PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / ethernet / tile / tilegx.c
blob023237a657207995e367ec365269d155043377c0
1 /*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h> /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/io.h>
37 #include <linux/ctype.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
44 #include <asm/checksum.h>
45 #include <asm/homecache.h>
46 #include <gxio/mpipe.h>
47 #include <arch/sim.h>
49 /* Default transmit lockup timeout period, in jiffies. */
50 #define TILE_NET_TIMEOUT (5 * HZ)
52 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
53 #define TILE_NET_CHANNELS 32
55 /* Maximum number of idescs to handle per "poll". */
56 #define TILE_NET_BATCH 128
58 /* Maximum number of packets to handle per "poll". */
59 #define TILE_NET_WEIGHT 64
61 /* Number of entries in each iqueue. */
62 #define IQUEUE_ENTRIES 512
64 /* Number of entries in each equeue. */
65 #define EQUEUE_ENTRIES 2048
67 /* Total header bytes per equeue slot. Must be big enough for 2 bytes
68 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
69 * 60 bytes of actual TCP header. We round up to align to cache lines.
71 #define HEADER_BYTES 128
73 /* Maximum completions per cpu per device (must be a power of two).
74 * ISSUE: What is the right number here? If this is too small, then
75 * egress might block waiting for free space in a completions array.
76 * ISSUE: At the least, allocate these only for initialized echannels.
78 #define TILE_NET_MAX_COMPS 64
80 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
82 /* The "kinds" of buffer stacks (small/large/jumbo). */
83 #define MAX_KINDS 3
85 /* Size of completions data to allocate.
86 * ISSUE: Probably more than needed since we don't use all the channels.
88 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
90 /* Size of NotifRing data to allocate. */
91 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
93 /* Timeout to wake the per-device TX timer after we stop the queue.
94 * We don't want the timeout too short (adds overhead, and might end
95 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
96 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
98 #define TX_TIMER_DELAY_USEC 30
100 /* Timeout to wake the per-cpu egress timer to free completions. */
101 #define EGRESS_TIMER_DELAY_USEC 1000
103 MODULE_AUTHOR("Tilera Corporation");
104 MODULE_LICENSE("GPL");
106 /* A "packet fragment" (a chunk of memory). */
107 struct frag {
108 void *buf;
109 size_t length;
112 /* A single completion. */
113 struct tile_net_comp {
114 /* The "complete_count" when the completion will be complete. */
115 s64 when;
116 /* The buffer to be freed when the completion is complete. */
117 struct sk_buff *skb;
120 /* The completions for a given cpu and echannel. */
121 struct tile_net_comps {
122 /* The completions. */
123 struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
124 /* The number of completions used. */
125 unsigned long comp_next;
126 /* The number of completions freed. */
127 unsigned long comp_last;
130 /* The transmit wake timer for a given cpu and echannel. */
131 struct tile_net_tx_wake {
132 int tx_queue_idx;
133 struct hrtimer timer;
134 struct net_device *dev;
137 /* Info for a specific cpu. */
138 struct tile_net_info {
139 /* Our cpu. */
140 int my_cpu;
141 /* A timer for handling egress completions. */
142 struct hrtimer egress_timer;
143 /* True if "egress_timer" is scheduled. */
144 bool egress_timer_scheduled;
145 struct info_mpipe {
146 /* Packet queue. */
147 gxio_mpipe_iqueue_t iqueue;
148 /* The NAPI struct. */
149 struct napi_struct napi;
150 /* Number of buffers (by kind) which must still be provided. */
151 unsigned int num_needed_buffers[MAX_KINDS];
152 /* instance id. */
153 int instance;
154 /* True if iqueue is valid. */
155 bool has_iqueue;
156 /* NAPI flags. */
157 bool napi_added;
158 bool napi_enabled;
159 /* Comps for each egress channel. */
160 struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
161 /* Transmit wake timer for each egress channel. */
162 struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
163 } mpipe[NR_MPIPE_MAX];
166 /* Info for egress on a particular egress channel. */
167 struct tile_net_egress {
168 /* The "equeue". */
169 gxio_mpipe_equeue_t *equeue;
170 /* The headers for TSO. */
171 unsigned char *headers;
174 /* Info for a specific device. */
175 struct tile_net_priv {
176 /* Our network device. */
177 struct net_device *dev;
178 /* The primary link. */
179 gxio_mpipe_link_t link;
180 /* The primary channel, if open, else -1. */
181 int channel;
182 /* The "loopify" egress link, if needed. */
183 gxio_mpipe_link_t loopify_link;
184 /* The "loopify" egress channel, if open, else -1. */
185 int loopify_channel;
186 /* The egress channel (channel or loopify_channel). */
187 int echannel;
188 /* mPIPE instance, 0 or 1. */
189 int instance;
190 /* The timestamp config. */
191 struct hwtstamp_config stamp_cfg;
194 static struct mpipe_data {
195 /* The ingress irq. */
196 int ingress_irq;
198 /* The "context" for all devices. */
199 gxio_mpipe_context_t context;
201 /* Egress info, indexed by "priv->echannel"
202 * (lazily created as needed).
204 struct tile_net_egress
205 egress_for_echannel[TILE_NET_CHANNELS];
207 /* Devices currently associated with each channel.
208 * NOTE: The array entry can become NULL after ifconfig down, but
209 * we do not free the underlying net_device structures, so it is
210 * safe to use a pointer after reading it from this array.
212 struct net_device
213 *tile_net_devs_for_channel[TILE_NET_CHANNELS];
215 /* The actual memory allocated for the buffer stacks. */
216 void *buffer_stack_vas[MAX_KINDS];
218 /* The amount of memory allocated for each buffer stack. */
219 size_t buffer_stack_bytes[MAX_KINDS];
221 /* The first buffer stack index
222 * (small = +0, large = +1, jumbo = +2).
224 int first_buffer_stack;
226 /* The buckets. */
227 int first_bucket;
228 int num_buckets;
230 /* PTP-specific data. */
231 struct ptp_clock *ptp_clock;
232 struct ptp_clock_info caps;
234 /* Lock for ptp accessors. */
235 struct mutex ptp_lock;
237 } mpipe_data[NR_MPIPE_MAX] = {
238 [0 ... (NR_MPIPE_MAX - 1)] {
239 .ingress_irq = -1,
240 .first_buffer_stack = -1,
241 .first_bucket = -1,
242 .num_buckets = 1
246 /* A mutex for "tile_net_devs_for_channel". */
247 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
249 /* The per-cpu info. */
250 static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
253 /* The buffer size enums for each buffer stack.
254 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
255 * We avoid the "10384" size because it can induce "false chaining"
256 * on "cut-through" jumbo packets.
258 static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
259 GXIO_MPIPE_BUFFER_SIZE_128,
260 GXIO_MPIPE_BUFFER_SIZE_1664,
261 GXIO_MPIPE_BUFFER_SIZE_16384
264 /* Text value of tile_net.cpus if passed as a module parameter. */
265 static char *network_cpus_string;
267 /* The actual cpus in "network_cpus". */
268 static struct cpumask network_cpus_map;
270 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
271 static char *loopify_link_name;
273 /* If "tile_net.custom" was specified, this is true. */
274 static bool custom_flag;
276 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
277 static uint jumbo_num;
279 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
280 static inline int mpipe_instance(struct net_device *dev)
282 struct tile_net_priv *priv = netdev_priv(dev);
283 return priv->instance;
286 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
287 * to handle ingress packets.
289 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
290 * m, n, x, y are integer numbers that represent the cpus that can be
291 * neither a dedicated cpu nor a dataplane cpu.
293 static bool network_cpus_init(void)
295 char buf[1024];
296 int rc;
298 if (network_cpus_string == NULL)
299 return false;
301 rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
302 if (rc != 0) {
303 pr_warn("tile_net.cpus=%s: malformed cpu list\n",
304 network_cpus_string);
305 return false;
308 /* Remove dedicated cpus. */
309 cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
311 if (cpumask_empty(&network_cpus_map)) {
312 pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
313 network_cpus_string);
314 return false;
317 cpulist_scnprintf(buf, sizeof(buf), &network_cpus_map);
318 pr_info("Linux network CPUs: %s\n", buf);
319 return true;
322 module_param_named(cpus, network_cpus_string, charp, 0444);
323 MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
325 /* The "tile_net.loopify=LINK" argument causes the named device to
326 * actually use "loop0" for ingress, and "loop1" for egress. This
327 * allows an app to sit between the actual link and linux, passing
328 * (some) packets along to linux, and forwarding (some) packets sent
329 * out by linux.
