1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/fcntl.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
24 #include <linux/sched.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <linux/random.h>
37 #include <linux/workqueue.h>
38 #include <linux/if_vlan.h>
39 #include <linux/bitops.h>
41 #include <linux/gfp.h>
44 #include <asm/byteorder.h>
45 #include <asm/uaccess.h>
49 #include <asm/idprom.h>
53 #ifdef CONFIG_PPC_PMAC
54 #include <asm/pci-bridge.h>
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
60 #include <linux/sungem_phy.h>
63 /* Stripping FCS is causing problems, disabled for now */
66 #define DEFAULT_MSG (NETIF_MSG_DRV | \
70 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
71 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
72 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
73 SUPPORTED_Pause | SUPPORTED_Autoneg)
75 #define DRV_NAME "sungem"
76 #define DRV_VERSION "1.0"
77 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
79 static char version
[] =
80 DRV_NAME
".c:v" DRV_VERSION
" " DRV_AUTHOR
"\n";
82 MODULE_AUTHOR(DRV_AUTHOR
);
83 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
84 MODULE_LICENSE("GPL");
86 #define GEM_MODULE_NAME "gem"
88 static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl
) = {
89 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
90 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
92 /* These models only differ from the original GEM in
93 * that their tx/rx fifos are of a different size and
94 * they only support 10/100 speeds. -DaveM
96 * Apple's GMAC does support gigabit on machines with
97 * the BCM54xx PHYs. -BenH
99 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
100 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
101 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
102 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
103 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
104 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
105 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
106 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
107 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
108 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
109 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
110 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
111 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
112 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
116 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
118 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
125 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
126 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
127 cmd
|= (MIF_FRAME_TAMSB
);
128 writel(cmd
, gp
->regs
+ MIF_FRAME
);
131 cmd
= readl(gp
->regs
+ MIF_FRAME
);
132 if (cmd
& MIF_FRAME_TALSB
)
141 return cmd
& MIF_FRAME_DATA
;
144 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
146 struct gem
*gp
= netdev_priv(dev
);
147 return __phy_read(gp
, mii_id
, reg
);
150 static inline u16
phy_read(struct gem
*gp
, int reg
)
152 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
155 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
162 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
163 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
164 cmd
|= (MIF_FRAME_TAMSB
);
165 cmd
|= (val
& MIF_FRAME_DATA
);
166 writel(cmd
, gp
->regs
+ MIF_FRAME
);
169 cmd
= readl(gp
->regs
+ MIF_FRAME
);
170 if (cmd
& MIF_FRAME_TALSB
)
177 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
179 struct gem
*gp
= netdev_priv(dev
);
180 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
183 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
185 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
188 static inline void gem_enable_ints(struct gem
*gp
)
190 /* Enable all interrupts but TXDONE */
191 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
194 static inline void gem_disable_ints(struct gem
*gp
)
196 /* Disable all interrupts, including TXDONE */
197 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
198 (void)readl(gp
->regs
+ GREG_IMASK
); /* write posting */
201 static void gem_get_cell(struct gem
*gp
)
203 BUG_ON(gp
->cell_enabled
< 0);
205 #ifdef CONFIG_PPC_PMAC
206 if (gp
->cell_enabled
== 1) {
208 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
211 #endif /* CONFIG_PPC_PMAC */
214 /* Turn off the chip's clock */
215 static void gem_put_cell(struct gem
*gp
)
217 BUG_ON(gp
->cell_enabled
<= 0);
219 #ifdef CONFIG_PPC_PMAC
220 if (gp
->cell_enabled
== 0) {
222 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
225 #endif /* CONFIG_PPC_PMAC */
228 static inline void gem_netif_stop(struct gem
*gp
)
230 gp
->dev
->trans_start
= jiffies
; /* prevent tx timeout */
231 napi_disable(&gp
->napi
);
232 netif_tx_disable(gp
->dev
);
235 static inline void gem_netif_start(struct gem
*gp
)
237 /* NOTE: unconditional netif_wake_queue is only
238 * appropriate so long as all callers are assured to
239 * have free tx slots.
241 netif_wake_queue(gp
->dev
);
242 napi_enable(&gp
->napi
);
245 static void gem_schedule_reset(struct gem
*gp
)
247 gp
->reset_task_pending
= 1;
248 schedule_work(&gp
->reset_task
);
251 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
253 if (netif_msg_intr(gp
))
254 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
257 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
259 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
262 if (netif_msg_intr(gp
))
263 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
264 gp
->dev
->name
, pcs_istat
);
266 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
267 netdev_err(dev
, "PCS irq but no link status change???\n");
271 /* The link status bit latches on zero, so you must
272 * read it twice in such a case to see a transition
273 * to the link being up.
275 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
276 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
278 (readl(gp
->regs
+ PCS_MIISTAT
) &
281 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
282 /* The remote-fault indication is only valid
283 * when autoneg has completed.
285 if (pcs_miistat
& PCS_MIISTAT_RF
)
286 netdev_info(dev
, "PCS AutoNEG complete, RemoteFault\n");
288 netdev_info(dev
, "PCS AutoNEG complete\n");
291 if (pcs_miistat
& PCS_MIISTAT_LS
) {
292 netdev_info(dev
, "PCS link is now up\n");
293 netif_carrier_on(gp
->dev
);
295 netdev_info(dev
, "PCS link is now down\n");
296 netif_carrier_off(gp
->dev
);
297 /* If this happens and the link timer is not running,
298 * reset so we re-negotiate.
300 if (!timer_pending(&gp
->link_timer
))
307 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
309 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
311 if (netif_msg_intr(gp
))
312 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
313 gp
->dev
->name
, txmac_stat
);
315 /* Defer timer expiration is quite normal,
316 * don't even log the event.
318 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
319 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
322 if (txmac_stat
& MAC_TXSTAT_URUN
) {
323 netdev_err(dev
, "TX MAC xmit underrun\n");
324 dev
->stats
.tx_fifo_errors
++;
327 if (txmac_stat
& MAC_TXSTAT_MPE
) {
328 netdev_err(dev
, "TX MAC max packet size error\n");
329 dev
->stats
.tx_errors
++;
332 /* The rest are all cases of one of the 16-bit TX
335 if (txmac_stat
& MAC_TXSTAT_NCE
)
336 dev
->stats
.collisions
+= 0x10000;
338 if (txmac_stat
& MAC_TXSTAT_ECE
) {
339 dev
->stats
.tx_aborted_errors
+= 0x10000;
340 dev
->stats
.collisions
+= 0x10000;
343 if (txmac_stat
& MAC_TXSTAT_LCE
) {
344 dev
->stats
.tx_aborted_errors
+= 0x10000;
345 dev
->stats
.collisions
+= 0x10000;
348 /* We do not keep track of MAC_TXSTAT_FCE and
349 * MAC_TXSTAT_PCE events.
354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
355 * so we do the following.
357 * If any part of the reset goes wrong, we return 1 and that causes the
358 * whole chip to be reset.
360 static int gem_rxmac_reset(struct gem
*gp
)
362 struct net_device
*dev
= gp
->dev
;
367 /* First, reset & disable MAC RX. */
368 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
369 for (limit
= 0; limit
< 5000; limit
++) {
370 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
375 netdev_err(dev
, "RX MAC will not reset, resetting whole chip\n");
379 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
380 gp
->regs
+ MAC_RXCFG
);
381 for (limit
= 0; limit
< 5000; limit
++) {
382 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
387 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
391 /* Second, disable RX DMA. */
392 writel(0, gp
->regs
+ RXDMA_CFG
);
393 for (limit
= 0; limit
< 5000; limit
++) {
394 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
399 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
405 /* Execute RX reset command. */
406 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
407 gp
->regs
+ GREG_SWRST
);
408 for (limit
= 0; limit
< 5000; limit
++) {
409 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
414 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
418 /* Refresh the RX ring. */
419 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
420 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
422 if (gp
->rx_skbs
[i
] == NULL
) {
423 netdev_err(dev
, "Parts of RX ring empty, resetting whole chip\n");
427 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
429 gp
->rx_new
= gp
->rx_old
= 0;
431 /* Now we must reprogram the rest of RX unit. */
432 desc_dma
= (u64
) gp
->gblock_dvma
;
433 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
434 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
435 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
436 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
437 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
438 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
439 writel(val
, gp
->regs
+ RXDMA_CFG
);
440 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
441 writel(((5 & RXDMA_BLANK_IPKTS
) |
442 ((8 << 12) & RXDMA_BLANK_ITIME
)),
443 gp
->regs
+ RXDMA_BLANK
);
445 writel(((5 & RXDMA_BLANK_IPKTS
) |
446 ((4 << 12) & RXDMA_BLANK_ITIME
)),
447 gp
->regs
+ RXDMA_BLANK
);
448 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
449 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
450 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
451 val
= readl(gp
->regs
+ RXDMA_CFG
);
452 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
453 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
454 val
= readl(gp
->regs
+ MAC_RXCFG
);
455 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
460 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
462 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
465 if (netif_msg_intr(gp
))
466 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
467 gp
->dev
->name
, rxmac_stat
);
469 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
470 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
472 netdev_err(dev
, "RX MAC fifo overflow smac[%08x]\n", smac
);
473 dev
->stats
.rx_over_errors
++;
474 dev
->stats
.rx_fifo_errors
++;
476 ret
= gem_rxmac_reset(gp
);
479 if (rxmac_stat
& MAC_RXSTAT_ACE
)
480 dev
->stats
.rx_frame_errors
+= 0x10000;
482 if (rxmac_stat
& MAC_RXSTAT_CCE
)
483 dev
->stats
.rx_crc_errors
+= 0x10000;
485 if (rxmac_stat
& MAC_RXSTAT_LCE
)
486 dev
->stats
.rx_length_errors
+= 0x10000;
488 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
494 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
496 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
498 if (netif_msg_intr(gp
))
499 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
500 gp
->dev
->name
, mac_cstat
);
502 /* This interrupt is just for pause frame and pause
503 * tracking. It is useful for diagnostics and debug
504 * but probably by default we will mask these events.
