1279 if (priv->tbi_node)
1280 of_node_put(priv->tbi_node);
1281 free_gfar_dev(priv);
1282 return err;
1285 static int gfar_remove(struct platform_device *ofdev)
1287 struct gfar_private *priv = platform_get_drvdata(ofdev);
1289 if (priv->phy_node)
1290 of_node_put(priv->phy_node);
1291 if (priv->tbi_node)
1292 of_node_put(priv->tbi_node);
1294 unregister_netdev(priv->ndev);
1295 unmap_group_regs(priv);
1296 free_gfar_dev(priv);
1298 return 0;
1301 #ifdef CONFIG_PM
1303 static int gfar_suspend(struct device *dev)
1305 struct gfar_private *priv = dev_get_drvdata(dev);
1306 struct net_device *ndev = priv->ndev;
1307 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1308 unsigned long flags;
1309 u32 tempval;
1311 int magic_packet = priv->wol_en &&
1312 (priv->device_flags &
1313 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1315 netif_device_detach(ndev);
1317 if (netif_running(ndev)) {
1319 local_irq_save(flags);
1320 lock_tx_qs(priv);
1321 lock_rx_qs(priv);
1323 gfar_halt_nodisable(ndev);
1325 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1326 tempval = gfar_read(&regs->maccfg1);
1328 tempval &= ~MACCFG1_TX_EN;
1330 if (!magic_packet)
1331 tempval &= ~MACCFG1_RX_EN;
1333 gfar_write(&regs->maccfg1, tempval);
1335 unlock_rx_qs(priv);
1336 unlock_tx_qs(priv);
1337 local_irq_restore(flags);
1339 disable_napi(priv);
1341 if (magic_packet) {
1342 /* Enable interrupt on Magic Packet */
1343 gfar_write(&regs->imask, IMASK_MAG);
1345 /* Enable Magic Packet mode */
1346 tempval = gfar_read(&regs->maccfg2);
1347 tempval |= MACCFG2_MPEN;
1348 gfar_write(&regs->maccfg2, tempval);
1349 } else {
1350 phy_stop(priv->phydev);
1354 return 0;
1357 static int gfar_resume(struct device *dev)
1359 struct gfar_private *priv = dev_get_drvdata(dev);
1360 struct net_device *ndev = priv->ndev;
1361 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1362 unsigned long flags;
1363 u32 tempval;
1364 int magic_packet = priv->wol_en &&
1365 (priv->device_flags &
1366 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1368 if (!netif_running(ndev)) {
1369 netif_device_attach(ndev);
1370 return 0;
1373 if (!magic_packet && priv->phydev)
1374 phy_start(priv->phydev);
1376 /* Disable Magic Packet mode, in case something
1377 * else woke us up.
1379 local_irq_save(flags);
1380 lock_tx_qs(priv);
1381 lock_rx_qs(priv);
1383 tempval = gfar_read(&regs->maccfg2);
1384 tempval &= ~MACCFG2_MPEN;
1385 gfar_write(&regs->maccfg2, tempval);
1387 gfar_start(ndev);
1389 unlock_rx_qs(priv);
1390 unlock_tx_qs(priv);
1391 local_irq_restore(flags);
1393 netif_device_attach(ndev);
1395 enable_napi(priv);
1397 return 0;
1400 static int gfar_restore(struct device *dev)
1402 struct gfar_private *priv = dev_get_drvdata(dev);
1403 struct net_device *ndev = priv->ndev;
1405 if (!netif_running(ndev)) {
1406 netif_device_attach(ndev);
1408 return 0;
1411 if (gfar_init_bds(ndev)) {
1412 free_skb_resources(priv);
1413 return -ENOMEM;
1416 init_registers(ndev);
1417 gfar_set_mac_address(ndev);
1418 gfar_init_mac(ndev);
1419 gfar_start(ndev);
1421 priv->oldlink = 0;
1422 priv->oldspeed = 0;
1423 priv->oldduplex = -1;
1425 if (priv->phydev)
1426 phy_start(priv->phydev);
1428 netif_device_attach(ndev);
1429 enable_napi(priv);
1431 return 0;
1434 static struct dev_pm_ops gfar_pm_ops = {
1435 .suspend = gfar_suspend,
1436 .resume = gfar_resume,
1437 .freeze = gfar_suspend,
1438 .thaw = gfar_resume,
1439 .restore = gfar_restore,
1442 #define GFAR_PM_OPS (&gfar_pm_ops)
1444 #else
1446 #define GFAR_PM_OPS NULL
1448 #endif
1450 /* Reads the controller's registers to determine what interface
1451 * connects it to the PHY.
1453 static phy_interface_t gfar_get_interface(struct net_device *dev)
1455 struct gfar_private *priv = netdev_priv(dev);
1456 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1457 u32 ecntrl;
1459 ecntrl = gfar_read(&regs->ecntrl);
1461 if (ecntrl & ECNTRL_SGMII_MODE)
1462 return PHY_INTERFACE_MODE_SGMII;
1464 if (ecntrl & ECNTRL_TBI_MODE) {
1465 if (ecntrl & ECNTRL_REDUCED_MODE)
1466 return PHY_INTERFACE_MODE_RTBI;
1467 else
1468 return PHY_INTERFACE_MODE_TBI;
1471 if (ecntrl & ECNTRL_REDUCED_MODE) {
1472 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1473 return PHY_INTERFACE_MODE_RMII;
1475 else {
1476 phy_interface_t interface = priv->interface;
1478 /* This isn't autodetected right now, so it must
1479 * be set by the device tree or platform code.
1481 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1482 return PHY_INTERFACE_MODE_RGMII_ID;
1484 return PHY_INTERFACE_MODE_RGMII;
1488 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1489 return PHY_INTERFACE_MODE_GMII;
1491 return PHY_INTERFACE_MODE_MII;
1495 /* Initializes driver's PHY state, and attaches to the PHY.
1496 * Returns 0 on success.
1498 static int init_phy(struct net_device *dev)
1500 struct gfar_private *priv = netdev_priv(dev);
1501 uint gigabit_support =
1502 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1503 GFAR_SUPPORTED_GBIT : 0;
1504 phy_interface_t interface;
1506 priv->oldlink = 0;
1507 priv->oldspeed = 0;
1508 priv->oldduplex = -1;
1510 interface = gfar_get_interface(dev);
1512 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1513 interface);
1514 if (!priv->phydev)
1515 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1516 interface);
1517 if (!priv->phydev) {
1518 dev_err(&dev->dev, "could not attach to PHY\n");
1519 return -ENODEV;
1522 if (interface == PHY_INTERFACE_MODE_SGMII)
1523 gfar_configure_serdes(dev);
1525 /* Remove any features not supported by the controller */
1526 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1527 priv->phydev->advertising = priv->phydev->supported;
1529 return 0;
1532 /* Initialize TBI PHY interface for communicating with the
1533 * SERDES lynx PHY on the chip. We communicate with this PHY
1534 * through the MDIO bus on each controller, treating it as a
1535 * "normal" PHY at the address found in the TBIPA register. We assume
1536 * that the TBIPA register is valid. Either the MDIO bus code will set
1537 * it to a value that doesn't conflict with other PHYs on the bus, or the
1538 * value doesn't matter, as there are no other PHYs on the bus.
1540 static void gfar_configure_serdes(struct net_device *dev)
1542 struct gfar_private *priv = netdev_priv(dev);
1543 struct phy_device *tbiphy;
1545 if (!priv->tbi_node) {
1546 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1547 "device tree specify a tbi-handle\n");
1548 return;
1551 tbiphy = of_phy_find_device(priv->tbi_node);
1552 if (!tbiphy) {
1553 dev_err(&dev->dev, "error: Could not get TBI device\n");
1554 return;
1557 /* If the link is already up, we must already be ok, and don't need to
1558 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1559 * everything for us? Resetting it takes the link down and requires
1560 * several seconds for it to come back.
