PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / ethernet / xilinx / xilinx_axienet_main.c
blob1ec65feebb9e29cb1b9bfe7ffe2343fdfad9c537
1 /*
2 * Xilinx Axi Ethernet device driver
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
8 * Copyright (c) 2010 - 2011 PetaLogix
9 * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
23 #include <linux/delay.h>
24 #include <linux/etherdevice.h>
25 #include <linux/module.h>
26 #include <linux/netdevice.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_platform.h>
29 #include <linux/of_address.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/phy.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
36 #include "xilinx_axienet.h"
38 /* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
39 #define TX_BD_NUM 64
40 #define RX_BD_NUM 128
42 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
43 #define DRIVER_NAME "xaxienet"
44 #define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
45 #define DRIVER_VERSION "1.00a"
47 #define AXIENET_REGS_N 32
49 /* Match table for of_platform binding */
50 static struct of_device_id axienet_of_match[] = {
51 { .compatible = "xlnx,axi-ethernet-1.00.a", },
52 { .compatible = "xlnx,axi-ethernet-1.01.a", },
53 { .compatible = "xlnx,axi-ethernet-2.01.a", },
54 {},
57 MODULE_DEVICE_TABLE(of, axienet_of_match);
59 /* Option table for setting up Axi Ethernet hardware options */
60 static struct axienet_option axienet_options[] = {
61 /* Turn on jumbo packet support for both Rx and Tx */
63 .opt = XAE_OPTION_JUMBO,
64 .reg = XAE_TC_OFFSET,
65 .m_or = XAE_TC_JUM_MASK,
66 }, {
67 .opt = XAE_OPTION_JUMBO,
68 .reg = XAE_RCW1_OFFSET,
69 .m_or = XAE_RCW1_JUM_MASK,
70 }, { /* Turn on VLAN packet support for both Rx and Tx */
71 .opt = XAE_OPTION_VLAN,
72 .reg = XAE_TC_OFFSET,
73 .m_or = XAE_TC_VLAN_MASK,
74 }, {
75 .opt = XAE_OPTION_VLAN,
76 .reg = XAE_RCW1_OFFSET,
77 .m_or = XAE_RCW1_VLAN_MASK,
78 }, { /* Turn on FCS stripping on receive packets */
79 .opt = XAE_OPTION_FCS_STRIP,
80 .reg = XAE_RCW1_OFFSET,
81 .m_or = XAE_RCW1_FCS_MASK,
82 }, { /* Turn on FCS insertion on transmit packets */
83 .opt = XAE_OPTION_FCS_INSERT,
84 .reg = XAE_TC_OFFSET,
85 .m_or = XAE_TC_FCS_MASK,
86 }, { /* Turn off length/type field checking on receive packets */
87 .opt = XAE_OPTION_LENTYPE_ERR,
88 .reg = XAE_RCW1_OFFSET,
89 .m_or = XAE_RCW1_LT_DIS_MASK,
90 }, { /* Turn on Rx flow control */
91 .opt = XAE_OPTION_FLOW_CONTROL,
92 .reg = XAE_FCC_OFFSET,
93 .m_or = XAE_FCC_FCRX_MASK,
94 }, { /* Turn on Tx flow control */
95 .opt = XAE_OPTION_FLOW_CONTROL,
96 .reg = XAE_FCC_OFFSET,
97 .m_or = XAE_FCC_FCTX_MASK,
98 }, { /* Turn on promiscuous frame filtering */
99 .opt = XAE_OPTION_PROMISC,
100 .reg = XAE_FMI_OFFSET,
101 .m_or = XAE_FMI_PM_MASK,
102 }, { /* Enable transmitter */
103 .opt = XAE_OPTION_TXEN,
104 .reg = XAE_TC_OFFSET,
105 .m_or = XAE_TC_TX_MASK,
106 }, { /* Enable receiver */
107 .opt = XAE_OPTION_RXEN,
108 .reg = XAE_RCW1_OFFSET,
109 .m_or = XAE_RCW1_RX_MASK,
115 * axienet_dma_in32 - Memory mapped Axi DMA register read
116 * @lp: Pointer to axienet local structure
117 * @reg: Address offset from the base address of the Axi DMA core
119 * returns: The contents of the Axi DMA register
121 * This function returns the contents of the corresponding Axi DMA register.
123 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125 return in_be32(lp->dma_regs + reg);
129 * axienet_dma_out32 - Memory mapped Axi DMA register write.
130 * @lp: Pointer to axienet local structure
131 * @reg: Address offset from the base address of the Axi DMA core
132 * @value: Value to be written into the Axi DMA register
134 * This function writes the desired value into the corresponding Axi DMA
135 * register.
137 static inline void axienet_dma_out32(struct axienet_local *lp,
138 off_t reg, u32 value)
140 out_be32((lp->dma_regs + reg), value);
144 * axienet_dma_bd_release - Release buffer descriptor rings
145 * @ndev: Pointer to the net_device structure
147 * This function is used to release the descriptors allocated in
148 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
149 * driver stop api is called.
151 static void axienet_dma_bd_release(struct net_device *ndev)
153 int i;
154 struct axienet_local *lp = netdev_priv(ndev);
156 for (i = 0; i < RX_BD_NUM; i++) {
157 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
158 lp->max_frm_size, DMA_FROM_DEVICE);
159 dev_kfree_skb((struct sk_buff *)
160 (lp->rx_bd_v[i].sw_id_offset));
163 if (lp->rx_bd_v) {
164 dma_free_coherent(ndev->dev.parent,
165 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
166 lp->rx_bd_v,
167 lp->rx_bd_p);
169 if (lp->tx_bd_v) {
170 dma_free_coherent(ndev->dev.parent,
171 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
172 lp->tx_bd_v,
173 lp->tx_bd_p);
178 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
179 * @ndev: Pointer to the net_device structure
181 * returns: 0, on success
182 * -ENOMEM, on failure
184 * This function is called to initialize the Rx and Tx DMA descriptor
185 * rings. This initializes the descriptors with required default values
186 * and is called when Axi Ethernet driver reset is called.