506 if (mac_cstat
& MAC_CSTAT_PS
)
509 if (mac_cstat
& MAC_CSTAT_PRCV
)
510 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
515 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
517 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
518 u32 reg_val
, changed_bits
;
520 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
521 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
523 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
528 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
530 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
532 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
533 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
534 netdev_err(dev
, "PCI error [%04x]", pci_estat
);
536 if (pci_estat
& GREG_PCIESTAT_BADACK
)
537 pr_cont(" <No ACK64# during ABS64 cycle>");
538 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
539 pr_cont(" <Delayed transaction timeout>");
540 if (pci_estat
& GREG_PCIESTAT_OTHER
)
544 pci_estat
|= GREG_PCIESTAT_OTHER
;
545 netdev_err(dev
, "PCI error\n");
548 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
551 /* Interrogate PCI config space for the
554 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
556 netdev_err(dev
, "Read PCI cfg space status [%04x]\n",
558 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
559 netdev_err(dev
, "PCI parity error detected\n");
560 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
561 netdev_err(dev
, "PCI target abort\n");
562 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
563 netdev_err(dev
, "PCI master acks target abort\n");
564 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
565 netdev_err(dev
, "PCI master abort\n");
566 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
567 netdev_err(dev
, "PCI system error SERR#\n");
568 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
569 netdev_err(dev
, "PCI parity error\n");
571 /* Write the error bits back to clear them. */
572 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
573 PCI_STATUS_SIG_TARGET_ABORT
|
574 PCI_STATUS_REC_TARGET_ABORT
|
575 PCI_STATUS_REC_MASTER_ABORT
|
576 PCI_STATUS_SIG_SYSTEM_ERROR
|
577 PCI_STATUS_DETECTED_PARITY
);
578 pci_write_config_word(gp
->pdev
,
579 PCI_STATUS
, pci_cfg_stat
);
582 /* For all PCI errors, we should reset the chip. */
586 /* All non-normal interrupt conditions get serviced here.
587 * Returns non-zero if we should just exit the interrupt
588 * handler right now (ie. if we reset the card which invalidates
589 * all of the other original irq status bits).
591 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
593 if (gem_status
& GREG_STAT_RXNOBUF
) {
594 /* Frame arrived, no free RX buffers available. */
595 if (netif_msg_rx_err(gp
))
596 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
598 dev
->stats
.rx_dropped
++;
601 if (gem_status
& GREG_STAT_RXTAGERR
) {
602 /* corrupt RX tag framing */
603 if (netif_msg_rx_err(gp
))
604 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
606 dev
->stats
.rx_errors
++;
611 if (gem_status
& GREG_STAT_PCS
) {
612 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
616 if (gem_status
& GREG_STAT_TXMAC
) {
617 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
621 if (gem_status
& GREG_STAT_RXMAC
) {
622 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
626 if (gem_status
& GREG_STAT_MAC
) {
627 if (gem_mac_interrupt(dev
, gp
, gem_status
))
631 if (gem_status
& GREG_STAT_MIF
) {
632 if (gem_mif_interrupt(dev
, gp
, gem_status
))
636 if (gem_status
& GREG_STAT_PCIERR
) {
637 if (gem_pci_interrupt(dev
, gp
, gem_status
))
644 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
649 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
650 while (entry
!= limit
) {
657 if (netif_msg_tx_done(gp
))
658 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
659 gp
->dev
->name
, entry
);
660 skb
= gp
->tx_skbs
[entry
];
661 if (skb_shinfo(skb
)->nr_frags
) {
662 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
666 last
&= (TX_RING_SIZE
- 1);
668 walk
= NEXT_TX(walk
);
677 gp
->tx_skbs
[entry
] = NULL
;
678 dev
->stats
.tx_bytes
+= skb
->len
;
680 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
681 txd
= &gp
->init_block
->txd
[entry
];
683 dma_addr
= le64_to_cpu(txd
->buffer
);
684 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
686 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
687 entry
= NEXT_TX(entry
);
690 dev
->stats
.tx_packets
++;
695 /* Need to make the tx_old update visible to gem_start_xmit()
696 * before checking for netif_queue_stopped(). Without the
697 * memory barrier, there is a small possibility that gem_start_xmit()
698 * will miss it and cause the queue to be stopped forever.
702 if (unlikely(netif_queue_stopped(dev
) &&
703 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))) {
704 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
706 __netif_tx_lock(txq
, smp_processor_id());
707 if (netif_queue_stopped(dev
) &&
708 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
709 netif_wake_queue(dev
);
710 __netif_tx_unlock(txq
);
714 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
716 int cluster_start
, curr
, count
, kick
;
718 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
722 while (curr
!= limit
) {
723 curr
= NEXT_RX(curr
);
725 struct gem_rxd
*rxd
=
726 &gp
->init_block
->rxd
[cluster_start
];
728 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
730 cluster_start
= NEXT_RX(cluster_start
);
731 if (cluster_start
== curr
)
740 writel(kick
, gp
->regs
+ RXDMA_KICK
);
744 #define ALIGNED_RX_SKB_ADDR(addr) \
745 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
746 static __inline__
struct sk_buff
*gem_alloc_skb(struct net_device
*dev
, int size
,
749 struct sk_buff
*skb
= alloc_skb(size
+ 64, gfp_flags
);
752 unsigned long offset
= ALIGNED_RX_SKB_ADDR(skb
->data
);
753 skb_reserve(skb
, offset
);
758 static int gem_rx(struct gem
*gp
, int work_to_do
)
760 struct net_device
*dev
= gp
->dev
;
761 int entry
, drops
, work_done
= 0;
765 if (netif_msg_rx_status(gp
))
766 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
767 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
771 done
= readl(gp
->regs
+ RXDMA_DONE
);
773 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
775 u64 status
= le64_to_cpu(rxd
->status_word
);
779 if ((status
& RXDCTRL_OWN
) != 0)
782 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
785 /* When writing back RX descriptor, GEM writes status
786 * then buffer address, possibly in separate transactions.
787 * If we don't wait for the chip to write both, we could
788 * post a new buffer to this descriptor then have GEM spam
789 * on the buffer address. We sync on the RX completion
790 * register to prevent this from happening.
793 done
= readl(gp
->regs
+ RXDMA_DONE
);
798 /* We can now account for the work we're about to do */
801 skb
= gp
->rx_skbs
[entry
];
803 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
804 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
805 dev
->stats
.rx_errors
++;
807 dev
->stats
.rx_length_errors
++;
808 if (len
& RXDCTRL_BAD
)
809 dev
->stats
.rx_crc_errors
++;
811 /* We'll just return it to GEM. */
813 dev
->stats
.rx_dropped
++;
817 dma_addr
= le64_to_cpu(rxd
->buffer
);
818 if (len
> RX_COPY_THRESHOLD
) {
819 struct sk_buff
*new_skb
;
821 new_skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
822 if (new_skb
== NULL
) {
826 pci_unmap_page(gp
->pdev
, dma_addr
,
827 RX_BUF_ALLOC_SIZE(gp
),
829 gp
->rx_skbs
[entry
] = new_skb
;
830 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
831 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
832 virt_to_page(new_skb
->data
),
833 offset_in_page(new_skb
->data
),
834 RX_BUF_ALLOC_SIZE(gp
),
835 PCI_DMA_FROMDEVICE
));
836 skb_reserve(new_skb
, RX_OFFSET
);
838 /* Trim the original skb for the netif. */
841 struct sk_buff
*copy_skb
= netdev_alloc_skb(dev
, len
+ 2);
843 if (copy_skb
== NULL
) {
848 skb_reserve(copy_skb
, 2);
849 skb_put(copy_skb
, len
);
850 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
851 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
852 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
854 /* We'll reuse the original ring buffer. */
858 csum
= (__force __sum16
)htons((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
859 skb
->csum
= csum_unfold(csum
);
860 skb
->ip_summed
= CHECKSUM_COMPLETE
;
861 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
863 napi_gro_receive(&gp
->napi
, skb
);
865 dev
->stats
.rx_packets
++;
866 dev
->stats
.rx_bytes
+= len
;
869 entry
= NEXT_RX(entry
);
872 gem_post_rxds(gp
, entry
);
877 netdev_info(gp
->dev
, "Memory squeeze, deferring packet\n");
882 static int gem_poll(struct napi_struct
*napi
, int budget
)
884 struct gem
*gp
= container_of(napi
, struct gem
, napi
);
885 struct net_device
*dev
= gp
->dev
;
890 /* Handle anomalies */
891 if (unlikely(gp
->status
& GREG_STAT_ABNORMAL
)) {
892 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, 0);
895 /* We run the abnormal interrupt handling code with
896 * the Tx lock. It only resets the Rx portion of the
897 * chip, but we need to guard it against DMA being
898 * restarted by the link poll timer
900 __netif_tx_lock(txq
, smp_processor_id());
901 reset
= gem_abnormal_irq(dev
, gp
, gp
->status
);
902 __netif_tx_unlock(txq
);
904 gem_schedule_reset(gp
);
910 /* Run TX completion thread */
911 gem_tx(dev
, gp
, gp
->status
);
913 /* Run RX thread. We don't use any locking here,
914 * code willing to do bad things - like cleaning the
915 * rx ring - must call napi_disable(), which
916 * schedule_timeout()'s if polling is already disabled.
