PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / hw.c
blob11eab9f01fd89ac9bb8f9b665646051a6386ac0a
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "rc.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "debug.h"
31 #include "ath9k.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
42 struct ath_common *common = ath9k_hw_common(ah);
43 struct ath9k_channel *chan = ah->curchan;
44 unsigned int clockrate;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 clockrate = 117;
49 else if (!chan) /* should really check for CCK instead */
50 clockrate = ATH9K_CLOCK_RATE_CCK;
51 else if (IS_CHAN_2GHZ(chan))
52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 else
56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
58 if (chan) {
59 if (IS_CHAN_HT40(chan))
60 clockrate *= 2;
61 if (IS_CHAN_HALF_RATE(chan))
62 clockrate /= 2;
63 if (IS_CHAN_QUARTER_RATE(chan))
64 clockrate /= 4;
67 common->clockrate = clockrate;
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
72 struct ath_common *common = ath9k_hw_common(ah);
74 return usecs * common->clockrate;
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
79 int i;
81 BUG_ON(timeout < AH_TIME_QUANTUM);
83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 if ((REG_READ(ah, reg) & mask) == val)
85 return true;
87 udelay(AH_TIME_QUANTUM);
90 ath_dbg(ath9k_hw_common(ah), ANY,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout, reg, REG_READ(ah, reg), mask, val);
94 return false;
96 EXPORT_SYMBOL(ath9k_hw_wait);
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 int hw_delay)
101 hw_delay /= 10;
103 if (IS_CHAN_HALF_RATE(chan))
104 hw_delay *= 2;
105 else if (IS_CHAN_QUARTER_RATE(chan))
106 hw_delay *= 4;
108 udelay(hw_delay + BASE_ACTIVATE_DELAY);
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 int column, unsigned int *writecnt)
114 int r;
116 ENABLE_REGWRITE_BUFFER(ah);
117 for (r = 0; r < array->ia_rows; r++) {
118 REG_WRITE(ah, INI_RA(array, r, 0),
119 INI_RA(array, r, column));
120 DO_DELAY(*writecnt);
122 REGWRITE_BUFFER_FLUSH(ah);
125 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
127 u32 retval;
128 int i;
130 for (i = 0, retval = 0; i < n; i++) {
131 retval = (retval << 1) | (val & 1);
132 val >>= 1;
134 return retval;
137 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
138 u8 phy, int kbps,
139 u32 frameLen, u16 rateix,
140 bool shortPreamble)
142 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
144 if (kbps == 0)
145 return 0;
147 switch (phy) {
148 case WLAN_RC_PHY_CCK:
149 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
150 if (shortPreamble)
151 phyTime >>= 1;
152 numBits = frameLen << 3;
153 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
154 break;
155 case WLAN_RC_PHY_OFDM:
156 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
157 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
158 numBits = OFDM_PLCP_BITS + (frameLen << 3);
159 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160 txTime = OFDM_SIFS_TIME_QUARTER
161 + OFDM_PREAMBLE_TIME_QUARTER
162 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
163 } else if (ah->curchan &&
164 IS_CHAN_HALF_RATE(ah->curchan)) {
165 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
166 numBits = OFDM_PLCP_BITS + (frameLen << 3);
167 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
168 txTime = OFDM_SIFS_TIME_HALF +
169 OFDM_PREAMBLE_TIME_HALF
170 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
171 } else {
172 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
173 numBits = OFDM_PLCP_BITS + (frameLen << 3);
174 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
175 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
176 + (numSymbols * OFDM_SYMBOL_TIME);
178 break;
179 default:
180 ath_err(ath9k_hw_common(ah),
181 "Unknown phy %u (rate ix %u)\n", phy, rateix);
182 txTime = 0;
183 break;
186 return txTime;
188 EXPORT_SYMBOL(ath9k_hw_computetxtime);
190 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
191 struct ath9k_channel *chan,
192 struct chan_centers *centers)
194 int8_t extoff;
196 if (!IS_CHAN_HT40(chan)) {
197 centers->ctl_center = centers->ext_center =
198 centers->synth_center = chan->channel;
199 return;
202 if (IS_CHAN_HT40PLUS(chan)) {
203 centers->synth_center =
204 chan->channel + HT40_CHANNEL_CENTER_SHIFT;