188 static int axienet_dma_bd_init(struct net_device *ndev)
190 u32 cr;
191 int i;
192 struct sk_buff *skb;
193 struct axienet_local *lp = netdev_priv(ndev);
195 /* Reset the indexes which are used for accessing the BDs */
196 lp->tx_bd_ci = 0;
197 lp->tx_bd_tail = 0;
198 lp->rx_bd_ci = 0;
201 * Allocate the Tx and Rx buffer descriptors.
203 lp->tx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
204 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
205 &lp->tx_bd_p, GFP_KERNEL);
206 if (!lp->tx_bd_v)
207 goto out;
209 lp->rx_bd_v = dma_zalloc_coherent(ndev->dev.parent,
210 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
211 &lp->rx_bd_p, GFP_KERNEL);
212 if (!lp->rx_bd_v)
213 goto out;
215 for (i = 0; i < TX_BD_NUM; i++) {
216 lp->tx_bd_v[i].next = lp->tx_bd_p +
217 sizeof(*lp->tx_bd_v) *
218 ((i + 1) % TX_BD_NUM);
221 for (i = 0; i < RX_BD_NUM; i++) {
222 lp->rx_bd_v[i].next = lp->rx_bd_p +
223 sizeof(*lp->rx_bd_v) *
224 ((i + 1) % RX_BD_NUM);
226 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
227 if (!skb)
228 goto out;
230 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
231 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
232 skb->data,
233 lp->max_frm_size,
234 DMA_FROM_DEVICE);
235 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
238 /* Start updating the Rx channel control register */
239 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
240 /* Update the interrupt coalesce count */
241 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
242 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
243 /* Update the delay timer count */
244 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
245 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
246 /* Enable coalesce, delay timer and error interrupts */
247 cr |= XAXIDMA_IRQ_ALL_MASK;
248 /* Write to the Rx channel control register */
249 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
251 /* Start updating the Tx channel control register */
252 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
253 /* Update the interrupt coalesce count */
254 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
255 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
256 /* Update the delay timer count */
257 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
258 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259 /* Enable coalesce, delay timer and error interrupts */
260 cr |= XAXIDMA_IRQ_ALL_MASK;
261 /* Write to the Tx channel control register */
262 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
264 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
265 * halted state. This will make the Rx side ready for reception.*/
266 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
267 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
268 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
269 cr | XAXIDMA_CR_RUNSTOP_MASK);
270 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
271 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
273 /* Write to the RS (Run-stop) bit in the Tx channel control register.
274 * Tx channel is now ready to run. But only after we write to the
275 * tail pointer register that the Tx channel will start transmitting */
276 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
277 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
278 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
279 cr | XAXIDMA_CR_RUNSTOP_MASK);
281 return 0;
282 out:
283 axienet_dma_bd_release(ndev);
284 return -ENOMEM;
288 * axienet_set_mac_address - Write the MAC address
289 * @ndev: Pointer to the net_device structure
290 * @address: 6 byte Address to be written as MAC address
292 * This function is called to initialize the MAC address of the Axi Ethernet
293 * core. It writes to the UAW0 and UAW1 registers of the core.
295 static void axienet_set_mac_address(struct net_device *ndev, void *address)
297 struct axienet_local *lp = netdev_priv(ndev);
299 if (address)
300 memcpy(ndev->dev_addr, address, ETH_ALEN);
301 if (!is_valid_ether_addr(ndev->dev_addr))
302 eth_random_addr(ndev->dev_addr);
304 /* Set up unicast MAC address filter set its mac address */
305 axienet_iow(lp, XAE_UAW0_OFFSET,
306 (ndev->dev_addr[0]) |
307 (ndev->dev_addr[1] << 8) |
308 (ndev->dev_addr[2] << 16) |
309 (ndev->dev_addr[3] << 24));
310 axienet_iow(lp, XAE_UAW1_OFFSET,
311 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
312 ~XAE_UAW1_UNICASTADDR_MASK) |
313 (ndev->dev_addr[4] |
314 (ndev->dev_addr[5] << 8))));
318 * netdev_set_mac_address - Write the MAC address (from outside the driver)
319 * @ndev: Pointer to the net_device structure
320 * @p: 6 byte Address to be written as MAC address
322 * returns: 0 for all conditions. Presently, there is no failure case.
324 * This function is called to initialize the MAC address of the Axi Ethernet
325 * core. It calls the core specific axienet_set_mac_address. This is the
326 * function that goes into net_device_ops structure entry ndo_set_mac_address.
328 static int netdev_set_mac_address(struct net_device *ndev, void *p)
330 struct sockaddr *addr = p;
331 axienet_set_mac_address(ndev, addr->sa_data);
332 return 0;
336 * axienet_set_multicast_list - Prepare the multicast table
337 * @ndev: Pointer to the net_device structure
339 * This function is called to initialize the multicast table during
340 * initialization. The Axi Ethernet basic multicast support has a four-entry
341 * multicast table which is initialized here. Additionally this function
342 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
343 * means whenever the multicast table entries need to be updated this
344 * function gets called.
346 static void axienet_set_multicast_list(struct net_device *ndev)
348 int i;
349 u32 reg, af0reg, af1reg;
350 struct axienet_local *lp = netdev_priv(ndev);
352 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
353 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
354 /* We must make the kernel realize we had to move into
355 * promiscuous mode. If it was a promiscuous mode request
356 * the flag is already set. If not we set it. */
357 ndev->flags |= IFF_PROMISC;
358 reg = axienet_ior(lp, XAE_FMI_OFFSET);
359 reg |= XAE_FMI_PM_MASK;
360 axienet_iow(lp, XAE_FMI_OFFSET, reg);
361 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
362 } else if (!netdev_mc_empty(ndev)) {
363 struct netdev_hw_addr *ha;
365 i = 0;
366 netdev_for_each_mc_addr(ha, ndev) {
367 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
368 break;
370 af0reg = (ha->addr[0]);
371 af0reg |= (ha->addr[1] << 8);
372 af0reg |= (ha->addr[2] << 16);
373 af0reg |= (ha->addr[3] << 24);
375 af1reg = (ha->addr[4]);
376 af1reg |= (ha->addr[5] << 8);
378 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
379 reg |= i;
381 axienet_iow(lp, XAE_FMI_OFFSET, reg);
382 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
383 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
384 i++;
386 } else {
387 reg = axienet_ior(lp, XAE_FMI_OFFSET);
388 reg &= ~XAE_FMI_PM_MASK;
390 axienet_iow(lp, XAE_FMI_OFFSET, reg);
392 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
393 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
394 reg |= i;
396 axienet_iow(lp, XAE_FMI_OFFSET, reg);
397 axienet_iow(lp, XAE_AF0_OFFSET, 0);
398 axienet_iow(lp, XAE_AF1_OFFSET, 0);
401 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
406 * axienet_setoptions - Set an Axi Ethernet option
407 * @ndev: Pointer to the net_device structure
408 * @options: Option to be enabled/disabled
410 * The Axi Ethernet core has multiple features which can be selectively turned
411 * on or off. The typical options could be jumbo frame option, basic VLAN
412 * option, promiscuous mode option etc. This function is used to set or clear
413 * these options in the Axi Ethernet hardware. This is done through
414 * axienet_option structure .