1562 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1563 return;
1565 /* Single clk mode, mii mode off(for serdes communication) */
1566 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1568 phy_write(tbiphy, MII_ADVERTISE,
1569 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1570 ADVERTISE_1000XPSE_ASYM);
1572 phy_write(tbiphy, MII_BMCR,
1573 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1574 BMCR_SPEED1000);
1577 static void init_registers(struct net_device *dev)
1579 struct gfar_private *priv = netdev_priv(dev);
1580 struct gfar __iomem *regs = NULL;
1581 int i;
1583 for (i = 0; i < priv->num_grps; i++) {
1584 regs = priv->gfargrp[i].regs;
1585 /* Clear IEVENT */
1586 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1588 /* Initialize IMASK */
1589 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1592 regs = priv->gfargrp[0].regs;
1593 /* Init hash registers to zero */
1594 gfar_write(&regs->igaddr0, 0);
1595 gfar_write(&regs->igaddr1, 0);
1596 gfar_write(&regs->igaddr2, 0);
1597 gfar_write(&regs->igaddr3, 0);
1598 gfar_write(&regs->igaddr4, 0);
1599 gfar_write(&regs->igaddr5, 0);
1600 gfar_write(&regs->igaddr6, 0);
1601 gfar_write(&regs->igaddr7, 0);
1603 gfar_write(&regs->gaddr0, 0);
1604 gfar_write(&regs->gaddr1, 0);
1605 gfar_write(&regs->gaddr2, 0);
1606 gfar_write(&regs->gaddr3, 0);
1607 gfar_write(&regs->gaddr4, 0);
1608 gfar_write(&regs->gaddr5, 0);
1609 gfar_write(&regs->gaddr6, 0);
1610 gfar_write(&regs->gaddr7, 0);
1612 /* Zero out the rmon mib registers if it has them */
1613 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1614 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1616 /* Mask off the CAM interrupts */
1617 gfar_write(&regs->rmon.cam1, 0xffffffff);
1618 gfar_write(&regs->rmon.cam2, 0xffffffff);
1621 /* Initialize the max receive buffer length */
1622 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1624 /* Initialize the Minimum Frame Length Register */
1625 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1628 static int __gfar_is_rx_idle(struct gfar_private *priv)
1630 u32 res;
1632 /* Normaly TSEC should not hang on GRS commands, so we should
1633 * actually wait for IEVENT_GRSC flag.
1635 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1636 return 0;
1638 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1639 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1640 * and the Rx can be safely reset.
1642 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1643 res &= 0x7f807f80;
1644 if ((res & 0xffff) == (res >> 16))
1645 return 1;
1647 return 0;
1650 /* Halt the receive and transmit queues */
1651 static void gfar_halt_nodisable(struct net_device *dev)
1653 struct gfar_private *priv = netdev_priv(dev);
1654 struct gfar __iomem *regs = NULL;
1655 u32 tempval;
1656 int i;
1658 for (i = 0; i < priv->num_grps; i++) {
1659 regs = priv->gfargrp[i].regs;
1660 /* Mask all interrupts */
1661 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1663 /* Clear all interrupts */
1664 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1667 regs = priv->gfargrp[0].regs;
1668 /* Stop the DMA, and wait for it to stop */
1669 tempval = gfar_read(&regs->dmactrl);
1670 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1671 (DMACTRL_GRS | DMACTRL_GTS)) {
1672 int ret;
1674 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1675 gfar_write(&regs->dmactrl, tempval);
1677 do {
1678 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1679 (IEVENT_GRSC | IEVENT_GTSC)) ==
1680 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1681 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1682 ret = __gfar_is_rx_idle(priv);
1683 } while (!ret);
1687 /* Halt the receive and transmit queues */
1688 void gfar_halt(struct net_device *dev)
1690 struct gfar_private *priv = netdev_priv(dev);
1691 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1692 u32 tempval;
1694 gfar_halt_nodisable(dev);
1696 /* Disable Rx and Tx */
1697 tempval = gfar_read(&regs->maccfg1);
1698 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1699 gfar_write(&regs->maccfg1, tempval);
1702 static void free_grp_irqs(struct gfar_priv_grp *grp)
1704 free_irq(gfar_irq(grp, TX)->irq, grp);
1705 free_irq(gfar_irq(grp, RX)->irq, grp);
1706 free_irq(gfar_irq(grp, ER)->irq, grp);
1709 void stop_gfar(struct net_device *dev)
1711 struct gfar_private *priv = netdev_priv(dev);
1712 unsigned long flags;
1713 int i;
1715 phy_stop(priv->phydev);
1718 /* Lock it down */
1719 local_irq_save(flags);
1720 lock_tx_qs(priv);
1721 lock_rx_qs(priv);
1723 gfar_halt(dev);
1725 unlock_rx_qs(priv);
1726 unlock_tx_qs(priv);
1727 local_irq_restore(flags);
1729 /* Free the IRQs */
1730 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1731 for (i = 0; i < priv->num_grps; i++)
1732 free_grp_irqs(&priv->gfargrp[i]);
1733 } else {
1734 for (i = 0; i < priv->num_grps; i++)
1735 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1736 &priv->gfargrp[i]);
1739 free_skb_resources(priv);
1742 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1744 struct txbd8 *txbdp;
1745 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1746 int i, j;
1748 txbdp = tx_queue->tx_bd_base;
1750 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1751 if (!tx_queue->tx_skbuff[i])
1752 continue;
1754 dma_unmap_single(priv->dev, txbdp->bufPtr,
1755 txbdp->length, DMA_TO_DEVICE);
1756 txbdp->lstatus = 0;
1757 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1758 j++) {
1759 txbdp++;
1760 dma_unmap_page(priv->dev, txbdp->bufPtr,
1761 txbdp->length, DMA_TO_DEVICE);
1763 txbdp++;
1764 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1765 tx_queue->tx_skbuff[i] = NULL;
1767 kfree(tx_queue->tx_skbuff);
1768 tx_queue->tx_skbuff = NULL;
1771 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1773 struct rxbd8 *rxbdp;
1774 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1775 int i;
1777 rxbdp = rx_queue->rx_bd_base;
1779 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1780 if (rx_queue->rx_skbuff[i]) {
1781 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1782 priv->rx_buffer_size,
1783 DMA_FROM_DEVICE);
1784 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1785 rx_queue->rx_skbuff[i] = NULL;
1787 rxbdp->lstatus = 0;
1788 rxbdp->bufPtr = 0;
1789 rxbdp++;
1791 kfree(rx_queue->rx_skbuff);
1792 rx_queue->rx_skbuff = NULL;
1795 /* If there are any tx skbs or rx skbs still around, free them.
