2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
42 struct ath_common
*common
= ath9k_hw_common(ah
);
43 struct ath9k_channel
*chan
= ah
->curchan
;
44 unsigned int clockrate
;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
49 else if (!chan
) /* should really check for CCK instead */
50 clockrate
= ATH9K_CLOCK_RATE_CCK
;
51 else if (IS_CHAN_2GHZ(chan
))
52 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
53 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
54 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
56 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
59 if (IS_CHAN_HT40(chan
))
61 if (IS_CHAN_HALF_RATE(chan
))
63 if (IS_CHAN_QUARTER_RATE(chan
))
67 common
->clockrate
= clockrate
;
70 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
72 struct ath_common
*common
= ath9k_hw_common(ah
);
74 return usecs
* common
->clockrate
;
77 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
81 BUG_ON(timeout
< AH_TIME_QUANTUM
);
83 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
84 if ((REG_READ(ah
, reg
) & mask
) == val
)
87 udelay(AH_TIME_QUANTUM
);
90 ath_dbg(ath9k_hw_common(ah
), ANY
,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
96 EXPORT_SYMBOL(ath9k_hw_wait
);
98 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
103 if (IS_CHAN_HALF_RATE(chan
))
105 else if (IS_CHAN_QUARTER_RATE(chan
))
108 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
111 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
112 int column
, unsigned int *writecnt
)
116 ENABLE_REGWRITE_BUFFER(ah
);
117 for (r
= 0; r
< array
->ia_rows
; r
++) {
118 REG_WRITE(ah
, INI_RA(array
, r
, 0),
119 INI_RA(array
, r
, column
));
122 REGWRITE_BUFFER_FLUSH(ah
);
125 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
130 for (i
= 0, retval
= 0; i
< n
; i
++) {
131 retval
= (retval
<< 1) | (val
& 1);
137 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
139 u32 frameLen
, u16 rateix
,
142 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
148 case WLAN_RC_PHY_CCK
:
149 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
152 numBits
= frameLen
<< 3;
153 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
155 case WLAN_RC_PHY_OFDM
:
156 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
157 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_QUARTER
) / 1000;
158 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
159 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
160 txTime
= OFDM_SIFS_TIME_QUARTER
161 + OFDM_PREAMBLE_TIME_QUARTER
162 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
163 } else if (ah
->curchan
&&
164 IS_CHAN_HALF_RATE(ah
->curchan
)) {
165 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME_HALF
) / 1000;
166 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
167 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
168 txTime
= OFDM_SIFS_TIME_HALF
+
169 OFDM_PREAMBLE_TIME_HALF
170 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
172 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
173 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
174 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
175 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
176 + (numSymbols
* OFDM_SYMBOL_TIME
);
180 ath_err(ath9k_hw_common(ah
),
181 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
188 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
190 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
191 struct ath9k_channel
*chan
,
192 struct chan_centers
*centers
)
196 if (!IS_CHAN_HT40(chan
)) {
197 centers
->ctl_center
= centers
->ext_center
=
198 centers
->synth_center
= chan
->channel
;
202 if (IS_CHAN_HT40PLUS(chan
)) {
203 centers
->synth_center
=
204 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
207 centers
->synth_center
=
208 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
212 centers
->ctl_center
=
213 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
214 /* 25 MHz spacing is supported by hw but not on upper layers */
215 centers
->ext_center
=
216 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
223 static void ath9k_hw_read_revisions(struct ath_hw
*ah
)
227 switch (ah
->hw_version
.devid
) {
228 case AR5416_AR9100_DEVID
:
229 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
231 case AR9300_DEVID_AR9330
:
232 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
233 if (ah
->get_mac_revision
) {
234 ah
->hw_version
.macRev
= ah
->get_mac_revision();
236 val
= REG_READ(ah
, AR_SREV
);
237 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
240 case AR9300_DEVID_AR9340
:
241 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
242 val
= REG_READ(ah
, AR_SREV
);
243 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
245 case AR9300_DEVID_QCA955X
:
246 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
248 case AR9300_DEVID_AR953X
:
249 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
253 val
= REG_READ(ah
, AR_SREV
) & AR_SREV_ID
;
256 val
= REG_READ(ah
, AR_SREV
);
257 ah
->hw_version
.macVersion
=
258 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
259 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
261 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
262 ah
->is_pciexpress
= true;
264 ah
->is_pciexpress
= (val
&
265 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
267 if (!AR_SREV_9100(ah
))
268 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
270 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
272 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
273 ah
->is_pciexpress
= true;
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
281 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
283 if (!AR_SREV_5416(ah
))
286 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
287 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
288 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
289 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
290 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
291 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
292 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
293 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
294 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
296 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
302 struct ath_common
*common
= ath9k_hw_common(ah
);
303 u32 regAddr
[2] = { AR_STA_ID0
};
305 static const u32 patternData
[4] = {
306 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
310 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
312 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
316 for (i
= 0; i
< loop_max
; i
++) {
317 u32 addr
= regAddr
[i
];
320 regHold
[i
] = REG_READ(ah
, addr
);
321 for (j
= 0; j
< 0x100; j
++) {
322 wrData
= (j
<< 16) | j
;
323 REG_WRITE(ah
, addr
, wrData
);
324 rdData
= REG_READ(ah
, addr
);
325 if (rdData
!= wrData
) {
327 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 addr
, wrData
, rdData
);
332 for (j
= 0; j
< 4; j
++) {
333 wrData
= patternData
[j
];
334 REG_WRITE(ah
, addr
, wrData
);
335 rdData
= REG_READ(ah
, addr
);
336 if (wrData
!= rdData
) {
338 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 addr
, wrData
, rdData
);
343 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
350 static void ath9k_hw_init_config(struct ath_hw
*ah
)
352 struct ath_common
*common
= ath9k_hw_common(ah
);
354 ah
->config
.dma_beacon_response_time
= 1;
355 ah
->config
.sw_beacon_response_time
= 6;
356 ah
->config
.cwm_ignore_extcca
= 0;
357 ah
->config
.analog_shiftreg
= 1;
359 ah
->config
.rx_intr_mitigation
= true;
361 if (AR_SREV_9300_20_OR_LATER(ah
)) {
362 ah
->config
.rimt_last
= 500;
363 ah
->config
.rimt_first
= 2000;
365 ah
->config
.rimt_last
= 250;
366 ah
->config
.rimt_first
= 700;
370 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 * This means we use it for all AR5416 devices, and the few
373 * minor PCI AR9280 devices out there.
375 * Serialization is required because these devices do not handle
376 * well the case of two concurrent reads/writes due to the latency
377 * involved. During one read/write another read/write can be issued
378 * on another CPU while the previous read/write may still be working
379 * on our hardware, if we hit this case the hardware poops in a loop.
380 * We prevent this by serializing reads and writes.
382 * This issue is not present on PCI-Express devices or pre-AR5416
383 * devices (legacy, 802.11abg).