918 work_done
+= gem_rx(gp
, budget
- work_done
);
920 if (work_done
>= budget
)
923 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
924 } while (gp
->status
& GREG_STAT_NAPI
);
932 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
934 struct net_device
*dev
= dev_id
;
935 struct gem
*gp
= netdev_priv(dev
);
937 if (napi_schedule_prep(&gp
->napi
)) {
938 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
940 if (unlikely(gem_status
== 0)) {
941 napi_enable(&gp
->napi
);
944 if (netif_msg_intr(gp
))
945 printk(KERN_DEBUG
"%s: gem_interrupt() gem_status: 0x%x\n",
946 gp
->dev
->name
, gem_status
);
948 gp
->status
= gem_status
;
949 gem_disable_ints(gp
);
950 __napi_schedule(&gp
->napi
);
953 /* If polling was disabled at the time we received that
954 * interrupt, we may return IRQ_HANDLED here while we
955 * should return IRQ_NONE. No big deal...
960 #ifdef CONFIG_NET_POLL_CONTROLLER
961 static void gem_poll_controller(struct net_device
*dev
)
963 struct gem
*gp
= netdev_priv(dev
);
965 disable_irq(gp
->pdev
->irq
);
966 gem_interrupt(gp
->pdev
->irq
, dev
);
967 enable_irq(gp
->pdev
->irq
);
971 static void gem_tx_timeout(struct net_device
*dev
)
973 struct gem
*gp
= netdev_priv(dev
);
975 netdev_err(dev
, "transmit timed out, resetting\n");
977 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x]\n",
978 readl(gp
->regs
+ TXDMA_CFG
),
979 readl(gp
->regs
+ MAC_TXSTAT
),
980 readl(gp
->regs
+ MAC_TXCFG
));
981 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
982 readl(gp
->regs
+ RXDMA_CFG
),
983 readl(gp
->regs
+ MAC_RXSTAT
),
984 readl(gp
->regs
+ MAC_RXCFG
));
986 gem_schedule_reset(gp
);
989 static __inline__
int gem_intme(int entry
)
991 /* Algorithm: IRQ every 1/2 of descriptors. */
992 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
998 static netdev_tx_t
gem_start_xmit(struct sk_buff
*skb
,
999 struct net_device
*dev
)
1001 struct gem
*gp
= netdev_priv(dev
);
1006 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1007 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
1008 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1010 ctrl
= (TXDCTRL_CENAB
|
1011 (csum_start_off
<< 15) |
1012 (csum_stuff_off
<< 21));
1015 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1))) {
1016 /* This is a hard error, log it. */
1017 if (!netif_queue_stopped(dev
)) {
1018 netif_stop_queue(dev
);
1019 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
1021 return NETDEV_TX_BUSY
;
1025 gp
->tx_skbs
[entry
] = skb
;
1027 if (skb_shinfo(skb
)->nr_frags
== 0) {
1028 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1033 mapping
= pci_map_page(gp
->pdev
,
1034 virt_to_page(skb
->data
),
1035 offset_in_page(skb
->data
),
1036 len
, PCI_DMA_TODEVICE
);
1037 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1038 if (gem_intme(entry
))
1039 ctrl
|= TXDCTRL_INTME
;
1040 txd
->buffer
= cpu_to_le64(mapping
);
1042 txd
->control_word
= cpu_to_le64(ctrl
);
1043 entry
= NEXT_TX(entry
);
1045 struct gem_txd
*txd
;
1048 dma_addr_t first_mapping
;
1049 int frag
, first_entry
= entry
;
1052 if (gem_intme(entry
))
1053 intme
|= TXDCTRL_INTME
;
1055 /* We must give this initial chunk to the device last.
1056 * Otherwise we could race with the device.
1058 first_len
= skb_headlen(skb
);
1059 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1060 offset_in_page(skb
->data
),
1061 first_len
, PCI_DMA_TODEVICE
);
1062 entry
= NEXT_TX(entry
);
1064 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1065 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1070 len
= skb_frag_size(this_frag
);
1071 mapping
= skb_frag_dma_map(&gp
->pdev
->dev
, this_frag
,
1072 0, len
, DMA_TO_DEVICE
);
1074 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1075 this_ctrl
|= TXDCTRL_EOF
;
1077 txd
= &gp
->init_block
->txd
[entry
];
1078 txd
->buffer
= cpu_to_le64(mapping
);
1080 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1082 if (gem_intme(entry
))
1083 intme
|= TXDCTRL_INTME
;
1085 entry
= NEXT_TX(entry
);
1087 txd
= &gp
->init_block
->txd
[first_entry
];
1088 txd
->buffer
= cpu_to_le64(first_mapping
);
1091 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1095 if (unlikely(TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))) {
1096 netif_stop_queue(dev
);
1098 /* netif_stop_queue() must be done before checking
1099 * checking tx index in TX_BUFFS_AVAIL() below, because
1100 * in gem_tx(), we update tx_old before checking for
1101 * netif_queue_stopped().
1104 if (TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
1105 netif_wake_queue(dev
);
1107 if (netif_msg_tx_queued(gp
))
1108 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1109 dev
->name
, entry
, skb
->len
);
1111 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1113 return NETDEV_TX_OK
;
1116 static void gem_pcs_reset(struct gem
*gp
)
1121 /* Reset PCS unit. */
1122 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1123 val
|= PCS_MIICTRL_RST
;
1124 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1127 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1133 netdev_warn(gp
->dev
, "PCS reset bit would not clear\n");
1136 static void gem_pcs_reinit_adv(struct gem
*gp
)
1140 /* Make sure PCS is disabled while changing advertisement
1143 val
= readl(gp
->regs
+ PCS_CFG
);
1144 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1145 writel(val
, gp
->regs
+ PCS_CFG
);
1147 /* Advertise all capabilities except asymmetric
1150 val
= readl(gp
->regs
+ PCS_MIIADV
);
1151 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1152 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1153 writel(val
, gp
->regs
+ PCS_MIIADV
);
1155 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1156 * and re-enable PCS.
1158 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1159 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1160 val
&= ~PCS_MIICTRL_WB
;
1161 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1163 val
= readl(gp
->regs
+ PCS_CFG
);
1164 val
|= PCS_CFG_ENABLE
;
1165 writel(val
, gp
->regs
+ PCS_CFG
);
1167 /* Make sure serialink loopback is off. The meaning
1168 * of this bit is logically inverted based upon whether
1169 * you are in Serialink or SERDES mode.
1171 val
= readl(gp
->regs
+ PCS_SCTRL
);
1172 if (gp
->phy_type
== phy_serialink
)
1173 val
&= ~PCS_SCTRL_LOOP
;
1175 val
|= PCS_SCTRL_LOOP
;
1176 writel(val
, gp
->regs
+ PCS_SCTRL
);
1179 #define STOP_TRIES 32
1181 static void gem_reset(struct gem
*gp
)
1186 /* Make sure we won't get any more interrupts */
1187 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1189 /* Reset the chip */
1190 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1191 gp
->regs
+ GREG_SWRST
);
1197 val
= readl(gp
->regs
+ GREG_SWRST
);
1200 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1203 netdev_err(gp
->dev
, "SW reset is ghetto\n");
1205 if (gp
->phy_type
== phy_serialink
|| gp
->phy_type
== phy_serdes
)
1206 gem_pcs_reinit_adv(gp
);
1209 static void gem_start_dma(struct gem
*gp
)
1213 /* We are ready to rock, turn everything on. */
1214 val
= readl(gp
->regs
+ TXDMA_CFG
);
1215 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1216 val
= readl(gp
->regs
+ RXDMA_CFG
);
1217 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1218 val
= readl(gp
->regs
+ MAC_TXCFG
);
1219 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1220 val
= readl(gp
->regs
+ MAC_RXCFG
);
1221 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1223 (void) readl(gp
->regs
+ MAC_RXCFG
);
1226 gem_enable_ints(gp
);
1228 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1231 /* DMA won't be actually stopped before about 4ms tho ...