1796 * Then free tx_skbuff and rx_skbuff
1798 static void free_skb_resources(struct gfar_private *priv)
1800 struct gfar_priv_tx_q *tx_queue = NULL;
1801 struct gfar_priv_rx_q *rx_queue = NULL;
1802 int i;
1804 /* Go through all the buffer descriptors and free their data buffers */
1805 for (i = 0; i < priv->num_tx_queues; i++) {
1806 struct netdev_queue *txq;
1808 tx_queue = priv->tx_queue[i];
1809 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1810 if (tx_queue->tx_skbuff)
1811 free_skb_tx_queue(tx_queue);
1812 netdev_tx_reset_queue(txq);
1815 for (i = 0; i < priv->num_rx_queues; i++) {
1816 rx_queue = priv->rx_queue[i];
1817 if (rx_queue->rx_skbuff)
1818 free_skb_rx_queue(rx_queue);
1821 dma_free_coherent(priv->dev,
1822 sizeof(struct txbd8) * priv->total_tx_ring_size +
1823 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1824 priv->tx_queue[0]->tx_bd_base,
1825 priv->tx_queue[0]->tx_bd_dma_base);
1828 void gfar_start(struct net_device *dev)
1830 struct gfar_private *priv = netdev_priv(dev);
1831 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1832 u32 tempval;
1833 int i = 0;
1835 /* Enable Rx and Tx in MACCFG1 */
1836 tempval = gfar_read(&regs->maccfg1);
1837 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1838 gfar_write(&regs->maccfg1, tempval);
1840 /* Initialize DMACTRL to have WWR and WOP */
1841 tempval = gfar_read(&regs->dmactrl);
1842 tempval |= DMACTRL_INIT_SETTINGS;
1843 gfar_write(&regs->dmactrl, tempval);
1845 /* Make sure we aren't stopped */
1846 tempval = gfar_read(&regs->dmactrl);
1847 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1848 gfar_write(&regs->dmactrl, tempval);
1850 for (i = 0; i < priv->num_grps; i++) {
1851 regs = priv->gfargrp[i].regs;
1852 /* Clear THLT/RHLT, so that the DMA starts polling now */
1853 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1854 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1855 /* Unmask the interrupts we look for */
1856 gfar_write(&regs->imask, IMASK_DEFAULT);
1859 dev->trans_start = jiffies; /* prevent tx timeout */
1862 static void gfar_configure_coalescing(struct gfar_private *priv,
1863 unsigned long tx_mask, unsigned long rx_mask)
1865 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1866 u32 __iomem *baddr;
1868 if (priv->mode == MQ_MG_MODE) {
1869 int i = 0;
1871 baddr = &regs->txic0;
1872 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1873 gfar_write(baddr + i, 0);
1874 if (likely(priv->tx_queue[i]->txcoalescing))
1875 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1878 baddr = &regs->rxic0;
1879 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1880 gfar_write(baddr + i, 0);
1881 if (likely(priv->rx_queue[i]->rxcoalescing))
1882 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1884 } else {
1885 /* Backward compatible case -- even if we enable
1886 * multiple queues, there's only single reg to program
1888 gfar_write(&regs->txic, 0);
1889 if (likely(priv->tx_queue[0]->txcoalescing))
1890 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1892 gfar_write(&regs->rxic, 0);
1893 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1894 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1898 void gfar_configure_coalescing_all(struct gfar_private *priv)
1900 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1903 static int register_grp_irqs(struct gfar_priv_grp *grp)
1905 struct gfar_private *priv = grp->priv;
1906 struct net_device *dev = priv->ndev;
1907 int err;
1909 /* If the device has multiple interrupts, register for
1910 * them. Otherwise, only register for the one
1912 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1913 /* Install our interrupt handlers for Error,
1914 * Transmit, and Receive
1916 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1917 gfar_irq(grp, ER)->name, grp);
1918 if (err < 0) {
1919 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1920 gfar_irq(grp, ER)->irq);
1922 goto err_irq_fail;
1924 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1925 gfar_irq(grp, TX)->name, grp);
1926 if (err < 0) {
1927 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1928 gfar_irq(grp, TX)->irq);
1929 goto tx_irq_fail;
1931 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1932 gfar_irq(grp, RX)->name, grp);
1933 if (err < 0) {
1934 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1935 gfar_irq(grp, RX)->irq);
1936 goto rx_irq_fail;
1938 } else {
1939 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1940 gfar_irq(grp, TX)->name, grp);
1941 if (err < 0) {
1942 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1943 gfar_irq(grp, TX)->irq);
1944 goto err_irq_fail;
1948 return 0;
1950 rx_irq_fail:
1951 free_irq(gfar_irq(grp, TX)->irq, grp);
1952 tx_irq_fail:
1953 free_irq(gfar_irq(grp, ER)->irq, grp);
1954 err_irq_fail:
1955 return err;
1959 /* Bring the controller up and running */
1960 int startup_gfar(struct net_device *ndev)
1962 struct gfar_private *priv = netdev_priv(ndev);
1963 struct gfar __iomem *regs = NULL;
1964 int err, i, j;
1966 for (i = 0; i < priv->num_grps; i++) {
1967 regs= priv->gfargrp[i].regs;
1968 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1971 regs= priv->gfargrp[0].regs;
1972 err = gfar_alloc_skb_resources(ndev);
1973 if (err)
1974 return err;
1976 gfar_init_mac(ndev);
1978 for (i = 0; i < priv->num_grps; i++) {
1979 err = register_grp_irqs(&priv->gfargrp[i]);
1980 if (err) {
1981 for (j = 0; j < i; j++)
1982 free_grp_irqs(&priv->gfargrp[j]);
1983 goto irq_fail;
1987 /* Start the controller */
1988 gfar_start(ndev);
1990 phy_start(priv->phydev);
1992 gfar_configure_coalescing_all(priv);
1994 return 0;
1996 irq_fail:
1997 free_skb_resources(priv);
1998 return err;
2001 /* Called when something needs to use the ethernet device
2002 * Returns 0 for success.
2004 static int gfar_enet_open(struct net_device *dev)
2006 struct gfar_private *priv = netdev_priv(dev);
2007 int err;
2009 enable_napi(priv);
2011 /* Initialize a bunch of registers */
2012 init_registers(dev);
2014 gfar_set_mac_address(dev);
2016 err = init_phy(dev);
2018 if (err) {
2019 disable_napi(priv);
2020 return err;
2023 err = startup_gfar(dev);
2024 if (err) {
2025 disable_napi(priv);
2026 return err;
2029 netif_tx_start_all_queues(dev);
2031 device_set_wakeup_enable(&dev->dev, priv->wol_en);
2033 return err;
2036 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2038 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2040 memset(fcb, 0, GMAC_FCB_LEN);
2042 return fcb;
2045 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2046 int fcb_length)
2048 /* If we're here, it's a IP packet with a TCP or UDP
2049 * payload. We set it to checksum, using a pseudo-header
2050 * we provide
2052 u8 flags = TXFCB_DEFAULT;
2054 /* Tell the controller what the protocol is
2055 * And provide the already calculated phcs
2057 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2058 flags |= TXFCB_UDP;
2059 fcb->phcs = udp_hdr(skb)->check;
2060 } else
2061 fcb->phcs = tcp_hdr(skb)->check;
2063 /* l3os is the distance between the start of the
2064 * frame (skb->data) and the start of the IP hdr.
2065 * l4os is the distance between the start of the
2066 * l3 hdr and the l4 hdr
2068 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2069 fcb->l4os = skb_network_header_len(skb);
2071 fcb->flags = flags;
2074 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2076 fcb->flags |= TXFCB_VLN;
2077 fcb->vlctl = vlan_tx_tag_get(skb);
2080 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2081 struct txbd8 *base, int ring_size)
2083 struct txbd8 *new_bd = bdp + stride;
2085 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2088 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2089 int ring_size)
2091 return skip_txbd(bdp, 1, base, ring_size);
2094 /* eTSEC12: csum generation not supported for some fcb offsets */
2095 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2096 unsigned long fcb_addr)
2098 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2099 (fcb_addr % 0x20) > 0x18);
2102 /* eTSEC76: csum generation for frames larger than 2500 may
2103 * cause excess delays before start of transmission
2105 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2106 unsigned int len)
2108 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2109 (len > 2500));
2112 /* This is called by the kernel when a frame is ready for transmission.
