1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/ipv6.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/prefetch.h>
19 #include <linux/moduleparam.h>
20 #include <linux/iommu.h>
22 #include <net/checksum.h>
23 #include "net_driver.h"
28 #include "workarounds.h"
30 /* Preferred number of descriptors to fill at once */
31 #define EFX_RX_PREFERRED_BATCH 8U
33 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
34 * ring, this number is divided by the number of buffers per page to calculate
35 * the number of pages to store in the RX page recycle ring.
37 #define EFX_RECYCLE_RING_SIZE_IOMMU 4096
38 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
40 /* Size of buffer allocated for skb header area. */
41 #define EFX_SKB_HEADERS 128u
43 /* This is the percentage fill level below which new RX descriptors
44 * will be added to the RX descriptor ring.
46 static unsigned int rx_refill_threshold
;
48 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
49 #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
53 * RX maximum head room required.
55 * This must be at least 1 to prevent overflow, plus one packet-worth
56 * to allow pipelined receives.
58 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
60 static inline u8
*efx_rx_buf_va(struct efx_rx_buffer
*buf
)
62 return page_address(buf
->page
) + buf
->page_offset
;
65 static inline u32
efx_rx_buf_hash(struct efx_nic
*efx
, const u8
*eh
)
67 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
68 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_hash_offset
));
70 const u8
*data
= eh
+ efx
->rx_packet_hash_offset
;
78 static inline struct efx_rx_buffer
*
79 efx_rx_buf_next(struct efx_rx_queue
*rx_queue
, struct efx_rx_buffer
*rx_buf
)
81 if (unlikely(rx_buf
== efx_rx_buffer(rx_queue
, rx_queue
->ptr_mask
)))
82 return efx_rx_buffer(rx_queue
, 0);
87 static inline void efx_sync_rx_buffer(struct efx_nic
*efx
,
88 struct efx_rx_buffer
*rx_buf
,
91 dma_sync_single_for_cpu(&efx
->pci_dev
->dev
, rx_buf
->dma_addr
, len
,
95 void efx_rx_config_page_split(struct efx_nic
*efx
)
97 efx
->rx_page_buf_step
= ALIGN(efx
->rx_dma_len
+ efx
->rx_ip_align
,
98 EFX_RX_BUF_ALIGNMENT
);
99 efx
->rx_bufs_per_page
= efx
->rx_buffer_order
? 1 :
100 ((PAGE_SIZE
- sizeof(struct efx_rx_page_state
)) /
101 efx
->rx_page_buf_step
);
102 efx
->rx_buffer_truesize
= (PAGE_SIZE
<< efx
->rx_buffer_order
) /
103 efx
->rx_bufs_per_page
;
104 efx
->rx_pages_per_batch
= DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH
,
105 efx
->rx_bufs_per_page
);
108 /* Check the RX page recycle ring for a page that can be reused. */
109 static struct page
*efx_reuse_page(struct efx_rx_queue
*rx_queue
)
111 struct efx_nic
*efx
= rx_queue
->efx
;
113 struct efx_rx_page_state
*state
;
116 index
= rx_queue
->page_remove
& rx_queue
->page_ptr_mask
;
117 page
= rx_queue
->page_ring
[index
];
121 rx_queue
->page_ring
[index
] = NULL
;
122 /* page_remove cannot exceed page_add. */
123 if (rx_queue
->page_remove
!= rx_queue
->page_add
)
124 ++rx_queue
->page_remove
;
126 /* If page_count is 1 then we hold the only reference to this page. */
127 if (page_count(page
) == 1) {
128 ++rx_queue
->page_recycle_count
;
131 state
= page_address(page
);
132 dma_unmap_page(&efx
->pci_dev
->dev
, state
->dma_addr
,
133 PAGE_SIZE
<< efx
->rx_buffer_order
,
136 ++rx_queue
->page_recycle_failed
;
143 * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
145 * @rx_queue: Efx RX queue
147 * This allocates a batch of pages, maps them for DMA, and populates
148 * struct efx_rx_buffers for each one. Return a negative error code or
149 * 0 on success. If a single page can be used for multiple buffers,
150 * then the page will either be inserted fully, or not at all.