205 extoff = 1;
206 } else {
207 centers->synth_center =
208 chan->channel - HT40_CHANNEL_CENTER_SHIFT;
209 extoff = -1;
212 centers->ctl_center =
213 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
214 /* 25 MHz spacing is supported by hw but not on upper layers */
215 centers->ext_center =
216 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
219 /******************/
220 /* Chip Revisions */
221 /******************/
223 static void ath9k_hw_read_revisions(struct ath_hw *ah)
225 u32 val;
227 switch (ah->hw_version.devid) {
228 case AR5416_AR9100_DEVID:
229 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
230 break;
231 case AR9300_DEVID_AR9330:
232 ah->hw_version.macVersion = AR_SREV_VERSION_9330;
233 if (ah->get_mac_revision) {
234 ah->hw_version.macRev = ah->get_mac_revision();
235 } else {
236 val = REG_READ(ah, AR_SREV);
237 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
239 return;
240 case AR9300_DEVID_AR9340:
241 ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 val = REG_READ(ah, AR_SREV);
243 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
244 return;
245 case AR9300_DEVID_QCA955X:
246 ah->hw_version.macVersion = AR_SREV_VERSION_9550;
247 return;
248 case AR9300_DEVID_AR953X:
249 ah->hw_version.macVersion = AR_SREV_VERSION_9531;
250 return;
253 val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
255 if (val == 0xFF) {
256 val = REG_READ(ah, AR_SREV);
257 ah->hw_version.macVersion =
258 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
261 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 ah->is_pciexpress = true;
263 else
264 ah->is_pciexpress = (val &
265 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 } else {
267 if (!AR_SREV_9100(ah))
268 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270 ah->hw_version.macRev = val & AR_SREV_REVISION;
272 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 ah->is_pciexpress = true;
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
281 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 if (!AR_SREV_5416(ah))
284 return;
286 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
296 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
302 struct ath_common *common = ath9k_hw_common(ah);
303 u32 regAddr[2] = { AR_STA_ID0 };
304 u32 regHold[2];
305 static const u32 patternData[4] = {
306 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
308 int i, j, loop_max;
310 if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 loop_max = 2;
312 regAddr[1] = AR_PHY_BASE + (8 << 2);
313 } else
314 loop_max = 1;
316 for (i = 0; i < loop_max; i++) {
317 u32 addr = regAddr[i];
318 u32 wrData, rdData;
320 regHold[i] = REG_READ(ah, addr);
321 for (j = 0; j < 0x100; j++) {
322 wrData = (j << 16) | j;
323 REG_WRITE(ah, addr, wrData);
324 rdData = REG_READ(ah, addr);
325 if (rdData != wrData) {
326 ath_err(common,
327 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 addr, wrData, rdData);
329 return false;
332 for (j = 0; j < 4; j++) {
333 wrData = patternData[j];
334 REG_WRITE(ah, addr, wrData);
335 rdData = REG_READ(ah, addr);
336 if (wrData != rdData) {
337 ath_err(common,
338 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 addr, wrData, rdData);
340 return false;
343 REG_WRITE(ah, regAddr[i], regHold[i]);
345 udelay(100);
347 return true;
350 static void ath9k_hw_init_config(struct ath_hw *ah)
352 struct ath_common *common = ath9k_hw_common(ah);
354 ah->config.dma_beacon_response_time = 1;
355 ah->config.sw_beacon_response_time = 6;
356 ah->config.cwm_ignore_extcca = 0;
357 ah->config.analog_shiftreg = 1;
359 ah->config.rx_intr_mitigation = true;
361 if (AR_SREV_9300_20_OR_LATER(ah)) {
362 ah->config.rimt_last = 500;
363 ah->config.rimt_first = 2000;
364 } else {
365 ah->config.rimt_last = 250;
366 ah->config.rimt_first = 700;
370 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 * This means we use it for all AR5416 devices, and the few
373 * minor PCI AR9280 devices out there.
375 * Serialization is required because these devices do not handle
376 * well the case of two concurrent reads/writes due to the latency
377 * involved. During one read/write another read/write can be issued
378 * on another CPU while the previous read/write may still be working
379 * on our hardware, if we hit this case the hardware poops in a loop.