1233 static void gem_stop_dma(struct gem
*gp
)
1237 /* We are done rocking, turn everything off. */
1238 val
= readl(gp
->regs
+ TXDMA_CFG
);
1239 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1240 val
= readl(gp
->regs
+ RXDMA_CFG
);
1241 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1242 val
= readl(gp
->regs
+ MAC_TXCFG
);
1243 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1244 val
= readl(gp
->regs
+ MAC_RXCFG
);
1245 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1247 (void) readl(gp
->regs
+ MAC_RXCFG
);
1249 /* Need to wait a bit ... done by the caller */
1253 // XXX dbl check what that function should do when called on PCS PHY
1254 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1256 u32 advertise
, features
;
1261 if (gp
->phy_type
!= phy_mii_mdio0
&&
1262 gp
->phy_type
!= phy_mii_mdio1
)
1265 /* Setup advertise */
1266 if (found_mii_phy(gp
))
1267 features
= gp
->phy_mii
.def
->features
;
1271 advertise
= features
& ADVERTISE_MASK
;
1272 if (gp
->phy_mii
.advertising
!= 0)
1273 advertise
&= gp
->phy_mii
.advertising
;
1275 autoneg
= gp
->want_autoneg
;
1276 speed
= gp
->phy_mii
.speed
;
1277 duplex
= gp
->phy_mii
.duplex
;
1279 /* Setup link parameters */
1282 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1283 advertise
= ep
->advertising
;
1287 speed
= ethtool_cmd_speed(ep
);
1288 duplex
= ep
->duplex
;
1292 /* Sanitize settings based on PHY capabilities */
1293 if ((features
& SUPPORTED_Autoneg
) == 0)
1295 if (speed
== SPEED_1000
&&
1296 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1298 if (speed
== SPEED_100
&&
1299 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1301 if (duplex
== DUPLEX_FULL
&&
1302 !(features
& (SUPPORTED_1000baseT_Full
|
1303 SUPPORTED_100baseT_Full
|
1304 SUPPORTED_10baseT_Full
)))
1305 duplex
= DUPLEX_HALF
;
1309 /* If we are asleep, we don't try to actually setup the PHY, we
1310 * just store the settings
1312 if (!netif_device_present(gp
->dev
)) {
1313 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1314 gp
->phy_mii
.speed
= speed
;
1315 gp
->phy_mii
.duplex
= duplex
;
1319 /* Configure PHY & start aneg */
1320 gp
->want_autoneg
= autoneg
;
1322 if (found_mii_phy(gp
))
1323 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1324 gp
->lstate
= link_aneg
;
1326 if (found_mii_phy(gp
))
1327 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1328 gp
->lstate
= link_force_ok
;
1332 gp
->timer_ticks
= 0;
1333 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1336 /* A link-up condition has occurred, initialize and enable the
1339 static int gem_set_link_modes(struct gem
*gp
)
1341 struct netdev_queue
*txq
= netdev_get_tx_queue(gp
->dev
, 0);
1342 int full_duplex
, speed
, pause
;
1349 if (found_mii_phy(gp
)) {
1350 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1352 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1353 speed
= gp
->phy_mii
.speed
;
1354 pause
= gp
->phy_mii
.pause
;
1355 } else if (gp
->phy_type
== phy_serialink
||
1356 gp
->phy_type
== phy_serdes
) {
1357 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1359 if ((pcs_lpa
& PCS_MIIADV_FD
) || gp
->phy_type
== phy_serdes
)
1364 netif_info(gp
, link
, gp
->dev
, "Link is up at %d Mbps, %s-duplex\n",
1365 speed
, (full_duplex
? "full" : "half"));
1368 /* We take the tx queue lock to avoid collisions between
1369 * this code, the tx path and the NAPI-driven error path
1371 __netif_tx_lock(txq
, smp_processor_id());
1373 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1375 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1377 /* MAC_TXCFG_NBO must be zero. */
1379 writel(val
, gp
->regs
+ MAC_TXCFG
);
1381 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1383 (gp
->phy_type
== phy_mii_mdio0
||
1384 gp
->phy_type
== phy_mii_mdio1
)) {
1385 val
|= MAC_XIFCFG_DISE
;
1386 } else if (full_duplex
) {
1387 val
|= MAC_XIFCFG_FLED
;
1390 if (speed
== SPEED_1000
)
1391 val
|= (MAC_XIFCFG_GMII
);
1393 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1395 /* If gigabit and half-duplex, enable carrier extension
1396 * mode. Else, disable it.
1398 if (speed
== SPEED_1000
&& !full_duplex
) {
1399 val
= readl(gp
->regs
+ MAC_TXCFG
);
1400 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1402 val
= readl(gp
->regs
+ MAC_RXCFG
);
1403 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1405 val
= readl(gp
->regs
+ MAC_TXCFG
);
1406 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1408 val
= readl(gp
->regs
+ MAC_RXCFG
);
1409 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1412 if (gp
->phy_type
== phy_serialink
||
1413 gp
->phy_type
== phy_serdes
) {
1414 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1416 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1421 writel(512, gp
->regs
+ MAC_STIME
);
1423 writel(64, gp
->regs
+ MAC_STIME
);
1424 val
= readl(gp
->regs
+ MAC_MCCFG
);
1426 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1428 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1429 writel(val
, gp
->regs
+ MAC_MCCFG
);
1433 __netif_tx_unlock(txq
);
1435 if (netif_msg_link(gp
)) {
1437 netdev_info(gp
->dev
,
1438 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1443 netdev_info(gp
->dev
, "Pause is disabled\n");
1450 static int gem_mdio_link_not_up(struct gem
*gp
)
1452 switch (gp
->lstate
) {
1453 case link_force_ret
:
1454 netif_info(gp
, link
, gp
->dev
,
1455 "Autoneg failed again, keeping forced mode\n");
1456 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1457 gp
->last_forced_speed
, DUPLEX_HALF
);
1458 gp
->timer_ticks
= 5;
1459 gp
->lstate
= link_force_ok
;
1462 /* We try forced modes after a failed aneg only on PHYs that don't
1463 * have "magic_aneg" bit set, which means they internally do the
1464 * while forced-mode thingy. On these, we just restart aneg
1466 if (gp
->phy_mii
.def
->magic_aneg
)
1468 netif_info(gp
, link
, gp
->dev
, "switching to forced 100bt\n");
1469 /* Try forced modes. */
1470 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1472 gp
->timer_ticks
= 5;
1473 gp
->lstate
= link_force_try
;
1475 case link_force_try
:
1476 /* Downgrade from 100 to 10 Mbps if necessary.
1477 * If already at 10Mbps, warn user about the
1478 * situation every 10 ticks.