2113 * It is pointed to by the dev->hard_start_xmit function pointer
2115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2117 struct gfar_private *priv = netdev_priv(dev);
2118 struct gfar_priv_tx_q *tx_queue = NULL;
2119 struct netdev_queue *txq;
2120 struct gfar __iomem *regs = NULL;
2121 struct txfcb *fcb = NULL;
2122 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2123 u32 lstatus;
2124 int i, rq = 0;
2125 int do_tstamp, do_csum, do_vlan;
2126 u32 bufaddr;
2127 unsigned long flags;
2128 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2130 rq = skb->queue_mapping;
2131 tx_queue = priv->tx_queue[rq];
2132 txq = netdev_get_tx_queue(dev, rq);
2133 base = tx_queue->tx_bd_base;
2134 regs = tx_queue->grp->regs;
2136 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2137 do_vlan = vlan_tx_tag_present(skb);
2138 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2139 priv->hwts_tx_en;
2141 if (do_csum || do_vlan)
2142 fcb_len = GMAC_FCB_LEN;
2144 /* check if time stamp should be generated */
2145 if (unlikely(do_tstamp))
2146 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2148 /* make space for additional header when fcb is needed */
2149 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2150 struct sk_buff *skb_new;
2152 skb_new = skb_realloc_headroom(skb, fcb_len);
2153 if (!skb_new) {
2154 dev->stats.tx_errors++;
2155 kfree_skb(skb);
2156 return NETDEV_TX_OK;
2159 if (skb->sk)
2160 skb_set_owner_w(skb_new, skb->sk);
2161 consume_skb(skb);
2162 skb = skb_new;
2165 /* total number of fragments in the SKB */
2166 nr_frags = skb_shinfo(skb)->nr_frags;
2168 /* calculate the required number of TxBDs for this skb */
2169 if (unlikely(do_tstamp))
2170 nr_txbds = nr_frags + 2;
2171 else
2172 nr_txbds = nr_frags + 1;
2174 /* check if there is space to queue this packet */
2175 if (nr_txbds > tx_queue->num_txbdfree) {
2176 /* no space, stop the queue */
2177 netif_tx_stop_queue(txq);
2178 dev->stats.tx_fifo_errors++;
2179 return NETDEV_TX_BUSY;
2182 /* Update transmit stats */
2183 bytes_sent = skb->len;
2184 tx_queue->stats.tx_bytes += bytes_sent;
2185 /* keep Tx bytes on wire for BQL accounting */
2186 GFAR_CB(skb)->bytes_sent = bytes_sent;
2187 tx_queue->stats.tx_packets++;
2189 txbdp = txbdp_start = tx_queue->cur_tx;
2190 lstatus = txbdp->lstatus;
2192 /* Time stamp insertion requires one additional TxBD */
2193 if (unlikely(do_tstamp))
2194 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2195 tx_queue->tx_ring_size);
2197 if (nr_frags == 0) {
2198 if (unlikely(do_tstamp))
2199 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2200 TXBD_INTERRUPT);
2201 else
2202 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2203 } else {
2204 /* Place the fragment addresses and lengths into the TxBDs */
2205 for (i = 0; i < nr_frags; i++) {
2206 unsigned int frag_len;
2207 /* Point at the next BD, wrapping as needed */
2208 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2210 frag_len = skb_shinfo(skb)->frags[i].size;
2212 lstatus = txbdp->lstatus | frag_len |
2213 BD_LFLAG(TXBD_READY);
2215 /* Handle the last BD specially */
2216 if (i == nr_frags - 1)
2217 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2219 bufaddr = skb_frag_dma_map(priv->dev,
2220 &skb_shinfo(skb)->frags[i],
2222 frag_len,
2223 DMA_TO_DEVICE);
2225 /* set the TxBD length and buffer pointer */
2226 txbdp->bufPtr = bufaddr;
2227 txbdp->lstatus = lstatus;
2230 lstatus = txbdp_start->lstatus;
2233 /* Add TxPAL between FCB and frame if required */
2234 if (unlikely(do_tstamp)) {
2235 skb_push(skb, GMAC_TXPAL_LEN);
2236 memset(skb->data, 0, GMAC_TXPAL_LEN);
2239 /* Add TxFCB if required */
2240 if (fcb_len) {
2241 fcb = gfar_add_fcb(skb);
2242 lstatus |= BD_LFLAG(TXBD_TOE);
2245 /* Set up checksumming */
2246 if (do_csum) {
2247 gfar_tx_checksum(skb, fcb, fcb_len);
2249 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2250 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2251 __skb_pull(skb, GMAC_FCB_LEN);
2252 skb_checksum_help(skb);
2253 if (do_vlan || do_tstamp) {
2254 /* put back a new fcb for vlan/tstamp TOE */
2255 fcb = gfar_add_fcb(skb);
2256 } else {
2257 /* Tx TOE not used */
2258 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2259 fcb = NULL;
2264 if (do_vlan)
2265 gfar_tx_vlan(skb, fcb);
2267 /* Setup tx hardware time stamping if requested */
2268 if (unlikely(do_tstamp)) {
2269 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2270 fcb->ptp = 1;
2273 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2274 skb_headlen(skb), DMA_TO_DEVICE);
2276 /* If time stamping is requested one additional TxBD must be set up. The
2277 * first TxBD points to the FCB and must have a data length of
2278 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2279 * the full frame length.
2281 if (unlikely(do_tstamp)) {
2282 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2283 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2284 (skb_headlen(skb) - fcb_len);
2285 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2286 } else {
2287 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2290 netdev_tx_sent_queue(txq, bytes_sent);
2292 /* We can work in parallel with gfar_clean_tx_ring(), except
2293 * when modifying num_txbdfree. Note that we didn't grab the lock
2294 * when we were reading the num_txbdfree and checking for available
2295 * space, that's because outside of this function it can only grow,
2296 * and once we've got needed space, it cannot suddenly disappear.
2298 * The lock also protects us from gfar_error(), which can modify
2299 * regs->tstat and thus retrigger the transfers, which is why we
2300 * also must grab the lock before setting ready bit for the first
2301 * to be transmitted BD.
2303 spin_lock_irqsave(&tx_queue->txlock, flags);
2305 /* The powerpc-specific eieio() is used, as wmb() has too strong
2306 * semantics (it requires synchronization between cacheable and
2307 * uncacheable mappings, which eieio doesn't provide and which we
2308 * don't need), thus requiring a more expensive sync instruction. At
2309 * some point, the set of architecture-independent barrier functions
2310 * should be expanded to include weaker barriers.
2312 eieio();
2314 txbdp_start->lstatus = lstatus;
2316 eieio(); /* force lstatus write before tx_skbuff */
2318 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2320 /* Update the current skb pointer to the next entry we will use
2321 * (wrapping if necessary)
2323 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2324 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2326 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2328 /* reduce TxBD free count */
2329 tx_queue->num_txbdfree -= (nr_txbds);
2331 /* If the next BD still needs to be cleaned up, then the bds
2332 * are full. We need to tell the kernel to stop sending us stuff.