416 static void axienet_setoptions(struct net_device *ndev, u32 options)
418 int reg;
419 struct axienet_local *lp = netdev_priv(ndev);
420 struct axienet_option *tp = &axienet_options[0];
422 while (tp->opt) {
423 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
424 if (options & tp->opt)
425 reg |= tp->m_or;
426 axienet_iow(lp, tp->reg, reg);
427 tp++;
430 lp->options |= options;
433 static void __axienet_device_reset(struct axienet_local *lp,
434 struct device *dev, off_t offset)
436 u32 timeout;
437 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
438 * process of Axi DMA takes a while to complete as all pending
439 * commands/transfers will be flushed or completed during this
440 * reset process. */
441 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
442 timeout = DELAY_OF_ONE_MILLISEC;
443 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
444 udelay(1);
445 if (--timeout == 0) {
446 dev_err(dev, "axienet_device_reset DMA "
447 "reset timeout!\n");
448 break;
454 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
455 * @ndev: Pointer to the net_device structure
457 * This function is called to reset and initialize the Axi Ethernet core. This
458 * is typically called during initialization. It does a reset of the Axi DMA
459 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
460 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
461 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
462 * core.
464 static void axienet_device_reset(struct net_device *ndev)
466 u32 axienet_status;
467 struct axienet_local *lp = netdev_priv(ndev);
469 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
470 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
472 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
473 lp->options &= (~XAE_OPTION_JUMBO);
475 if ((ndev->mtu > XAE_MTU) &&
476 (ndev->mtu <= XAE_JUMBO_MTU) &&
477 (lp->jumbo_support)) {
478 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
479 XAE_TRL_SIZE;
480 lp->options |= XAE_OPTION_JUMBO;
483 if (axienet_dma_bd_init(ndev)) {
484 dev_err(&ndev->dev, "axienet_device_reset descriptor "
485 "allocation failed\n");
488 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
489 axienet_status &= ~XAE_RCW1_RX_MASK;
490 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
492 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
493 if (axienet_status & XAE_INT_RXRJECT_MASK)
494 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
496 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
498 /* Sync default options with HW but leave receiver and
499 * transmitter disabled.*/
500 axienet_setoptions(ndev, lp->options &
501 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
502 axienet_set_mac_address(ndev, NULL);
503 axienet_set_multicast_list(ndev);
504 axienet_setoptions(ndev, lp->options);
506 ndev->trans_start = jiffies;
510 * axienet_adjust_link - Adjust the PHY link speed/duplex.
511 * @ndev: Pointer to the net_device structure
513 * This function is called to change the speed and duplex setting after
514 * auto negotiation is done by the PHY. This is the function that gets
515 * registered with the PHY interface through the "of_phy_connect" call.
517 static void axienet_adjust_link(struct net_device *ndev)
519 u32 emmc_reg;
520 u32 link_state;
521 u32 setspeed = 1;
522 struct axienet_local *lp = netdev_priv(ndev);
523 struct phy_device *phy = lp->phy_dev;
525 link_state = phy->speed | (phy->duplex << 1) | phy->link;
526 if (lp->last_link != link_state) {
527 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
528 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
529 setspeed = 0;
530 } else {
531 if ((phy->speed == SPEED_1000) &&
532 (lp->phy_type == XAE_PHY_TYPE_MII))
533 setspeed = 0;
536 if (setspeed == 1) {
537 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
538 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
540 switch (phy->speed) {
541 case SPEED_1000:
542 emmc_reg |= XAE_EMMC_LINKSPD_1000;
543 break;
544 case SPEED_100:
545 emmc_reg |= XAE_EMMC_LINKSPD_100;
546 break;
547 case SPEED_10:
548 emmc_reg |= XAE_EMMC_LINKSPD_10;
549 break;
550 default:
551 dev_err(&ndev->dev, "Speed other than 10, 100 "
552 "or 1Gbps is not supported\n");
553 break;
556 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
557 lp->last_link = link_state;
558 phy_print_status(phy);
559 } else {
560 dev_err(&ndev->dev, "Error setting Axi Ethernet "
561 "mac speed\n");
567 * axienet_start_xmit_done - Invoked once a transmit is completed by the
568 * Axi DMA Tx channel.
569 * @ndev: Pointer to the net_device structure
571 * This function is invoked from the Axi DMA Tx isr to notify the completion
572 * of transmit operation. It clears fields in the corresponding Tx BDs and
573 * unmaps the corresponding buffer so that CPU can regain ownership of the
574 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
575 * required.
577 static void axienet_start_xmit_done(struct net_device *ndev)
579 u32 size = 0;
580 u32 packets = 0;
581 struct axienet_local *lp = netdev_priv(ndev);
582 struct axidma_bd *cur_p;
583 unsigned int status = 0;
585 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
586 status = cur_p->status;
587 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
588 dma_unmap_single(ndev->dev.parent, cur_p->phys,
589 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
590 DMA_TO_DEVICE);
591 if (cur_p->app4)
592 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
593 /*cur_p->phys = 0;*/
594 cur_p->app0 = 0;
595 cur_p->app1 = 0;
596 cur_p->app2 = 0;
597 cur_p->app4 = 0;
598 cur_p->status = 0;
600 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
601 packets++;
603 lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
604 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
605 status = cur_p->status;
608 ndev->stats.tx_packets += packets;
609 ndev->stats.tx_bytes += size;
610 netif_wake_queue(ndev);
614 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
615 * @lp: Pointer to the axienet_local structure
616 * @num_frag: The number of BDs to check for
618 * returns: 0, on success
619 * NETDEV_TX_BUSY, if any of the descriptors are not free
621 * This function is invoked before BDs are allocated and transmission starts.