152 static int efx_init_rx_buffers(struct efx_rx_queue
*rx_queue
, bool atomic
)
154 struct efx_nic
*efx
= rx_queue
->efx
;
155 struct efx_rx_buffer
*rx_buf
;
157 unsigned int page_offset
;
158 struct efx_rx_page_state
*state
;
160 unsigned index
, count
;
164 page
= efx_reuse_page(rx_queue
);
166 page
= alloc_pages(__GFP_COLD
| __GFP_COMP
|
167 (atomic
? GFP_ATOMIC
: GFP_KERNEL
),
168 efx
->rx_buffer_order
);
169 if (unlikely(page
== NULL
))
172 dma_map_page(&efx
->pci_dev
->dev
, page
, 0,
173 PAGE_SIZE
<< efx
->rx_buffer_order
,
175 if (unlikely(dma_mapping_error(&efx
->pci_dev
->dev
,
177 __free_pages(page
, efx
->rx_buffer_order
);
180 state
= page_address(page
);
181 state
->dma_addr
= dma_addr
;
183 state
= page_address(page
);
184 dma_addr
= state
->dma_addr
;
187 dma_addr
+= sizeof(struct efx_rx_page_state
);
188 page_offset
= sizeof(struct efx_rx_page_state
);
191 index
= rx_queue
->added_count
& rx_queue
->ptr_mask
;
192 rx_buf
= efx_rx_buffer(rx_queue
, index
);
193 rx_buf
->dma_addr
= dma_addr
+ efx
->rx_ip_align
;
195 rx_buf
->page_offset
= page_offset
+ efx
->rx_ip_align
;
196 rx_buf
->len
= efx
->rx_dma_len
;
198 ++rx_queue
->added_count
;
200 dma_addr
+= efx
->rx_page_buf_step
;
201 page_offset
+= efx
->rx_page_buf_step
;
202 } while (page_offset
+ efx
->rx_page_buf_step
<= PAGE_SIZE
);
204 rx_buf
->flags
= EFX_RX_BUF_LAST_IN_PAGE
;
205 } while (++count
< efx
->rx_pages_per_batch
);
210 /* Unmap a DMA-mapped page. This function is only called for the final RX
213 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
214 struct efx_rx_buffer
*rx_buf
)
216 struct page
*page
= rx_buf
->page
;
219 struct efx_rx_page_state
*state
= page_address(page
);
220 dma_unmap_page(&efx
->pci_dev
->dev
,
222 PAGE_SIZE
<< efx
->rx_buffer_order
,
227 static void efx_free_rx_buffer(struct efx_rx_buffer
*rx_buf
)
230 put_page(rx_buf
->page
);
235 /* Attempt to recycle the page if there is an RX recycle ring; the page can
236 * only be added if this is the final RX buffer, to prevent pages being used in
237 * the descriptor ring and appearing in the recycle ring simultaneously.
239 static void efx_recycle_rx_page(struct efx_channel
*channel
,
240 struct efx_rx_buffer
*rx_buf
)
242 struct page
*page
= rx_buf
->page
;
243 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
244 struct efx_nic
*efx
= rx_queue
->efx
;
247 /* Only recycle the page after processing the final buffer. */
248 if (!(rx_buf
->flags
& EFX_RX_BUF_LAST_IN_PAGE
))
251 index
= rx_queue
->page_add
& rx_queue
->page_ptr_mask
;
252 if (rx_queue
->page_ring
[index
] == NULL
) {
253 unsigned read_index
= rx_queue
->page_remove
&
254 rx_queue
->page_ptr_mask
;
256 /* The next slot in the recycle ring is available, but
257 * increment page_remove if the read pointer currently
260 if (read_index
== index
)
261 ++rx_queue
->page_remove
;
262 rx_queue
->page_ring
[index
] = page
;
263 ++rx_queue
->page_add
;
266 ++rx_queue
->page_recycle_full
;
267 efx_unmap_rx_buffer(efx
, rx_buf
);
268 put_page(rx_buf
->page
);
271 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
272 struct efx_rx_buffer
*rx_buf
)
274 /* Release the page reference we hold for the buffer. */
276 put_page(rx_buf
->page
);
278 /* If this is the last buffer in a page, unmap and free it. */
279 if (rx_buf
->flags
& EFX_RX_BUF_LAST_IN_PAGE
) {
280 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
281 efx_free_rx_buffer(rx_buf
);
286 /* Recycle the pages that are used by buffers that have just been received. */
287 static void efx_recycle_rx_pages(struct efx_channel
*channel
,
288 struct efx_rx_buffer
*rx_buf
,
289 unsigned int n_frags
)
291 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
294 efx_recycle_rx_page(channel
, rx_buf
);
295 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
299 static void efx_discard_rx_packet(struct efx_channel
*channel
,
300 struct efx_rx_buffer
*rx_buf
,
301 unsigned int n_frags
)
303 struct efx_rx_queue
*rx_queue
= efx_channel_get_rx_queue(channel
);
305 efx_recycle_rx_pages(channel
, rx_buf
, n_frags
);
308 efx_free_rx_buffer(rx_buf
);
309 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
314 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
315 * @rx_queue: RX descriptor queue
317 * This will aim to fill the RX descriptor queue up to
318 * @rx_queue->@max_fill. If there is insufficient atomic
319 * memory to do so, a slow fill will be scheduled.