385 if (num_possible_cpus() > 1)
386 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
388 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
389 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
390 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
391 !ah
->is_pciexpress
)) {
392 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
394 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
398 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
399 ah
->config
.serialize_regmode
);
401 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
402 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
404 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
407 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
409 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
411 regulatory
->country_code
= CTRY_DEFAULT
;
412 regulatory
->power_limit
= MAX_RATE_POWER
;
414 ah
->hw_version
.magic
= AR5416_MAGIC
;
415 ah
->hw_version
.subvendorid
= 0;
417 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
418 AR_STA_ID1_MCAST_KSRCH
;
419 if (AR_SREV_9100(ah
))
420 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
422 ah
->slottime
= ATH9K_SLOT_TIME_9
;
423 ah
->globaltxtimeout
= (u32
) -1;
424 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
425 ah
->htc_reset_init
= true;
427 ah
->ani_function
= ATH9K_ANI_ALL
;
428 if (!AR_SREV_9300_20_OR_LATER(ah
))
429 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
431 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
432 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
434 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
437 static int ath9k_hw_init_macaddr(struct ath_hw
*ah
)
439 struct ath_common
*common
= ath9k_hw_common(ah
);
443 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
446 for (i
= 0; i
< 3; i
++) {
447 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
449 common
->macaddr
[2 * i
] = eeval
>> 8;
450 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
452 if (sum
== 0 || sum
== 0xffff * 3)
453 return -EADDRNOTAVAIL
;
458 static int ath9k_hw_post_init(struct ath_hw
*ah
)
460 struct ath_common
*common
= ath9k_hw_common(ah
);
463 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
464 if (!ath9k_hw_chip_test(ah
))
468 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
469 ecode
= ar9002_hw_rf_claim(ah
);
474 ecode
= ath9k_hw_eeprom_init(ah
);
478 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
479 ah
->eep_ops
->get_eeprom_ver(ah
),
480 ah
->eep_ops
->get_eeprom_rev(ah
));
482 ath9k_hw_ani_init(ah
);
485 * EEPROM needs to be initialized before we do this.
486 * This is required for regulatory compliance.
488 if (AR_SREV_9300_20_OR_LATER(ah
)) {
489 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
490 if ((regdmn
& 0xF0) == CTL_FCC
) {
491 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
492 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
499 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
501 if (!AR_SREV_9300_20_OR_LATER(ah
))
502 return ar9002_hw_attach_ops(ah
);
504 ar9003_hw_attach_ops(ah
);
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw
*ah
)
511 struct ath_common
*common
= ath9k_hw_common(ah
);
514 ath9k_hw_read_revisions(ah
);
516 switch (ah
->hw_version
.macVersion
) {
517 case AR_SREV_VERSION_5416_PCI
:
518 case AR_SREV_VERSION_5416_PCIE
:
519 case AR_SREV_VERSION_9160
:
520 case AR_SREV_VERSION_9100
:
521 case AR_SREV_VERSION_9280
:
522 case AR_SREV_VERSION_9285
:
523 case AR_SREV_VERSION_9287
:
524 case AR_SREV_VERSION_9271
:
525 case AR_SREV_VERSION_9300
:
526 case AR_SREV_VERSION_9330
:
527 case AR_SREV_VERSION_9485
:
528 case AR_SREV_VERSION_9340
:
529 case AR_SREV_VERSION_9462
:
530 case AR_SREV_VERSION_9550
:
531 case AR_SREV_VERSION_9565
:
532 case AR_SREV_VERSION_9531
:
536 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
542 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543 * We need to do this to avoid RMW of this register. We cannot
544 * read the reg when chip is asleep.
546 if (AR_SREV_9300_20_OR_LATER(ah
)) {
547 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
548 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
549 AR_WA_ASPM_TIMER_BASED_DISABLE
);
552 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
553 ath_err(common
, "Couldn't reset chip\n");
557 if (AR_SREV_9565(ah
)) {
558 ah
->WARegVal
|= AR_WA_BIT22
;
559 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
562 ath9k_hw_init_defaults(ah
);
563 ath9k_hw_init_config(ah
);
565 r
= ath9k_hw_attach_ops(ah
);
569 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
570 ath_err(common
, "Couldn't wakeup chip\n");
574 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
575 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
576 ah
->is_pciexpress
= false;
578 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
579 ath9k_hw_init_cal_settings(ah
);
581 if (!ah
->is_pciexpress
)
582 ath9k_hw_disablepcie(ah
);
584 r
= ath9k_hw_post_init(ah
);
588 ath9k_hw_init_mode_gain_regs(ah
);
589 r
= ath9k_hw_fill_cap_info(ah
);
593 r
= ath9k_hw_init_macaddr(ah
);
595 ath_err(common
, "Failed to initialize MAC address\n");
599 ath9k_hw_init_hang_checks(ah
);
601 common
->state
= ATH_HW_INITIALIZED
;
606 int ath9k_hw_init(struct ath_hw
*ah
)
609 struct ath_common
*common
= ath9k_hw_common(ah
);
611 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612 switch (ah
->hw_version
.devid
) {
613 case AR5416_DEVID_PCI
:
614 case AR5416_DEVID_PCIE
:
615 case AR5416_AR9100_DEVID
:
616 case AR9160_DEVID_PCI
:
617 case AR9280_DEVID_PCI
:
618 case AR9280_DEVID_PCIE
:
619 case AR9285_DEVID_PCIE
:
620 case AR9287_DEVID_PCI
:
621 case AR9287_DEVID_PCIE
:
622 case AR2427_DEVID_PCIE
:
623 case AR9300_DEVID_PCIE
:
624 case AR9300_DEVID_AR9485_PCIE
:
625 case AR9300_DEVID_AR9330
:
626 case AR9300_DEVID_AR9340
:
627 case AR9300_DEVID_QCA955X
:
628 case AR9300_DEVID_AR9580
:
629 case AR9300_DEVID_AR9462
:
630 case AR9485_DEVID_AR1111
:
631 case AR9300_DEVID_AR9565
:
632 case AR9300_DEVID_AR953X
:
635 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
637 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
638 ah
->hw_version
.devid
);
642 ret
= __ath9k_hw_init(ah
);
645 "Unable to initialize hardware; initialization status: %d\n",
652 EXPORT_SYMBOL(ath9k_hw_init
);
654 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
656 ENABLE_REGWRITE_BUFFER(ah
);
658 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
659 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
661 REG_WRITE(ah
, AR_QOS_NO_ACK
,
662 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
663 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
664 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
666 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
667 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
668 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
669 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
670 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
672 REGWRITE_BUFFER_FLUSH(ah
);
675 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
677 struct ath_common
*common
= ath9k_hw_common(ah
);
680 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
682 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
684 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
688 if (WARN_ON_ONCE(i
>= 100)) {
689 ath_err(common
, "PLL4 meaurement not done\n");
696 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
700 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
701 struct ath9k_channel
*chan
)
705 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
706 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
707 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
708 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
709 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
710 AR_CH0_DPLL2_KD
, 0x40);
711 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
712 AR_CH0_DPLL2_KI
, 0x4);
714 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
715 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
716 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
717 AR_CH0_BB_DPLL1_NINI
, 0x58);
718 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
719 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
721 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
722 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
723 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
724 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
725 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
726 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
728 /* program BB PLL phase_shift to 0x6 */
729 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
730 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
732 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
733 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
735 } else if (AR_SREV_9330(ah
)) {
736 u32 ddr_dpll2
, pll_control2
, kd
;
738 if (ah
->is_clk_25mhz
) {
739 ddr_dpll2
= 0x18e82f01;
740 pll_control2
= 0xe04a3d;
743 ddr_dpll2
= 0x19e82f01;
744 pll_control2
= 0x886666;
748 /* program DDR PLL ki and kd value */
749 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
751 /* program DDR PLL phase_shift */
752 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
753 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
755 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
758 /* program refdiv, nint, frac to RTC register */
759 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
761 /* program BB PLL kd and ki value */
762 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
763 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
765 /* program BB PLL phase_shift */
766 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
767 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
768 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
)) {
769 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
771 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, 0x1142c);
774 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
777 if (ah
->is_clk_25mhz
) {
778 if (AR_SREV_9531(ah
)) {
780 pll2_divfrac
= 0xa3d2;
784 pll2_divfrac
= 0x1eb85;