2334 if (!tx_queue->num_txbdfree) {
2335 netif_tx_stop_queue(txq);
2337 dev->stats.tx_fifo_errors++;
2340 /* Tell the DMA to go go go */
2341 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2343 /* Unlock priv */
2344 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2346 return NETDEV_TX_OK;
2349 /* Stops the kernel queue, and halts the controller */
2350 static int gfar_close(struct net_device *dev)
2352 struct gfar_private *priv = netdev_priv(dev);
2354 disable_napi(priv);
2356 cancel_work_sync(&priv->reset_task);
2357 stop_gfar(dev);
2359 /* Disconnect from the PHY */
2360 phy_disconnect(priv->phydev);
2361 priv->phydev = NULL;
2363 netif_tx_stop_all_queues(dev);
2365 return 0;
2368 /* Changes the mac address if the controller is not running. */
2369 static int gfar_set_mac_address(struct net_device *dev)
2371 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2373 return 0;
2376 /* Check if rx parser should be activated */
2377 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2379 struct gfar __iomem *regs;
2380 u32 tempval;
2382 regs = priv->gfargrp[0].regs;
2384 tempval = gfar_read(&regs->rctrl);
2385 /* If parse is no longer required, then disable parser */
2386 if (tempval & RCTRL_REQ_PARSER) {
2387 tempval |= RCTRL_PRSDEP_INIT;
2388 priv->uses_rxfcb = 1;
2389 } else {
2390 tempval &= ~RCTRL_PRSDEP_INIT;
2391 priv->uses_rxfcb = 0;
2393 gfar_write(&regs->rctrl, tempval);
2396 /* Enables and disables VLAN insertion/extraction */
2397 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2399 struct gfar_private *priv = netdev_priv(dev);
2400 struct gfar __iomem *regs = NULL;
2401 unsigned long flags;
2402 u32 tempval;
2404 regs = priv->gfargrp[0].regs;
2405 local_irq_save(flags);
2406 lock_rx_qs(priv);
2408 if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2409 /* Enable VLAN tag insertion */
2410 tempval = gfar_read(&regs->tctrl);
2411 tempval |= TCTRL_VLINS;
2412 gfar_write(&regs->tctrl, tempval);
2413 } else {
2414 /* Disable VLAN tag insertion */
2415 tempval = gfar_read(&regs->tctrl);
2416 tempval &= ~TCTRL_VLINS;
2417 gfar_write(&regs->tctrl, tempval);
2420 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2421 /* Enable VLAN tag extraction */
2422 tempval = gfar_read(&regs->rctrl);
2423 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2424 gfar_write(&regs->rctrl, tempval);
2425 priv->uses_rxfcb = 1;
2426 } else {
2427 /* Disable VLAN tag extraction */
2428 tempval = gfar_read(&regs->rctrl);
2429 tempval &= ~RCTRL_VLEX;
2430 gfar_write(&regs->rctrl, tempval);
2432 gfar_check_rx_parser_mode(priv);
2435 gfar_change_mtu(dev, dev->mtu);
2437 unlock_rx_qs(priv);
2438 local_irq_restore(flags);
2441 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2443 int tempsize, tempval;
2444 struct gfar_private *priv = netdev_priv(dev);
2445 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2446 int oldsize = priv->rx_buffer_size;
2447 int frame_size = new_mtu + ETH_HLEN;
2449 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2450 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2451 return -EINVAL;
2454 if (priv->uses_rxfcb)
2455 frame_size += GMAC_FCB_LEN;
2457 frame_size += priv->padding;
2459 tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2460 INCREMENTAL_BUFFER_SIZE;
2462 /* Only stop and start the controller if it isn't already
2463 * stopped, and we changed something
2465 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2466 stop_gfar(dev);
2468 priv->rx_buffer_size = tempsize;
2470 dev->mtu = new_mtu;
2472 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2473 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2475 /* If the mtu is larger than the max size for standard
2476 * ethernet frames (ie, a jumbo frame), then set maccfg2
2477 * to allow huge frames, and to check the length
2479 tempval = gfar_read(&regs->maccfg2);
2481 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2482 gfar_has_errata(priv, GFAR_ERRATA_74))
2483 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2484 else
2485 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2487 gfar_write(&regs->maccfg2, tempval);
2489 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2490 startup_gfar(dev);
2492 return 0;
2495 /* gfar_reset_task gets scheduled when a packet has not been
2496 * transmitted after a set amount of time.
2497 * For now, assume that clearing out all the structures, and
2498 * starting over will fix the problem.
2500 static void gfar_reset_task(struct work_struct *work)
2502 struct gfar_private *priv = container_of(work, struct gfar_private,
2503 reset_task);
2504 struct net_device *dev = priv->ndev;
2506 if (dev->flags & IFF_UP) {
2507 netif_tx_stop_all_queues(dev);
2508 stop_gfar(dev);
2509 startup_gfar(dev);
2510 netif_tx_start_all_queues(dev);
2513 netif_tx_schedule_all(dev);
2516 static void gfar_timeout(struct net_device *dev)
2518 struct gfar_private *priv = netdev_priv(dev);
2520 dev->stats.tx_errors++;
2521 schedule_work(&priv->reset_task);
2524 static void gfar_align_skb(struct sk_buff *skb)
2526 /* We need the data buffer to be aligned properly. We will reserve
2527 * as many bytes as needed to align the data properly
2529 skb_reserve(skb, RXBUF_ALIGNMENT -
2530 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2533 /* Interrupt Handler for Transmit complete */
2534 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2536 struct net_device *dev = tx_queue->dev;
2537 struct netdev_queue *txq;
2538 struct gfar_private *priv = netdev_priv(dev);
2539 struct txbd8 *bdp, *next = NULL;
2540 struct txbd8 *lbdp = NULL;
2541 struct txbd8 *base = tx_queue->tx_bd_base;
2542 struct sk_buff *skb;
2543 int skb_dirtytx;
2544 int tx_ring_size = tx_queue->tx_ring_size;
2545 int frags = 0, nr_txbds = 0;
2546 int i;
2547 int howmany = 0;
2548 int tqi = tx_queue->qindex;
2549 unsigned int bytes_sent = 0;
2550 u32 lstatus;
2551 size_t buflen;
2553 txq = netdev_get_tx_queue(dev, tqi);
2554 bdp = tx_queue->dirty_tx;
2555 skb_dirtytx = tx_queue->skb_dirtytx;
2557 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2558 unsigned long flags;
2560 frags = skb_shinfo(skb)->nr_frags;
2562 /* When time stamping, one additional TxBD must be freed.
2563 * Also, we need to dma_unmap_single() the TxPAL.
2565 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2566 nr_txbds = frags + 2;
2567 else
2568 nr_txbds = frags + 1;
2570 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2572 lstatus = lbdp->lstatus;
2574 /* Only clean completed frames */
2575 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2576 (lstatus & BD_LENGTH_MASK))
2577 break;
2579 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2580 next = next_txbd(bdp, base, tx_ring_size);
2581 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2582 } else
2583 buflen = bdp->length;
2585 dma_unmap_single(priv->dev, bdp->bufPtr,
2586 buflen, DMA_TO_DEVICE);
2588 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2589 struct skb_shared_hwtstamps shhwtstamps;
2590 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2592 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2593 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2594 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2595 skb_tstamp_tx(skb, &shhwtstamps);
2596 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2597 bdp = next;
2600 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2601 bdp = next_txbd(bdp, base, tx_ring_size);
2603 for (i = 0; i < frags; i++) {
2604 dma_unmap_page(priv->dev, bdp->bufPtr,
2605 bdp->length, DMA_TO_DEVICE);
2606 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2607 bdp = next_txbd(bdp, base, tx_ring_size);
2610 bytes_sent += GFAR_CB(skb)->bytes_sent;
2612 dev_kfree_skb_any(skb);
2614 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2616 skb_dirtytx = (skb_dirtytx + 1) &
2617 TX_RING_MOD_MASK(tx_ring_size);
2619 howmany++;
2620 spin_lock_irqsave(&tx_queue->txlock, flags);
2621 tx_queue->num_txbdfree += nr_txbds;
2622 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2625 /* If we freed a buffer, we can restart transmission, if necessary */
2626 if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2627 netif_wake_subqueue(dev, tqi);
2629 /* Update dirty indicators */
2630 tx_queue->skb_dirtytx = skb_dirtytx;
2631 tx_queue->dirty_tx = bdp;
2633 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2636 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2638 unsigned long flags;
2640 spin_lock_irqsave(&gfargrp->grplock, flags);
2641 if (napi_schedule_prep(&gfargrp->napi)) {
2642 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2643 __napi_schedule(&gfargrp->napi);
2644 } else {
2645 /* Clear IEVENT, so interrupts aren't called again
2646 * because of the packets that have already arrived.