321 * The caller must provide serialisation (none is used here). In practise,
322 * this means this function must run from the NAPI handler, or be called
323 * when NAPI is disabled.
325 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
, bool atomic
)
327 struct efx_nic
*efx
= rx_queue
->efx
;
328 unsigned int fill_level
, batch_size
;
331 if (!rx_queue
->refill_enabled
)
334 /* Calculate current fill level, and exit if we don't need to fill */
335 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
336 EFX_BUG_ON_PARANOID(fill_level
> rx_queue
->efx
->rxq_entries
);
337 if (fill_level
>= rx_queue
->fast_fill_trigger
)
340 /* Record minimum fill level */
341 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
343 rx_queue
->min_fill
= fill_level
;
346 batch_size
= efx
->rx_pages_per_batch
* efx
->rx_bufs_per_page
;
347 space
= rx_queue
->max_fill
- fill_level
;
348 EFX_BUG_ON_PARANOID(space
< batch_size
);
350 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
351 "RX queue %d fast-filling descriptor ring from"
352 " level %d to level %d\n",
353 efx_rx_queue_index(rx_queue
), fill_level
,
358 rc
= efx_init_rx_buffers(rx_queue
, atomic
);
360 /* Ensure that we don't leave the rx queue empty */
361 if (rx_queue
->added_count
== rx_queue
->removed_count
)
362 efx_schedule_slow_fill(rx_queue
);
365 } while ((space
-= batch_size
) >= batch_size
);
367 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
368 "RX queue %d fast-filled descriptor ring "
369 "to level %d\n", efx_rx_queue_index(rx_queue
),
370 rx_queue
->added_count
- rx_queue
->removed_count
);
373 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
374 efx_nic_notify_rx_desc(rx_queue
);
377 void efx_rx_slow_fill(unsigned long context
)
379 struct efx_rx_queue
*rx_queue
= (struct efx_rx_queue
*)context
;
381 /* Post an event to cause NAPI to run and refill the queue */
382 efx_nic_generate_fill_event(rx_queue
);
383 ++rx_queue
->slow_fill_count
;
386 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
387 struct efx_rx_buffer
*rx_buf
,
390 struct efx_nic
*efx
= rx_queue
->efx
;
391 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
393 if (likely(len
<= max_len
))
396 /* The packet must be discarded, but this is only a fatal error
397 * if the caller indicated it was
399 rx_buf
->flags
|= EFX_RX_PKT_DISCARD
;
401 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
403 netif_err(efx
, rx_err
, efx
->net_dev
,
404 " RX queue %d seriously overlength "
405 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
406 efx_rx_queue_index(rx_queue
), len
, max_len
,
407 efx
->type
->rx_buffer_padding
);
408 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
411 netif_err(efx
, rx_err
, efx
->net_dev
,
412 " RX queue %d overlength RX event "
414 efx_rx_queue_index(rx_queue
), len
, max_len
);
417 efx_rx_queue_channel(rx_queue
)->n_rx_overlength
++;
420 /* Pass a received packet up through GRO. GRO can handle pages
421 * regardless of checksum state and skbs with a good checksum.