788 if (AR_SREV_9340(ah
)) {
794 pll2_divfrac
= 0x26666;
799 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
800 if (AR_SREV_9531(ah
))
801 regval
|= (0x1 << 22);
803 regval
|= (0x1 << 16);
804 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
807 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
808 (pll2_divint
<< 18) | pll2_divfrac
);
811 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
812 if (AR_SREV_9340(ah
))
813 regval
= (regval
& 0x80071fff) |
818 else if (AR_SREV_9531(ah
))
819 regval
= (regval
& 0x01c00fff) |
826 regval
= (regval
& 0x80071fff) |
831 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
833 if (AR_SREV_9531(ah
))
834 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
835 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
837 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
838 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
843 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
844 if (AR_SREV_9565(ah
))
846 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
848 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
852 /* Switch the core clock for ar9271 to 117Mhz */
853 if (AR_SREV_9271(ah
)) {
855 REG_WRITE(ah
, 0x50040, 0x304);
858 udelay(RTC_PLL_SETTLE_DELAY
);
860 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
862 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
)) {
863 if (ah
->is_clk_25mhz
) {
864 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x17c << 1);
865 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f3d7);
866 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e7ae);
868 REG_WRITE(ah
, AR_RTC_DERIVED_CLK
, 0x261 << 1);
869 REG_WRITE(ah
, AR_SLP32_MODE
, 0x0010f400);
870 REG_WRITE(ah
, AR_SLP32_INC
, 0x0001e800);
876 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
877 enum nl80211_iftype opmode
)
879 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
880 u32 imr_reg
= AR_IMR_TXERR
|
886 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
))
887 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
889 if (AR_SREV_9300_20_OR_LATER(ah
)) {
890 imr_reg
|= AR_IMR_RXOK_HP
;
891 if (ah
->config
.rx_intr_mitigation
)
892 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
894 imr_reg
|= AR_IMR_RXOK_LP
;
897 if (ah
->config
.rx_intr_mitigation
)
898 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
900 imr_reg
|= AR_IMR_RXOK
;
903 if (ah
->config
.tx_intr_mitigation
)
904 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
906 imr_reg
|= AR_IMR_TXOK
;
908 ENABLE_REGWRITE_BUFFER(ah
);
910 REG_WRITE(ah
, AR_IMR
, imr_reg
);
911 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
912 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
914 if (!AR_SREV_9100(ah
)) {
915 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
916 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
917 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
920 REGWRITE_BUFFER_FLUSH(ah
);
922 if (AR_SREV_9300_20_OR_LATER(ah
)) {
923 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
924 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
925 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
926 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
930 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
932 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
933 val
= min(val
, (u32
) 0xFFFF);
934 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
937 static void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
939 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
940 val
= min(val
, (u32
) 0xFFFF);
941 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
944 static void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
946 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
947 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
948 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
951 static void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
953 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
954 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
955 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
961 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
963 ah
->globaltxtimeout
= (u32
) -1;
966 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
967 ah
->globaltxtimeout
= tu
;
972 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
974 struct ath_common
*common
= ath9k_hw_common(ah
);
975 const struct ath9k_channel
*chan
= ah
->curchan
;
976 int acktimeout
, ctstimeout
, ack_offset
= 0;
979 int rx_lat
= 0, tx_lat
= 0, eifs
= 0;
982 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
988 if (ah
->misc_mode
!= 0)
989 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
991 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
997 if (IS_CHAN_5GHZ(chan
))
1002 if (IS_CHAN_HALF_RATE(chan
)) {
1006 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1012 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1014 rx_lat
= (rx_lat
* 4) - 1;
1016 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1023 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1024 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1025 reg
= AR_USEC_ASYNC_FIFO
;
1027 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1029 reg
= REG_READ(ah
, AR_USEC
);
1031 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1032 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1034 slottime
= ah
->slottime
;
1037 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1038 slottime
+= 3 * ah
->coverage_class
;
1039 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1040 ctstimeout
= acktimeout
;
1043 * Workaround for early ACK timeouts, add an offset to match the
1044 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1045 * This was initially only meant to work around an issue with delayed
1046 * BA frames in some implementations, but it has been found to fix ACK
1047 * timeout issues in other cases as well.
1049 if (IS_CHAN_2GHZ(chan
) &&
1050 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1051 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1052 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1055 ath9k_hw_set_sifs_time(ah
, sifstime
);
1056 ath9k_hw_setslottime(ah
, slottime
);
1057 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1058 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1059 if (ah
->globaltxtimeout
!= (u32
) -1)
1060 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1062 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1063 REG_RMW(ah
, AR_USEC
,
1064 (common
->clockrate
- 1) |
1065 SM(rx_lat
, AR_USEC_RX_LAT
) |
1066 SM(tx_lat
, AR_USEC_TX_LAT
),
1067 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1072 void ath9k_hw_deinit(struct ath_hw
*ah
)
1074 struct ath_common
*common
= ath9k_hw_common(ah
);
1076 if (common
->state
< ATH_HW_INITIALIZED
)
1079 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1081 EXPORT_SYMBOL(ath9k_hw_deinit
);
1087 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1089 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1091 if (IS_CHAN_2GHZ(chan
))
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1103 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1105 struct ath_common
*common
= ath9k_hw_common(ah
);
1108 ENABLE_REGWRITE_BUFFER(ah
);
1111 * set AHB_MODE not to do cacheline prefetches
1113 if (!AR_SREV_9300_20_OR_LATER(ah
))
1114 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1117 * let mac dma reads be in 128 byte chunks
1119 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1121 REGWRITE_BUFFER_FLUSH(ah
);
1124 * Restore TX Trigger Level to its pre-reset value.
1125 * The initial value depends on whether aggregation is enabled, and is
1126 * adjusted whenever underruns are detected.
1128 if (!AR_SREV_9300_20_OR_LATER(ah
))
1129 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1131 ENABLE_REGWRITE_BUFFER(ah
);
1134 * let mac dma writes be in 128 byte chunks
1136 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1139 * Setup receive FIFO threshold to hold off TX activities
1141 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1143 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1144 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1145 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1147 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1148 ah
->caps
.rx_status_len
);
1152 * reduce the number of usable entries in PCU TXBUF to avoid
1153 * wrap around issues.
1155 if (AR_SREV_9285(ah
)) {
1156 /* For AR9285 the number of Fifos are reduced to half.
1157 * So set the usable tx buf size also to half to
1158 * avoid data/delimiter underruns
1160 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1161 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1162 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1163 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1165 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1168 if (!AR_SREV_9271(ah
))
1169 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1171 REGWRITE_BUFFER_FLUSH(ah
);
1173 if (AR_SREV_9300_20_OR_LATER(ah
))
1174 ath9k_hw_reset_txstatus_ring(ah
);
1177 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1179 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1180 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1183 case NL80211_IFTYPE_ADHOC
:
1184 set
|= AR_STA_ID1_ADHOC
;
1185 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1187 case NL80211_IFTYPE_MESH_POINT
:
1188 case NL80211_IFTYPE_AP
:
1189 set
|= AR_STA_ID1_STA_AP
;
1191 case NL80211_IFTYPE_STATION
:
1192 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1195 if (!ah
->is_monitoring
)
1199 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1203 u32
*coef_mantissa
, u32
*coef_exponent
)
1205 u32 coef_exp
, coef_man
;
1207 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1208 if ((coef_scaled
>> coef_exp
) & 0x1)
1211 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1213 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1215 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1216 *coef_exponent
= coef_exp
- 16;
1220 * call external reset function to reset WMAC if:
1221 * - doing a cold reset
1222 * - we have pending frames in the TX queues.