2648 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2650 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2654 /* Interrupt Handler for Transmit complete */
2655 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2657 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2658 return IRQ_HANDLED;
2661 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2662 struct sk_buff *skb)
2664 struct net_device *dev = rx_queue->dev;
2665 struct gfar_private *priv = netdev_priv(dev);
2666 dma_addr_t buf;
2668 buf = dma_map_single(priv->dev, skb->data,
2669 priv->rx_buffer_size, DMA_FROM_DEVICE);
2670 gfar_init_rxbdp(rx_queue, bdp, buf);
2673 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2675 struct gfar_private *priv = netdev_priv(dev);
2676 struct sk_buff *skb;
2678 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2679 if (!skb)
2680 return NULL;
2682 gfar_align_skb(skb);
2684 return skb;
2687 struct sk_buff *gfar_new_skb(struct net_device *dev)
2689 return gfar_alloc_skb(dev);
2692 static inline void count_errors(unsigned short status, struct net_device *dev)
2694 struct gfar_private *priv = netdev_priv(dev);
2695 struct net_device_stats *stats = &dev->stats;
2696 struct gfar_extra_stats *estats = &priv->extra_stats;
2698 /* If the packet was truncated, none of the other errors matter */
2699 if (status & RXBD_TRUNCATED) {
2700 stats->rx_length_errors++;
2702 atomic64_inc(&estats->rx_trunc);
2704 return;
2706 /* Count the errors, if there were any */
2707 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2708 stats->rx_length_errors++;
2710 if (status & RXBD_LARGE)
2711 atomic64_inc(&estats->rx_large);
2712 else
2713 atomic64_inc(&estats->rx_short);
2715 if (status & RXBD_NONOCTET) {
2716 stats->rx_frame_errors++;
2717 atomic64_inc(&estats->rx_nonoctet);
2719 if (status & RXBD_CRCERR) {
2720 atomic64_inc(&estats->rx_crcerr);
2721 stats->rx_crc_errors++;
2723 if (status & RXBD_OVERRUN) {
2724 atomic64_inc(&estats->rx_overrun);
2725 stats->rx_crc_errors++;
2729 irqreturn_t gfar_receive(int irq, void *grp_id)
2731 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2732 return IRQ_HANDLED;
2735 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2737 /* If valid headers were found, and valid sums
2738 * were verified, then we tell the kernel that no
2739 * checksumming is necessary. Otherwise, it is [FIXME]
2741 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2742 skb->ip_summed = CHECKSUM_UNNECESSARY;
2743 else
2744 skb_checksum_none_assert(skb);
2748 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2749 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2750 int amount_pull, struct napi_struct *napi)
2752 struct gfar_private *priv = netdev_priv(dev);
2753 struct rxfcb *fcb = NULL;
2755 /* fcb is at the beginning if exists */
2756 fcb = (struct rxfcb *)skb->data;
2758 /* Remove the FCB from the skb
2759 * Remove the padded bytes, if there are any
2761 if (amount_pull) {
2762 skb_record_rx_queue(skb, fcb->rq);
2763 skb_pull(skb, amount_pull);
2766 /* Get receive timestamp from the skb */
2767 if (priv->hwts_rx_en) {
2768 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2769 u64 *ns = (u64 *) skb->data;
2771 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2772 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2775 if (priv->padding)
2776 skb_pull(skb, priv->padding);
2778 if (dev->features & NETIF_F_RXCSUM)
2779 gfar_rx_checksum(skb, fcb);
2781 /* Tell the skb what kind of packet this is */
2782 skb->protocol = eth_type_trans(skb, dev);
2784 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2785 * Even if vlan rx accel is disabled, on some chips
2786 * RXFCB_VLN is pseudo randomly set.
2788 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2789 fcb->flags & RXFCB_VLN)
2790 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2792 /* Send the packet up the stack */
2793 napi_gro_receive(napi, skb);
2797 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2798 * until the budget/quota has been reached. Returns the number
2799 * of frames handled
2801 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2803 struct net_device *dev = rx_queue->dev;
2804 struct rxbd8 *bdp, *base;
2805 struct sk_buff *skb;
2806 int pkt_len;
2807 int amount_pull;
2808 int howmany = 0;
2809 struct gfar_private *priv = netdev_priv(dev);
2811 /* Get the first full descriptor */
2812 bdp = rx_queue->cur_rx;
2813 base = rx_queue->rx_bd_base;
2815 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2817 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2818 struct sk_buff *newskb;
2820 rmb();
2822 /* Add another skb for the future */
2823 newskb = gfar_new_skb(dev);
2825 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2827 dma_unmap_single(priv->dev, bdp->bufPtr,
2828 priv->rx_buffer_size, DMA_FROM_DEVICE);
2830 if (unlikely(!(bdp->status & RXBD_ERR) &&
2831 bdp->length > priv->rx_buffer_size))
2832 bdp->status = RXBD_LARGE;
2834 /* We drop the frame if we failed to allocate a new buffer */
2835 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2836 bdp->status & RXBD_ERR)) {
2837 count_errors(bdp->status, dev);
2839 if (unlikely(!newskb))
2840 newskb = skb;
2841 else if (skb)
2842 dev_kfree_skb(skb);
2843 } else {
2844 /* Increment the number of packets */
2845 rx_queue->stats.rx_packets++;
2846 howmany++;
2848 if (likely(skb)) {
2849 pkt_len = bdp->length - ETH_FCS_LEN;
2850 /* Remove the FCS from the packet length */
2851 skb_put(skb, pkt_len);
2852 rx_queue->stats.rx_bytes += pkt_len;
2853 skb_record_rx_queue(skb, rx_queue->qindex);
2854 gfar_process_frame(dev, skb, amount_pull,
2855 &rx_queue->grp->napi);
2857 } else {
2858 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2859 rx_queue->stats.rx_dropped++;
2860 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2865 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2867 /* Setup the new bdp */
2868 gfar_new_rxbdp(rx_queue, bdp, newskb);
2870 /* Update to the next pointer */
2871 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2873 /* update to point at the next skb */
2874 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2875 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2878 /* Update the current rxbd pointer to be the next one */
2879 rx_queue->cur_rx = bdp;
2881 return howmany;
2884 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2886 struct gfar_priv_grp *gfargrp =
2887 container_of(napi, struct gfar_priv_grp, napi);
2888 struct gfar __iomem *regs = gfargrp->regs;
2889 struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2890 struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2891 int work_done = 0;
2893 /* Clear IEVENT, so interrupts aren't called again
2894 * because of the packets that have already arrived
2896 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2898 /* run Tx cleanup to completion */
2899 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2900 gfar_clean_tx_ring(tx_queue);
2902 work_done = gfar_clean_rx_ring(rx_queue, budget);
2904 if (work_done < budget) {
2905 napi_complete(napi);
2906 /* Clear the halt bit in RSTAT */
2907 gfar_write(&regs->rstat, gfargrp->rstat);
2909 gfar_write(&regs->imask, IMASK_DEFAULT);
2911 /* If we are coalescing interrupts, update the timer
2912 * Otherwise, clear it
2914 gfar_write(&regs->txic, 0);
2915 if (likely(tx_queue->txcoalescing))
2916 gfar_write(&regs->txic, tx_queue->txic);
2918 gfar_write(&regs->rxic, 0);
2919 if (unlikely(rx_queue->rxcoalescing))
2920 gfar_write(&regs->rxic, rx_queue->rxic);
2923 return work_done;
2926 static int gfar_poll(struct napi_struct *napi, int budget)
2928 struct gfar_priv_grp *gfargrp =
2929 container_of(napi, struct gfar_priv_grp, napi);
2930 struct gfar_private *priv = gfargrp->priv;
2931 struct gfar __iomem *regs = gfargrp->regs;
2932 struct gfar_priv_tx_q *tx_queue = NULL;
2933 struct gfar_priv_rx_q *rx_queue = NULL;
2934 int work_done = 0, work_done_per_q = 0;
2935 int i, budget_per_q = 0;
2936 int has_tx_work = 0;
2937 unsigned long rstat_rxf;
2938 int num_act_queues;
2940 /* Clear IEVENT, so interrupts aren't called again
2941 * because of the packets that have already arrived
2943 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2945 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2947 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2948 if (num_act_queues)
2949 budget_per_q = budget/num_act_queues;
2951 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2952 tx_queue = priv->tx_queue[i];
2953 /* run Tx cleanup to completion */
2954 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2955 gfar_clean_tx_ring(tx_queue);
2956 has_tx_work = 1;
2960 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2961 /* skip queue if not active */
2962 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2963 continue;
2965 rx_queue = priv->rx_queue[i];
2966 work_done_per_q =
2967 gfar_clean_rx_ring(rx_queue, budget_per_q);
2968 work_done += work_done_per_q;
2970 /* finished processing this queue */
2971 if (work_done_per_q < budget_per_q) {
2972 /* clear active queue hw indication */
2973 gfar_write(&regs->rstat,
2974 RSTAT_CLEAR_RXF0 >> i);
2975 num_act_queues--;
2977 if (!num_act_queues)
2978 break;
2982 if (!num_act_queues && !has_tx_work) {
2984 napi_complete(napi);
2986 /* Clear the halt bit in RSTAT */
2987 gfar_write(&regs->rstat, gfargrp->rstat);
2989 gfar_write(&regs->imask, IMASK_DEFAULT);
2991 /* If we are coalescing interrupts, update the timer
2992 * Otherwise, clear it
2994 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2995 gfargrp->tx_bit_map);
2998 return work_done;
3001 #ifdef CONFIG_NET_POLL_CONTROLLER
3002 /* Polling 'interrupt' - used by things like netconsole to send skbs
3003 * without having to re-enable interrupts. It's not called while
3004 * the interrupt routine is executing.