424 efx_rx_packet_gro(struct efx_channel
*channel
, struct efx_rx_buffer
*rx_buf
,
425 unsigned int n_frags
, u8
*eh
)
427 struct napi_struct
*napi
= &channel
->napi_str
;
428 gro_result_t gro_result
;
429 struct efx_nic
*efx
= channel
->efx
;
432 skb
= napi_get_frags(napi
);
433 if (unlikely(!skb
)) {
435 put_page(rx_buf
->page
);
437 rx_buf
= efx_rx_buf_next(&channel
->rx_queue
, rx_buf
);
442 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
443 skb_set_hash(skb
, efx_rx_buf_hash(efx
, eh
),
445 skb
->ip_summed
= ((rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ?
446 CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
);
449 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
450 rx_buf
->page
, rx_buf
->page_offset
,
453 skb
->len
+= rx_buf
->len
;
454 if (skb_shinfo(skb
)->nr_frags
== n_frags
)
457 rx_buf
= efx_rx_buf_next(&channel
->rx_queue
, rx_buf
);
460 skb
->data_len
= skb
->len
;
461 skb
->truesize
+= n_frags
* efx
->rx_buffer_truesize
;
463 skb_record_rx_queue(skb
, channel
->rx_queue
.core_index
);
465 gro_result
= napi_gro_frags(napi
);
466 if (gro_result
!= GRO_DROP
)
467 channel
->irq_mod_score
+= 2;
470 /* Allocate and construct an SKB around page fragments */
471 static struct sk_buff
*efx_rx_mk_skb(struct efx_channel
*channel
,
472 struct efx_rx_buffer
*rx_buf
,
473 unsigned int n_frags
,
476 struct efx_nic
*efx
= channel
->efx
;
479 /* Allocate an SKB to store the headers */
480 skb
= netdev_alloc_skb(efx
->net_dev
,
481 efx
->rx_ip_align
+ efx
->rx_prefix_size
+
483 if (unlikely(skb
== NULL
))
486 EFX_BUG_ON_PARANOID(rx_buf
->len
< hdr_len
);
488 memcpy(skb
->data
+ efx
->rx_ip_align
, eh
- efx
->rx_prefix_size
,
489 efx
->rx_prefix_size
+ hdr_len
);
490 skb_reserve(skb
, efx
->rx_ip_align
+ efx
->rx_prefix_size
);
491 __skb_put(skb
, hdr_len
);
493 /* Append the remaining page(s) onto the frag list */
494 if (rx_buf
->len
> hdr_len
) {
495 rx_buf
->page_offset
+= hdr_len
;
496 rx_buf
->len
-= hdr_len
;
499 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
500 rx_buf
->page
, rx_buf
->page_offset
,
503 skb
->len
+= rx_buf
->len
;
504 skb
->data_len
+= rx_buf
->len
;
505 if (skb_shinfo(skb
)->nr_frags
== n_frags
)
508 rx_buf
= efx_rx_buf_next(&channel
->rx_queue
, rx_buf
);
511 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
516 skb
->truesize
+= n_frags
* efx
->rx_buffer_truesize
;
518 /* Move past the ethernet header */
519 skb
->protocol
= eth_type_trans(skb
, efx
->net_dev
);
524 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
525 unsigned int n_frags
, unsigned int len
, u16 flags
)
527 struct efx_nic
*efx
= rx_queue
->efx
;
528 struct efx_channel
*channel
= efx_rx_queue_channel(rx_queue
);
529 struct efx_rx_buffer
*rx_buf
;
531 rx_buf
= efx_rx_buffer(rx_queue
, index
);
532 rx_buf
->flags
|= flags
;
534 /* Validate the number of fragments and completed length */
536 if (!(flags
& EFX_RX_PKT_PREFIX_LEN
))
537 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
);
538 } else if (unlikely(n_frags
> EFX_RX_MAX_FRAGS
) ||
539 unlikely(len
<= (n_frags
- 1) * efx
->rx_dma_len
) ||
540 unlikely(len
> n_frags
* efx
->rx_dma_len
) ||
541 unlikely(!efx
->rx_scatter
)) {
542 /* If this isn't an explicit discard request, either
543 * the hardware or the driver is broken.