1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1228 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1229 npend
= ath9k_hw_numtxpending(ah
, i
);
1234 if (ah
->external_reset
&&
1235 (npend
|| type
== ATH9K_RESET_COLD
)) {
1238 ath_dbg(ath9k_hw_common(ah
), RESET
,
1239 "reset MAC via external reset\n");
1241 reset_err
= ah
->external_reset();
1243 ath_err(ath9k_hw_common(ah
),
1244 "External reset failed, err=%d\n",
1249 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1255 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1260 if (AR_SREV_9100(ah
)) {
1261 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1262 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1263 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1266 ENABLE_REGWRITE_BUFFER(ah
);
1268 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1269 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1273 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1274 AR_RTC_FORCE_WAKE_ON_INT
);
1276 if (AR_SREV_9100(ah
)) {
1277 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1278 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1280 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1281 if (AR_SREV_9340(ah
))
1282 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1284 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1285 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1289 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1292 if (!AR_SREV_9300_20_OR_LATER(ah
))
1294 REG_WRITE(ah
, AR_RC
, val
);
1296 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1297 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1299 rst_flags
= AR_RTC_RC_MAC_WARM
;
1300 if (type
== ATH9K_RESET_COLD
)
1301 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1304 if (AR_SREV_9330(ah
)) {
1305 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1309 if (ath9k_hw_mci_is_enabled(ah
))
1310 ar9003_mci_check_gpm_offset(ah
);
1312 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1314 REGWRITE_BUFFER_FLUSH(ah
);
1316 if (AR_SREV_9300_20_OR_LATER(ah
))
1318 else if (AR_SREV_9100(ah
))
1323 REG_WRITE(ah
, AR_RTC_RC
, 0);
1324 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1325 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1329 if (!AR_SREV_9100(ah
))
1330 REG_WRITE(ah
, AR_RC
, 0);
1332 if (AR_SREV_9100(ah
))
1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1340 ENABLE_REGWRITE_BUFFER(ah
);
1342 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1343 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1347 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1348 AR_RTC_FORCE_WAKE_ON_INT
);
1350 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1351 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1353 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1355 REGWRITE_BUFFER_FLUSH(ah
);
1359 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1360 REG_WRITE(ah
, AR_RC
, 0);
1362 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1364 if (!ath9k_hw_wait(ah
,
1369 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1373 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1376 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1380 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1381 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1385 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1386 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1388 if (!ah
->reset_power_on
)
1389 type
= ATH9K_RESET_POWER_ON
;
1392 case ATH9K_RESET_POWER_ON
:
1393 ret
= ath9k_hw_set_reset_power_on(ah
);
1395 ah
->reset_power_on
= true;
1397 case ATH9K_RESET_WARM
:
1398 case ATH9K_RESET_COLD
:
1399 ret
= ath9k_hw_set_reset(ah
, type
);
1408 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1409 struct ath9k_channel
*chan
)
1411 int reset_type
= ATH9K_RESET_WARM
;
1413 if (AR_SREV_9280(ah
)) {
1414 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1415 reset_type
= ATH9K_RESET_POWER_ON
;
1417 reset_type
= ATH9K_RESET_COLD
;
1418 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1419 (REG_READ(ah
, AR_CR
) & AR_CR_RXE
))
1420 reset_type
= ATH9K_RESET_COLD
;
1422 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1425 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1428 ah
->chip_fullsleep
= false;
1430 if (AR_SREV_9330(ah
))
1431 ar9003_hw_internal_regulator_apply(ah
);
1432 ath9k_hw_init_pll(ah
, chan
);
1437 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1438 struct ath9k_channel
*chan
)
1440 struct ath_common
*common
= ath9k_hw_common(ah
);
1441 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1442 bool band_switch
= false, mode_diff
= false;
1443 u8 ini_reloaded
= 0;
1447 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1448 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1449 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1450 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1453 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1454 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1455 ath_dbg(common
, QUEUE
,
1456 "Transmit frames pending on queue %d\n", qnum
);
1461 if (!ath9k_hw_rfbus_req(ah
)) {
1462 ath_err(common
, "Could not kill baseband RX\n");
1466 if (band_switch
|| mode_diff
) {
1467 ath9k_hw_mark_phy_inactive(ah
);
1471 ath9k_hw_init_pll(ah
, chan
);
1473 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1474 ath_err(common
, "Failed to do fast channel change\n");
1479 ath9k_hw_set_channel_regs(ah
, chan
);
1481 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1483 ath_err(common
, "Failed to set channel\n");
1486 ath9k_hw_set_clockrate(ah
);
1487 ath9k_hw_apply_txpower(ah
, chan
, false);
1489 ath9k_hw_set_delta_slope(ah
, chan
);
1490 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1492 if (band_switch
|| ini_reloaded
)
1493 ah
->eep_ops
->set_board_values(ah
, chan
);
1495 ath9k_hw_init_bb(ah
, chan
);
1496 ath9k_hw_rfbus_done(ah
);
1498 if (band_switch
|| ini_reloaded
) {
1499 ah
->ah_flags
|= AH_FASTCC
;
1500 ath9k_hw_init_cal(ah
, chan
);
1501 ah
->ah_flags
&= ~AH_FASTCC
;
1507 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1509 u32 gpio_mask
= ah
->gpio_mask
;
1512 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1513 if (!(gpio_mask
& 1))
1516 ath9k_hw_cfg_output(ah
, i
, AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1517 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1521 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1523 struct ath_common
*common
= ath9k_hw_common(ah
);
1526 val
= REG_READ(ah
, AR_NAV
);
1527 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1528 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1529 REG_WRITE(ah
, AR_NAV
, 0);
1532 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1534 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1539 if (AR_SREV_9300(ah
))
1540 return !ath9k_hw_detect_mac_hang(ah
);
1542 if (AR_SREV_9285_12_OR_LATER(ah
))
1546 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1548 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1551 switch (reg
& 0x7E000B00) {
1559 } while (count
-- > 0);
1563 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1565 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1567 /* Setup MFP options for CCMP */
1568 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1569 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1570 * frames when constructing CCMP AAD. */
1571 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1573 ah
->sw_mgmt_crypto
= false;
1574 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1575 /* Disable hardware crypto for management frames */
1576 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1577 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1578 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1579 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1580 ah
->sw_mgmt_crypto
= true;
1582 ah
->sw_mgmt_crypto
= true;
1586 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1587 u32 macStaId1
, u32 saveDefAntenna
)
1589 struct ath_common
*common
= ath9k_hw_common(ah
);
1591 ENABLE_REGWRITE_BUFFER(ah
);
1593 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1594 | AR_STA_ID1_RTS_USE_DEF
1595 | ah
->sta_id1_defaults
,
1596 ~AR_STA_ID1_SADH_MASK
);
1597 ath_hw_setbssidmask(common
);
1598 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1599 ath9k_hw_write_associd(ah
);
1600 REG_WRITE(ah
, AR_ISR
, ~0);
1601 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1603 REGWRITE_BUFFER_FLUSH(ah
);
1605 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1608 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1612 ENABLE_REGWRITE_BUFFER(ah
);
1614 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1615 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1617 REGWRITE_BUFFER_FLUSH(ah
);
1620 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1621 ath9k_hw_resettxqueue(ah
, i
);
1625 * For big endian systems turn on swapping for descriptors
1627 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1629 struct ath_common
*common
= ath9k_hw_common(ah
);
1631 if (AR_SREV_9100(ah
)) {
1633 mask
= REG_READ(ah
, AR_CFG
);
1634 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1635 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1638 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1639 REG_WRITE(ah
, AR_CFG
, mask
);
1640 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1641 REG_READ(ah
, AR_CFG
));
1644 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1645 /* Configure AR9271 target WLAN */
1646 if (AR_SREV_9271(ah
))
1647 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1649 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1652 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1653 AR_SREV_9550(ah
) || AR_SREV_9531(ah
))
1654 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1656 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1662 * Fast channel change:
1663 * (Change synthesizer based on channel freq without resetting chip)
1665 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1667 struct ath_common
*common
= ath9k_hw_common(ah
);
1668 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1671 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1674 if (ah
->chip_fullsleep
)
1680 if (chan
->channel
== ah
->curchan
->channel
)
1683 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1684 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1688 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1690 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1691 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1694 if (!ath9k_hw_check_alive(ah
))
1698 * For AR9462, make sure that calibration data for
1699 * re-using are present.