1480 if (gp
->phy_mii
.speed
== SPEED_100
) {
1481 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1483 gp
->timer_ticks
= 5;
1484 netif_info(gp
, link
, gp
->dev
,
1485 "switching to forced 10bt\n");
1494 static void gem_link_timer(unsigned long data
)
1496 struct gem
*gp
= (struct gem
*) data
;
1497 struct net_device
*dev
= gp
->dev
;
1498 int restart_aneg
= 0;
1500 /* There's no point doing anything if we're going to be reset */
1501 if (gp
->reset_task_pending
)
1504 if (gp
->phy_type
== phy_serialink
||
1505 gp
->phy_type
== phy_serdes
) {
1506 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1508 if (!(val
& PCS_MIISTAT_LS
))
1509 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1511 if ((val
& PCS_MIISTAT_LS
) != 0) {
1512 if (gp
->lstate
== link_up
)
1515 gp
->lstate
= link_up
;
1516 netif_carrier_on(dev
);
1517 (void)gem_set_link_modes(gp
);
1521 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1522 /* Ok, here we got a link. If we had it due to a forced
1523 * fallback, and we were configured for autoneg, we do
1524 * retry a short autoneg pass. If you know your hub is
1525 * broken, use ethtool ;)
1527 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1528 gp
->lstate
= link_force_ret
;
1529 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1530 gp
->timer_ticks
= 5;
1531 if (netif_msg_link(gp
))
1533 "Got link after fallback, retrying autoneg once...\n");
1534 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1535 } else if (gp
->lstate
!= link_up
) {
1536 gp
->lstate
= link_up
;
1537 netif_carrier_on(dev
);
1538 if (gem_set_link_modes(gp
))
1542 /* If the link was previously up, we restart the
1545 if (gp
->lstate
== link_up
) {
1546 gp
->lstate
= link_down
;
1547 netif_info(gp
, link
, dev
, "Link down\n");
1548 netif_carrier_off(dev
);
1549 gem_schedule_reset(gp
);
1550 /* The reset task will restart the timer */
1552 } else if (++gp
->timer_ticks
> 10) {
1553 if (found_mii_phy(gp
))
1554 restart_aneg
= gem_mdio_link_not_up(gp
);
1560 gem_begin_auto_negotiation(gp
, NULL
);
1564 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1567 static void gem_clean_rings(struct gem
*gp
)
1569 struct gem_init_block
*gb
= gp
->init_block
;
1570 struct sk_buff
*skb
;
1572 dma_addr_t dma_addr
;
1574 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1575 struct gem_rxd
*rxd
;
1578 if (gp
->rx_skbs
[i
] != NULL
) {
1579 skb
= gp
->rx_skbs
[i
];
1580 dma_addr
= le64_to_cpu(rxd
->buffer
);
1581 pci_unmap_page(gp
->pdev
, dma_addr
,
1582 RX_BUF_ALLOC_SIZE(gp
),
1583 PCI_DMA_FROMDEVICE
);
1584 dev_kfree_skb_any(skb
);
1585 gp
->rx_skbs
[i
] = NULL
;
1587 rxd
->status_word
= 0;
1592 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1593 if (gp
->tx_skbs
[i
] != NULL
) {
1594 struct gem_txd
*txd
;
1597 skb
= gp
->tx_skbs
[i
];
1598 gp
->tx_skbs
[i
] = NULL
;
1600 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1601 int ent
= i
& (TX_RING_SIZE
- 1);
1603 txd
= &gb
->txd
[ent
];
1604 dma_addr
= le64_to_cpu(txd
->buffer
);
1605 pci_unmap_page(gp
->pdev
, dma_addr
,
1606 le64_to_cpu(txd
->control_word
) &
1607 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1609 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1612 dev_kfree_skb_any(skb
);
1617 static void gem_init_rings(struct gem
*gp
)
1619 struct gem_init_block
*gb
= gp
->init_block
;
1620 struct net_device
*dev
= gp
->dev
;
1622 dma_addr_t dma_addr
;
1624 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1626 gem_clean_rings(gp
);
1628 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1629 (unsigned)VLAN_ETH_FRAME_LEN
);
1631 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1632 struct sk_buff
*skb
;
1633 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1635 skb
= gem_alloc_skb(dev
, RX_BUF_ALLOC_SIZE(gp
), GFP_KERNEL
);
1638 rxd
->status_word
= 0;
1642 gp
->rx_skbs
[i
] = skb
;
1643 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1644 dma_addr
= pci_map_page(gp
->pdev
,
1645 virt_to_page(skb
->data
),
1646 offset_in_page(skb
->data
),
1647 RX_BUF_ALLOC_SIZE(gp
),
1648 PCI_DMA_FROMDEVICE
);
1649 rxd
->buffer
= cpu_to_le64(dma_addr
);
1651 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1652 skb_reserve(skb
, RX_OFFSET
);
1655 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1656 struct gem_txd
*txd
= &gb
->txd
[i
];
1658 txd
->control_word
= 0;
1665 /* Init PHY interface and start link poll state machine */
1666 static void gem_init_phy(struct gem
*gp
)
1670 /* Revert MIF CFG setting done on stop_phy */
1671 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1672 mifcfg
&= ~MIF_CFG_BBMODE
;
1673 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1675 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1678 /* Those delay sucks, the HW seem to love them though, I'll
1679 * serisouly consider breaking some locks here to be able
1680 * to schedule instead
1682 for (i
= 0; i
< 3; i
++) {
1683 #ifdef CONFIG_PPC_PMAC
1684 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1687 /* Some PHYs used by apple have problem getting back to us,
1688 * we do an additional reset here
1690 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1692 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1695 netdev_warn(gp
->dev
, "GMAC PHY not responding !\n");
1699 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1700 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1703 /* Init datapath mode register. */
1704 if (gp
->phy_type
== phy_mii_mdio0
||
1705 gp
->phy_type
== phy_mii_mdio1
) {
1706 val
= PCS_DMODE_MGM
;
1707 } else if (gp
->phy_type
== phy_serialink
) {
1708 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1710 val
= PCS_DMODE_ESM
;
1713 writel(val
, gp
->regs
+ PCS_DMODE
);
1716 if (gp
->phy_type
== phy_mii_mdio0
||
1717 gp
->phy_type
== phy_mii_mdio1
) {
1718 /* Reset and detect MII PHY */
1719 sungem_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1722 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1723 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1726 gem_pcs_reinit_adv(gp
);
1729 /* Default aneg parameters */
1730 gp
->timer_ticks
= 0;
1731 gp
->lstate
= link_down
;
1732 netif_carrier_off(gp
->dev
);
1734 /* Print things out */
1735 if (gp
->phy_type
== phy_mii_mdio0
||
1736 gp
->phy_type
== phy_mii_mdio1
)
1737 netdev_info(gp
->dev
, "Found %s PHY\n",
1738 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
1740 gem_begin_auto_negotiation(gp
, NULL
);
1743 static void gem_init_dma(struct gem
*gp
)
1745 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1748 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1749 writel(val
, gp
->regs
+ TXDMA_CFG
);
1751 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1752 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1753 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1755 writel(0, gp
->regs
+ TXDMA_KICK
);
1757 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1758 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1759 writel(val
, gp
->regs
+ RXDMA_CFG
);
1761 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1762 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1764 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1766 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1767 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1768 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1770 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1771 writel(((5 & RXDMA_BLANK_IPKTS
) |
1772 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1773 gp
->regs
+ RXDMA_BLANK
);
1775 writel(((5 & RXDMA_BLANK_IPKTS
) |
1776 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1777 gp
->regs
+ RXDMA_BLANK
);
1780 static u32
gem_setup_multicast(struct gem
*gp
)
1785 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1786 (netdev_mc_count(gp
->dev
) > 256)) {
1787 for (i
=0; i
<16; i
++)
1788 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1789 rxcfg
|= MAC_RXCFG_HFE
;
1790 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1791 rxcfg
|= MAC_RXCFG_PROM
;
1795 struct netdev_hw_addr
*ha
;
1798 memset(hash_table
, 0, sizeof(hash_table
));
1799 netdev_for_each_mc_addr(ha
, gp
->dev
) {
1800 crc
= ether_crc_le(6, ha
->addr
);
1802 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1804 for (i
=0; i
<16; i
++)
1805 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1806 rxcfg
|= MAC_RXCFG_HFE
;
1812 static void gem_init_mac(struct gem
*gp
)
1814 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1816 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1818 writel(0x00, gp
->regs
+ MAC_IPG0
);
1819 writel(0x08, gp
->regs
+ MAC_IPG1
);
1820 writel(0x04, gp
->regs
+ MAC_IPG2
);
1821 writel(0x40, gp
->regs
+ MAC_STIME
);
1822 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1824 /* Ethernet payload + header + FCS + optional VLAN tag. */
1825 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1827 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1828 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1829 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1830 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1832 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1834 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1835 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1836 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1838 writel(0, gp
->regs
+ MAC_ADDR3
);
1839 writel(0, gp
->regs
+ MAC_ADDR4
);
1840 writel(0, gp
->regs
+ MAC_ADDR5
);
1842 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1843 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1844 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1846 writel(0, gp
->regs
+ MAC_AFILT0
);
1847 writel(0, gp
->regs
+ MAC_AFILT1
);
1848 writel(0, gp
->regs
+ MAC_AFILT2
);
1849 writel(0, gp
->regs
+ MAC_AF21MSK
);
1850 writel(0, gp
->regs
+ MAC_AF0MSK
);
1852 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1854 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1856 writel(0, gp
->regs
+ MAC_NCOLL
);
1857 writel(0, gp
->regs
+ MAC_FASUCC
);
1858 writel(0, gp
->regs
+ MAC_ECOLL
);
1859 writel(0, gp
->regs
+ MAC_LCOLL
);
1860 writel(0, gp
->regs
+ MAC_DTIMER
);
1861 writel(0, gp
->regs
+ MAC_PATMPS
);
1862 writel(0, gp
->regs
+ MAC_RFCTR
);
1863 writel(0, gp
->regs
+ MAC_LERR
);
1864 writel(0, gp
->regs
+ MAC_AERR
);
1865 writel(0, gp
->regs
+ MAC_FCSERR
);
1866 writel(0, gp
->regs
+ MAC_RXCVERR
);
1868 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1869 * them once a link is established.
1871 writel(0, gp
->regs
+ MAC_TXCFG
);
1872 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1873 writel(0, gp
->regs
+ MAC_MCCFG
);
1874 writel(0, gp
->regs
+ MAC_XIFCFG
);
1876 /* Setup MAC interrupts. We want to get all of the interesting
1877 * counter expiration events, but we do not want to hear about
1878 * normal rx/tx as the DMA engine tells us that.
1880 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1881 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1883 /* Don't enable even the PAUSE interrupts for now, we
1884 * make no use of those events other than to record them.
1886 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1888 /* Don't enable GEM's WOL in normal operations
1891 writel(0, gp
->regs
+ WOL_WAKECSR
);
1894 static void gem_init_pause_thresholds(struct gem
*gp
)
1898 /* Calculate pause thresholds. Setting the OFF threshold to the
1899 * full RX fifo size effectively disables PAUSE generation which
1900 * is what we do for 10/100 only GEMs which have FIFOs too small
1901 * to make real gains from PAUSE.