545 WARN_ON(!(len
== 0 && rx_buf
->flags
& EFX_RX_PKT_DISCARD
));
546 rx_buf
->flags
|= EFX_RX_PKT_DISCARD
;
549 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
550 "RX queue %d received ids %x-%x len %d %s%s\n",
551 efx_rx_queue_index(rx_queue
), index
,
552 (index
+ n_frags
- 1) & rx_queue
->ptr_mask
, len
,
553 (rx_buf
->flags
& EFX_RX_PKT_CSUMMED
) ? " [SUMMED]" : "",
554 (rx_buf
->flags
& EFX_RX_PKT_DISCARD
) ? " [DISCARD]" : "");
556 /* Discard packet, if instructed to do so. Process the
557 * previous receive first.
559 if (unlikely(rx_buf
->flags
& EFX_RX_PKT_DISCARD
)) {
560 efx_rx_flush_packet(channel
);
561 efx_discard_rx_packet(channel
, rx_buf
, n_frags
);
565 if (n_frags
== 1 && !(flags
& EFX_RX_PKT_PREFIX_LEN
))
568 /* Release and/or sync the DMA mapping - assumes all RX buffers
569 * consumed in-order per RX queue.
571 efx_sync_rx_buffer(efx
, rx_buf
, rx_buf
->len
);
573 /* Prefetch nice and early so data will (hopefully) be in cache by
574 * the time we look at it.
576 prefetch(efx_rx_buf_va(rx_buf
));
578 rx_buf
->page_offset
+= efx
->rx_prefix_size
;
579 rx_buf
->len
-= efx
->rx_prefix_size
;
582 /* Release/sync DMA mapping for additional fragments.
583 * Fix length for last fragment.
585 unsigned int tail_frags
= n_frags
- 1;
588 rx_buf
= efx_rx_buf_next(rx_queue
, rx_buf
);
589 if (--tail_frags
== 0)
591 efx_sync_rx_buffer(efx
, rx_buf
, efx
->rx_dma_len
);
593 rx_buf
->len
= len
- (n_frags
- 1) * efx
->rx_dma_len
;
594 efx_sync_rx_buffer(efx
, rx_buf
, rx_buf
->len
);
597 /* All fragments have been DMA-synced, so recycle pages. */
598 rx_buf
= efx_rx_buffer(rx_queue
, index
);
599 efx_recycle_rx_pages(channel
, rx_buf
, n_frags
);
601 /* Pipeline receives so that we give time for packet headers to be
602 * prefetched into cache.
604 efx_rx_flush_packet(channel
);
605 channel
->rx_pkt_n_frags
= n_frags
;
606 channel
->rx_pkt_index
= index
;
609 static void efx_rx_deliver(struct efx_channel
*channel
, u8
*eh
,
610 struct efx_rx_buffer
*rx_buf
,
611 unsigned int n_frags
)
614 u16 hdr_len
= min_t(u16
, rx_buf
->len
, EFX_SKB_HEADERS
);
616 skb
= efx_rx_mk_skb(channel
, rx_buf
, n_frags
, eh
, hdr_len
);
617 if (unlikely(skb
== NULL
)) {
618 efx_free_rx_buffer(rx_buf
);
621 skb_record_rx_queue(skb
, channel
->rx_queue
.core_index
);
623 /* Set the SKB flags */
624 skb_checksum_none_assert(skb
);
625 if (likely(rx_buf
->flags
& EFX_RX_PKT_CSUMMED
))
626 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
628 efx_rx_skb_attach_timestamp(channel
, skb
);
630 if (channel
->type
->receive_skb
)
631 if (channel
->type
->receive_skb(channel
, skb
))
634 /* Pass the packet up */
635 netif_receive_skb(skb
);
638 /* Handle a received packet. Second half: Touches packet payload. */
639 void __efx_rx_packet(struct efx_channel
*channel
)
641 struct efx_nic
*efx
= channel
->efx
;
642 struct efx_rx_buffer
*rx_buf
=
643 efx_rx_buffer(&channel
->rx_queue
, channel
->rx_pkt_index
);
644 u8
*eh
= efx_rx_buf_va(rx_buf
);
646 /* Read length from the prefix if necessary. This already
647 * excludes the length of the prefix itself.