331 module_param_named(loopify, loopify_link_name, charp, 0444);
332 MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
334 /* The "tile_net.custom" argument causes us to ignore the "conventional"
335 * classifier metadata, in particular, the "l2_offset".
337 module_param_named(custom, custom_flag, bool, 0444);
338 MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
340 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
341 * and to allocate the given number of "jumbo" buffers.
343 module_param_named(jumbo, jumbo_num, uint, 0444);
344 MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
346 /* Atomically update a statistics field.
347 * Note that on TILE-Gx, this operation is fire-and-forget on the
348 * issuing core (single-cycle dispatch) and takes only a few cycles
349 * longer than a regular store when the request reaches the home cache.
350 * No expensive bus management overhead is required.
352 static void tile_net_stats_add(unsigned long value, unsigned long *field)
354 BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
355 atomic_long_add(value, (atomic_long_t *)field);
358 /* Allocate and push a buffer. */
359 static bool tile_net_provide_buffer(int instance, int kind)
361 struct mpipe_data *md = &mpipe_data[instance];
362 gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
363 size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
364 const unsigned long buffer_alignment = 128;
365 struct sk_buff *skb;
366 int len;
368 len = sizeof(struct sk_buff **) + buffer_alignment + bs;
369 skb = dev_alloc_skb(len);
370 if (skb == NULL)
371 return false;
373 /* Make room for a back-pointer to 'skb' and guarantee alignment. */
374 skb_reserve(skb, sizeof(struct sk_buff **));
375 skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
377 /* Save a back-pointer to 'skb'. */
378 *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
380 /* Make sure "skb" and the back-pointer have been flushed. */
381 wmb();
383 gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
384 (void *)va_to_tile_io_addr(skb->data));
386 return true;
389 /* Convert a raw mpipe buffer to its matching skb pointer. */
390 static struct sk_buff *mpipe_buf_to_skb(void *va)
392 /* Acquire the associated "skb". */
393 struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
394 struct sk_buff *skb = *skb_ptr;
396 /* Paranoia. */
397 if (skb->data != va) {
398 /* Panic here since there's a reasonable chance
399 * that corrupt buffers means generic memory
400 * corruption, with unpredictable system effects.
402 panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
403 va, skb, skb->data);
406 return skb;
409 static void tile_net_pop_all_buffers(int instance, int stack)
411 struct mpipe_data *md = &mpipe_data[instance];
413 for (;;) {
414 tile_io_addr_t addr =
415 (tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
416 stack);
417 if (addr == 0)
418 break;
419 dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
423 /* Provide linux buffers to mPIPE. */
424 static void tile_net_provide_needed_buffers(void)
426 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
427 int instance, kind;
428 for (instance = 0; instance < NR_MPIPE_MAX &&
429 info->mpipe[instance].has_iqueue; instance++) {
430 for (kind = 0; kind < MAX_KINDS; kind++) {
431 while (info->mpipe[instance].num_needed_buffers[kind]
432 != 0) {
433 if (!tile_net_provide_buffer(instance, kind)) {
434 pr_notice("Tile %d still needs"
435 " some buffers\n",
436 info->my_cpu);
437 return;
439 info->mpipe[instance].
440 num_needed_buffers[kind]--;
446 /* Get RX timestamp, and store it in the skb. */
447 static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
448 gxio_mpipe_idesc_t *idesc)
450 if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
451 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
452 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
453 shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
454 idesc->time_stamp_ns);
458 /* Get TX timestamp, and store it in the skb. */
459 static void tile_tx_timestamp(struct sk_buff *skb, int instance)
461 struct skb_shared_info *shtx = skb_shinfo(skb);
462 if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
463 struct mpipe_data *md = &mpipe_data[instance];
464 struct skb_shared_hwtstamps shhwtstamps;
465 struct timespec ts;
467 shtx->tx_flags |= SKBTX_IN_PROGRESS;
468 gxio_mpipe_get_timestamp(&md->context, &ts);
469 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
470 shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
471 skb_tstamp_tx(skb, &shhwtstamps);
475 /* Use ioctl() to enable or disable TX or RX timestamping. */
476 static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
478 struct hwtstamp_config config;
479 struct tile_net_priv *priv = netdev_priv(dev);
481 if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
482 return -EFAULT;
484 if (config.flags) /* reserved for future extensions */
485 return -EINVAL;
487 switch (config.tx_type) {
488 case HWTSTAMP_TX_OFF:
489 case HWTSTAMP_TX_ON:
490 break;
491 default:
492 return -ERANGE;
495 switch (config.rx_filter) {
496 case HWTSTAMP_FILTER_NONE:
497 break;
498 case HWTSTAMP_FILTER_ALL:
499 case HWTSTAMP_FILTER_SOME:
500 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
501 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
502 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
503 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
504 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
505 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
506 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
507 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
508 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
509 case HWTSTAMP_FILTER_PTP_V2_EVENT:
510 case HWTSTAMP_FILTER_PTP_V2_SYNC:
511 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
512 config.rx_filter = HWTSTAMP_FILTER_ALL;
513 break;
514 default:
515 return -ERANGE;
518 if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
519 return -EFAULT;
521 priv->stamp_cfg = config;
522 return 0;
525 static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
527 struct tile_net_priv *priv = netdev_priv(dev);
529 if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
530 sizeof(priv->stamp_cfg)))
531 return -EFAULT;
533 return 0;
536 static inline bool filter_packet(struct net_device *dev, void *buf)
538 /* Filter packets received before we're up. */
539 if (dev == NULL || !(dev->flags & IFF_UP))
540 return true;
542 /* Filter out packets that aren't for us. */
543 if (!(dev->flags & IFF_PROMISC) &&
544 !is_multicast_ether_addr(buf) &&
545 !ether_addr_equal(dev->dev_addr, buf))
546 return true;
548 return false;
551 static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
552 gxio_mpipe_idesc_t *idesc, unsigned long len)
554 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
555 struct tile_net_priv *priv = netdev_priv(dev);
556 int instance = priv->instance;
558 /* Encode the actual packet length. */
559 skb_put(skb, len);
561 skb->protocol = eth_type_trans(skb, dev);
563 /* Acknowledge "good" hardware checksums. */
564 if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
565 skb->ip_summed = CHECKSUM_UNNECESSARY;
567 /* Get RX timestamp from idesc. */
568 tile_rx_timestamp(priv, skb, idesc);
570 napi_gro_receive(&info->mpipe[instance].napi, skb);
572 /* Update stats. */
573 tile_net_stats_add(1, &dev->stats.rx_packets);
574 tile_net_stats_add(len, &dev->stats.rx_bytes);
576 /* Need a new buffer. */
577 if (idesc->size == buffer_size_enums[0])
578 info->mpipe[instance].num_needed_buffers[0]++;
579 else if (idesc->size == buffer_size_enums[1])
580 info->mpipe[instance].num_needed_buffers[1]++;
581 else
582 info->mpipe[instance].num_needed_buffers[2]++;
585 /* Handle a packet. Return true if "processed", false if "filtered". */
586 static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
588 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
589 struct mpipe_data *md = &mpipe_data[instance];
590 struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
591 uint8_t l2_offset;
592 void *va;
593 void *buf;
594 unsigned long len;
595 bool filter;
597 /* Drop packets for which no buffer was available (which can
598 * happen under heavy load), or for which the me/tr/ce flags
599 * are set (which can happen for jumbo cut-through packets,
600 * or with a customized classifier).
602 if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
603 if (dev)
604 tile_net_stats_add(1, &dev->stats.rx_errors);
605 goto drop;
608 /* Get the "l2_offset", if allowed. */
609 l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
611 /* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
612 va = tile_io_addr_to_va((unsigned long)idesc->va);
614 /* Get the actual packet start/length. */
615 buf = va + l2_offset;
616 len = idesc->l2_size - l2_offset;
618 /* Point "va" at the raw buffer. */
619 va -= NET_IP_ALIGN;
621 filter = filter_packet(dev, buf);
622 if (filter) {
623 if (dev)
624 tile_net_stats_add(1, &dev->stats.rx_dropped);
625 drop:
626 gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
627 } else {
628 struct sk_buff *skb = mpipe_buf_to_skb(va);
630 /* Skip headroom, and any custom header. */
631 skb_reserve(skb, NET_IP_ALIGN + l2_offset);
633 tile_net_receive_skb(dev, skb, idesc, len);
636 gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
637 return !filter;
640 /* Handle some packets for the current CPU.