3006 static void gfar_netpoll(struct net_device *dev)
3008 struct gfar_private *priv = netdev_priv(dev);
3009 int i;
3011 /* If the device has multiple interrupts, run tx/rx */
3012 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3013 for (i = 0; i < priv->num_grps; i++) {
3014 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3016 disable_irq(gfar_irq(grp, TX)->irq);
3017 disable_irq(gfar_irq(grp, RX)->irq);
3018 disable_irq(gfar_irq(grp, ER)->irq);
3019 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3020 enable_irq(gfar_irq(grp, ER)->irq);
3021 enable_irq(gfar_irq(grp, RX)->irq);
3022 enable_irq(gfar_irq(grp, TX)->irq);
3024 } else {
3025 for (i = 0; i < priv->num_grps; i++) {
3026 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3028 disable_irq(gfar_irq(grp, TX)->irq);
3029 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3030 enable_irq(gfar_irq(grp, TX)->irq);
3034 #endif
3036 /* The interrupt handler for devices with one interrupt */
3037 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3039 struct gfar_priv_grp *gfargrp = grp_id;
3041 /* Save ievent for future reference */
3042 u32 events = gfar_read(&gfargrp->regs->ievent);
3044 /* Check for reception */
3045 if (events & IEVENT_RX_MASK)
3046 gfar_receive(irq, grp_id);
3048 /* Check for transmit completion */
3049 if (events & IEVENT_TX_MASK)
3050 gfar_transmit(irq, grp_id);
3052 /* Check for errors */
3053 if (events & IEVENT_ERR_MASK)
3054 gfar_error(irq, grp_id);
3056 return IRQ_HANDLED;
3059 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3061 struct phy_device *phydev = priv->phydev;
3062 u32 val = 0;
3064 if (!phydev->duplex)
3065 return val;
3067 if (!priv->pause_aneg_en) {
3068 if (priv->tx_pause_en)
3069 val |= MACCFG1_TX_FLOW;
3070 if (priv->rx_pause_en)
3071 val |= MACCFG1_RX_FLOW;
3072 } else {
3073 u16 lcl_adv, rmt_adv;
3074 u8 flowctrl;
3075 /* get link partner capabilities */
3076 rmt_adv = 0;
3077 if (phydev->pause)
3078 rmt_adv = LPA_PAUSE_CAP;
3079 if (phydev->asym_pause)
3080 rmt_adv |= LPA_PAUSE_ASYM;
3082 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3084 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3085 if (flowctrl & FLOW_CTRL_TX)
3086 val |= MACCFG1_TX_FLOW;
3087 if (flowctrl & FLOW_CTRL_RX)
3088 val |= MACCFG1_RX_FLOW;
3091 return val;
3094 /* Called every time the controller might need to be made
3095 * aware of new link state. The PHY code conveys this
3096 * information through variables in the phydev structure, and this
3097 * function converts those variables into the appropriate
3098 * register values, and can bring down the device if needed.
3100 static void adjust_link(struct net_device *dev)
3102 struct gfar_private *priv = netdev_priv(dev);
3103 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3104 unsigned long flags;
3105 struct phy_device *phydev = priv->phydev;
3106 int new_state = 0;
3108 local_irq_save(flags);
3109 lock_tx_qs(priv);
3111 if (phydev->link) {
3112 u32 tempval1 = gfar_read(&regs->maccfg1);
3113 u32 tempval = gfar_read(&regs->maccfg2);
3114 u32 ecntrl = gfar_read(&regs->ecntrl);
3116 /* Now we make sure that we can be in full duplex mode.
3117 * If not, we operate in half-duplex mode.
3119 if (phydev->duplex != priv->oldduplex) {
3120 new_state = 1;
3121 if (!(phydev->duplex))
3122 tempval &= ~(MACCFG2_FULL_DUPLEX);
3123 else
3124 tempval |= MACCFG2_FULL_DUPLEX;
3126 priv->oldduplex = phydev->duplex;
3129 if (phydev->speed != priv->oldspeed) {
3130 new_state = 1;
3131 switch (phydev->speed) {
3132 case 1000:
3133 tempval =
3134 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3136 ecntrl &= ~(ECNTRL_R100);
3137 break;
3138 case 100:
3139 case 10:
3140 tempval =
3141 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3143 /* Reduced mode distinguishes
3144 * between 10 and 100
3146 if (phydev->speed == SPEED_100)
3147 ecntrl |= ECNTRL_R100;
3148 else
3149 ecntrl &= ~(ECNTRL_R100);
3150 break;
3151 default:
3152 netif_warn(priv, link, dev,
3153 "Ack! Speed (%d) is not 10/100/1000!\n",
3154 phydev->speed);
3155 break;
3158 priv->oldspeed = phydev->speed;
3161 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3162 tempval1 |= gfar_get_flowctrl_cfg(priv);
3164 gfar_write(&regs->maccfg1, tempval1);
3165 gfar_write(&regs->maccfg2, tempval);
3166 gfar_write(&regs->ecntrl, ecntrl);
3168 if (!priv->oldlink) {
3169 new_state = 1;
3170 priv->oldlink = 1;
3172 } else if (priv->oldlink) {
3173 new_state = 1;
3174 priv->oldlink = 0;
3175 priv->oldspeed = 0;
3176 priv->oldduplex = -1;
3179 if (new_state && netif_msg_link(priv))
3180 phy_print_status(phydev);
3181 unlock_tx_qs(priv);
3182 local_irq_restore(flags);
3185 /* Update the hash table based on the current list of multicast
3186 * addresses we subscribe to. Also, change the promiscuity of
3187 * the device based on the flags (this function is called
3188 * whenever dev->flags is changed
3190 static void gfar_set_multi(struct net_device *dev)
3192 struct netdev_hw_addr *ha;
3193 struct gfar_private *priv = netdev_priv(dev);
3194 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3195 u32 tempval;
3197 if (dev->flags & IFF_PROMISC) {
3198 /* Set RCTRL to PROM */
3199 tempval = gfar_read(&regs->rctrl);
3200 tempval |= RCTRL_PROM;
3201 gfar_write(&regs->rctrl, tempval);
3202 } else {
3203 /* Set RCTRL to not PROM */
3204 tempval = gfar_read(&regs->rctrl);
3205 tempval &= ~(RCTRL_PROM);
3206 gfar_write(&regs->rctrl, tempval);
3209 if (dev->flags & IFF_ALLMULTI) {
3210 /* Set the hash to rx all multicast frames */
3211 gfar_write(&regs->igaddr0, 0xffffffff);
3212 gfar_write(&regs->igaddr1, 0xffffffff);
3213 gfar_write(&regs->igaddr2, 0xffffffff);
3214 gfar_write(&regs->igaddr3, 0xffffffff);
3215 gfar_write(&regs->igaddr4, 0xffffffff);
3216 gfar_write(&regs->igaddr5, 0xffffffff);
3217 gfar_write(&regs->igaddr6, 0xffffffff);
3218 gfar_write(&regs->igaddr7, 0xffffffff);
3219 gfar_write(&regs->gaddr0, 0xffffffff);
3220 gfar_write(&regs->gaddr1, 0xffffffff);
3221 gfar_write(&regs->gaddr2, 0xffffffff);
3222 gfar_write(&regs->gaddr3, 0xffffffff);
3223 gfar_write(&regs->gaddr4, 0xffffffff);
3224 gfar_write(&regs->gaddr5, 0xffffffff);
3225 gfar_write(&regs->gaddr6, 0xffffffff);
3226 gfar_write(&regs->gaddr7, 0xffffffff);
3227 } else {
3228 int em_num;
3229 int idx;