649 if (rx_buf
->flags
& EFX_RX_PKT_PREFIX_LEN
)
650 rx_buf
->len
= le16_to_cpup((__le16
*)
651 (eh
+ efx
->rx_packet_len_offset
));
653 /* If we're in loopback test, then pass the packet directly to the
654 * loopback layer, and free the rx_buf here
656 if (unlikely(efx
->loopback_selftest
)) {
657 efx_loopback_rx_packet(efx
, eh
, rx_buf
->len
);
658 efx_free_rx_buffer(rx_buf
);
662 if (unlikely(!(efx
->net_dev
->features
& NETIF_F_RXCSUM
)))
663 rx_buf
->flags
&= ~EFX_RX_PKT_CSUMMED
;
665 if ((rx_buf
->flags
& EFX_RX_PKT_TCP
) && !channel
->type
->receive_skb
)
666 efx_rx_packet_gro(channel
, rx_buf
, channel
->rx_pkt_n_frags
, eh
);
668 efx_rx_deliver(channel
, eh
, rx_buf
, channel
->rx_pkt_n_frags
);
670 channel
->rx_pkt_n_frags
= 0;
673 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
675 struct efx_nic
*efx
= rx_queue
->efx
;
676 unsigned int entries
;
679 /* Create the smallest power-of-two aligned ring */
680 entries
= max(roundup_pow_of_two(efx
->rxq_entries
), EFX_MIN_DMAQ_SIZE
);
681 EFX_BUG_ON_PARANOID(entries
> EFX_MAX_DMAQ_SIZE
);
682 rx_queue
->ptr_mask
= entries
- 1;
684 netif_dbg(efx
, probe
, efx
->net_dev
,
685 "creating RX queue %d size %#x mask %#x\n",
686 efx_rx_queue_index(rx_queue
), efx
->rxq_entries
,
689 /* Allocate RX buffers */
690 rx_queue
->buffer
= kcalloc(entries
, sizeof(*rx_queue
->buffer
),
692 if (!rx_queue
->buffer
)
695 rc
= efx_nic_probe_rx(rx_queue
);
697 kfree(rx_queue
->buffer
);
698 rx_queue
->buffer
= NULL
;
704 static void efx_init_rx_recycle_ring(struct efx_nic
*efx
,
705 struct efx_rx_queue
*rx_queue
)
707 unsigned int bufs_in_recycle_ring
, page_ring_size
;
709 /* Set the RX recycle ring size */
711 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_IOMMU
;
713 if (iommu_present(&pci_bus_type
))
714 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_IOMMU
;
716 bufs_in_recycle_ring
= EFX_RECYCLE_RING_SIZE_NOIOMMU
;
717 #endif /* CONFIG_PPC64 */
719 page_ring_size
= roundup_pow_of_two(bufs_in_recycle_ring
/
720 efx
->rx_bufs_per_page
);
721 rx_queue
->page_ring
= kcalloc(page_ring_size
,
722 sizeof(*rx_queue
->page_ring
), GFP_KERNEL
);
723 rx_queue
->page_ptr_mask
= page_ring_size
- 1;
726 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
728 struct efx_nic
*efx
= rx_queue
->efx
;
729 unsigned int max_fill
, trigger
, max_trigger
;
731 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
732 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue
));
734 /* Initialise ptr fields */
735 rx_queue
->added_count
= 0;
736 rx_queue
->notified_count
= 0;
737 rx_queue
->removed_count
= 0;
738 rx_queue
->min_fill
= -1U;
739 efx_init_rx_recycle_ring(efx
, rx_queue
);
741 rx_queue
->page_remove
= 0;
742 rx_queue
->page_add
= rx_queue
->page_ptr_mask
+ 1;
743 rx_queue
->page_recycle_count
= 0;
744 rx_queue
->page_recycle_failed
= 0;
745 rx_queue
->page_recycle_full
= 0;
747 /* Initialise limit fields */
748 max_fill
= efx
->rxq_entries
- EFX_RXD_HEAD_ROOM
;
750 max_fill
- efx
->rx_pages_per_batch
* efx
->rx_bufs_per_page
;
751 if (rx_refill_threshold
!= 0) {
752 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
753 if (trigger
> max_trigger
)
754 trigger