622 * This function returns 0 if a BD or group of BDs can be allocated for
623 * transmission. If the BD or any of the BDs are not free the function
624 * returns a busy status. This is invoked from axienet_start_xmit.
626 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
627 int num_frag)
629 struct axidma_bd *cur_p;
630 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
631 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
632 return NETDEV_TX_BUSY;
633 return 0;
637 * axienet_start_xmit - Starts the transmission.
638 * @skb: sk_buff pointer that contains data to be Txed.
639 * @ndev: Pointer to net_device structure.
641 * returns: NETDEV_TX_OK, on success
642 * NETDEV_TX_BUSY, if any of the descriptors are not free
644 * This function is invoked from upper layers to initiate transmission. The
645 * function uses the next available free BDs and populates their fields to
646 * start the transmission. Additionally if checksum offloading is supported,
647 * it populates AXI Stream Control fields with appropriate values.
649 static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
651 u32 ii;
652 u32 num_frag;
653 u32 csum_start_off;
654 u32 csum_index_off;
655 skb_frag_t *frag;
656 dma_addr_t tail_p;
657 struct axienet_local *lp = netdev_priv(ndev);
658 struct axidma_bd *cur_p;
660 num_frag = skb_shinfo(skb)->nr_frags;
661 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
663 if (axienet_check_tx_bd_space(lp, num_frag)) {
664 if (!netif_queue_stopped(ndev))
665 netif_stop_queue(ndev);
666 return NETDEV_TX_BUSY;
669 if (skb->ip_summed == CHECKSUM_PARTIAL) {
670 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
671 /* Tx Full Checksum Offload Enabled */
672 cur_p->app0 |= 2;
673 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
674 csum_start_off = skb_transport_offset(skb);
675 csum_index_off = csum_start_off + skb->csum_offset;
676 /* Tx Partial Checksum Offload Enabled */
677 cur_p->app0 |= 1;
678 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
680 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
681 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
684 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
685 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
686 skb_headlen(skb), DMA_TO_DEVICE);
688 for (ii = 0; ii < num_frag; ii++) {
689 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
690 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
691 frag = &skb_shinfo(skb)->frags[ii];
692 cur_p->phys = dma_map_single(ndev->dev.parent,
693 skb_frag_address(frag),
694 skb_frag_size(frag),
695 DMA_TO_DEVICE);
696 cur_p->cntrl = skb_frag_size(frag);
699 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
700 cur_p->app4 = (unsigned long)skb;
702 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
703 /* Start the transfer */
704 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
705 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
707 return NETDEV_TX_OK;
711 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
712 * BD processing.
713 * @ndev: Pointer to net_device structure.
715 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
716 * does minimal processing and invokes "netif_rx" to complete further
717 * processing.
719 static void axienet_recv(struct net_device *ndev)
721 u32 length;
722 u32 csumstatus;
723 u32 size = 0;
724 u32 packets = 0;
725 dma_addr_t tail_p;
726 struct axienet_local *lp = netdev_priv(ndev);
727 struct sk_buff *skb, *new_skb;
728 struct axidma_bd *cur_p;
730 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
731 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
733 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
734 skb = (struct sk_buff *) (cur_p->sw_id_offset);
735 length = cur_p->app4 & 0x0000FFFF;
737 dma_unmap_single(ndev->dev.parent, cur_p->phys,
738 lp->max_frm_size,
739 DMA_FROM_DEVICE);
741 skb_put(skb, length);
742 skb->protocol = eth_type_trans(skb, ndev);
743 /*skb_checksum_none_assert(skb);*/
744 skb->ip_summed = CHECKSUM_NONE;
746 /* if we're doing Rx csum offload, set it up */
747 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
748 csumstatus = (cur_p->app2 &
749 XAE_FULL_CSUM_STATUS_MASK) >> 3;
750 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
751 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
752 skb->ip_summed = CHECKSUM_UNNECESSARY;
754 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
755 skb->protocol == __constant_htons(ETH_P_IP) &&
756 skb->len > 64) {
757 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
758 skb->ip_summed = CHECKSUM_COMPLETE;
761 netif_rx(skb);
763 size += length;
764 packets++;
766 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
767 if (!new_skb)
768 return;
770 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
771 lp->max_frm_size,
772 DMA_FROM_DEVICE);
773 cur_p->cntrl = lp->max_frm_size;
774 cur_p->status = 0;
775 cur_p->sw_id_offset = (u32) new_skb;
777 lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
778 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
781 ndev->stats.rx_packets += packets;
782 ndev->stats.rx_bytes += size;
784 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
788 * axienet_tx_irq - Tx Done Isr.
789 * @irq: irq number
790 * @_ndev: net_device pointer
792 * returns: IRQ_HANDLED for all cases.
794 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
795 * to complete the BD processing.
797 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
799 u32 cr;
800 unsigned int status;
801 struct net_device *ndev = _ndev;
802 struct axienet_local *lp = netdev_priv(ndev);
804 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
805 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
806 axienet_start_xmit_done(lp->ndev);
807 goto out;
809 if (!(status & XAXIDMA_IRQ_ALL_MASK))
810 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
811 if (status & XAXIDMA_IRQ_ERROR_MASK) {
812 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
813 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
814 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
816 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
817 /* Disable coalesce, delay timer and error interrupts */
818 cr &= (~XAXIDMA_IRQ_ALL_MASK);
819 /* Write to the Tx channel control register */
820 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
822 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
823 /* Disable coalesce, delay timer and error interrupts */
824 cr &= (~XAXIDMA_IRQ_ALL_MASK);
825 /* Write to the Rx channel control register */
826 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
828 tasklet_schedule(&lp->dma_err_tasklet);
830 out:
831 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
832 return IRQ_HANDLED;
836 * axienet_rx_irq - Rx Isr.