380 * We prevent this by serializing reads and writes.
382 * This issue is not present on PCI-Express devices or pre-AR5416
383 * devices (legacy, 802.11abg).
385 if (num_possible_cpus() > 1)
386 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
388 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 !ah->is_pciexpress)) {
392 ah->config.serialize_regmode = SER_REG_MODE_ON;
393 } else {
394 ah->config.serialize_regmode = SER_REG_MODE_OFF;
398 ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 ah->config.serialize_regmode);
401 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 else
404 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
407 static void ath9k_hw_init_defaults(struct ath_hw *ah)
409 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411 regulatory->country_code = CTRY_DEFAULT;
412 regulatory->power_limit = MAX_RATE_POWER;
414 ah->hw_version.magic = AR5416_MAGIC;
415 ah->hw_version.subvendorid = 0;
417 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 AR_STA_ID1_MCAST_KSRCH;
419 if (AR_SREV_9100(ah))
420 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
422 ah->slottime = ATH9K_SLOT_TIME_9;
423 ah->globaltxtimeout = (u32) -1;
424 ah->power_mode = ATH9K_PM_UNDEFINED;
425 ah->htc_reset_init = true;
427 ah->ani_function = ATH9K_ANI_ALL;
428 if (!AR_SREV_9300_20_OR_LATER(ah))
429 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
431 if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
432 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
433 else
434 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
437 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
439 struct ath_common *common = ath9k_hw_common(ah);
440 u32 sum;
441 int i;
442 u16 eeval;
443 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
445 sum = 0;
446 for (i = 0; i < 3; i++) {
447 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448 sum += eeval;
449 common->macaddr[2 * i] = eeval >> 8;
450 common->macaddr[2 * i + 1] = eeval & 0xff;
452 if (sum == 0 || sum == 0xffff * 3)
453 return -EADDRNOTAVAIL;
455 return 0;
458 static int ath9k_hw_post_init(struct ath_hw *ah)
460 struct ath_common *common = ath9k_hw_common(ah);
461 int ecode;
463 if (common->bus_ops->ath_bus_type != ATH_USB) {
464 if (!ath9k_hw_chip_test(ah))
465 return -ENODEV;
468 if (!AR_SREV_9300_20_OR_LATER(ah)) {
469 ecode = ar9002_hw_rf_claim(ah);
470 if (ecode != 0)
471 return ecode;
474 ecode = ath9k_hw_eeprom_init(ah);
475 if (ecode != 0)
476 return ecode;
478 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
479 ah->eep_ops->get_eeprom_ver(ah),
480 ah->eep_ops->get_eeprom_rev(ah));
482 ath9k_hw_ani_init(ah);
485 * EEPROM needs to be initialized before we do this.
486 * This is required for regulatory compliance.
488 if (AR_SREV_9300_20_OR_LATER(ah)) {
489 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
490 if ((regdmn & 0xF0) == CTL_FCC) {
491 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
492 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
496 return 0;
499 static int ath9k_hw_attach_ops(struct ath_hw *ah)
501 if (!AR_SREV_9300_20_OR_LATER(ah))
502 return ar9002_hw_attach_ops(ah);
504 ar9003_hw_attach_ops(ah);
505 return 0;
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
511 struct ath_common *common = ath9k_hw_common(ah);
512 int r = 0;
514 ath9k_hw_read_revisions(ah);
516 switch (ah->hw_version.macVersion) {
517 case AR_SREV_VERSION_5416_PCI:
518 case AR_SREV_VERSION_5416_PCIE:
519 case AR_SREV_VERSION_9160:
520 case AR_SREV_VERSION_9100:
521 case AR_SREV_VERSION_9280:
522 case AR_SREV_VERSION_9285:
523 case AR_SREV_VERSION_9287:
524 case AR_SREV_VERSION_9271:
525 case AR_SREV_VERSION_9300:
526 case AR_SREV_VERSION_9330:
527 case AR_SREV_VERSION_9485:
528 case AR_SREV_VERSION_9340:
529 case AR_SREV_VERSION_9462:
530 case AR_SREV_VERSION_9550:
531 case AR_SREV_VERSION_9565:
532 case AR_SREV_VERSION_9531:
533 break;
534 default:
535 ath_err(common,
536 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537 ah->hw_version.macVersion, ah->hw_version.macRev);
538 return -EOPNOTSUPP;
542 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543 * We need to do this to avoid RMW of this register. We cannot
544 * read the reg when chip is asleep.