= max_trigger
;
756 trigger
= max_trigger
;
759 rx_queue
->max_fill
= max_fill
;
760 rx_queue
->fast_fill_trigger
= trigger
;
761 rx_queue
->refill_enabled
= true;
763 /* Set up RX descriptor ring */
764 efx_nic_init_rx(rx_queue
);
767 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
770 struct efx_nic
*efx
= rx_queue
->efx
;
771 struct efx_rx_buffer
*rx_buf
;
773 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
774 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue
));
776 del_timer_sync(&rx_queue
->slow_fill
);
778 /* Release RX buffers from the current read ptr to the write ptr */
779 if (rx_queue
->buffer
) {
780 for (i
= rx_queue
->removed_count
; i
< rx_queue
->added_count
;
782 unsigned index
= i
& rx_queue
->ptr_mask
;
783 rx_buf
= efx_rx_buffer(rx_queue
, index
);
784 efx_fini_rx_buffer(rx_queue
, rx_buf
);
788 /* Unmap and release the pages in the recycle ring. Remove the ring. */
789 for (i
= 0; i
<= rx_queue
->page_ptr_mask
; i
++) {
790 struct page
*page
= rx_queue
->page_ring
[i
];
791 struct efx_rx_page_state
*state
;
796 state
= page_address(page
);
797 dma_unmap_page(&efx
->pci_dev
->dev
, state
->dma_addr
,
798 PAGE_SIZE
<< efx
->rx_buffer_order
,
802 kfree(rx_queue
->page_ring
);
803 rx_queue
->page_ring
= NULL
;
806 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
808 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
809 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue
));
811 efx_nic_remove_rx(rx_queue
);
813 kfree(rx_queue
->buffer
);
814 rx_queue
->buffer
= NULL
;
818 module_param(rx_refill_threshold
, uint
, 0444);
819 MODULE_PARM_DESC(rx_refill_threshold
,
820 "RX descriptor ring refill threshold (%)");
822 #ifdef CONFIG_RFS_ACCEL
824 int efx_filter_rfs(struct net_device
*net_dev
, const struct sk_buff
*skb
,
825 u16 rxq_index
, u32 flow_id
)
827 struct efx_nic
*efx
= netdev_priv(net_dev
);
828 struct efx_channel
*channel
;
829 struct efx_filter_spec spec
;
835 /* The core RPS/RFS code has already parsed and validated
836 * VLAN, IP and transport headers. We assume they are in the
840 if (skb
->protocol
== htons(ETH_P_8021Q
)) {
841 const struct vlan_hdr
*vh
=
842 (const struct vlan_hdr
*)skb
->data
;
844 /* We can't filter on the IP 5-tuple and the vlan
845 * together, so just strip the vlan header and filter
848 EFX_BUG_ON_PARANOID(skb_headlen(skb
) < sizeof(*vh
));
849 ether_type
= vh
->h_vlan_encapsulated_proto
;
850 nhoff
= sizeof(struct vlan_hdr
);
852 ether_type
= skb
->protocol
;
856 if (ether_type
!= htons(ETH_P_IP
) && ether_type
!= htons(ETH_P_IPV6
))
857 return -EPROTONOSUPPORT
;
859 efx_filter_init_rx(&spec
, EFX_FILTER_PRI_HINT
,
860 efx
->rx_scatter
? EFX_FILTER_FLAG_RX_SCATTER
: 0,
863 EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_IP_PROTO
|
864 EFX_FILTER_MATCH_LOC_HOST
| EFX_FILTER_MATCH_LOC_PORT
|
865 EFX_FILTER_MATCH_REM_HOST
| EFX_FILTER_MATCH_REM_PORT
;
866 spec
.ether_type
= ether_type
;
868 if (ether_type
== htons(ETH_P_IP
)) {
869 const struct iphdr
*ip
=
870 (const struct iphdr
*)(skb
->data
+ nhoff
);
872 EFX_BUG_ON_PARANOID(skb_headlen(skb
) < nhoff
+ sizeof(*ip
));
873 if (ip_is_fragment(ip
))
874 return -EPROTONOSUPPORT
;