3231 /* zero out the hash */
3232 gfar_write(&regs->igaddr0, 0x0);
3233 gfar_write(&regs->igaddr1, 0x0);
3234 gfar_write(&regs->igaddr2, 0x0);
3235 gfar_write(&regs->igaddr3, 0x0);
3236 gfar_write(&regs->igaddr4, 0x0);
3237 gfar_write(&regs->igaddr5, 0x0);
3238 gfar_write(&regs->igaddr6, 0x0);
3239 gfar_write(&regs->igaddr7, 0x0);
3240 gfar_write(&regs->gaddr0, 0x0);
3241 gfar_write(&regs->gaddr1, 0x0);
3242 gfar_write(&regs->gaddr2, 0x0);
3243 gfar_write(&regs->gaddr3, 0x0);
3244 gfar_write(&regs->gaddr4, 0x0);
3245 gfar_write(&regs->gaddr5, 0x0);
3246 gfar_write(&regs->gaddr6, 0x0);
3247 gfar_write(&regs->gaddr7, 0x0);
3249 /* If we have extended hash tables, we need to
3250 * clear the exact match registers to prepare for
3251 * setting them
3253 if (priv->extended_hash) {
3254 em_num = GFAR_EM_NUM + 1;
3255 gfar_clear_exact_match(dev);
3256 idx = 1;
3257 } else {
3258 idx = 0;
3259 em_num = 0;
3262 if (netdev_mc_empty(dev))
3263 return;
3265 /* Parse the list, and set the appropriate bits */
3266 netdev_for_each_mc_addr(ha, dev) {
3267 if (idx < em_num) {
3268 gfar_set_mac_for_addr(dev, idx, ha->addr);
3269 idx++;
3270 } else
3271 gfar_set_hash_for_addr(dev, ha->addr);
3277 /* Clears each of the exact match registers to zero, so they
3278 * don't interfere with normal reception
3280 static void gfar_clear_exact_match(struct net_device *dev)
3282 int idx;
3283 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3285 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3286 gfar_set_mac_for_addr(dev, idx, zero_arr);
3289 /* Set the appropriate hash bit for the given addr */
3290 /* The algorithm works like so:
3291 * 1) Take the Destination Address (ie the multicast address), and
3292 * do a CRC on it (little endian), and reverse the bits of the
3293 * result.
3294 * 2) Use the 8 most significant bits as a hash into a 256-entry
3295 * table. The table is controlled through 8 32-bit registers:
3296 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3297 * gaddr7. This means that the 3 most significant bits in the
3298 * hash index which gaddr register to use, and the 5 other bits
3299 * indicate which bit (assuming an IBM numbering scheme, which
3300 * for PowerPC (tm) is usually the case) in the register holds
3301 * the entry.
3303 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3305 u32 tempval;
3306 struct gfar_private *priv = netdev_priv(dev);
3307 u32 result = ether_crc(ETH_ALEN, addr);
3308 int width = priv->hash_width;
3309 u8 whichbit = (result >> (32 - width)) & 0x1f;
3310 u8 whichreg = result >> (32 - width + 5);
3311 u32 value = (1 << (31-whichbit));
3313 tempval = gfar_read(priv->hash_regs[whichreg]);
3314 tempval |= value;
3315 gfar_write(priv->hash_regs[whichreg], tempval);
3319 /* There are multiple MAC Address register pairs on some controllers
3320 * This function sets the numth pair to a given address
3322 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3323 const u8 *addr)
3325 struct gfar_private *priv = netdev_priv(dev);
3326 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3327 int idx;
3328 char tmpbuf[ETH_ALEN];
3329 u32 tempval;
3330 u32 __iomem *macptr = &regs->macstnaddr1;
3332 macptr += num*2;
3334 /* Now copy it into the mac registers backwards, cuz
3335 * little endian is silly
3337 for (idx = 0; idx < ETH_ALEN; idx++)
3338 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3340 gfar_write(macptr, *((u32 *) (tmpbuf)));
3342 tempval = *((u32 *) (tmpbuf + 4));
3344 gfar_write(macptr+1, tempval);
3347 /* GFAR error interrupt handler */
3348 static irqreturn_t gfar_error(int irq, void *grp_id)
3350 struct gfar_priv_grp *gfargrp = grp_id;
3351 struct gfar __iomem *regs = gfargrp->regs;
3352 struct gfar_private *priv= gfargrp->priv;
3353 struct net_device *dev = priv->ndev;
3355 /* Save ievent for future reference */
3356 u32 events = gfar_read(&regs->ievent);
3358 /* Clear IEVENT */
3359 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3361 /* Magic Packet is not an error. */
3362 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3363 (events & IEVENT_MAG))
3364 events &= ~IEVENT_MAG;
3366 /* Hmm... */
3367 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3368 netdev_dbg(dev,
3369 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3370 events, gfar_read(&regs->imask));
3372 /* Update the error counters */
3373 if (events & IEVENT_TXE) {
3374 dev->stats.tx_errors++;
3376 if (events & IEVENT_LC)
3377 dev->stats.tx_window_errors++;
3378 if (events & IEVENT_CRL)
3379 dev->stats.tx_aborted_errors++;
3380 if (events & IEVENT_XFUN) {
3381 unsigned long flags;
3383 netif_dbg(priv, tx_err, dev,
3384 "TX FIFO underrun, packet dropped\n");
3385 dev->stats.tx_dropped++;
3386 atomic64_inc(&priv->extra_stats.tx_underrun);
3388 local_irq_save(flags);
3389 lock_tx_qs(priv);
3391 /* Reactivate the Tx Queues */
3392 gfar_write(&regs->tstat, gfargrp->tstat);
3394 unlock_tx_qs(priv);
3395 local_irq_restore(flags);
3397 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3399 if (events & IEVENT_BSY) {
3400 dev->stats.rx_errors++;
3401 atomic64_inc(&priv->extra_stats.rx_bsy);
3403 gfar_receive(irq, grp_id);
3405 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3406 gfar_read(&regs->rstat));
3408 if (events & IEVENT_BABR) {
3409 dev->stats.rx_errors++;
3410 atomic64_inc(&priv->extra_stats.rx_babr);
3412 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3414 if (events & IEVENT_EBERR) {
3415 atomic64_inc(&priv->extra_stats.eberr);
3416 netif_dbg(priv, rx_err, dev, "bus error\n");
3418 if (events & IEVENT_RXC)
3419 netif_dbg(priv, rx_status, dev, "control frame\n");
3421 if (events & IEVENT_BABT) {
3422 atomic64_inc(&priv->extra_stats.tx_babt);
3423 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3425 return IRQ_HANDLED;
3428 static struct of_device_id gfar_match[] =
3431 .type = "network",
3432 .compatible = "gianfar",
3435 .compatible = "fsl,etsec2",
3439 MODULE_DEVICE_TABLE(of, gfar_match);
3441 /* Structure for a device driver */
3442 static struct platform_driver gfar_driver = {
3443 .driver = {
3444 .name = "fsl-gianfar",
3445 .owner = THIS_MODULE,
3446 .pm = GFAR_PM_OPS,
3447 .of_match_table = gfar_match,
3449 .probe = gfar_probe,
3450 .remove = gfar_remove,
3453 module_platform_driver(gfar_driver);