642 * This function handles up to TILE_NET_BATCH idescs per call.
644 * ISSUE: Since we do not provide new buffers until this function is
645 * complete, we must initially provide enough buffers for each network
646 * cpu to fill its iqueue and also its batched idescs.
648 * ISSUE: The "rotting packet" race condition occurs if a packet
649 * arrives after the queue appears to be empty, and before the
650 * hypervisor interrupt is re-enabled.
652 static int tile_net_poll(struct napi_struct *napi, int budget)
654 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
655 unsigned int work = 0;
656 gxio_mpipe_idesc_t *idesc;
657 int instance, i, n;
658 struct mpipe_data *md;
659 struct info_mpipe *info_mpipe =
660 container_of(napi, struct info_mpipe, napi);
662 instance = info_mpipe->instance;
663 while ((n = gxio_mpipe_iqueue_try_peek(
664 &info_mpipe->iqueue,
665 &idesc)) > 0) {
666 for (i = 0; i < n; i++) {
667 if (i == TILE_NET_BATCH)
668 goto done;
669 if (tile_net_handle_packet(instance,
670 idesc + i)) {
671 if (++work >= budget)
672 goto done;
677 /* There are no packets left. */
678 napi_complete(&info_mpipe->napi);
680 md = &mpipe_data[instance];
681 /* Re-enable hypervisor interrupts. */
682 gxio_mpipe_enable_notif_ring_interrupt(
683 &md->context, info->mpipe[instance].iqueue.ring);
685 /* HACK: Avoid the "rotting packet" problem. */
686 if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
687 napi_schedule(&info_mpipe->napi);
689 /* ISSUE: Handle completions? */
691 done:
692 tile_net_provide_needed_buffers();
694 return work;
697 /* Handle an ingress interrupt from an instance on the current cpu. */
698 static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
700 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
701 napi_schedule(&info->mpipe[(uint64_t)id].napi);
702 return IRQ_HANDLED;
705 /* Free some completions. This must be called with interrupts blocked. */
706 static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
707 struct tile_net_comps *comps,
708 int limit, bool force_update)
710 int n = 0;
711 while (comps->comp_last < comps->comp_next) {
712 unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
713 struct tile_net_comp *comp = &comps->comp_queue[cid];
714 if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
715 force_update || n == 0))
716 break;
717 dev_kfree_skb_irq(comp->skb);
718 comps->comp_last++;
719 if (++n == limit)
720 break;
722 return n;
725 /* Add a completion. This must be called with interrupts blocked.
726 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
728 static void add_comp(gxio_mpipe_equeue_t *equeue,
729 struct tile_net_comps *comps,
730 uint64_t when, struct sk_buff *skb)
732 int cid = comps->comp_next % TILE_NET_MAX_COMPS;
733 comps->comp_queue[cid].when = when;
734 comps->comp_queue[cid].skb = skb;
735 comps->comp_next++;
738 static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
739 int tx_queue_idx)
741 struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
742 struct tile_net_priv *priv = netdev_priv(dev);
743 int instance = priv->instance;
744 struct tile_net_tx_wake *tx_wake =
745 &info->mpipe[instance].tx_wake[priv->echannel];
747 hrtimer_start(&tx_wake->timer,
748 ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
749 HRTIMER_MODE_REL_PINNED);
752 static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
754 struct tile_net_tx_wake *tx_wake =
755 container_of(t, struct tile_net_tx_wake, timer);
756 netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
757 return HRTIMER_NORESTART;
760 /* Make sure the egress timer is scheduled. */
761 static void tile_net_schedule_egress_timer(void)
763 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
765 if (!info->egress_timer_scheduled) {
766 hrtimer_start(&info->egress_timer,
767 ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
768 HRTIMER_MODE_REL_PINNED);
769 info->egress_timer_scheduled = true;
773 /* The "function" for "info->egress_timer".
775 * This timer will reschedule itself as long as there are any pending
776 * completions expected for this tile.
778 static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
780 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
781 unsigned long irqflags;
782 bool pending = false;
783 int i, instance;
785 local_irq_save(irqflags);
787 /* The timer is no longer scheduled. */
788 info->egress_timer_scheduled = false;
790 /* Free all possible comps for this tile. */
791 for (instance = 0; instance < NR_MPIPE_MAX &&
792 info->mpipe[instance].has_iqueue; instance++) {
793 for (i = 0; i < TILE_NET_CHANNELS; i++) {
794 struct tile_net_egress *egress =
795 &mpipe_data[instance].egress_for_echannel[i];
796 struct tile_net_comps *comps =
797 info->mpipe[instance].comps_for_echannel[i];
798 if (!egress || comps->comp_last >= comps->comp_next)
799 continue;
800 tile_net_free_comps(egress->equeue, comps, -1, true);
801 pending = pending ||
802 (comps->comp_last < comps->comp_next);
806 /* Reschedule timer if needed. */
807 if (pending)
808 tile_net_schedule_egress_timer();
810 local_irq_restore(irqflags);
812 return HRTIMER_NORESTART;
815 /* PTP clock operations. */
817 static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
819 int ret = 0;
820 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
821 mutex_lock(&md->ptp_lock);
822 if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
823 ret = -EINVAL;
824 mutex_unlock(&md->ptp_lock);
825 return ret;
828 static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
830 int ret = 0;
831 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
832 mutex_lock(&md->ptp_lock);
833 if (gxio_mpipe_adjust_timestamp(&md->context, delta))
834 ret = -EBUSY;
835 mutex_unlock(&md->ptp_lock);
836 return ret;
839 static int ptp_mpipe_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
841 int ret = 0;
842 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
843 mutex_lock(&md->ptp_lock);
844 if (gxio_mpipe_get_timestamp(&md->context, ts))
845 ret = -EBUSY;
846 mutex_unlock(&md->ptp_lock);
847 return ret;
850 static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
851 const struct timespec *ts)
853 int ret = 0;
854 struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
855 mutex_lock(&md->ptp_lock);
856 if (gxio_mpipe_set_timestamp(&md->context, ts))
857 ret = -EBUSY;
858 mutex_unlock(&md->ptp_lock);
859 return ret;
862 static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
863 struct ptp_clock_request *request, int on)
865 return -EOPNOTSUPP;
868 static struct ptp_clock_info ptp_mpipe_caps = {
869 .owner = THIS_MODULE,
870 .name = "mPIPE clock",
871 .max_adj = 999999999,
872 .n_ext_ts = 0,
873 .pps = 0,
874 .adjfreq = ptp_mpipe_adjfreq,
875 .adjtime = ptp_mpipe_adjtime,
876 .gettime = ptp_mpipe_gettime,
877 .settime = ptp_mpipe_settime,
878 .enable = ptp_mpipe_enable,
881 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
882 static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
884 struct timespec ts;
886 getnstimeofday(&ts);
887 gxio_mpipe_set_timestamp(&md->context, &ts);
889 mutex_init(&md->ptp_lock);
890 md->caps = ptp_mpipe_caps;
891 md->ptp_clock = ptp_clock_register(&md->caps, NULL);
892 if (IS_ERR(md->ptp_clock))
893 netdev_err(dev, "ptp_clock_register failed %ld\n",
894 PTR_ERR(md->ptp_clock));
897 /* Initialize PTP fields in a new device. */
898 static void init_ptp_dev(struct tile_net_priv *priv)
900 priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
901 priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
904 /* Helper functions for "tile_net_update()". */
905 static void enable_ingress_irq(void *irq)
907 enable_percpu_irq((long)irq, 0);
910 static void disable_ingress_irq(void *irq)
912 disable_percpu_irq((long)irq);
915 /* Helper function for tile_net_open() and tile_net_stop().
916 * Always called under tile_net_devs_for_channel_mutex.
918 static int tile_net_update(struct net_device *dev)
920 static gxio_mpipe_rules_t rules; /* too big to fit on the stack */
921 bool saw_channel = false;
922 int instance = mpipe_instance(dev);
923 struct mpipe_data *md = &mpipe_data[instance];
924 int channel;
925 int rc;
926 int cpu;
928 saw_channel = false;
929 gxio_mpipe_rules_init(&rules, &md->context);
931 for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
932 if (md->tile_net_devs_for_channel[channel] == NULL)
933 continue;
934 if (!saw_channel) {
935 saw_channel = true;
936 gxio_mpipe_rules_begin(&rules, md->first_bucket,
937 md->num_buckets, NULL);
938 gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
940 gxio_mpipe_rules_add_channel(&rules, channel);
943 /* NOTE: This can fail if there is no classifier.