837 * @irq: irq number
838 * @_ndev: net_device pointer
840 * returns: IRQ_HANDLED for all cases.
842 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
843 * processing.
845 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
847 u32 cr;
848 unsigned int status;
849 struct net_device *ndev = _ndev;
850 struct axienet_local *lp = netdev_priv(ndev);
852 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
853 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
854 axienet_recv(lp->ndev);
855 goto out;
857 if (!(status & XAXIDMA_IRQ_ALL_MASK))
858 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
859 if (status & XAXIDMA_IRQ_ERROR_MASK) {
860 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
861 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
862 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
864 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
865 /* Disable coalesce, delay timer and error interrupts */
866 cr &= (~XAXIDMA_IRQ_ALL_MASK);
867 /* Finally write to the Tx channel control register */
868 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
870 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
871 /* Disable coalesce, delay timer and error interrupts */
872 cr &= (~XAXIDMA_IRQ_ALL_MASK);
873 /* write to the Rx channel control register */
874 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
876 tasklet_schedule(&lp->dma_err_tasklet);
878 out:
879 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
880 return IRQ_HANDLED;
883 static void axienet_dma_err_handler(unsigned long data);
886 * axienet_open - Driver open routine.
887 * @ndev: Pointer to net_device structure
889 * returns: 0, on success.
890 * -ENODEV, if PHY cannot be connected to
891 * non-zero error value on failure
893 * This is the driver open routine. It calls phy_start to start the PHY device.
894 * It also allocates interrupt service routines, enables the interrupt lines
895 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
896 * descriptors are initialized.
898 static int axienet_open(struct net_device *ndev)
900 int ret, mdio_mcreg;
901 struct axienet_local *lp = netdev_priv(ndev);
903 dev_dbg(&ndev->dev, "axienet_open()\n");
905 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
906 ret = axienet_mdio_wait_until_ready(lp);
907 if (ret < 0)
908 return ret;
909 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
910 * When we do an Axi Ethernet reset, it resets the complete core
911 * including the MDIO. If MDIO is not disabled when the reset
912 * process is started, MDIO will be broken afterwards. */
913 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
914 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
915 axienet_device_reset(ndev);
916 /* Enable the MDIO */
917 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
918 ret = axienet_mdio_wait_until_ready(lp);
919 if (ret < 0)
920 return ret;
922 if (lp->phy_node) {
923 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
924 axienet_adjust_link, 0,
925 PHY_INTERFACE_MODE_GMII);
926 if (!lp->phy_dev) {
927 dev_err(lp->dev, "of_phy_connect() failed\n");
928 return -ENODEV;
930 phy_start(lp->phy_dev);
933 /* Enable tasklets for Axi DMA error handling */
934 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
935 (unsigned long) lp);
937 /* Enable interrupts for Axi DMA Tx */
938 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
939 if (ret)
940 goto err_tx_irq;
941 /* Enable interrupts for Axi DMA Rx */
942 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
943 if (ret)
944 goto err_rx_irq;
946 return 0;
948 err_rx_irq:
949 free_irq(lp->tx_irq, ndev);
950 err_tx_irq:
951 if (lp->phy_dev)
952 phy_disconnect(lp->phy_dev);
953 lp->phy_dev = NULL;
954 tasklet_kill(&lp->dma_err_tasklet);
955 dev_err(lp->dev, "request_irq() failed\n");
956 return ret;
960 * axienet_stop - Driver stop routine.
961 * @ndev: Pointer to net_device structure
963 * returns: 0, on success.
965 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
966 * device. It also removes the interrupt handlers and disables the interrupts.
967 * The Axi DMA Tx/Rx BDs are released.
969 static int axienet_stop(struct net_device *ndev)
971 u32 cr;
972 struct axienet_local *lp = netdev_priv(ndev);
974 dev_dbg(&ndev->dev, "axienet_close()\n");
976 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
977 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
978 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
979 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
980 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
981 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
982 axienet_setoptions(ndev, lp->options &
983 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
985 tasklet_kill(&lp->dma_err_tasklet);
987 free_irq(lp->tx_irq, ndev);
988 free_irq(lp->rx_irq, ndev);
990 if (lp->phy_dev)
991 phy_disconnect(lp->phy_dev);
992 lp->phy_dev = NULL;
994 axienet_dma_bd_release(ndev);
995 return 0;
999 * axienet_change_mtu - Driver change mtu routine.
1000 * @ndev: Pointer to net_device structure
1001 * @new_mtu: New mtu value to be applied
1003 * returns: Always returns 0 (success).
1005 * This is the change mtu driver routine. It checks if the Axi Ethernet
1006 * hardware supports jumbo frames before changing the mtu. This can be
1007 * called only when the device is not up.
1009 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1011 struct axienet_local *lp = netdev_priv(ndev);
1013 if (netif_running(ndev))
1014 return -EBUSY;
1015 if (lp->jumbo_support) {
1016 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1017 return -EINVAL;
1018 ndev->mtu = new_mtu;
1019 } else {
1020 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1021 return -EINVAL;
1022 ndev->mtu = new_mtu;
1025 return 0;
1028 #ifdef CONFIG_NET_POLL_CONTROLLER
1030 * axienet_poll_controller - Axi Ethernet poll mechanism.
1031 * @ndev: Pointer to net_device structure
1033 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1034 * to polling the ISRs and are enabled back after the polling is done.
1036 static void axienet_poll_controller(struct net_device *ndev)
1038 struct axienet_local *lp = netdev_priv(ndev);
1039 disable_irq(lp->tx_irq);
1040 disable_irq(lp->rx_irq);
1041 axienet_rx_irq(lp->tx_irq, ndev);
1042 axienet_tx_irq(lp->rx_irq, ndev);
1043 enable_irq(lp->tx_irq);
1044 enable_irq(lp->rx_irq);
1046 #endif
1048 static const struct net_device_ops axienet_netdev_ops = {
1049 .ndo_open = axienet_open,
1050 .ndo_stop = axienet_stop,
1051 .ndo_start_xmit = axienet_start_xmit,
1052 .ndo_change_mtu = axienet_change_mtu,
1053 .ndo_set_mac_address = netdev_set_mac_address,
1054 .ndo_validate_addr = eth_validate_addr,
1055 .ndo_set_rx_mode = axienet_set_multicast_list,
1056 #ifdef CONFIG_NET_POLL_CONTROLLER
1057 .ndo_poll_controller = axienet_poll_controller,
1058 #endif
1062 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1063 * @ndev: Pointer to net_device structure
1064 * @ecmd: Pointer to ethtool_cmd structure
1066 * This implements ethtool command for getting PHY settings. If PHY could
1067 * not be found, the function returns -ENODEV. This function calls the
1068 * relevant PHY ethtool API to get the PHY settings.