1701 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1702 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1703 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1704 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1707 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1708 ah
->curchan
->channel
, chan
->channel
);
1710 ret
= ath9k_hw_channel_change(ah
, chan
);
1714 if (ath9k_hw_mci_is_enabled(ah
))
1715 ar9003_mci_2g5g_switch(ah
, false);
1717 ath9k_hw_loadnf(ah
, ah
->curchan
);
1718 ath9k_hw_start_nfcal(ah
, true);
1720 if (AR_SREV_9271(ah
))
1721 ar9002_hw_load_ani_reg(ah
, chan
);
1728 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1729 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1731 struct ath_common
*common
= ath9k_hw_common(ah
);
1739 bool start_mci_reset
= false;
1740 bool save_fullsleep
= ah
->chip_fullsleep
;
1742 if (ath9k_hw_mci_is_enabled(ah
)) {
1743 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1744 if (start_mci_reset
)
1748 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1751 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1752 ath9k_hw_getnf(ah
, ah
->curchan
);
1754 ah
->caldata
= caldata
;
1755 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1756 chan
->channelFlags
!= caldata
->channelFlags
)) {
1757 /* Operating channel changed, reset channel calibration data */
1758 memset(caldata
, 0, sizeof(*caldata
));
1759 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1760 } else if (caldata
) {
1761 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1763 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1766 r
= ath9k_hw_do_fastcc(ah
, chan
);
1771 if (ath9k_hw_mci_is_enabled(ah
))
1772 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1774 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1775 if (saveDefAntenna
== 0)
1778 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1780 /* Save TSF before chip reset, a cold reset clears it */
1781 tsf
= ath9k_hw_gettsf64(ah
);
1782 getrawmonotonic(&ts
);
1783 usec
= ts
.tv_sec
* 1000000ULL + ts
.tv_nsec
/ 1000;
1785 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1786 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1787 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1789 ath9k_hw_mark_phy_inactive(ah
);
1791 ah
->paprd_table_write_done
= false;
1793 /* Only required on the first reset */
1794 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1796 AR9271_RESET_POWER_DOWN_CONTROL
,
1797 AR9271_RADIO_RF_RST
);
1801 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1802 ath_err(common
, "Chip reset failed\n");
1806 /* Only required on the first reset */
1807 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1808 ah
->htc_reset_init
= false;
1810 AR9271_RESET_POWER_DOWN_CONTROL
,
1811 AR9271_GATE_MAC_CTL
);
1816 getrawmonotonic(&ts
);
1817 usec
= ts
.tv_sec
* 1000000ULL + ts
.tv_nsec
/ 1000 - usec
;
1818 ath9k_hw_settsf64(ah
, tsf
+ usec
);
1820 if (AR_SREV_9280_20_OR_LATER(ah
))
1821 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1823 if (!AR_SREV_9300_20_OR_LATER(ah
))
1824 ar9002_hw_enable_async_fifo(ah
);
1826 r
= ath9k_hw_process_ini(ah
, chan
);
1830 ath9k_hw_set_rfmode(ah
, chan
);
1832 if (ath9k_hw_mci_is_enabled(ah
))
1833 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1836 * Some AR91xx SoC devices frequently fail to accept TSF writes
1837 * right after the chip reset. When that happens, write a new
1838 * value after the initvals have been applied, with an offset
1839 * based on measured time difference
1841 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1843 ath9k_hw_settsf64(ah
, tsf
);
1846 ath9k_hw_init_mfp(ah
);
1848 ath9k_hw_set_delta_slope(ah
, chan
);
1849 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1850 ah
->eep_ops
->set_board_values(ah
, chan
);
1852 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1854 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1858 ath9k_hw_set_clockrate(ah
);
1860 ath9k_hw_init_queues(ah
);
1861 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
1862 ath9k_hw_ani_cache_ini_regs(ah
);
1863 ath9k_hw_init_qos(ah
);
1865 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
1866 ath9k_hw_cfg_gpio_input(ah
, ah
->rfkill_gpio
);
1868 ath9k_hw_init_global_settings(ah
);
1870 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1871 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
1872 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
1873 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
1874 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
1875 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1876 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
1879 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
1881 ath9k_hw_set_dma(ah
);
1883 if (!ath9k_hw_mci_is_enabled(ah
))
1884 REG_WRITE(ah
, AR_OBS
, 8);
1886 if (ah
->config
.rx_intr_mitigation
) {
1887 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
1888 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
1891 if (ah
->config
.tx_intr_mitigation
) {
1892 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
1893 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
1896 ath9k_hw_init_bb(ah
, chan
);
1899 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
1900 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
1902 if (!ath9k_hw_init_cal(ah
, chan
))
1905 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
1908 ENABLE_REGWRITE_BUFFER(ah
);
1910 ath9k_hw_restore_chainmask(ah
);
1911 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
1913 REGWRITE_BUFFER_FLUSH(ah
);
1915 ath9k_hw_init_desc(ah
);
1917 if (ath9k_hw_btcoex_is_enabled(ah
))
1918 ath9k_hw_btcoex_enable(ah
);
1920 if (ath9k_hw_mci_is_enabled(ah
))
1921 ar9003_mci_check_bt(ah
);
1923 ath9k_hw_loadnf(ah
, chan
);
1924 ath9k_hw_start_nfcal(ah
, true);
1926 if (AR_SREV_9300_20_OR_LATER(ah
))
1927 ar9003_hw_bb_watchdog_config(ah
);
1929 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
1930 ar9003_hw_disable_phy_restart(ah
);
1932 ath9k_hw_apply_gpio_override(ah
);
1934 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
1935 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
1939 EXPORT_SYMBOL(ath9k_hw_reset
);
1941 /******************************/
1942 /* Power Management (Chipset) */
1943 /******************************/
1946 * Notify Power Mgt is disabled in self-generated frames.
1947 * If requested, force chip to sleep.
1949 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
1951 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1953 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
1954 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
1955 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
1956 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
1957 /* xxx Required for WLAN only case ? */
1958 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
1963 * Clear the RTC force wake bit to allow the
1964 * mac to go to sleep.
1966 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
1968 if (ath9k_hw_mci_is_enabled(ah
))
1971 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1972 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
1974 /* Shutdown chip. Active low */
1975 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
1976 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
1980 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1981 if (AR_SREV_9300_20_OR_LATER(ah
))
1982 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
1986 * Notify Power Management is enabled in self-generating
1987 * frames. If request, set power mode of chip to
1988 * auto/normal. Duration in units of 128us (1/8 TU).
1990 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
1992 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1994 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
1996 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1997 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1998 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1999 AR_RTC_FORCE_WAKE_ON_INT
);
2002 /* When chip goes into network sleep, it could be waken
2003 * up by MCI_INT interrupt caused by BT's HW messages
2004 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2005 * rate (~100us). This will cause chip to leave and
2006 * re-enter network sleep mode frequently, which in
2007 * consequence will have WLAN MCI HW to generate lots of
2008 * SYS_WAKING and SYS_SLEEPING messages which will make
2009 * BT CPU to busy to process.
2011 if (ath9k_hw_mci_is_enabled(ah
))
2012 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2013 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2015 * Clear the RTC force wake bit to allow the
2016 * mac to go to sleep.