944 * ISSUE: Can anything else cause it to fail?
946 rc = gxio_mpipe_rules_commit(&rules);
947 if (rc != 0) {
948 netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
949 instance, rc);
950 return -EIO;
953 /* Update all cpus, sequentially (to protect "netif_napi_add()").
954 * We use on_each_cpu to handle the IPI mask or unmask.
956 if (!saw_channel)
957 on_each_cpu(disable_ingress_irq,
958 (void *)(long)(md->ingress_irq), 1);
959 for_each_online_cpu(cpu) {
960 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
962 if (!info->mpipe[instance].has_iqueue)
963 continue;
964 if (saw_channel) {
965 if (!info->mpipe[instance].napi_added) {
966 netif_napi_add(dev, &info->mpipe[instance].napi,
967 tile_net_poll, TILE_NET_WEIGHT);
968 info->mpipe[instance].napi_added = true;
970 if (!info->mpipe[instance].napi_enabled) {
971 napi_enable(&info->mpipe[instance].napi);
972 info->mpipe[instance].napi_enabled = true;
974 } else {
975 if (info->mpipe[instance].napi_enabled) {
976 napi_disable(&info->mpipe[instance].napi);
977 info->mpipe[instance].napi_enabled = false;
979 /* FIXME: Drain the iqueue. */
982 if (saw_channel)
983 on_each_cpu(enable_ingress_irq,
984 (void *)(long)(md->ingress_irq), 1);
986 /* HACK: Allow packets to flow in the simulator. */
987 if (saw_channel)
988 sim_enable_mpipe_links(instance, -1);
990 return 0;
993 /* Initialize a buffer stack. */
994 static int create_buffer_stack(struct net_device *dev,
995 int kind, size_t num_buffers)
997 pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
998 int instance = mpipe_instance(dev);
999 struct mpipe_data *md = &mpipe_data[instance];
1000 size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1001 int stack_idx = md->first_buffer_stack + kind;
1002 void *va;
1003 int i, rc;
1005 /* Round up to 64KB and then use alloc_pages() so we get the
1006 * required 64KB alignment.
1008 md->buffer_stack_bytes[kind] =
1009 ALIGN(needed, 64 * 1024);
1011 va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1012 if (va == NULL) {
1013 netdev_err(dev,
1014 "Could not alloc %zd bytes for buffer stack %d\n",
1015 md->buffer_stack_bytes[kind], kind);
1016 return -ENOMEM;
1019 /* Initialize the buffer stack. */
1020 rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1021 buffer_size_enums[kind], va,
1022 md->buffer_stack_bytes[kind], 0);
1023 if (rc != 0) {
1024 netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1025 instance, rc);
1026 free_pages_exact(va, md->buffer_stack_bytes[kind]);
1027 return rc;
1030 md->buffer_stack_vas[kind] = va;
1032 rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1033 hash_pte, 0);
1034 if (rc != 0) {
1035 netdev_err(dev,
1036 "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1037 instance, rc);
1038 return rc;
1041 /* Provide initial buffers. */
1042 for (i = 0; i < num_buffers; i++) {
1043 if (!tile_net_provide_buffer(instance, kind)) {
1044 netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1045 return -ENOMEM;
1049 return 0;
1052 /* Allocate and initialize mpipe buffer stacks, and register them in
1053 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1054 * This routine supports tile_net_init_mpipe(), below.
1056 static int init_buffer_stacks(struct net_device *dev,
1057 int network_cpus_count)
1059 int num_kinds = MAX_KINDS - (jumbo_num == 0);
1060 size_t num_buffers;
1061 int rc;
1062 int instance = mpipe_instance(dev);
1063 struct mpipe_data *md = &mpipe_data[instance];
1065 /* Allocate the buffer stacks. */
1066 rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1067 if (rc < 0) {
1068 netdev_err(dev,
1069 "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1070 instance, rc);
1071 return rc;
1073 md->first_buffer_stack = rc;
1075 /* Enough small/large buffers to (normally) avoid buffer errors. */
1076 num_buffers =
1077 network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1079 /* Allocate the small memory stack. */
1080 if (rc >= 0)
1081 rc = create_buffer_stack(dev, 0, num_buffers);
1083 /* Allocate the large buffer stack. */
1084 if (rc >= 0)
1085 rc = create_buffer_stack(dev, 1, num_buffers);
1087 /* Allocate the jumbo buffer stack if needed. */
1088 if (rc >= 0 && jumbo_num != 0)
1089 rc = create_buffer_stack(dev, 2, jumbo_num);
1091 return rc;
1094 /* Allocate per-cpu resources (memory for completions and idescs).
1095 * This routine supports tile_net_init_mpipe(), below.
1097 static int alloc_percpu_mpipe_resources(struct net_device *dev,
1098 int cpu, int ring)
1100 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1101 int order, i, rc;
1102 int instance = mpipe_instance(dev);
1103 struct mpipe_data *md = &mpipe_data[instance];
1104 struct page *page;
1105 void *addr;
1107 /* Allocate the "comps". */
1108 order = get_order(COMPS_SIZE);
1109 page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1110 if (page == NULL) {
1111 netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1112 COMPS_SIZE);
1113 return -ENOMEM;
1115 addr = pfn_to_kaddr(page_to_pfn(page));
1116 memset(addr, 0, COMPS_SIZE);
1117 for (i = 0; i < TILE_NET_CHANNELS; i++)
1118 info->mpipe[instance].comps_for_echannel[i] =
1119 addr + i * sizeof(struct tile_net_comps);
1121 /* If this is a network cpu, create an iqueue. */
1122 if (cpu_isset(cpu, network_cpus_map)) {
1123 order = get_order(NOTIF_RING_SIZE);
1124 page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1125 if (page == NULL) {
1126 netdev_err(dev,
1127 "Failed to alloc %zd bytes iqueue memory\n",
1128 NOTIF_RING_SIZE);
1129 return -ENOMEM;
1131 addr = pfn_to_kaddr(page_to_pfn(page));
1132 rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1133 &md->context, ring++, addr,
1134 NOTIF_RING_SIZE, 0);
1135 if (rc < 0) {
1136 netdev_err(dev,
1137 "gxio_mpipe_iqueue_init failed: %d\n", rc);
1138 return rc;
1140 info->mpipe[instance].has_iqueue = true;
1143 return ring;
1146 /* Initialize NotifGroup and buckets.
1147 * This routine supports tile_net_init_mpipe(), below.
1149 static int init_notif_group_and_buckets(struct net_device *dev,
1150 int ring, int network_cpus_count)
1152 int group, rc;
1153 int instance = mpipe_instance(dev);
1154 struct mpipe_data *md = &mpipe_data[instance];
1156 /* Allocate one NotifGroup. */
1157 rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1158 if (rc < 0) {
1159 netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1160 instance, rc);
1161 return rc;
1163 group = rc;
1165 /* Initialize global num_buckets value. */
1166 if (network_cpus_count > 4)
1167 md->num_buckets = 256;
1168 else if (network_cpus_count > 1)
1169 md->num_buckets = 16;
1171 /* Allocate some buckets, and set global first_bucket value. */
1172 rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1173 if (rc < 0) {
1174 netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1175 instance, rc);
1176 return rc;
1178 md->first_bucket = rc;
1180 /* Init group and buckets. */
1181 rc = gxio_mpipe_init_notif_group_and_buckets(
1182 &md->context, group, ring, network_cpus_count,
1183 md->first_bucket, md->num_buckets,
1184 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1185 if (rc != 0) {
1186 netdev_err(dev, "gxio_mpipe_init_notif_group_and_buckets: "
1187 "mpipe[%d] %d\n", instance, rc);
1188 return rc;
1191 return 0;
1194 /* Create an irq and register it, then activate the irq and request
1195 * interrupts on all cores. Note that "ingress_irq" being initialized
1196 * is how we know not to call tile_net_init_mpipe() again.
1197 * This routine supports tile_net_init_mpipe(), below.