1069 * Issue "ethtool ethX" under linux prompt to execute this function.
1071 static int axienet_ethtools_get_settings(struct net_device *ndev,
1072 struct ethtool_cmd *ecmd)
1074 struct axienet_local *lp = netdev_priv(ndev);
1075 struct phy_device *phydev = lp->phy_dev;
1076 if (!phydev)
1077 return -ENODEV;
1078 return phy_ethtool_gset(phydev, ecmd);
1082 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1083 * @ndev: Pointer to net_device structure
1084 * @ecmd: Pointer to ethtool_cmd structure
1086 * This implements ethtool command for setting various PHY settings. If PHY
1087 * could not be found, the function returns -ENODEV. This function calls the
1088 * relevant PHY ethtool API to set the PHY.
1089 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1090 * function.
1092 static int axienet_ethtools_set_settings(struct net_device *ndev,
1093 struct ethtool_cmd *ecmd)
1095 struct axienet_local *lp = netdev_priv(ndev);
1096 struct phy_device *phydev = lp->phy_dev;
1097 if (!phydev)
1098 return -ENODEV;
1099 return phy_ethtool_sset(phydev, ecmd);
1103 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1104 * @ndev: Pointer to net_device structure
1105 * @ed: Pointer to ethtool_drvinfo structure
1107 * This implements ethtool command for getting the driver information.
1108 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1110 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1111 struct ethtool_drvinfo *ed)
1113 strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1114 strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1115 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1119 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1120 * AxiEthernet core.
1121 * @ndev: Pointer to net_device structure
1123 * This implements ethtool command for getting the total register length
1124 * information.
1126 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1128 return sizeof(u32) * AXIENET_REGS_N;
1132 * axienet_ethtools_get_regs - Dump the contents of all registers present
1133 * in AxiEthernet core.
1134 * @ndev: Pointer to net_device structure
1135 * @regs: Pointer to ethtool_regs structure
1136 * @ret: Void pointer used to return the contents of the registers.
1138 * This implements ethtool command for getting the Axi Ethernet register dump.
1139 * Issue "ethtool -d ethX" to execute this function.
1141 static void axienet_ethtools_get_regs(struct net_device *ndev,
1142 struct ethtool_regs *regs, void *ret)
1144 u32 *data = (u32 *) ret;
1145 size_t len = sizeof(u32) * AXIENET_REGS_N;
1146 struct axienet_local *lp = netdev_priv(ndev);
1148 regs->version = 0;
1149 regs->len = len;
1151 memset(data, 0, len);
1152 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1153 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1154 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1155 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1156 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1157 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1158 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1159 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1160 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1161 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1162 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1163 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1164 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1165 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1166 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1167 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1168 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1169 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1170 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1171 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1172 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1173 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1174 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1175 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1176 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1177 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1178 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1179 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1180 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1181 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1182 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1183 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1187 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1188 * Tx and Rx paths.
1189 * @ndev: Pointer to net_device structure
1190 * @epauseparm: Pointer to ethtool_pauseparam structure.
1192 * This implements ethtool command for getting axi ethernet pause frame
1193 * setting. Issue "ethtool -a ethX" to execute this function.
1195 static void
1196 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1197 struct ethtool_pauseparam *epauseparm)
1199 u32 regval;
1200 struct axienet_local *lp = netdev_priv(ndev);
1201 epauseparm->autoneg = 0;
1202 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1203 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1204 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1208 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1209 * settings.
1210 * @ndev: Pointer to net_device structure
1211 * @epauseparam:Pointer to ethtool_pauseparam structure
1213 * This implements ethtool command for enabling flow control on Rx and Tx
1214 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1215 * function.
1217 static int
1218 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1219 struct ethtool_pauseparam *epauseparm)
1221 u32 regval = 0;
1222 struct axienet_local *lp = netdev_priv(ndev);
1224 if (netif_running(ndev)) {
1225 printk(KERN_ERR "%s: Please stop netif before applying "
1226 "configruation\n", ndev->name);
1227 return -EFAULT;
1230 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1231 if (epauseparm->tx_pause)
1232 regval |= XAE_FCC_FCTX_MASK;
1233 else
1234 regval &= ~XAE_FCC_FCTX_MASK;
1235 if (epauseparm->rx_pause)
1236 regval |= XAE_FCC_FCRX_MASK;
1237 else
1238 regval &= ~XAE_FCC_FCRX_MASK;
1239 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1241 return 0;
1245 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1246 * @ndev: Pointer to net_device structure
1247 * @ecoalesce: Pointer to ethtool_coalesce structure
1249 * This implements ethtool command for getting the DMA interrupt coalescing
1250 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1251 * execute this function.
1253 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1254 struct ethtool_coalesce *ecoalesce)
1256 u32 regval = 0;
1257 struct axienet_local *lp = netdev_priv(ndev);
1258 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1259 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1260 >> XAXIDMA_COALESCE_SHIFT;
1261 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1262 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1263 >> XAXIDMA_COALESCE_SHIFT;
1264 return 0;
1268 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1269 * @ndev: Pointer to net_device structure
1270 * @ecoalesce: Pointer to ethtool_coalesce structure
1272 * This implements ethtool command for setting the DMA interrupt coalescing
1273 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1274 * prompt to execute this function.