2018 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2020 if (ath9k_hw_mci_is_enabled(ah
))
2024 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2025 if (AR_SREV_9300_20_OR_LATER(ah
))
2026 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2029 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2034 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2035 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2036 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2040 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2041 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2042 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2045 if (!AR_SREV_9300_20_OR_LATER(ah
))
2046 ath9k_hw_init_pll(ah
, NULL
);
2048 if (AR_SREV_9100(ah
))
2049 REG_SET_BIT(ah
, AR_RTC_RESET
,
2052 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2053 AR_RTC_FORCE_WAKE_EN
);
2054 if (AR_SREV_9100(ah
))
2059 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2060 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2061 if (val
== AR_RTC_STATUS_ON
)
2064 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2065 AR_RTC_FORCE_WAKE_EN
);
2068 ath_err(ath9k_hw_common(ah
),
2069 "Failed to wakeup in %uus\n",
2070 POWER_UP_TIME
/ 20);
2074 if (ath9k_hw_mci_is_enabled(ah
))
2075 ar9003_mci_set_power_awake(ah
);
2077 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2082 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2084 struct ath_common
*common
= ath9k_hw_common(ah
);
2086 static const char *modes
[] = {
2093 if (ah
->power_mode
== mode
)
2096 ath_dbg(common
, RESET
, "%s -> %s\n",
2097 modes
[ah
->power_mode
], modes
[mode
]);
2100 case ATH9K_PM_AWAKE
:
2101 status
= ath9k_hw_set_power_awake(ah
);
2103 case ATH9K_PM_FULL_SLEEP
:
2104 if (ath9k_hw_mci_is_enabled(ah
))
2105 ar9003_mci_set_full_sleep(ah
);
2107 ath9k_set_power_sleep(ah
);
2108 ah
->chip_fullsleep
= true;
2110 case ATH9K_PM_NETWORK_SLEEP
:
2111 ath9k_set_power_network_sleep(ah
);
2114 ath_err(common
, "Unknown power mode %u\n", mode
);
2117 ah
->power_mode
= mode
;
2120 * XXX: If this warning never comes up after a while then
2121 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2122 * ath9k_hw_setpower() return type void.
2125 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2126 ATH_DBG_WARN_ON_ONCE(!status
);
2130 EXPORT_SYMBOL(ath9k_hw_setpower
);
2132 /*******************/
2133 /* Beacon Handling */
2134 /*******************/
2136 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2140 ENABLE_REGWRITE_BUFFER(ah
);
2142 switch (ah
->opmode
) {
2143 case NL80211_IFTYPE_ADHOC
:
2144 REG_SET_BIT(ah
, AR_TXCFG
,
2145 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2146 case NL80211_IFTYPE_MESH_POINT
:
2147 case NL80211_IFTYPE_AP
:
2148 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2149 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2150 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2151 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2152 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2154 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2157 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2158 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2163 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2164 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2165 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2167 REGWRITE_BUFFER_FLUSH(ah
);
2169 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2171 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2173 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2174 const struct ath9k_beacon_state
*bs
)
2176 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2177 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2178 struct ath_common
*common
= ath9k_hw_common(ah
);
2180 ENABLE_REGWRITE_BUFFER(ah
);
2182 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2183 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2184 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2186 REGWRITE_BUFFER_FLUSH(ah
);
2188 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2189 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2191 beaconintval
= bs
->bs_intval
;
2193 if (bs
->bs_sleepduration
> beaconintval
)
2194 beaconintval
= bs
->bs_sleepduration
;
2196 dtimperiod
= bs
->bs_dtimperiod
;
2197 if (bs
->bs_sleepduration
> dtimperiod
)
2198 dtimperiod
= bs
->bs_sleepduration
;
2200 if (beaconintval
== dtimperiod
)
2201 nextTbtt
= bs
->bs_nextdtim
;
2203 nextTbtt
= bs
->bs_nexttbtt
;
2205 ath_dbg(common
, BEACON
, "next DTIM %d\n", bs
->bs_nextdtim
);
2206 ath_dbg(common
, BEACON
, "next beacon %d\n", nextTbtt
);
2207 ath_dbg(common
, BEACON
, "beacon period %d\n", beaconintval
);
2208 ath_dbg(common
, BEACON
, "DTIM period %d\n", dtimperiod
);
2210 ENABLE_REGWRITE_BUFFER(ah
);
2212 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2213 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2215 REG_WRITE(ah
, AR_SLEEP1
,
2216 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2217 | AR_SLEEP1_ASSUME_DTIM
);
2219 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2220 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2222 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2224 REG_WRITE(ah
, AR_SLEEP2
,
2225 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2227 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2228 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2230 REGWRITE_BUFFER_FLUSH(ah
);
2232 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2233 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2236 /* TSF Out of Range Threshold */
2237 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2239 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2241 /*******************/
2242 /* HW Capabilities */
2243 /*******************/
2245 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2247 eeprom_chainmask
&= chip_chainmask
;
2248 if (eeprom_chainmask
)
2249 return eeprom_chainmask
;
2251 return chip_chainmask
;
2255 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2256 * @ah: the atheros hardware data structure
2258 * We enable DFS support upstream on chipsets which have passed a series
2259 * of tests. The testing requirements are going to be documented. Desired
2260 * test requirements are documented at:
2262 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2264 * Once a new chipset gets properly tested an individual commit can be used
2265 * to document the testing for DFS for that chipset.
2267 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2270 switch (ah
->hw_version
.macVersion
) {
2271 /* for temporary testing DFS with 9280 */
2272 case AR_SREV_VERSION_9280
:
2273 /* AR9580 will likely be our first target to get testing on */
2274 case AR_SREV_VERSION_9580
:
2281 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2283 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2284 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2285 struct ath_common
*common
= ath9k_hw_common(ah
);
2286 unsigned int chip_chainmask
;
2289 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2291 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2292 regulatory
->current_rd
= eeval
;
2294 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2295 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2296 if (regulatory
->current_rd
== 0x64 ||
2297 regulatory
->current_rd
== 0x65)
2298 regulatory
->current_rd
+= 5;
2299 else if (regulatory
->current_rd
== 0x41)
2300 regulatory
->current_rd
= 0x43;
2301 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2302 regulatory
->current_rd
);
2305 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2306 if ((eeval
& (AR5416_OPFLAGS_11G
| AR5416_OPFLAGS_11A
)) == 0) {
2308 "no band has been marked as supported in EEPROM\n");
2312 if (eeval
& AR5416_OPFLAGS_11A
)
2313 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2315 if (eeval
& AR5416_OPFLAGS_11G
)
2316 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2318 if (AR_SREV_9485(ah
) ||
2323 else if (AR_SREV_9462(ah
))
2325 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2327 else if (!AR_SREV_9300_20_OR_LATER(ah
) || AR_SREV_9340(ah
))
2332 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2334 * For AR9271 we will temporarilly uses the rx chainmax as read from
2337 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2338 !(eeval
& AR5416_OPFLAGS_11A
) &&
2339 !(AR_SREV_9271(ah
)))
2340 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2341 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2342 else if (AR_SREV_9100(ah
))
2343 pCap
->rx_chainmask
= 0x7;
2345 /* Use rx_chainmask from EEPROM. */
2346 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2348 pCap
->tx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->tx_chainmask
);
2349 pCap
->rx_chainmask
= fixup_chainmask(chip_chainmask
, pCap
->rx_chainmask
);
2350 ah
->txchainmask
= pCap
->tx_chainmask
;
2351 ah
->rxchainmask
= pCap
->rx_chainmask
;
2353 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2355 /* enable key search for every frame in an aggregate */
2356 if (AR_SREV_9300_20_OR_LATER(ah
))
2357 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2359 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2361 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2362 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2364 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2366 if (AR_SREV_9271(ah
))
2367 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2368 else if (AR_DEVID_7010(ah
))
2369 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2370 else if (AR_SREV_9300_20_OR_LATER(ah
))
2371 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2372 else if (AR_SREV_9287_11_OR_LATER(ah
))
2373 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2374 else if (AR_SREV_9285_12_OR_LATER(ah
))
2375 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2376 else if (AR_SREV_9280_20_OR_LATER(ah
))
2377 pCap
->num_gpio_pins
= AR928X_NUM_GPIO
;