1903 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1904 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1906 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1907 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1908 int on
= off
- max_frame
;
1910 gp
->rx_pause_off
= off
;
1911 gp
->rx_pause_on
= on
;
1915 /* Configure the chip "burst" DMA mode & enable some
1916 * HW bug fixes on Apple version
1919 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1920 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1921 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1922 cfg
|= GREG_CFG_IBURST
;
1924 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1925 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1926 writel(cfg
, gp
->regs
+ GREG_CFG
);
1928 /* If Infinite Burst didn't stick, then use different
1929 * thresholds (and Apple bug fixes don't exist)
1931 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1932 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1933 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1934 writel(cfg
, gp
->regs
+ GREG_CFG
);
1938 static int gem_check_invariants(struct gem
*gp
)
1940 struct pci_dev
*pdev
= gp
->pdev
;
1943 /* On Apple's sungem, we can't rely on registers as the chip
1944 * was been powered down by the firmware. The PHY is looked
1947 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1948 gp
->phy_type
= phy_mii_mdio0
;
1949 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1950 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
1953 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1954 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
1955 mif_cfg
|= MIF_CFG_MDI0
;
1956 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1957 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
1958 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
1960 /* We hard-code the PHY address so we can properly bring it out of
1961 * reset later on, we can't really probe it at this point, though
1962 * that isn't an issue.
1964 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
1965 gp
->mii_phy_addr
= 1;
1967 gp
->mii_phy_addr
= 0;
1972 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
1974 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1975 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
1976 /* One of the MII PHYs _must_ be present
1977 * as this chip has no gigabit PHY.
1979 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
1980 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1986 /* Determine initial PHY interface type guess. MDIO1 is the
1987 * external PHY and thus takes precedence over MDIO0.
1990 if (mif_cfg
& MIF_CFG_MDI1
) {
1991 gp
->phy_type
= phy_mii_mdio1
;
1992 mif_cfg
|= MIF_CFG_PSELECT
;
1993 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
1994 } else if (mif_cfg
& MIF_CFG_MDI0
) {
1995 gp
->phy_type
= phy_mii_mdio0
;
1996 mif_cfg
&= ~MIF_CFG_PSELECT
;
1997 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2002 p
= of_get_property(gp
->of_node
, "shared-pins", NULL
);
2003 if (p
&& !strcmp(p
, "serdes"))
2004 gp
->phy_type
= phy_serdes
;
2007 gp
->phy_type
= phy_serialink
;
2009 if (gp
->phy_type
== phy_mii_mdio1
||
2010 gp
->phy_type
== phy_mii_mdio0
) {
2013 for (i
= 0; i
< 32; i
++) {
2014 gp
->mii_phy_addr
= i
;
2015 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2019 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2020 pr_err("RIO MII phy will not respond\n");
2023 gp
->phy_type
= phy_serdes
;
2027 /* Fetch the FIFO configurations now too. */
2028 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2029 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2031 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2032 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2033 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2034 gp
->rx_fifo_sz
!= (20 * 1024)) {
2035 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2036 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2041 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2042 gp
->rx_fifo_sz
!= (2 * 1024)) {
2043 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2044 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2047 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2054 static void gem_reinit_chip(struct gem
*gp
)
2056 /* Reset the chip */
2059 /* Make sure ints are disabled */
2060 gem_disable_ints(gp
);
2062 /* Allocate & setup ring buffers */
2065 /* Configure pause thresholds */
2066 gem_init_pause_thresholds(gp
);
2068 /* Init DMA & MAC engines */
2074 static void gem_stop_phy(struct gem
*gp
, int wol
)
2078 /* Let the chip settle down a bit, it seems that helps
2079 * for sleep mode on some models
2083 /* Make sure we aren't polling PHY status change. We
2084 * don't currently use that feature though
2086 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2087 mifcfg
&= ~MIF_CFG_POLL
;
2088 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2090 if (wol
&& gp
->has_wol
) {
2091 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2094 /* Setup wake-on-lan for MAGIC packet */
2095 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2096 gp
->regs
+ MAC_RXCFG
);
2097 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2098 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2099 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2101 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2102 csr
= WOL_WAKECSR_ENABLE
;
2103 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2104 csr
|= WOL_WAKECSR_MII
;
2105 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2107 writel(0, gp
->regs
+ MAC_RXCFG
);
2108 (void)readl(gp
->regs
+ MAC_RXCFG
);
2109 /* Machine sleep will die in strange ways if we
2110 * dont wait a bit here, looks like the chip takes
2111 * some time to really shut down
2116 writel(0, gp
->regs
+ MAC_TXCFG
);
2117 writel(0, gp
->regs
+ MAC_XIFCFG
);
2118 writel(0, gp
->regs
+ TXDMA_CFG
);
2119 writel(0, gp
->regs
+ RXDMA_CFG
);
2123 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2124 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2126 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2127 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2129 /* According to Apple, we must set the MDIO pins to this begnign
2130 * state or we may 1) eat more current, 2) damage some PHYs
2132 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2133 writel(0, gp
->regs
+ MIF_BBCLK
);
2134 writel(0, gp
->regs
+ MIF_BBDATA
);
2135 writel(0, gp
->regs
+ MIF_BBOENAB
);
2136 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2137 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2141 static int gem_do_start(struct net_device
*dev
)
2143 struct gem
*gp
= netdev_priv(dev
);
2146 /* Enable the cell */
2149 /* Make sure PCI access and bus master are enabled */
2150 rc
= pci_enable_device(gp
->pdev
);
2152 netdev_err(dev
, "Failed to enable chip on PCI bus !\n");
2154 /* Put cell and forget it for now, it will be considered as
2155 * still asleep, a new sleep cycle may bring it back
2160 pci_set_master(gp
->pdev
);
2162 /* Init & setup chip hardware */
2163 gem_reinit_chip(gp
);
2165 /* An interrupt might come in handy */
2166 rc
= request_irq(gp
->pdev
->irq
, gem_interrupt
,
2167 IRQF_SHARED
, dev
->name
, (void *)dev
);
2169 netdev_err(dev
, "failed to request irq !\n");
2172 gem_clean_rings(gp
);
2177 /* Mark us as attached again if we come from resume(), this has
2178 * no effect if we weren't detatched and needs to be done now.
2180 netif_device_attach(dev
);
2182 /* Restart NAPI & queues */
2183 gem_netif_start(gp
);
2185 /* Detect & init PHY, start autoneg etc... this will
2186 * eventually result in starting DMA operations when
2194 static void gem_do_stop(struct net_device
*dev
, int wol
)
2196 struct gem
*gp
= netdev_priv(dev
);
2198 /* Stop NAPI and stop tx queue */
2201 /* Make sure ints are disabled. We don't care about
2202 * synchronizing as NAPI is disabled, thus a stray
2203 * interrupt will do nothing bad (our irq handler
2204 * just schedules NAPI)
2206 gem_disable_ints(gp
);
2208 /* Stop the link timer */
2209 del_timer_sync(&gp
->link_timer
);
2211 /* We cannot cancel the reset task while holding the
2212 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2213 * if we did. This is not an issue however as the reset
2214 * task is synchronized vs. us (rtnl_lock) and will do
2215 * nothing if the device is down or suspended. We do
2216 * still clear reset_task_pending to avoid a spurrious
2217 * reset later on in case we do resume before it gets
2220 gp
->reset_task_pending
= 0;
2222 /* If we are going to sleep with WOL */
2229 /* Get rid of rings */
2230 gem_clean_rings(gp
);
2232 /* No irq needed anymore */
2233 free_irq(gp
->pdev
->irq
, (void *) dev
);
2235 /* Shut the PHY down eventually and setup WOL */
2236 gem_stop_phy(gp
, wol
);
2238 /* Make sure bus master is disabled */
2239 pci_disable_device(gp
->pdev
);
2241 /* Cell not needed neither if no WOL */
2246 static void gem_reset_task(struct work_struct
*work
)
2248 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2250 /* Lock out the network stack (essentially shield ourselves
2251 * against a racing open, close, control call, or suspend
2255 /* Skip the reset task if suspended or closed, or if it's
2256 * been cancelled by gem_do_stop (see comment there)
2258 if (!netif_device_present(gp
->dev
) ||
2259 !netif_running(gp
->dev
) ||
2260 !gp
->reset_task_pending
) {
2265 /* Stop the link timer */
2266 del_timer_sync(&gp
->link_timer
);
2268 /* Stop NAPI and tx */
2271 /* Reset the chip & rings */
2272 gem_reinit_chip(gp
);
2273 if (gp
->lstate
== link_up
)
2274 gem_set_link_modes(gp
);
2276 /* Restart NAPI and Tx */
2277 gem_netif_start(gp
);
2280 gp
->reset_task_pending
= 0;
2282 /* If the link is not up, restart autoneg, else restart the
2285 if (gp
->lstate
!= link_up
)
2286 gem_begin_auto_negotiation(gp
, NULL
);
2288 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
2293 static int gem_open(struct net_device
*dev
)
2295 /* We allow open while suspended, we just do nothing,
2296 * the chip will be initialized in resume()
2298 if (netif_device_present(dev
))
2299 return gem_do_start(dev
);
2303 static int gem_close(struct net_device
*dev
)
2305 if (netif_device_present(dev
))
2306 gem_do_stop(dev
, 0);
2312 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2314 struct net_device
*dev
= pci_get_drvdata(pdev
);
2315 struct gem
*gp
= netdev_priv(dev
);
2317 /* Lock the network stack first to avoid racing with open/close,
2318 * reset task and setting calls
2322 /* Not running, mark ourselves non-present, no need for
2325 if (!netif_running(dev
)) {
2326 netif_device_detach(dev
);
2330 netdev_info(dev
, "suspending, WakeOnLan %s\n",
2331 (gp
->wake_on_lan
&& netif_running(dev
)) ?