1276 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1277 struct ethtool_coalesce *ecoalesce)
1279 struct axienet_local *lp = netdev_priv(ndev);
1281 if (netif_running(ndev)) {
1282 printk(KERN_ERR "%s: Please stop netif before applying "
1283 "configruation\n", ndev->name);
1284 return -EFAULT;
1287 if ((ecoalesce->rx_coalesce_usecs) ||
1288 (ecoalesce->rx_coalesce_usecs_irq) ||
1289 (ecoalesce->rx_max_coalesced_frames_irq) ||
1290 (ecoalesce->tx_coalesce_usecs) ||
1291 (ecoalesce->tx_coalesce_usecs_irq) ||
1292 (ecoalesce->tx_max_coalesced_frames_irq) ||
1293 (ecoalesce->stats_block_coalesce_usecs) ||
1294 (ecoalesce->use_adaptive_rx_coalesce) ||
1295 (ecoalesce->use_adaptive_tx_coalesce) ||
1296 (ecoalesce->pkt_rate_low) ||
1297 (ecoalesce->rx_coalesce_usecs_low) ||
1298 (ecoalesce->rx_max_coalesced_frames_low) ||
1299 (ecoalesce->tx_coalesce_usecs_low) ||
1300 (ecoalesce->tx_max_coalesced_frames_low) ||
1301 (ecoalesce->pkt_rate_high) ||
1302 (ecoalesce->rx_coalesce_usecs_high) ||
1303 (ecoalesce->rx_max_coalesced_frames_high) ||
1304 (ecoalesce->tx_coalesce_usecs_high) ||
1305 (ecoalesce->tx_max_coalesced_frames_high) ||
1306 (ecoalesce->rate_sample_interval))
1307 return -EOPNOTSUPP;
1308 if (ecoalesce->rx_max_coalesced_frames)
1309 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1310 if (ecoalesce->tx_max_coalesced_frames)
1311 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1313 return 0;
1316 static struct ethtool_ops axienet_ethtool_ops = {
1317 .get_settings = axienet_ethtools_get_settings,
1318 .set_settings = axienet_ethtools_set_settings,
1319 .get_drvinfo = axienet_ethtools_get_drvinfo,
1320 .get_regs_len = axienet_ethtools_get_regs_len,
1321 .get_regs = axienet_ethtools_get_regs,
1322 .get_link = ethtool_op_get_link,
1323 .get_pauseparam = axienet_ethtools_get_pauseparam,
1324 .set_pauseparam = axienet_ethtools_set_pauseparam,
1325 .get_coalesce = axienet_ethtools_get_coalesce,
1326 .set_coalesce = axienet_ethtools_set_coalesce,
1330 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1331 * @data: Data passed
1333 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1334 * Tx/Rx BDs.
1336 static void axienet_dma_err_handler(unsigned long data)
1338 u32 axienet_status;
1339 u32 cr, i;
1340 int mdio_mcreg;
1341 struct axienet_local *lp = (struct axienet_local *) data;
1342 struct net_device *ndev = lp->ndev;
1343 struct axidma_bd *cur_p;
1345 axienet_setoptions(ndev, lp->options &
1346 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1347 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1348 axienet_mdio_wait_until_ready(lp);
1349 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1350 * When we do an Axi Ethernet reset, it resets the complete core
1351 * including the MDIO. So if MDIO is not disabled when the reset
1352 * process is started, MDIO will be broken afterwards. */
1353 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1354 ~XAE_MDIO_MC_MDIOEN_MASK));
1356 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1357 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1359 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1360 axienet_mdio_wait_until_ready(lp);
1362 for (i = 0; i < TX_BD_NUM; i++) {
1363 cur_p = &lp->tx_bd_v[i];
1364 if (cur_p->phys)
1365 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1366 (cur_p->cntrl &
1367 XAXIDMA_BD_CTRL_LENGTH_MASK),
1368 DMA_TO_DEVICE);
1369 if (cur_p->app4)
1370 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1371 cur_p->phys = 0;
1372 cur_p->cntrl = 0;
1373 cur_p->status = 0;
1374 cur_p->app0 = 0;
1375 cur_p->app1 = 0;
1376 cur_p->app2 = 0;
1377 cur_p->app3 = 0;
1378 cur_p->app4 = 0;
1379 cur_p->sw_id_offset = 0;
1382 for (i = 0; i < RX_BD_NUM; i++) {
1383 cur_p = &lp->rx_bd_v[i];
1384 cur_p->status = 0;
1385 cur_p->app0 = 0;
1386 cur_p->app1 = 0;
1387 cur_p->app2 = 0;
1388 cur_p->app3 = 0;
1389 cur_p->app4 = 0;
1392 lp->tx_bd_ci = 0;
1393 lp->tx_bd_tail = 0;
1394 lp->rx_bd_ci = 0;
1396 /* Start updating the Rx channel control register */
1397 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1398 /* Update the interrupt coalesce count */
1399 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1400 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1401 /* Update the delay timer count */
1402 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1403 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1404 /* Enable coalesce, delay timer and error interrupts */
1405 cr |= XAXIDMA_IRQ_ALL_MASK;
1406 /* Finally write to the Rx channel control register */
1407 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1409 /* Start updating the Tx channel control register */
1410 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1411 /* Update the interrupt coalesce count */
1412 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1413 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1414 /* Update the delay timer count */
1415 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1416 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1417 /* Enable coalesce, delay timer and error interrupts */
1418 cr |= XAXIDMA_IRQ_ALL_MASK;
1419 /* Finally write to the Tx channel control register */
1420 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1422 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1423 * halted state. This will make the Rx side ready for reception.*/
1424 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1425 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1426 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1427 cr | XAXIDMA_CR_RUNSTOP_MASK);
1428 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1429 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1431 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1432 * Tx channel is now ready to run. But only after we write to the
1433 * tail pointer register that the Tx channel will start transmitting */
1434 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1435 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1436 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1437 cr | XAXIDMA_CR_RUNSTOP_MASK);
1439 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1440 axienet_status &= ~XAE_RCW1_RX_MASK;
1441 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1443 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1444 if (axienet_status & XAE_INT_RXRJECT_MASK)
1445 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1446 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1448 /* Sync default options with HW but leave receiver and
1449 * transmitter disabled.*/
1450 axienet_setoptions(ndev, lp->options &
1451 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1452 axienet_set_mac_address(ndev, NULL);
1453 axienet_set_multicast_list(ndev);
1454 axienet_setoptions(ndev, lp->options);
1458 * axienet_of_probe - Axi Ethernet probe function.