1199 static int tile_net_setup_interrupts(struct net_device *dev)
1201 int cpu, rc, irq;
1202 int instance = mpipe_instance(dev);
1203 struct mpipe_data *md = &mpipe_data[instance];
1205 irq = md->ingress_irq;
1206 if (irq < 0) {
1207 irq = create_irq();
1208 if (irq < 0) {
1209 netdev_err(dev,
1210 "create_irq failed: mpipe[%d] %d\n",
1211 instance, irq);
1212 return irq;
1214 tile_irq_activate(irq, TILE_IRQ_PERCPU);
1216 rc = request_irq(irq, tile_net_handle_ingress_irq,
1217 0, "tile_net", (void *)((uint64_t)instance));
1219 if (rc != 0) {
1220 netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1221 instance, rc);
1222 destroy_irq(irq);
1223 return rc;
1225 md->ingress_irq = irq;
1228 for_each_online_cpu(cpu) {
1229 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1230 if (info->mpipe[instance].has_iqueue) {
1231 gxio_mpipe_request_notif_ring_interrupt(&md->context,
1232 cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1233 info->mpipe[instance].iqueue.ring);
1237 return 0;
1240 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1241 static void tile_net_init_mpipe_fail(int instance)
1243 int kind, cpu;
1244 struct mpipe_data *md = &mpipe_data[instance];
1246 /* Do cleanups that require the mpipe context first. */
1247 for (kind = 0; kind < MAX_KINDS; kind++) {
1248 if (md->buffer_stack_vas[kind] != NULL) {
1249 tile_net_pop_all_buffers(instance,
1250 md->first_buffer_stack +
1251 kind);
1255 /* Destroy mpipe context so the hardware no longer owns any memory. */
1256 gxio_mpipe_destroy(&md->context);
1258 for_each_online_cpu(cpu) {
1259 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1260 free_pages(
1261 (unsigned long)(
1262 info->mpipe[instance].comps_for_echannel[0]),
1263 get_order(COMPS_SIZE));
1264 info->mpipe[instance].comps_for_echannel[0] = NULL;
1265 free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1266 get_order(NOTIF_RING_SIZE));
1267 info->mpipe[instance].iqueue.idescs = NULL;
1270 for (kind = 0; kind < MAX_KINDS; kind++) {
1271 if (md->buffer_stack_vas[kind] != NULL) {
1272 free_pages_exact(md->buffer_stack_vas[kind],
1273 md->buffer_stack_bytes[kind]);
1274 md->buffer_stack_vas[kind] = NULL;
1278 md->first_buffer_stack = -1;
1279 md->first_bucket = -1;
1282 /* The first time any tilegx network device is opened, we initialize
1283 * the global mpipe state. If this step fails, we fail to open the
1284 * device, but if it succeeds, we never need to do it again, and since
1285 * tile_net can't be unloaded, we never undo it.
1287 * Note that some resources in this path (buffer stack indices,
1288 * bindings from init_buffer_stack, etc.) are hypervisor resources
1289 * that are freed implicitly by gxio_mpipe_destroy().
1291 static int tile_net_init_mpipe(struct net_device *dev)
1293 int rc;
1294 int cpu;
1295 int first_ring, ring;
1296 int instance = mpipe_instance(dev);
1297 struct mpipe_data *md = &mpipe_data[instance];
1298 int network_cpus_count = cpus_weight(network_cpus_map);
1300 if (!hash_default) {
1301 netdev_err(dev, "Networking requires hash_default!\n");
1302 return -EIO;
1305 rc = gxio_mpipe_init(&md->context, instance);
1306 if (rc != 0) {
1307 netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1308 instance, rc);
1309 return -EIO;
1312 /* Set up the buffer stacks. */
1313 rc = init_buffer_stacks(dev, network_cpus_count);
1314 if (rc != 0)
1315 goto fail;
1317 /* Allocate one NotifRing for each network cpu. */
1318 rc = gxio_mpipe_alloc_notif_rings(&md->context,
1319 network_cpus_count, 0, 0);
1320 if (rc < 0) {
1321 netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1322 rc);
1323 goto fail;
1326 /* Init NotifRings per-cpu. */
1327 first_ring = rc;
1328 ring = first_ring;
1329 for_each_online_cpu(cpu) {
1330 rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1331 if (rc < 0)
1332 goto fail;
1333 ring = rc;
1336 /* Initialize NotifGroup and buckets. */
1337 rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1338 if (rc != 0)
1339 goto fail;
1341 /* Create and enable interrupts. */
1342 rc = tile_net_setup_interrupts(dev);
1343 if (rc != 0)
1344 goto fail;
1346 /* Register PTP clock and set mPIPE timestamp, if configured. */
1347 register_ptp_clock(dev, md);
1349 return 0;
1351 fail:
1352 tile_net_init_mpipe_fail(instance);
1353 return rc;
1356 /* Create persistent egress info for a given egress channel.
1357 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1358 * ISSUE: Defer header allocation until TSO is actually needed?
1360 static int tile_net_init_egress(struct net_device *dev, int echannel)
1362 static int ering = -1;
1363 struct page *headers_page, *edescs_page, *equeue_page;
1364 gxio_mpipe_edesc_t *edescs;
1365 gxio_mpipe_equeue_t *equeue;
1366 unsigned char *headers;
1367 int headers_order, edescs_order, equeue_order;
1368 size_t edescs_size;
1369 int rc = -ENOMEM;
1370 int instance = mpipe_instance(dev);
1371 struct mpipe_data *md = &mpipe_data[instance];
1373 /* Only initialize once. */
1374 if (md->egress_for_echannel[echannel].equeue != NULL)
1375 return 0;
1377 /* Allocate memory for the "headers". */
1378 headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1379 headers_page = alloc_pages(GFP_KERNEL, headers_order);
1380 if (headers_page == NULL) {
1381 netdev_warn(dev,
1382 "Could not alloc %zd bytes for TSO headers.\n",
1383 PAGE_SIZE << headers_order);
1384 goto fail;
1386 headers = pfn_to_kaddr(page_to_pfn(headers_page));
1388 /* Allocate memory for the "edescs". */
1389 edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1390 edescs_order = get_order(edescs_size);
1391 edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1392 if (edescs_page == NULL) {
1393 netdev_warn(dev,
1394 "Could not alloc %zd bytes for eDMA ring.\n",
1395 edescs_size);
1396 goto fail_headers;
1398 edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1400 /* Allocate memory for the "equeue". */
1401 equeue_order = get_order(sizeof(*equeue));
1402 equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1403 if (equeue_page == NULL) {
1404 netdev_warn(dev,
1405 "Could not alloc %zd bytes for equeue info.\n",
1406 PAGE_SIZE << equeue_order);
1407 goto fail_edescs;
1409 equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1411 /* Allocate an edma ring (using a one entry "free list"). */
1412 if (ering < 0) {
1413 rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1414 if (rc < 0) {
1415 netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1416 "mpipe[%d] %d\n", instance, rc);
1417 goto fail_equeue;
1419 ering = rc;
1422 /* Initialize the equeue. */
1423 rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1424 edescs, edescs_size, 0);
1425 if (rc != 0) {
1426 netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1427 instance, rc);
1428 goto fail_equeue;
1431 /* Don't reuse the ering later. */
1432 ering = -1;
1434 if (jumbo_num != 0) {
1435 /* Make sure "jumbo" packets can be egressed safely. */
1436 if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1437 /* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1438 netdev_warn(dev, "Jumbo packets may not be egressed"
1439 " properly on channel %d\n", echannel);
1443 /* Done. */
1444 md->egress_for_echannel[echannel].equeue = equeue;
1445 md->egress_for_echannel[echannel].headers = headers;
1446 return 0;
1448 fail_equeue:
1449 __free_pages(equeue_page, equeue_order);
1451 fail_edescs:
1452 __free_pages(edescs_page, edescs_order);
1454 fail_headers:
1455 __free_pages(headers_page, headers_order);
1457 fail:
1458 return rc;
1461 /* Return channel number for a newly-opened link. */
1462 static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1463 const char *link_name)
1465 int instance = mpipe_instance(dev);
1466 struct mpipe_data *md = &mpipe_data[instance];
1467 int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1468 if (rc < 0) {
1469 netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1470 link_name, instance, rc);
1471 return rc;
1473 if (jumbo_num != 0) {
1474 u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1475 rc = gxio_mpipe_link_set_attr(link, attr, 1);
1476 if (rc != 0) {
1477 netdev_err(dev,
1478 "Cannot receive jumbo packets on '%s'\n",
1479 link_name);
1480 gxio_mpipe_link_close(link);
1481 return rc;
1484 rc = gxio_mpipe_link_channel(link);
1485 if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1486 netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1487 gxio_mpipe_link_close(link);
1488 return -EINVAL;
1490 return rc;
1493 /* Help the kernel activate the given network interface. */
1494 static int tile_net_open(struct net_device *dev)
1496 struct tile_net_priv *priv = netdev_priv(dev);
1497 int cpu, rc, instance;
1499 mutex_lock(&tile_net_devs_for_channel_mutex);
1501 /* Get the instance info. */
1502 rc = gxio_mpipe_link_instance(dev->name);
1503 if (rc < 0 || rc >= NR_MPIPE_MAX) {
1504 mutex_unlock(&tile_net_devs_for_channel_mutex);
1505 return -EIO;
1508 priv->instance = rc;
1509 instance = rc;
1510 if (!mpipe_data[rc].context.mmio_fast_base) {
1511 /* Do one-time initialization per instance the first time
1512 * any device is opened.