2332 "enabled" : "disabled");
2334 /* Tell the network stack we're gone. gem_do_stop() below will
2335 * synchronize with TX, stop NAPI etc...
2337 netif_device_detach(dev
);
2339 /* Switch off chip, remember WOL setting */
2340 gp
->asleep_wol
= !!gp
->wake_on_lan
;
2341 gem_do_stop(dev
, gp
->asleep_wol
);
2343 /* Unlock the network stack */
2349 static int gem_resume(struct pci_dev
*pdev
)
2351 struct net_device
*dev
= pci_get_drvdata(pdev
);
2352 struct gem
*gp
= netdev_priv(dev
);
2354 /* See locking comment in gem_suspend */
2357 /* Not running, mark ourselves present, no need for
2360 if (!netif_running(dev
)) {
2361 netif_device_attach(dev
);
2366 /* Restart chip. If that fails there isn't much we can do, we
2367 * leave things stopped.
2371 /* If we had WOL enabled, the cell clock was never turned off during
2372 * sleep, so we end up beeing unbalanced. Fix that here
2377 /* Unlock the network stack */
2382 #endif /* CONFIG_PM */
2384 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2386 struct gem
*gp
= netdev_priv(dev
);
2388 /* I have seen this being called while the PM was in progress,
2389 * so we shield against this. Let's also not poke at registers
2390 * while the reset task is going on.
2392 * TODO: Move stats collection elsewhere (link timer ?) and
2393 * make this a nop to avoid all those synchro issues
2395 if (!netif_device_present(dev
) || !netif_running(dev
))
2398 /* Better safe than sorry... */
2399 if (WARN_ON(!gp
->cell_enabled
))
2402 dev
->stats
.rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2403 writel(0, gp
->regs
+ MAC_FCSERR
);
2405 dev
->stats
.rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2406 writel(0, gp
->regs
+ MAC_AERR
);
2408 dev
->stats
.rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2409 writel(0, gp
->regs
+ MAC_LERR
);
2411 dev
->stats
.tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2412 dev
->stats
.collisions
+=
2413 (readl(gp
->regs
+ MAC_ECOLL
) + readl(gp
->regs
+ MAC_LCOLL
));
2414 writel(0, gp
->regs
+ MAC_ECOLL
);
2415 writel(0, gp
->regs
+ MAC_LCOLL
);
2420 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2422 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2423 struct gem
*gp
= netdev_priv(dev
);
2424 unsigned char *e
= &dev
->dev_addr
[0];
2426 if (!is_valid_ether_addr(macaddr
->sa_data
))
2427 return -EADDRNOTAVAIL
;
2429 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2431 /* We'll just catch it later when the device is up'd or resumed */
2432 if (!netif_running(dev
) || !netif_device_present(dev
))
2435 /* Better safe than sorry... */
2436 if (WARN_ON(!gp
->cell_enabled
))
2439 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2440 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2441 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2446 static void gem_set_multicast(struct net_device
*dev
)
2448 struct gem
*gp
= netdev_priv(dev
);
2449 u32 rxcfg
, rxcfg_new
;
2452 if (!netif_running(dev
) || !netif_device_present(dev
))
2455 /* Better safe than sorry... */
2456 if (gp
->reset_task_pending
|| WARN_ON(!gp
->cell_enabled
))
2459 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2460 rxcfg_new
= gem_setup_multicast(gp
);
2462 rxcfg_new
|= MAC_RXCFG_SFCS
;
2464 gp
->mac_rx_cfg
= rxcfg_new
;
2466 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2467 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2473 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2476 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2479 /* Jumbo-grams don't seem to work :-( */
2480 #define GEM_MIN_MTU 68
2482 #define GEM_MAX_MTU 1500
2484 #define GEM_MAX_MTU 9000
2487 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2489 struct gem
*gp
= netdev_priv(dev
);
2491 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2496 /* We'll just catch it later when the device is up'd or resumed */
2497 if (!netif_running(dev
) || !netif_device_present(dev
))
2500 /* Better safe than sorry... */
2501 if (WARN_ON(!gp
->cell_enabled
))
2505 gem_reinit_chip(gp
);
2506 if (gp
->lstate
== link_up
)
2507 gem_set_link_modes(gp
);
2508 gem_netif_start(gp
);
2513 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2515 struct gem
*gp
= netdev_priv(dev
);
2517 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2518 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2519 strlcpy(info
->bus_info
, pci_name(gp
->pdev
), sizeof(info
->bus_info
));
2522 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2524 struct gem
*gp
= netdev_priv(dev
);
2526 if (gp
->phy_type
== phy_mii_mdio0
||
2527 gp
->phy_type
== phy_mii_mdio1
) {
2528 if (gp
->phy_mii
.def
)
2529 cmd
->supported
= gp
->phy_mii
.def
->features
;
2531 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2532 SUPPORTED_10baseT_Full
);
2534 /* XXX hardcoded stuff for now */
2535 cmd
->port
= PORT_MII
;
2536 cmd
->transceiver
= XCVR_EXTERNAL
;
2537 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2539 /* Return current PHY settings */
2540 cmd
->autoneg
= gp
->want_autoneg
;
2541 ethtool_cmd_speed_set(cmd
, gp
->phy_mii
.speed
);
2542 cmd
->duplex
= gp
->phy_mii
.duplex
;
2543 cmd
->advertising
= gp
->phy_mii
.advertising
;
2545 /* If we started with a forced mode, we don't have a default
2546 * advertise set, we need to return something sensible so
2547 * userland can re-enable autoneg properly.
2549 if (cmd
->advertising
== 0)
2550 cmd
->advertising
= cmd
->supported
;
2551 } else { // XXX PCS ?
2553 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2554 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2556 cmd
->advertising
= cmd
->supported
;
2557 ethtool_cmd_speed_set(cmd
, 0);
2558 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2559 cmd
->transceiver
= cmd
->autoneg
= 0;
2561 /* serdes means usually a Fibre connector, with most fixed */
2562 if (gp
->phy_type
== phy_serdes
) {
2563 cmd
->port
= PORT_FIBRE
;
2564 cmd
->supported
= (SUPPORTED_1000baseT_Half
|
2565 SUPPORTED_1000baseT_Full
|
2566 SUPPORTED_FIBRE
| SUPPORTED_Autoneg
|
2567 SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
2568 cmd
->advertising
= cmd
->supported
;
2569 cmd
->transceiver
= XCVR_INTERNAL
;
2570 if (gp
->lstate
== link_up
)
2571 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
2572 cmd
->duplex
= DUPLEX_FULL
;
2576 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2581 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2583 struct gem
*gp
= netdev_priv(dev
);
2584 u32 speed
= ethtool_cmd_speed(cmd
);
2586 /* Verify the settings we care about. */
2587 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2588 cmd
->autoneg
!= AUTONEG_DISABLE
)
2591 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2592 cmd
->advertising
== 0)
2595 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2596 ((speed
!= SPEED_1000
&&
2597 speed
!= SPEED_100
&&
2598 speed
!= SPEED_10
) ||
2599 (cmd
->duplex
!= DUPLEX_HALF
&&
2600 cmd
->duplex
!= DUPLEX_FULL
)))
2603 /* Apply settings and restart link process. */
2604 if (netif_device_present(gp
->dev
)) {
2605 del_timer_sync(&gp
->link_timer
);
2606 gem_begin_auto_negotiation(gp
, cmd
);
2612 static int gem_nway_reset(struct net_device
*dev
)
2614 struct gem
*gp
= netdev_priv(dev
);
2616 if (!gp
->want_autoneg
)
2619 /* Restart link process */
2620 if (netif_device_present(gp
->dev
)) {
2621 del_timer_sync(&gp
->link_timer
);
2622 gem_begin_auto_negotiation(gp
, NULL
);
2628 static u32
gem_get_msglevel(struct net_device
*dev
)
2630 struct gem
*gp
= netdev_priv(dev
);
2631 return gp
->msg_enable
;
2634 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2636 struct gem
*gp
= netdev_priv(dev
);
2637 gp
->msg_enable
= value
;
2641 /* Add more when I understand how to program the chip */
2642 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2644 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2646 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2648 struct gem
*gp
= netdev_priv(dev
);
2650 /* Add more when I understand how to program the chip */
2652 wol
->supported
= WOL_SUPPORTED_MASK
;
2653 wol
->wolopts
= gp
->wake_on_lan
;
2660 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2662 struct gem
*gp
= netdev_priv(dev
);
2666 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2670 static const struct ethtool_ops gem_ethtool_ops