546 if (AR_SREV_9300_20_OR_LATER(ah)) {
547 ah->WARegVal = REG_READ(ah, AR_WA);
548 ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
549 AR_WA_ASPM_TIMER_BASED_DISABLE);
552 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
553 ath_err(common, "Couldn't reset chip\n");
554 return -EIO;
557 if (AR_SREV_9565(ah)) {
558 ah->WARegVal |= AR_WA_BIT22;
559 REG_WRITE(ah, AR_WA, ah->WARegVal);
562 ath9k_hw_init_defaults(ah);
563 ath9k_hw_init_config(ah);
565 r = ath9k_hw_attach_ops(ah);
566 if (r)
567 return r;
569 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
570 ath_err(common, "Couldn't wakeup chip\n");
571 return -EIO;
574 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
575 AR_SREV_9330(ah) || AR_SREV_9550(ah))
576 ah->is_pciexpress = false;
578 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
579 ath9k_hw_init_cal_settings(ah);
581 if (!ah->is_pciexpress)
582 ath9k_hw_disablepcie(ah);
584 r = ath9k_hw_post_init(ah);
585 if (r)
586 return r;
588 ath9k_hw_init_mode_gain_regs(ah);
589 r = ath9k_hw_fill_cap_info(ah);
590 if (r)
591 return r;
593 r = ath9k_hw_init_macaddr(ah);
594 if (r) {
595 ath_err(common, "Failed to initialize MAC address\n");
596 return r;
599 ath9k_hw_init_hang_checks(ah);
601 common->state = ATH_HW_INITIALIZED;
603 return 0;
606 int ath9k_hw_init(struct ath_hw *ah)
608 int ret;
609 struct ath_common *common = ath9k_hw_common(ah);
611 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612 switch (ah->hw_version.devid) {
613 case AR5416_DEVID_PCI:
614 case AR5416_DEVID_PCIE:
615 case AR5416_AR9100_DEVID:
616 case AR9160_DEVID_PCI:
617 case AR9280_DEVID_PCI:
618 case AR9280_DEVID_PCIE:
619 case AR9285_DEVID_PCIE:
620 case AR9287_DEVID_PCI:
621 case AR9287_DEVID_PCIE:
622 case AR2427_DEVID_PCIE:
623 case AR9300_DEVID_PCIE:
624 case AR9300_DEVID_AR9485_PCIE:
625 case AR9300_DEVID_AR9330:
626 case AR9300_DEVID_AR9340:
627 case AR9300_DEVID_QCA955X:
628 case AR9300_DEVID_AR9580:
629 case AR9300_DEVID_AR9462:
630 case AR9485_DEVID_AR1111:
631 case AR9300_DEVID_AR9565:
632 case AR9300_DEVID_AR953X:
633 break;
634 default:
635 if (common->bus_ops->ath_bus_type == ATH_USB)
636 break;
637 ath_err(common, "Hardware device ID 0x%04x not supported\n",
638 ah->hw_version.devid);
639 return -EOPNOTSUPP;
642 ret = __ath9k_hw_init(ah);
643 if (ret) {
644 ath_err(common,
645 "Unable to initialize hardware; initialization status: %d\n",
646 ret);
647 return ret;
650 return 0;
652 EXPORT_SYMBOL(ath9k_hw_init);
654 static void ath9k_hw_init_qos(struct ath_hw *ah)
656 ENABLE_REGWRITE_BUFFER(ah);
658 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
659 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
661 REG_WRITE(ah, AR_QOS_NO_ACK,
662 SM(2, AR_QOS_NO_ACK_TWO_BIT) |
663 SM(5, AR_QOS_NO_ACK_BIT_OFF) |
664 SM(0, AR_QOS_NO_ACK_BYTE_OFF));
666 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
667 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
668 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
669 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
670 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
672 REGWRITE_BUFFER_FLUSH(ah);
675 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
677 struct ath_common *common = ath9k_hw_common(ah);
678 int i = 0;
680 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681 udelay(100);
682 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
684 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
686 udelay(100);
688 if (WARN_ON_ONCE(i >= 100)) {
689 ath_err(common, "PLL4 meaurement not done\n");
690 break;
693 i++;
696 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
700 static void ath9k_hw_init_pll(struct ath_hw *ah,
701 struct ath9k_channel *chan)
703 u32 pll;
705 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
706 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
707 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
708 AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
709 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
710 AR_CH0_DPLL2_KD, 0x40);
711 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712 AR_CH0_DPLL2_KI, 0x4);
714 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
715 AR_CH0_BB_DPLL1_REFDIV, 0x5);
716 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
717 AR_CH0_BB_DPLL1_NINI, 0x58);
718 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
719 AR_CH0_BB_DPLL1_NFRAC, 0x0);