1514 rc = tile_net_init_mpipe(dev);
1515 if (rc != 0)
1516 goto fail;
1519 /* Determine if this is the "loopify" device. */
1520 if (unlikely((loopify_link_name != NULL) &&
1521 !strcmp(dev->name, loopify_link_name))) {
1522 rc = tile_net_link_open(dev, &priv->link, "loop0");
1523 if (rc < 0)
1524 goto fail;
1525 priv->channel = rc;
1526 rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1527 if (rc < 0)
1528 goto fail;
1529 priv->loopify_channel = rc;
1530 priv->echannel = rc;
1531 } else {
1532 rc = tile_net_link_open(dev, &priv->link, dev->name);
1533 if (rc < 0)
1534 goto fail;
1535 priv->channel = rc;
1536 priv->echannel = rc;
1539 /* Initialize egress info (if needed). Once ever, per echannel. */
1540 rc = tile_net_init_egress(dev, priv->echannel);
1541 if (rc != 0)
1542 goto fail;
1544 mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1546 rc = tile_net_update(dev);
1547 if (rc != 0)
1548 goto fail;
1550 mutex_unlock(&tile_net_devs_for_channel_mutex);
1552 /* Initialize the transmit wake timer for this device for each cpu. */
1553 for_each_online_cpu(cpu) {
1554 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1555 struct tile_net_tx_wake *tx_wake =
1556 &info->mpipe[instance].tx_wake[priv->echannel];
1558 hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1559 HRTIMER_MODE_REL);
1560 tx_wake->tx_queue_idx = cpu;
1561 tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1562 tx_wake->dev = dev;
1565 for_each_online_cpu(cpu)
1566 netif_start_subqueue(dev, cpu);
1567 netif_carrier_on(dev);
1568 return 0;
1570 fail:
1571 if (priv->loopify_channel >= 0) {
1572 if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1573 netdev_warn(dev, "Failed to close loopify link!\n");
1574 priv->loopify_channel = -1;
1576 if (priv->channel >= 0) {
1577 if (gxio_mpipe_link_close(&priv->link) != 0)
1578 netdev_warn(dev, "Failed to close link!\n");
1579 priv->channel = -1;
1581 priv->echannel = -1;
1582 mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = NULL;
1583 mutex_unlock(&tile_net_devs_for_channel_mutex);
1585 /* Don't return raw gxio error codes to generic Linux. */
1586 return (rc > -512) ? rc : -EIO;
1589 /* Help the kernel deactivate the given network interface. */
1590 static int tile_net_stop(struct net_device *dev)
1592 struct tile_net_priv *priv = netdev_priv(dev);
1593 int cpu;
1594 int instance = priv->instance;
1595 struct mpipe_data *md = &mpipe_data[instance];
1597 for_each_online_cpu(cpu) {
1598 struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1599 struct tile_net_tx_wake *tx_wake =
1600 &info->mpipe[instance].tx_wake[priv->echannel];
1602 hrtimer_cancel(&tx_wake->timer);
1603 netif_stop_subqueue(dev, cpu);
1606 mutex_lock(&tile_net_devs_for_channel_mutex);
1607 md->tile_net_devs_for_channel[priv->channel] = NULL;
1608 (void)tile_net_update(dev);
1609 if (priv->loopify_channel >= 0) {
1610 if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1611 netdev_warn(dev, "Failed to close loopify link!\n");
1612 priv->loopify_channel = -1;
1614 if (priv->channel >= 0) {
1615 if (gxio_mpipe_link_close(&priv->link) != 0)
1616 netdev_warn(dev, "Failed to close link!\n");
1617 priv->channel = -1;
1619 priv->echannel = -1;
1620 mutex_unlock(&tile_net_devs_for_channel_mutex);
1622 return 0;
1625 /* Determine the VA for a fragment. */
1626 static inline void *tile_net_frag_buf(skb_frag_t *f)
1628 unsigned long pfn = page_to_pfn(skb_frag_page(f));
1629 return pfn_to_kaddr(pfn) + f->page_offset;
1632 /* Acquire a completion entry and an egress slot, or if we can't,
1633 * stop the queue and schedule the tx_wake timer.
1635 static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1636 int tx_queue_idx,
1637 struct tile_net_comps *comps,
1638 gxio_mpipe_equeue_t *equeue,
1639 int num_edescs)
1641 /* Try to acquire a completion entry. */
1642 if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1643 tile_net_free_comps(equeue, comps, 32, false) != 0) {
1645 /* Try to acquire an egress slot. */
1646 s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1647 if (slot >= 0)
1648 return slot;
1650 /* Freeing some completions gives the equeue time to drain. */
1651 tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1653 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1654 if (slot >= 0)
1655 return slot;
1658 /* Still nothing; give up and stop the queue for a short while. */
1659 netif_stop_subqueue(dev, tx_queue_idx);
1660 tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1661 return -1;
1664 /* Determine how many edesc's are needed for TSO.
1666 * Sometimes, if "sendfile()" requires copying, we will be called with
1667 * "data" containing the header and payload, with "frags" being empty.
1668 * Sometimes, for example when using NFS over TCP, a single segment can
1669 * span 3 fragments. This requires special care.
1671 static int tso_count_edescs(struct sk_buff *skb)
1673 struct skb_shared_info *sh = skb_shinfo(skb);
1674 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1675 unsigned int data_len = skb->len - sh_len;
1676 unsigned int p_len = sh->gso_size;
1677 long f_id = -1; /* id of the current fragment */
1678 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1679 long f_used = 0; /* bytes used from the current fragment */
1680 long n; /* size of the current piece of payload */
1681 int num_edescs = 0;
1682 int segment;
1684 for (segment = 0; segment < sh->gso_segs; segment++) {
1686 unsigned int p_used = 0;
1688 /* One edesc for header and for each piece of the payload. */
1689 for (num_edescs++; p_used < p_len; num_edescs++) {
1691 /* Advance as needed. */
1692 while (f_used >= f_size) {
1693 f_id++;
1694 f_size = skb_frag_size(&sh->frags[f_id]);
1695 f_used = 0;
1698 /* Use bytes from the current fragment. */
1699 n = p_len - p_used;
1700 if (n > f_size - f_used)
1701 n = f_size - f_used;
1702 f_used += n;
1703 p_used += n;
1706 /* The last segment may be less than gso_size. */
1707 data_len -= p_len;
1708 if (data_len < p_len)
1709 p_len = data_len;
1712 return num_edescs;
1715 /* Prepare modified copies of the skbuff headers. */
1716 static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1717 s64 slot)
1719 struct skb_shared_info *sh = skb_shinfo(skb);
1720 struct iphdr *ih;
1721 struct ipv6hdr *ih6;
1722 struct tcphdr *th;
1723 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1724 unsigned int data_len = skb->len - sh_len;
1725 unsigned char *data = skb->data;
1726 unsigned int ih_off, th_off, p_len;
1727 unsigned int isum_seed, tsum_seed, seq;
1728 unsigned int uninitialized_var(id);
1729 int is_ipv6;
1730 long f_id = -1; /* id of the current fragment */
1731 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1732 long f_used = 0; /* bytes used from the current fragment */
1733 long n; /* size of the current piece of payload */
1734 int segment;
1736 /* Locate original headers and compute various lengths. */
1737 is_ipv6 = skb_is_gso_v6(skb);
1738 if (is_ipv6) {
1739 ih6 = ipv6_hdr(skb);
1740 ih_off = skb_network_offset(skb);
1741 } else {
1742 ih = ip_hdr(skb);
1743 ih_off = skb_network_offset(skb);
1744 isum_seed = ((0xFFFF - ih->check) +
1745 (0xFFFF - ih->tot_len) +
1746 (0xFFFF - ih->id));
1747 id = ntohs(ih->id);
1750 th = tcp_hdr(skb);
1751 th_off = skb_transport_offset(skb);
1752 p_len = sh->gso_size;
1754 tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1755 seq = ntohl(th->seq);
1757 /* Prepare all the headers. */
1758 for (segment = 0; segment < sh->gso_segs; segment++) {
1759 unsigned char *buf;
1760 unsigned int p_used = 0;
1762 /* Copy to the header memory for this segment. */