1459 * @op: Pointer to platform device structure.
1460 * @match: Pointer to device id structure
1462 * returns: 0, on success
1463 * Non-zero error value on failure.
1465 * This is the probe routine for Axi Ethernet driver. This is called before
1466 * any other driver routines are invoked. It allocates and sets up the Ethernet
1467 * device. Parses through device tree and populates fields of
1468 * axienet_local. It registers the Ethernet device.
1470 static int axienet_of_probe(struct platform_device *op)
1472 __be32 *p;
1473 int size, ret = 0;
1474 struct device_node *np;
1475 struct axienet_local *lp;
1476 struct net_device *ndev;
1477 const void *addr;
1479 ndev = alloc_etherdev(sizeof(*lp));
1480 if (!ndev)
1481 return -ENOMEM;
1483 ether_setup(ndev);
1484 platform_set_drvdata(op, ndev);
1486 SET_NETDEV_DEV(ndev, &op->dev);
1487 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1488 ndev->features = NETIF_F_SG;
1489 ndev->netdev_ops = &axienet_netdev_ops;
1490 ndev->ethtool_ops = &axienet_ethtool_ops;
1492 lp = netdev_priv(ndev);
1493 lp->ndev = ndev;
1494 lp->dev = &op->dev;
1495 lp->options = XAE_OPTION_DEFAULTS;
1496 /* Map device registers */
1497 lp->regs = of_iomap(op->dev.of_node, 0);
1498 if (!lp->regs) {
1499 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1500 goto nodev;
1502 /* Setup checksum offload, but default to off if not specified */
1503 lp->features = 0;
1505 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1506 if (p) {
1507 switch (be32_to_cpup(p)) {
1508 case 1:
1509 lp->csum_offload_on_tx_path =
1510 XAE_FEATURE_PARTIAL_TX_CSUM;
1511 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1512 /* Can checksum TCP/UDP over IPv4. */
1513 ndev->features |= NETIF_F_IP_CSUM;
1514 break;
1515 case 2:
1516 lp->csum_offload_on_tx_path =
1517 XAE_FEATURE_FULL_TX_CSUM;
1518 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1519 /* Can checksum TCP/UDP over IPv4. */
1520 ndev->features |= NETIF_F_IP_CSUM;
1521 break;
1522 default:
1523 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1526 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1527 if (p) {
1528 switch (be32_to_cpup(p)) {
1529 case 1:
1530 lp->csum_offload_on_rx_path =
1531 XAE_FEATURE_PARTIAL_RX_CSUM;
1532 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1533 break;
1534 case 2:
1535 lp->csum_offload_on_rx_path =
1536 XAE_FEATURE_FULL_RX_CSUM;
1537 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1538 break;
1539 default:
1540 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1543 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1544 * a larger Rx/Tx Memory. Typically, the size must be more than or
1545 * equal to 16384 bytes, so that we can enable jumbo option and start
1546 * supporting jumbo frames. Here we check for memory allocated for
1547 * Rx/Tx in the hardware from the device-tree and accordingly set
1548 * flags. */
1549 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1550 if (p) {
1551 if ((be32_to_cpup(p)) >= 0x4000)
1552 lp->jumbo_support = 1;
1554 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1555 NULL);
1556 if (p)
1557 lp->temac_type = be32_to_cpup(p);
1558 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1559 if (p)
1560 lp->phy_type = be32_to_cpup(p);
1562 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1563 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1564 if (!np) {
1565 dev_err(&op->dev, "could not find DMA node\n");
1566 goto err_iounmap;
1568 lp->dma_regs = of_iomap(np, 0);
1569 if (lp->dma_regs) {
1570 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1571 } else {
1572 dev_err(&op->dev, "unable to map DMA registers\n");
1573 of_node_put(np);
1575 lp->rx_irq = irq_of_parse_and_map(np, 1);
1576 lp->tx_irq = irq_of_parse_and_map(np, 0);
1577 of_node_put(np);
1578 if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1579 dev_err(&op->dev, "could not determine irqs\n");
1580 ret = -ENOMEM;
1581 goto err_iounmap_2;
1584 /* Retrieve the MAC address */
1585 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1586 if ((!addr) || (size != 6)) {
1587 dev_err(&op->dev, "could not find MAC address\n");
1588 ret = -ENODEV;
1589 goto err_iounmap_2;
1591 axienet_set_mac_address(ndev, (void *) addr);
1593 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1594 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1596 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1597 ret = axienet_mdio_setup(lp, op->dev.of_node);
1598 if (ret)
1599 dev_warn(&op->dev, "error registering MDIO bus\n");
1601 ret = register_netdev(lp->ndev);
1602 if (ret) {
1603 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1604 goto err_iounmap_2;
1607 return 0;
1609 err_iounmap_2:
1610 if (lp->dma_regs)
1611 iounmap(lp->dma_regs);
1612 err_iounmap:
1613 iounmap(lp->regs);
1614 nodev:
1615 free_netdev(ndev);
1616 ndev = NULL;
1617 return ret;
1620 static int axienet_of_remove(struct platform_device *op)
1622 struct net_device *ndev = platform_get_drvdata(op);
1623 struct axienet_local *lp = netdev_priv(ndev);
1625 axienet_mdio_teardown(lp);
1626 unregister_netdev(ndev);
1628 if (lp->phy_node)
1629 of_node_put(lp->phy_node);
1630 lp->phy_node = NULL;
1632 iounmap(lp->regs);
1633 if (lp->dma_regs)
1634 iounmap(lp->dma_regs);
1635 free_netdev(ndev);
1637 return 0;
1640 static struct platform_driver axienet_of_driver = {
1641 .probe = axienet_of_probe,
1642 .remove = axienet_of_remove,
1643 .driver = {
1644 .owner = THIS_MODULE,
1645 .name = "xilinx_axienet",
1646 .of_match_table = axienet_of_match,
1650 module_platform_driver(axienet_of_driver);
1652 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1653 MODULE_AUTHOR("Xilinx");
1654 MODULE_LICENSE("GPL");