721 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 AR_CH0_BB_DPLL2_OUTDIV, 0x1);
723 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
725 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
728 /* program BB PLL phase_shift to 0x6 */
729 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
730 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
732 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
733 AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
734 udelay(1000);
735 } else if (AR_SREV_9330(ah)) {
736 u32 ddr_dpll2, pll_control2, kd;
738 if (ah->is_clk_25mhz) {
739 ddr_dpll2 = 0x18e82f01;
740 pll_control2 = 0xe04a3d;
741 kd = 0x1d;
742 } else {
743 ddr_dpll2 = 0x19e82f01;
744 pll_control2 = 0x886666;
745 kd = 0x3d;
748 /* program DDR PLL ki and kd value */
749 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
751 /* program DDR PLL phase_shift */
752 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
753 AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
755 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
756 udelay(1000);
758 /* program refdiv, nint, frac to RTC register */
759 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
761 /* program BB PLL kd and ki value */
762 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
765 /* program BB PLL phase_shift */
766 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
767 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
768 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
769 u32 regval, pll2_divint, pll2_divfrac, refdiv;
771 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
772 udelay(1000);
774 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
775 udelay(100);
777 if (ah->is_clk_25mhz) {
778 if (AR_SREV_9531(ah)) {
779 pll2_divint = 0x1c;
780 pll2_divfrac = 0xa3d2;
781 refdiv = 1;
782 } else {
783 pll2_divint = 0x54;
784 pll2_divfrac = 0x1eb85;
785 refdiv = 3;
787 } else {
788 if (AR_SREV_9340(ah)) {
789 pll2_divint = 88;
790 pll2_divfrac = 0;
791 refdiv = 5;
792 } else {
793 pll2_divint = 0x11;
794 pll2_divfrac = 0x26666;
795 refdiv = 1;
799 regval = REG_READ(ah, AR_PHY_PLL_MODE);
800 if (AR_SREV_9531(ah))
801 regval |= (0x1 << 22);
802 else
803 regval |= (0x1 << 16);
804 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
805 udelay(100);
807 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
808 (pll2_divint << 18) | pll2_divfrac);
809 udelay(100);
811 regval = REG_READ(ah, AR_PHY_PLL_MODE);
812 if (AR_SREV_9340(ah))
813 regval = (regval & 0x80071fff) |
814 (0x1 << 30) |
815 (0x1 << 13) |
816 (0x4 << 26) |
817 (0x18 << 19);
818 else if (AR_SREV_9531(ah))
819 regval = (regval & 0x01c00fff) |
820 (0x1 << 31) |
821 (0x2 << 29) |
822 (0xa << 25) |
823 (0x1 << 19) |
824 (0x6 << 12);
825 else
826 regval = (regval & 0x80071fff) |
827 (0x3 << 30) |
828 (0x1 << 13) |
829 (0x4 << 26) |
830 (0x60 << 19);
831 REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
833 if (AR_SREV_9531(ah))
834 REG_WRITE(ah, AR_PHY_PLL_MODE,
835 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
836 else
837 REG_WRITE(ah, AR_PHY_PLL_MODE,
838 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
840 udelay(1000);
843 pll = ath9k_hw_compute_pll_control(ah, chan);
844 if (AR_SREV_9565(ah))
845 pll |= 0x40000;
846 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
848 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
849 AR_SREV_9550(ah))
850 udelay(1000);
852 /* Switch the core clock for ar9271 to 117Mhz */
853 if (AR_SREV_9271(ah)) {
854 udelay(500);
855 REG_WRITE(ah, 0x50040, 0x304);
858 udelay(RTC_PLL_SETTLE_DELAY);
860 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
862 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
863 if (ah->is_clk_25mhz) {
864 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
865 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
866 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
867 } else {
868 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
869 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
870 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
872 udelay(100);
876 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
877 enum nl80211_iftype opmode)
879 u32 sync_default = AR_INTR_SYNC_DEFAULT;
880 u32 imr_reg = AR_IMR_TXERR |
881 AR_IMR_TXURN |
882 AR_IMR_RXERR |
883 AR_IMR_RXORN |
884 AR_IMR_BCNMISC;