1763 buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1764 NET_IP_ALIGN;
1765 memcpy(buf, data, sh_len);
1767 /* Update copied ip header. */
1768 if (is_ipv6) {
1769 ih6 = (struct ipv6hdr *)(buf + ih_off);
1770 ih6->payload_len = htons(sh_len + p_len - ih_off -
1771 sizeof(*ih6));
1772 } else {
1773 ih = (struct iphdr *)(buf + ih_off);
1774 ih->tot_len = htons(sh_len + p_len - ih_off);
1775 ih->id = htons(id++);
1776 ih->check = csum_long(isum_seed + ih->tot_len +
1777 ih->id) ^ 0xffff;
1780 /* Update copied tcp header. */
1781 th = (struct tcphdr *)(buf + th_off);
1782 th->seq = htonl(seq);
1783 th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1784 if (segment != sh->gso_segs - 1) {
1785 th->fin = 0;
1786 th->psh = 0;
1789 /* Skip past the header. */
1790 slot++;
1792 /* Skip past the payload. */
1793 while (p_used < p_len) {
1795 /* Advance as needed. */
1796 while (f_used >= f_size) {
1797 f_id++;
1798 f_size = skb_frag_size(&sh->frags[f_id]);
1799 f_used = 0;
1802 /* Use bytes from the current fragment. */
1803 n = p_len - p_used;
1804 if (n > f_size - f_used)
1805 n = f_size - f_used;
1806 f_used += n;
1807 p_used += n;
1809 slot++;
1812 seq += p_len;
1814 /* The last segment may be less than gso_size. */
1815 data_len -= p_len;
1816 if (data_len < p_len)
1817 p_len = data_len;
1820 /* Flush the headers so they are ready for hardware DMA. */
1821 wmb();
1824 /* Pass all the data to mpipe for egress. */
1825 static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1826 struct sk_buff *skb, unsigned char *headers, s64 slot)
1828 struct skb_shared_info *sh = skb_shinfo(skb);
1829 int instance = mpipe_instance(dev);
1830 struct mpipe_data *md = &mpipe_data[instance];
1831 unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1832 unsigned int data_len = skb->len - sh_len;
1833 unsigned int p_len = sh->gso_size;
1834 gxio_mpipe_edesc_t edesc_head = { { 0 } };
1835 gxio_mpipe_edesc_t edesc_body = { { 0 } };
1836 long f_id = -1; /* id of the current fragment */
1837 long f_size = skb_headlen(skb) - sh_len; /* current fragment size */
1838 long f_used = 0; /* bytes used from the current fragment */
1839 void *f_data = skb->data + sh_len;
1840 long n; /* size of the current piece of payload */
1841 unsigned long tx_packets = 0, tx_bytes = 0;
1842 unsigned int csum_start;
1843 int segment;
1845 /* Prepare to egress the headers: set up header edesc. */
1846 csum_start = skb_checksum_start_offset(skb);
1847 edesc_head.csum = 1;
1848 edesc_head.csum_start = csum_start;
1849 edesc_head.csum_dest = csum_start + skb->csum_offset;
1850 edesc_head.xfer_size = sh_len;
1852 /* This is only used to specify the TLB. */
1853 edesc_head.stack_idx = md->first_buffer_stack;
1854 edesc_body.stack_idx = md->first_buffer_stack;
1856 /* Egress all the edescs. */
1857 for (segment = 0; segment < sh->gso_segs; segment++) {
1858 unsigned char *buf;
1859 unsigned int p_used = 0;
1861 /* Egress the header. */
1862 buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1863 NET_IP_ALIGN;
1864 edesc_head.va = va_to_tile_io_addr(buf);
1865 gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1866 slot++;
1868 /* Egress the payload. */
1869 while (p_used < p_len) {
1870 void *va;
1872 /* Advance as needed. */
1873 while (f_used >= f_size) {
1874 f_id++;
1875 f_size = skb_frag_size(&sh->frags[f_id]);
1876 f_data = tile_net_frag_buf(&sh->frags[f_id]);
1877 f_used = 0;
1880 va = f_data + f_used;
1882 /* Use bytes from the current fragment. */
1883 n = p_len - p_used;
1884 if (n > f_size - f_used)
1885 n = f_size - f_used;
1886 f_used += n;
1887 p_used += n;
1889 /* Egress a piece of the payload. */
1890 edesc_body.va = va_to_tile_io_addr(va);
1891 edesc_body.xfer_size = n;
1892 edesc_body.bound = !(p_used < p_len);
1893 gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1894 slot++;
1897 tx_packets++;
1898 tx_bytes += sh_len + p_len;
1900 /* The last segment may be less than gso_size. */
1901 data_len -= p_len;
1902 if (data_len < p_len)
1903 p_len = data_len;
1906 /* Update stats. */
1907 tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1908 tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1911 /* Do "TSO" handling for egress.
1913 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1914 * otherwise the stack uses scatter-gather to implement GSO in software.
1915 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1916 * performance down to around 7.5 Gbps on the 10G interfaces, although
1917 * also dropping cpu utilization way down, to under 8%. But
1918 * implementing "TSO" in the driver brings performance back up to line
1919 * rate, while dropping cpu usage even further, to less than 4%. In
1920 * practice, profiling of GSO shows that skb_segment() is what causes
1921 * the performance overheads; we benefit in the driver from using
1922 * preallocated memory to duplicate the TCP/IP headers.
1924 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1926 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1927 struct tile_net_priv *priv = netdev_priv(dev);
1928 int channel = priv->echannel;
1929 int instance = priv->instance;
1930 struct mpipe_data *md = &mpipe_data[instance];
1931 struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1932 struct tile_net_comps *comps =
1933 info->mpipe[instance].comps_for_echannel[channel];
1934 gxio_mpipe_equeue_t *equeue = egress->equeue;
1935 unsigned long irqflags;
1936 int num_edescs;
1937 s64 slot;
1939 /* Determine how many mpipe edesc's are needed. */
1940 num_edescs = tso_count_edescs(skb);
1942 local_irq_save(irqflags);
1944 /* Try to acquire a completion entry and an egress slot. */
1945 slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1946 equeue, num_edescs);
1947 if (slot < 0) {
1948 local_irq_restore(irqflags);
1949 return NETDEV_TX_BUSY;
1952 /* Set up copies of header data properly. */
1953 tso_headers_prepare(skb, egress->headers, slot);
1955 /* Actually pass the data to the network hardware. */
1956 tso_egress(dev, equeue, skb, egress->headers, slot);
1958 /* Add a completion record. */
1959 add_comp(equeue, comps, slot + num_edescs - 1, skb);
1961 local_irq_restore(irqflags);
1963 /* Make sure the egress timer is scheduled. */
1964 tile_net_schedule_egress_timer();
1966 return NETDEV_TX_OK;
1969 /* Analyze the body and frags for a transmit request. */
1970 static unsigned int tile_net_tx_frags(struct frag *frags,
1971 struct sk_buff *skb,
1972 void *b_data, unsigned int b_len)
1974 unsigned int i, n = 0;
1976 struct skb_shared_info *sh = skb_shinfo(skb);
1978 if (b_len != 0) {
1979 frags[n].buf = b_data;
1980 frags[n++].length = b_len;
1983 for (i = 0; i < sh->nr_frags; i++) {
1984 skb_frag_t *f = &sh->frags[i];
1985 frags[n].buf = tile_net_frag_buf(f);
1986 frags[n++].length = skb_frag_size(f);
1989 return n;
1992 /* Help the kernel transmit a packet. */
1993 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1995 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
1996 struct tile_net_priv *priv = netdev_priv(dev);
1997 int instance = priv->instance;
1998 struct mpipe_data *md = &mpipe_data[instance];
1999 struct tile_net_egress *egress =
2000 &md->egress_for_echannel[priv->echannel];
2001 gxio_mpipe_equeue_t *equeue = egress->equeue;
2002 struct tile_net_comps *comps =
2003 info->mpipe[instance].comps_for_echannel[priv->echannel];
2004 unsigned int len = skb->len;
2005 unsigned char *data = skb->data;
2006 unsigned int num_edescs;
2007 struct frag frags[MAX_FRAGS];
2008 gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2009 unsigned long irqflags;
2010 gxio_mpipe_edesc_t edesc = { { 0 } };