875 spec
.ip_proto
= ip
->protocol
;
876 spec
.rem_host
[0] = ip
->saddr
;
877 spec
.loc_host
[0] = ip
->daddr
;
878 EFX_BUG_ON_PARANOID(skb_headlen(skb
) < nhoff
+ 4 * ip
->ihl
+ 4);
879 ports
= (const __be16
*)(skb
->data
+ nhoff
+ 4 * ip
->ihl
);
881 const struct ipv6hdr
*ip6
=
882 (const struct ipv6hdr
*)(skb
->data
+ nhoff
);
884 EFX_BUG_ON_PARANOID(skb_headlen(skb
) <
885 nhoff
+ sizeof(*ip6
) + 4);
886 spec
.ip_proto
= ip6
->nexthdr
;
887 memcpy(spec
.rem_host
, &ip6
->saddr
, sizeof(ip6
->saddr
));
888 memcpy(spec
.loc_host
, &ip6
->daddr
, sizeof(ip6
->daddr
));
889 ports
= (const __be16
*)(ip6
+ 1);
892 spec
.rem_port
= ports
[0];
893 spec
.loc_port
= ports
[1];
895 rc
= efx
->type
->filter_rfs_insert(efx
, &spec
);
899 /* Remember this so we can check whether to expire the filter later */
900 efx
->rps_flow_id
[rc
] = flow_id
;
901 channel
= efx_get_channel(efx
, skb_get_rx_queue(skb
));
902 ++channel
->rfs_filters_added
;
904 if (ether_type
== htons(ETH_P_IP
))
905 netif_info(efx
, rx_status
, efx
->net_dev
,
906 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
907 (spec
.ip_proto
== IPPROTO_TCP
) ? "TCP" : "UDP",
908 spec
.rem_host
, ntohs(ports
[0]), spec
.loc_host
,
909 ntohs(ports
[1]), rxq_index
, flow_id
, rc
);
911 netif_info(efx
, rx_status
, efx
->net_dev
,
912 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
913 (spec
.ip_proto
== IPPROTO_TCP
) ? "TCP" : "UDP",
914 spec
.rem_host
, ntohs(ports
[0]), spec
.loc_host
,
915 ntohs(ports
[1]), rxq_index
, flow_id
, rc
);
920 bool __efx_filter_rfs_expire(struct efx_nic
*efx
, unsigned int quota
)
922 bool (*expire_one
)(struct efx_nic
*efx
, u32 flow_id
, unsigned int index
);
923 unsigned int index
, size
;
926 if (!spin_trylock_bh(&efx
->filter_lock
))
929 expire_one
= efx
->type
->filter_rfs_expire_one
;
930 index
= efx
->rps_expire_index
;
931 size
= efx
->type
->max_rx_ip_filters
;
933 flow_id
= efx
->rps_flow_id
[index
];
934 if (expire_one(efx
, flow_id
, index
))
935 netif_info(efx
, rx_status
, efx
->net_dev
,
936 "expired filter %d [flow %u]\n",
941 efx
->rps_expire_index
= index
;
943 spin_unlock_bh(&efx
->filter_lock
);
947 #endif /* CONFIG_RFS_ACCEL */
950 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
951 * @spec: Specification to test
953 * Return: %true if the specification is a non-drop RX filter that
954 * matches a local MAC address I/G bit value of 1 or matches a local
955 * IPv4 or IPv6 address value in the respective multicast address
956 * range. Otherwise %false.
958 bool efx_filter_is_mc_recipient(const struct efx_filter_spec
*spec
)
960 if (!(spec
->flags
& EFX_FILTER_FLAG_RX
) ||
961 spec
->dmaq_id
== EFX_FILTER_RX_DMAQ_ID_DROP
)
964 if (spec
->match_flags
&
965 (EFX_FILTER_MATCH_LOC_MAC
| EFX_FILTER_MATCH_LOC_MAC_IG
) &&
966 is_multicast_ether_addr(spec
->loc_mac
))
969 if ((spec
->match_flags
&
970 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) ==
971 (EFX_FILTER_MATCH_ETHER_TYPE
| EFX_FILTER_MATCH_LOC_HOST
)) {
972 if (spec
->ether_type
== htons(ETH_P_IP
) &&
973 ipv4_is_multicast(spec
->loc_host
[0]))
975 if (spec
->ether_type
== htons(ETH_P_IPV6
) &&
976 ((const u8
*)spec
->loc_host
)[0] == 0xff)