886 if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
887 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
889 if (AR_SREV_9300_20_OR_LATER(ah)) {
890 imr_reg |= AR_IMR_RXOK_HP;
891 if (ah->config.rx_intr_mitigation)
892 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
893 else
894 imr_reg |= AR_IMR_RXOK_LP;
896 } else {
897 if (ah->config.rx_intr_mitigation)
898 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
899 else
900 imr_reg |= AR_IMR_RXOK;
903 if (ah->config.tx_intr_mitigation)
904 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
905 else
906 imr_reg |= AR_IMR_TXOK;
908 ENABLE_REGWRITE_BUFFER(ah);
910 REG_WRITE(ah, AR_IMR, imr_reg);
911 ah->imrs2_reg |= AR_IMR_S2_GTT;
912 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
914 if (!AR_SREV_9100(ah)) {
915 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
916 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
917 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
920 REGWRITE_BUFFER_FLUSH(ah);
922 if (AR_SREV_9300_20_OR_LATER(ah)) {
923 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
924 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
925 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
926 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
930 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
932 u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
933 val = min(val, (u32) 0xFFFF);
934 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
937 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
939 u32 val = ath9k_hw_mac_to_clks(ah, us);
940 val = min(val, (u32) 0xFFFF);
941 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
944 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
946 u32 val = ath9k_hw_mac_to_clks(ah, us);
947 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
948 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
951 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
953 u32 val = ath9k_hw_mac_to_clks(ah, us);
954 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
955 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
960 if (tu > 0xFFFF) {
961 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
962 tu);
963 ah->globaltxtimeout = (u32) -1;
964 return false;
965 } else {
966 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
967 ah->globaltxtimeout = tu;
968 return true;
972 void ath9k_hw_init_global_settings(struct ath_hw *ah)
974 struct ath_common *common = ath9k_hw_common(ah);
975 const struct ath9k_channel *chan = ah->curchan;
976 int acktimeout, ctstimeout, ack_offset = 0;
977 int slottime;
978 int sifstime;
979 int rx_lat = 0, tx_lat = 0, eifs = 0;
980 u32 reg;
982 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 ah->misc_mode);
985 if (!chan)
986 return;
988 if (ah->misc_mode != 0)
989 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
991 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 rx_lat = 41;
993 else
994 rx_lat = 37;
995 tx_lat = 54;
997 if (IS_CHAN_5GHZ(chan))
998 sifstime = 16;
999 else
1000 sifstime = 10;
1002 if (IS_CHAN_HALF_RATE(chan)) {
1003 eifs = 175;
1004 rx_lat *= 2;
1005 tx_lat *= 2;
1006 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 tx_lat += 11;
1009 sifstime = 32;
1010 ack_offset = 16;
1011 slottime = 13;
1012 } else if (IS_CHAN_QUARTER_RATE(chan)) {
1013 eifs = 340;
1014 rx_lat = (rx_lat * 4) - 1;
1015 tx_lat *= 4;
1016 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 tx_lat += 22;
1019 sifstime = 64;
1020 ack_offset = 32;
1021 slottime = 21;
1022 } else {
1023 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1024 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1025 reg = AR_USEC_ASYNC_FIFO;
1026 } else {
1027 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1028 common->clockrate;
1029 reg = REG_READ(ah, AR_USEC);
1031 rx_lat = MS(reg, AR_USEC_RX_LAT);
1032 tx_lat = MS(reg, AR_USEC_TX_LAT);
1034 slottime = ah->slottime;
1037 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1038 slottime += 3 * ah->coverage_class;
1039 acktimeout = slottime + sifstime + ack_offset;
1040 ctstimeout = acktimeout;
1043 * Workaround for early ACK timeouts, add an offset to match the
1044 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1045 * This was initially only meant to work around an issue with delayed
1046 * BA frames in some implementations, but it has been found to fix ACK
1047 * timeout issues in other cases as well.