2379 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2381 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2382 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2384 pCap
->rts_aggr_limit
= (8 * 1024);
2386 #ifdef CONFIG_ATH9K_RFKILL
2387 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2388 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2390 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2391 ah
->rfkill_polarity
=
2392 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2394 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2397 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2398 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2400 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2402 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2403 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2405 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2407 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2408 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2409 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) && !AR_SREV_9565(ah
))
2410 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2412 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2413 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2414 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2415 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2416 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2418 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2419 if (AR_SREV_9280_20(ah
))
2420 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2423 if (AR_SREV_9300_20_OR_LATER(ah
))
2424 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2426 if (AR_SREV_9300_20_OR_LATER(ah
))
2427 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2429 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2430 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2432 if (AR_SREV_9285(ah
)) {
2433 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2435 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2436 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2437 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2438 ath_info(common
, "Enable LNA combining\n");
2443 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2444 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2445 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2448 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2449 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2450 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2451 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2452 ath_info(common
, "Enable LNA combining\n");
2456 if (ath9k_hw_dfs_tested(ah
))
2457 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2459 tx_chainmask
= pCap
->tx_chainmask
;
2460 rx_chainmask
= pCap
->rx_chainmask
;
2461 while (tx_chainmask
|| rx_chainmask
) {
2462 if (tx_chainmask
& BIT(0))
2463 pCap
->max_txchains
++;
2464 if (rx_chainmask
& BIT(0))
2465 pCap
->max_rxchains
++;
2471 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2472 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2473 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2475 if (AR_SREV_9462_20_OR_LATER(ah
))
2476 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2479 if (AR_SREV_9462(ah
))
2480 pCap
->hw_caps
|= ATH9K_HW_WOW_DEVICE_CAPABLE
;
2482 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2483 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2484 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2489 /****************************/
2490 /* GPIO / RFKILL / Antennae */
2491 /****************************/
2493 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
,
2497 u32 gpio_shift
, tmp
;
2500 addr
= AR_GPIO_OUTPUT_MUX3
;
2502 addr
= AR_GPIO_OUTPUT_MUX2
;
2504 addr
= AR_GPIO_OUTPUT_MUX1
;
2506 gpio_shift
= (gpio
% 6) * 5;
2508 if (AR_SREV_9280_20_OR_LATER(ah
)
2509 || (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2510 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2511 (0x1f << gpio_shift
));
2513 tmp
= REG_READ(ah
, addr
);
2514 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2515 tmp
&= ~(0x1f << gpio_shift
);
2516 tmp
|= (type
<< gpio_shift
);
2517 REG_WRITE(ah
, addr
, tmp
);
2521 void ath9k_hw_cfg_gpio_input(struct ath_hw
*ah
, u32 gpio
)
2525 BUG_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2527 if (AR_DEVID_7010(ah
)) {
2529 REG_RMW(ah
, AR7010_GPIO_OE
,
2530 (AR7010_GPIO_OE_AS_INPUT
<< gpio_shift
),
2531 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2535 gpio_shift
= gpio
<< 1;
2538 (AR_GPIO_OE_OUT_DRV_NO
<< gpio_shift
),
2539 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2541 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input
);
2543 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2545 #define MS_REG_READ(x, y) \
2546 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2548 if (gpio
>= ah
->caps
.num_gpio_pins
)
2551 if (AR_DEVID_7010(ah
)) {
2553 val
= REG_READ(ah
, AR7010_GPIO_IN
);
2554 return (MS(val
, AR7010_GPIO_IN_VAL
) & AR_GPIO_BIT(gpio
)) == 0;
2555 } else if (AR_SREV_9300_20_OR_LATER(ah
))
2556 return (MS(REG_READ(ah
, AR_GPIO_IN
), AR9300_GPIO_IN_VAL
) &
2557 AR_GPIO_BIT(gpio
)) != 0;
2558 else if (AR_SREV_9271(ah
))
2559 return MS_REG_READ(AR9271
, gpio
) != 0;
2560 else if (AR_SREV_9287_11_OR_LATER(ah
))
2561 return MS_REG_READ(AR9287
, gpio
) != 0;
2562 else if (AR_SREV_9285_12_OR_LATER(ah
))
2563 return MS_REG_READ(AR9285
, gpio
) != 0;
2564 else if (AR_SREV_9280_20_OR_LATER(ah
))
2565 return MS_REG_READ(AR928X
, gpio
) != 0;
2567 return MS_REG_READ(AR
, gpio
) != 0;
2569 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2571 void ath9k_hw_cfg_output(struct ath_hw
*ah
, u32 gpio
,
2576 if (AR_DEVID_7010(ah
)) {
2578 REG_RMW(ah
, AR7010_GPIO_OE
,
2579 (AR7010_GPIO_OE_AS_OUTPUT
<< gpio_shift
),
2580 (AR7010_GPIO_OE_MASK
<< gpio_shift
));
2584 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2585 gpio_shift
= 2 * gpio
;
2588 (AR_GPIO_OE_OUT_DRV_ALL
<< gpio_shift
),
2589 (AR_GPIO_OE_OUT_DRV
<< gpio_shift
));
2591 EXPORT_SYMBOL(ath9k_hw_cfg_output
);
2593 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2595 if (AR_DEVID_7010(ah
)) {
2597 REG_RMW(ah
, AR7010_GPIO_OUT
, ((val
&1) << gpio
),
2602 if (AR_SREV_9271(ah
))
2605 REG_RMW(ah
, AR_GPIO_IN_OUT
, ((val
& 1) << gpio
),
2608 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2610 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2612 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2614 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2616 /*********************/
2617 /* General Operation */
2618 /*********************/
2620 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2622 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2623 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2625 if (phybits
& AR_PHY_ERR_RADAR
)
2626 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2627 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2628 bits
|= ATH9K_RX_FILTER_PHYERR
;
2632 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2634 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2638 ENABLE_REGWRITE_BUFFER(ah
);
2640 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
2641 bits
|= ATH9K_RX_FILTER_CONTROL_WRAPPER
;
2643 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2646 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2647 phybits
|= AR_PHY_ERR_RADAR
;
2648 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2649 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2650 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2653 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2655 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2657 REGWRITE_BUFFER_FLUSH(ah
);
2659 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2661 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2663 if (ath9k_hw_mci_is_enabled(ah
))
2664 ar9003_mci_bt_gain_ctrl(ah
);
2666 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2669 ath9k_hw_init_pll(ah
, NULL
);
2670 ah
->htc_reset_init
= true;
2673 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2675 bool ath9k_hw_disable(struct ath_hw
*ah
)
2677 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2680 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2683 ath9k_hw_init_pll(ah
, NULL
);
2686 EXPORT_SYMBOL(ath9k_hw_disable
);
2688 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2690 enum eeprom_param gain_param
;
2692 if (IS_CHAN_2GHZ(chan
))
2693 gain_param
= EEP_ANTENNA_GAIN_2G
;
2695 gain_param
= EEP_ANTENNA_GAIN_5G
;
2697 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2700 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2703 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2704 struct ieee80211_channel
*channel
;
2705 int chan_pwr
, new_pwr
, max_gain
;
2706 int ant_gain
, ant_reduction
= 0;
2711 channel
= chan
->chan
;
2712 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_RATE_POWER
);
2713 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2714 max_gain
= chan_pwr
- new_pwr
+ channel
->max_antenna_gain
* 2;
2716 ant_gain
= get_antenna_gain(ah
, chan
);
2717 if (ant_gain
> max_gain
)
2718 ant_reduction
= ant_gain
- max_gain
;
2720 ah
->eep_ops
->set_txpower(ah
, chan
,
2721 ath9k_regd_get_ctl(reg
, chan
),
2722 ant_reduction
, new_pwr
, test
);
2725 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2727 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2728 struct ath9k_channel
*chan
= ah
->curchan
;
2729 struct ieee80211_channel
*channel
= chan
->chan
;
2731 reg
->power_limit
= min_t(u32
, limit
, MAX_RATE_POWER
);
2733 channel
->max_power
= MAX_RATE_POWER
/ 2;
2735 ath9k_hw_apply_txpower(ah
, chan
, test
);
2738 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2740 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2742 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2744 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2746 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2748 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