= {
2671 .get_drvinfo
= gem_get_drvinfo
,
2672 .get_link
= ethtool_op_get_link
,
2673 .get_settings
= gem_get_settings
,
2674 .set_settings
= gem_set_settings
,
2675 .nway_reset
= gem_nway_reset
,
2676 .get_msglevel
= gem_get_msglevel
,
2677 .set_msglevel
= gem_set_msglevel
,
2678 .get_wol
= gem_get_wol
,
2679 .set_wol
= gem_set_wol
,
2682 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2684 struct gem
*gp
= netdev_priv(dev
);
2685 struct mii_ioctl_data
*data
= if_mii(ifr
);
2686 int rc
= -EOPNOTSUPP
;
2688 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2689 * netif_device_present() is true and holds rtnl_lock for us
2690 * so we have nothing to worry about
2694 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2695 data
->phy_id
= gp
->mii_phy_addr
;
2696 /* Fallthrough... */
2698 case SIOCGMIIREG
: /* Read MII PHY register. */
2699 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2700 data
->reg_num
& 0x1f);
2704 case SIOCSMIIREG
: /* Write MII PHY register. */
2705 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2713 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2714 /* Fetch MAC address from vital product data of PCI ROM. */
2715 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2719 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2720 void __iomem
*p
= rom_base
+ this_offset
;
2723 if (readb(p
+ 0) != 0x90 ||
2724 readb(p
+ 1) != 0x00 ||
2725 readb(p
+ 2) != 0x09 ||
2726 readb(p
+ 3) != 0x4e ||
2727 readb(p
+ 4) != 0x41 ||
2728 readb(p
+ 5) != 0x06)
2734 for (i
= 0; i
< 6; i
++)
2735 dev_addr
[i
] = readb(p
+ i
);
2741 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2744 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2749 found
= readb(p
) == 0x55 &&
2750 readb(p
+ 1) == 0xaa &&
2751 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2752 pci_unmap_rom(pdev
, p
);
2757 /* Sun MAC prefix then 3 random bytes. */
2761 get_random_bytes(dev_addr
+ 3, 3);
2763 #endif /* not Sparc and not PPC */
2765 static int gem_get_device_address(struct gem
*gp
)
2767 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2768 struct net_device
*dev
= gp
->dev
;
2769 const unsigned char *addr
;
2771 addr
= of_get_property(gp
->of_node
, "local-mac-address", NULL
);
2774 addr
= idprom
->id_ethaddr
;
2777 pr_err("%s: can't get mac-address\n", dev
->name
);
2781 memcpy(dev
->dev_addr
, addr
, ETH_ALEN
);
2783 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2788 static void gem_remove_one(struct pci_dev
*pdev
)
2790 struct net_device
*dev
= pci_get_drvdata(pdev
);
2793 struct gem
*gp
= netdev_priv(dev
);
2795 unregister_netdev(dev
);
2797 /* Ensure reset task is truely gone */
2798 cancel_work_sync(&gp
->reset_task
);
2800 /* Free resources */
2801 pci_free_consistent(pdev
,
2802 sizeof(struct gem_init_block
),
2806 pci_release_regions(pdev
);
2811 static const struct net_device_ops gem_netdev_ops
= {
2812 .ndo_open
= gem_open
,
2813 .ndo_stop
= gem_close
,
2814 .ndo_start_xmit
= gem_start_xmit
,
2815 .ndo_get_stats
= gem_get_stats
,
2816 .ndo_set_rx_mode
= gem_set_multicast
,
2817 .ndo_do_ioctl
= gem_ioctl
,
2818 .ndo_tx_timeout
= gem_tx_timeout
,
2819 .ndo_change_mtu
= gem_change_mtu
,
2820 .ndo_validate_addr
= eth_validate_addr
,
2821 .ndo_set_mac_address
= gem_set_mac_address
,
2822 #ifdef CONFIG_NET_POLL_CONTROLLER
2823 .ndo_poll_controller
= gem_poll_controller
,
2827 static int gem_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2829 unsigned long gemreg_base
, gemreg_len
;
2830 struct net_device
*dev
;
2832 int err
, pci_using_dac
;
2834 printk_once(KERN_INFO
"%s", version
);
2836 /* Apple gmac note: during probe, the chip is powered up by
2837 * the arch code to allow the code below to work (and to let
2838 * the chip be probed on the config space. It won't stay powered
2839 * up until the interface is brought up however, so we can't rely
2840 * on register configuration done at this point.
2842 err
= pci_enable_device(pdev
);
2844 pr_err("Cannot enable MMIO operation, aborting\n");
2847 pci_set_master(pdev
);
2849 /* Configure DMA attributes. */
2851 /* All of the GEM documentation states that 64-bit DMA addressing
2852 * is fully supported and should work just fine. However the
2853 * front end for RIO based GEMs is different and only supports
2854 * 32-bit addressing.
2856 * For now we assume the various PPC GEMs are 32-bit only as well.
2858 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2859 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2860 !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
2863 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2865 pr_err("No usable DMA configuration, aborting\n");
2866 goto err_disable_device
;
2871 gemreg_base
= pci_resource_start(pdev
, 0);
2872 gemreg_len
= pci_resource_len(pdev
, 0);
2874 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
2875 pr_err("Cannot find proper PCI device base address, aborting\n");
2877 goto err_disable_device
;
2880 dev
= alloc_etherdev(sizeof(*gp
));
2883 goto err_disable_device
;
2885 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2887 gp
= netdev_priv(dev
);
2889 err
= pci_request_regions(pdev
, DRV_NAME
);
2891 pr_err("Cannot obtain PCI resources, aborting\n");
2892 goto err_out_free_netdev
;
2898 gp
->msg_enable
= DEFAULT_MSG
;
2900 init_timer(&gp
->link_timer
);
2901 gp
->link_timer
.function
= gem_link_timer
;
2902 gp
->link_timer
.data
= (unsigned long) gp
;
2904 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
2906 gp
->lstate
= link_down
;
2907 gp
->timer_ticks
= 0;
2908 netif_carrier_off(dev
);
2910 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
2912 pr_err("Cannot map device registers, aborting\n");
2914 goto err_out_free_res
;
2917 /* On Apple, we want a reference to the Open Firmware device-tree
2918 * node. We use it for clock control.
2920 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2921 gp
->of_node
= pci_device_to_OF_node(pdev
);
2924 /* Only Apple version supports WOL afaik */
2925 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
2928 /* Make sure cell is enabled */
2931 /* Make sure everything is stopped and in init state */
2934 /* Fill up the mii_phy structure (even if we won't use it) */
2935 gp
->phy_mii
.dev
= dev
;
2936 gp
->phy_mii
.mdio_read
= _phy_read
;
2937 gp
->phy_mii
.mdio_write
= _phy_write
;
2938 #ifdef CONFIG_PPC_PMAC
2939 gp
->phy_mii
.platform_data
= gp
->of_node
;
2941 /* By default, we start with autoneg */
2942 gp
->want_autoneg
= 1;
2944 /* Check fifo sizes, PHY type, etc... */
2945 if (gem_check_invariants(gp
)) {
2947 goto err_out_iounmap
;
2950 /* It is guaranteed that the returned buffer will be at least
2951 * PAGE_SIZE aligned.
2953 gp
->init_block
= (struct gem_init_block
*)
2954 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
2956 if (!gp
->init_block
) {
2957 pr_err("Cannot allocate init block, aborting\n");
2959 goto err_out_iounmap
;
2962 err
= gem_get_device_address(gp
);
2964 goto err_out_free_consistent
;
2966 dev
->netdev_ops
= &gem_netdev_ops
;
2967 netif_napi_add(dev
, &gp
->napi
, gem_poll
, 64);
2968 dev
->ethtool_ops
= &gem_ethtool_ops
;
2969 dev
->watchdog_timeo
= 5 * HZ
;
2972 /* Set that now, in case PM kicks in now */
2973 pci_set_drvdata(pdev
, dev
);
2975 /* We can do scatter/gather and HW checksum */
2976 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2977 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2979 dev
->features
|= NETIF_F_HIGHDMA
;
2981 /* Register with kernel */
2982 if (register_netdev(dev
)) {
2983 pr_err("Cannot register net device, aborting\n");
2985 goto err_out_free_consistent
;
2988 /* Undo the get_cell with appropriate locking (we could use
2989 * ndo_init/uninit but that would be even more clumsy imho)
2995 netdev_info(dev
, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
2999 err_out_free_consistent
:
3000 gem_remove_one(pdev
);
3006 pci_release_regions(pdev
);
3008 err_out_free_netdev
:
3011 pci_disable_device(pdev
);
3017 static struct pci_driver gem_driver
= {
3018 .name
= GEM_MODULE_NAME
,
3019 .id_table
= gem_pci_tbl
,
3020 .probe
= gem_init_one
,
3021 .remove
= gem_remove_one
,
3023 .suspend
= gem_suspend
,
3024 .resume
= gem_resume
,
3025 #endif /* CONFIG_PM */
3028 module_pci_driver(gem_driver
);