2011 unsigned int i;
2012 s64 slot;
2014 if (skb_is_gso(skb))
2015 return tile_net_tx_tso(skb, dev);
2017 num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2019 /* This is only used to specify the TLB. */
2020 edesc.stack_idx = md->first_buffer_stack;
2022 /* Prepare the edescs. */
2023 for (i = 0; i < num_edescs; i++) {
2024 edesc.xfer_size = frags[i].length;
2025 edesc.va = va_to_tile_io_addr(frags[i].buf);
2026 edescs[i] = edesc;
2029 /* Mark the final edesc. */
2030 edescs[num_edescs - 1].bound = 1;
2032 /* Add checksum info to the initial edesc, if needed. */
2033 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2034 unsigned int csum_start = skb_checksum_start_offset(skb);
2035 edescs[0].csum = 1;
2036 edescs[0].csum_start = csum_start;
2037 edescs[0].csum_dest = csum_start + skb->csum_offset;
2040 local_irq_save(irqflags);
2042 /* Try to acquire a completion entry and an egress slot. */
2043 slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2044 equeue, num_edescs);
2045 if (slot < 0) {
2046 local_irq_restore(irqflags);
2047 return NETDEV_TX_BUSY;
2050 for (i = 0; i < num_edescs; i++)
2051 gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2053 /* Store TX timestamp if needed. */
2054 tile_tx_timestamp(skb, instance);
2056 /* Add a completion record. */
2057 add_comp(equeue, comps, slot - 1, skb);
2059 /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2060 tile_net_stats_add(1, &dev->stats.tx_packets);
2061 tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2062 &dev->stats.tx_bytes);
2064 local_irq_restore(irqflags);
2066 /* Make sure the egress timer is scheduled. */
2067 tile_net_schedule_egress_timer();
2069 return NETDEV_TX_OK;
2072 /* Return subqueue id on this core (one per core). */
2073 static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2074 void *accel_priv)
2076 return smp_processor_id();
2079 /* Deal with a transmit timeout. */
2080 static void tile_net_tx_timeout(struct net_device *dev)
2082 int cpu;
2084 for_each_online_cpu(cpu)
2085 netif_wake_subqueue(dev, cpu);
2088 /* Ioctl commands. */
2089 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2091 if (cmd == SIOCSHWTSTAMP)
2092 return tile_hwtstamp_set(dev, rq);
2093 if (cmd == SIOCGHWTSTAMP)
2094 return tile_hwtstamp_get(dev, rq);
2096 return -EOPNOTSUPP;
2099 /* Change the MTU. */
2100 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2102 if (new_mtu < 68)
2103 return -EINVAL;
2104 if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2105 return -EINVAL;
2106 dev->mtu = new_mtu;
2107 return 0;
2110 /* Change the Ethernet address of the NIC.
2112 * The hypervisor driver does not support changing MAC address. However,
2113 * the hardware does not do anything with the MAC address, so the address
2114 * which gets used on outgoing packets, and which is accepted on incoming
2115 * packets, is completely up to us.
2117 * Returns 0 on success, negative on failure.
2119 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2121 struct sockaddr *addr = p;
2123 if (!is_valid_ether_addr(addr->sa_data))
2124 return -EINVAL;
2125 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2126 return 0;
2129 #ifdef CONFIG_NET_POLL_CONTROLLER
2130 /* Polling 'interrupt' - used by things like netconsole to send skbs
2131 * without having to re-enable interrupts. It's not called while
2132 * the interrupt routine is executing.
2134 static void tile_net_netpoll(struct net_device *dev)
2136 int instance = mpipe_instance(dev);
2137 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
2138 struct mpipe_data *md = &mpipe_data[instance];
2140 disable_percpu_irq(md->ingress_irq);
2141 napi_schedule(&info->mpipe[instance].napi);
2142 enable_percpu_irq(md->ingress_irq, 0);
2144 #endif
2146 static const struct net_device_ops tile_net_ops = {
2147 .ndo_open = tile_net_open,
2148 .ndo_stop = tile_net_stop,
2149 .ndo_start_xmit = tile_net_tx,
2150 .ndo_select_queue = tile_net_select_queue,
2151 .ndo_do_ioctl = tile_net_ioctl,
2152 .ndo_change_mtu = tile_net_change_mtu,
2153 .ndo_tx_timeout = tile_net_tx_timeout,
2154 .ndo_set_mac_address = tile_net_set_mac_address,
2155 #ifdef CONFIG_NET_POLL_CONTROLLER
2156 .ndo_poll_controller = tile_net_netpoll,
2157 #endif
2160 /* The setup function.
2162 * This uses ether_setup() to assign various fields in dev, including
2163 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2165 static void tile_net_setup(struct net_device *dev)
2167 netdev_features_t features = 0;
2169 ether_setup(dev);
2170 dev->netdev_ops = &tile_net_ops;
2171 dev->watchdog_timeo = TILE_NET_TIMEOUT;
2172 dev->mtu = 1500;
2174 features |= NETIF_F_HW_CSUM;
2175 features |= NETIF_F_SG;
2176 features |= NETIF_F_TSO;
2177 features |= NETIF_F_TSO6;
2179 dev->hw_features |= features;
2180 dev->vlan_features |= features;
2181 dev->features |= features;
2184 /* Allocate the device structure, register the device, and obtain the
2185 * MAC address from the hypervisor.
2187 static void tile_net_dev_init(const char *name, const uint8_t *mac)
2189 int ret;
2190 int i;
2191 int nz_addr = 0;
2192 struct net_device *dev;
2193 struct tile_net_priv *priv;
2195 /* HACK: Ignore "loop" links. */
2196 if (strncmp(name, "loop", 4) == 0)
2197 return;
2199 /* Allocate the device structure. Normally, "name" is a
2200 * template, instantiated by register_netdev(), but not for us.
2202 dev = alloc_netdev_mqs(sizeof(*priv), name, tile_net_setup,
2203 NR_CPUS, 1);
2204 if (!dev) {
2205 pr_err("alloc_netdev_mqs(%s) failed\n", name);
2206 return;
2209 /* Initialize "priv". */
2210 priv = netdev_priv(dev);
2211 memset(priv, 0, sizeof(*priv));
2212 priv->dev = dev;
2213 priv->channel = -1;
2214 priv->loopify_channel = -1;
2215 priv->echannel = -1;
2216 init_ptp_dev(priv);
2218 /* Get the MAC address and set it in the device struct; this must
2219 * be done before the device is opened. If the MAC is all zeroes,
2220 * we use a random address, since we're probably on the simulator.
2222 for (i = 0; i < 6; i++)
2223 nz_addr |= mac[i];
2225 if (nz_addr) {
2226 memcpy(dev->dev_addr, mac, ETH_ALEN);
2227 dev->addr_len = 6;
2228 } else {
2229 eth_hw_addr_random(dev);
2232 /* Register the network device. */
2233 ret = register_netdev(dev);
2234 if (ret) {
2235 netdev_err(dev, "register_netdev failed %d\n", ret);
2236 free_netdev(dev);
2237 return;
2241 /* Per-cpu module initialization. */
2242 static void tile_net_init_module_percpu(void *unused)
2244 struct tile_net_info *info = &__get_cpu_var(per_cpu_info);
2245 int my_cpu = smp_processor_id();
2246 int instance;
2248 for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2249 info->mpipe[instance].has_iqueue = false;
2250 info->mpipe[instance].instance = instance;
2252 info->my_cpu = my_cpu;
2254 /* Initialize the egress timer. */
2255 hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2256 info->egress_timer.function = tile_net_handle_egress_timer;
2259 /* Module initialization. */
2260 static int __init tile_net_init_module(void)
2262 int i;
2263 char name[GXIO_MPIPE_LINK_NAME_LEN];
2264 uint8_t mac[6];
2266 pr_info("Tilera Network Driver\n");
2268 BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2270 mutex_init(&tile_net_devs_for_channel_mutex);
2272 /* Initialize each CPU. */
2273 on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2275 /* Find out what devices we have, and initialize them. */
2276 for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2277 tile_net_dev_init(name, mac);
2279 if (!network_cpus_init())
2280 network_cpus_map = *cpu_online_mask;
2282 return 0;
2285 module_init(tile_net_init_module);