2750 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
2751 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
2753 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
2755 void ath9k_hw_write_associd(struct ath_hw
*ah
)
2757 struct ath_common
*common
= ath9k_hw_common(ah
);
2759 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
2760 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
2761 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
2763 EXPORT_SYMBOL(ath9k_hw_write_associd
);
2765 #define ATH9K_MAX_TSF_READ 10
2767 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
2769 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
2772 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
2773 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
2774 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
2775 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
2776 if (tsf_upper2
== tsf_upper1
)
2778 tsf_upper1
= tsf_upper2
;
2781 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
2783 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
2785 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
2787 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
2789 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
2790 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
2792 EXPORT_SYMBOL(ath9k_hw_settsf64
);
2794 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
2796 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
2797 AH_TSF_WRITE_TIMEOUT
))
2798 ath_dbg(ath9k_hw_common(ah
), RESET
,
2799 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2801 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
2803 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
2805 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
2808 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
2810 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
2812 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
2814 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2818 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
2819 macmode
= AR_2040_JOINED_RX_CLEAR
;
2823 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
2826 /* HW Generic timers configuration */
2828 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
2830 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2831 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2832 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2833 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2834 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2835 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2836 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2837 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
2838 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
2839 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
2840 AR_NDP2_TIMER_MODE
, 0x0002},
2841 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
2842 AR_NDP2_TIMER_MODE
, 0x0004},
2843 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
2844 AR_NDP2_TIMER_MODE
, 0x0008},
2845 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
2846 AR_NDP2_TIMER_MODE
, 0x0010},
2847 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
2848 AR_NDP2_TIMER_MODE
, 0x0020},
2849 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
2850 AR_NDP2_TIMER_MODE
, 0x0040},
2851 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
2852 AR_NDP2_TIMER_MODE
, 0x0080}
2855 /* HW generic timer primitives */
2857 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
2859 return REG_READ(ah
, AR_TSF_L32
);
2861 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
2863 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
2864 void (*trigger
)(void *),
2865 void (*overflow
)(void *),
2869 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2870 struct ath_gen_timer
*timer
;
2872 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
2873 (timer_index
>= ATH_MAX_GEN_TIMER
))
2876 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
2880 /* allocate a hardware generic timer slot */
2881 timer_table
->timers
[timer_index
] = timer
;
2882 timer
->index
= timer_index
;
2883 timer
->trigger
= trigger
;
2884 timer
->overflow
= overflow
;
2889 EXPORT_SYMBOL(ath_gen_timer_alloc
);
2891 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
2892 struct ath_gen_timer
*timer
,
2896 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2899 timer_table
->timer_mask
|= BIT(timer
->index
);
2902 * Program generic timer registers
2904 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
2906 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
2908 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2909 gen_tmr_configuration
[timer
->index
].mode_mask
);
2911 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2913 * Starting from AR9462, each generic timer can select which tsf
2914 * to use. But we still follow the old rule, 0 - 7 use tsf and
2917 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
2918 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2919 (1 << timer
->index
));
2921 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2922 (1 << timer
->index
));
2926 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
2927 AR_IMR_S5_GENTIMER_TRIG
);
2928 if (timer
->overflow
)
2929 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
2930 AR_IMR_S5_GENTIMER_THRESH
);
2932 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
2934 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
2935 ah
->imask
|= ATH9K_INT_GENTIMER
;
2936 ath9k_hw_set_interrupts(ah
);
2939 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
2941 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2943 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2945 /* Clear generic timer enable bits. */
2946 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
2947 gen_tmr_configuration
[timer
->index
].mode_mask
);
2949 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2951 * Need to switch back to TSF if it was using TSF2.
2953 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
2954 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
2955 (1 << timer
->index
));
2959 /* Disable both trigger and thresh interrupt masks */
2960 REG_CLR_BIT(ah
, AR_IMR_S5
,
2961 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
2962 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
2964 timer_table
->timer_mask
&= ~BIT(timer
->index
);
2966 if (timer_table
->timer_mask
== 0) {
2967 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
2968 ath9k_hw_set_interrupts(ah
);
2971 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
2973 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
2975 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2977 /* free the hardware generic timer slot */
2978 timer_table
->timers
[timer
->index
] = NULL
;
2981 EXPORT_SYMBOL(ath_gen_timer_free
);
2984 * Generic Timer Interrupts handling
2986 void ath_gen_timer_isr(struct ath_hw
*ah
)
2988 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
2989 struct ath_gen_timer
*timer
;
2990 unsigned long trigger_mask
, thresh_mask
;
2993 /* get hardware generic timer interrupt status */
2994 trigger_mask
= ah
->intr_gen_timer_trigger
;
2995 thresh_mask
= ah
->intr_gen_timer_thresh
;
2996 trigger_mask
&= timer_table
->timer_mask
;
2997 thresh_mask
&= timer_table
->timer_mask
;
2999 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3000 timer
= timer_table
->timers
[index
];
3003 if (!timer
->overflow
)
3006 trigger_mask
&= ~BIT(index
);
3007 timer
->overflow(timer
->arg
);
3010 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3011 timer
= timer_table
->timers
[index
];
3014 if (!timer
->trigger
)
3016 timer
->trigger(timer
->arg
);
3019 EXPORT_SYMBOL(ath_gen_timer_isr
);
3028 } ath_mac_bb_names
[] = {
3029 /* Devices with external radios */
3030 { AR_SREV_VERSION_5416_PCI
, "5416" },
3031 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3032 { AR_SREV_VERSION_9100
, "9100" },
3033 { AR_SREV_VERSION_9160
, "9160" },
3034 /* Single-chip solutions */
3035 { AR_SREV_VERSION_9280
, "9280" },
3036 { AR_SREV_VERSION_9285
, "9285" },
3037 { AR_SREV_VERSION_9287
, "9287" },
3038 { AR_SREV_VERSION_9271
, "9271" },
3039 { AR_SREV_VERSION_9300
, "9300" },
3040 { AR_SREV_VERSION_9330
, "9330" },
3041 { AR_SREV_VERSION_9340
, "9340" },
3042 { AR_SREV_VERSION_9485
, "9485" },
3043 { AR_SREV_VERSION_9462
, "9462" },
3044 { AR_SREV_VERSION_9550
, "9550" },
3045 { AR_SREV_VERSION_9565
, "9565" },
3048 /* For devices with external radios */
3052 } ath_rf_names
[] = {
3054 { AR_RAD5133_SREV_MAJOR
, "5133" },
3055 { AR_RAD5122_SREV_MAJOR
, "5122" },
3056 { AR_RAD2133_SREV_MAJOR
, "2133" },
3057 { AR_RAD2122_SREV_MAJOR
, "2122" }
3061 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3063 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3067 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3068 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3069 return ath_mac_bb_names
[i
].name
;
3077 * Return the RF name. "????" is returned if the RF is unknown.
3078 * Used for devices with external radios.
3080 static const char *ath9k_hw_rf_name(u16 rf_version
)
3084 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3085 if (ath_rf_names
[i
].version
== rf_version
) {
3086 return ath_rf_names
[i
].name
;
3093 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3097 /* chipsets >= AR9280 are single-chip */
3098 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3099 used
= scnprintf(hw_name
, len
,
3100 "Atheros AR%s Rev:%x",
3101 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3102 ah
->hw_version
.macRev
);
3105 used
= scnprintf(hw_name
, len
,
3106 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3107 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3108 ah
->hw_version
.macRev
,
3109 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3110 & AR_RADIO_SREV_MAJOR
)),
3111 ah
->hw_version
.phyRev
);
3114 hw_name
[used
] = '\0';
3116 EXPORT_SYMBOL(ath9k_hw_name
);