1049 if (IS_CHAN_2GHZ(chan) &&
1050 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1051 acktimeout += 64 - sifstime - ah->slottime;
1052 ctstimeout += 48 - sifstime - ah->slottime;
1055 ath9k_hw_set_sifs_time(ah, sifstime);
1056 ath9k_hw_setslottime(ah, slottime);
1057 ath9k_hw_set_ack_timeout(ah, acktimeout);
1058 ath9k_hw_set_cts_timeout(ah, ctstimeout);
1059 if (ah->globaltxtimeout != (u32) -1)
1060 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1062 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1063 REG_RMW(ah, AR_USEC,
1064 (common->clockrate - 1) |
1065 SM(rx_lat, AR_USEC_RX_LAT) |
1066 SM(tx_lat, AR_USEC_TX_LAT),
1067 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1072 void ath9k_hw_deinit(struct ath_hw *ah)
1074 struct ath_common *common = ath9k_hw_common(ah);
1076 if (common->state < ATH_HW_INITIALIZED)
1077 return;
1079 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1081 EXPORT_SYMBOL(ath9k_hw_deinit);
1083 /*******/
1084 /* INI */
1085 /*******/
1087 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1089 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1091 if (IS_CHAN_2GHZ(chan))
1092 ctl |= CTL_11G;
1093 else
1094 ctl |= CTL_11A;
1096 return ctl;
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1105 struct ath_common *common = ath9k_hw_common(ah);
1106 int txbuf_size;
1108 ENABLE_REGWRITE_BUFFER(ah);
1111 * set AHB_MODE not to do cacheline prefetches
1113 if (!AR_SREV_9300_20_OR_LATER(ah))
1114 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1117 * let mac dma reads be in 128 byte chunks
1119 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1121 REGWRITE_BUFFER_FLUSH(ah);
1124 * Restore TX Trigger Level to its pre-reset value.
1125 * The initial value depends on whether aggregation is enabled, and is
1126 * adjusted whenever underruns are detected.
1128 if (!AR_SREV_9300_20_OR_LATER(ah))
1129 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1131 ENABLE_REGWRITE_BUFFER(ah);
1134 * let mac dma writes be in 128 byte chunks
1136 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1139 * Setup receive FIFO threshold to hold off TX activities
1141 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1143 if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1147 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 ah->caps.rx_status_len);
1152 * reduce the number of usable entries in PCU TXBUF to avoid
1153 * wrap around issues.
1155 if (AR_SREV_9285(ah)) {
1156 /* For AR9285 the number of Fifos are reduced to half.
1157 * So set the usable tx buf size also to half to
1158 * avoid data/delimiter underruns
1160 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1161 } else if (AR_SREV_9340_13_OR_LATER(ah)) {
1162 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1163 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 } else {
1165 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1168 if (!AR_SREV_9271(ah))
1169 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1171 REGWRITE_BUFFER_FLUSH(ah);
1173 if (AR_SREV_9300_20_OR_LATER(ah))
1174 ath9k_hw_reset_txstatus_ring(ah);
1177 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1179 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1180 u32 set = AR_STA_ID1_KSRCH_MODE;
1182 switch (opmode) {
1183 case NL80211_IFTYPE_ADHOC:
1184 set |= AR_STA_ID1_ADHOC;
1185 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1186 break;
1187 case NL80211_IFTYPE_MESH_POINT:
1188 case NL80211_IFTYPE_AP:
1189 set |= AR_STA_ID1_STA_AP;
1190 /* fall through */
1191 case NL80211_IFTYPE_STATION:
1192 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1193 break;
1194 default:
1195 if (!ah->is_monitoring)
1196 set = 0;
1197 break;
1199 REG_RMW(ah, AR_STA_ID1, set, mask);
1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1203 u32 *coef_mantissa, u32 *coef_exponent)
1205 u32 coef_exp, coef_man;
1207 for (coef_exp = 31; coef_exp > 0; coef_exp--)
1208 if ((coef_scaled >> coef_exp) & 0x1)
1209 break;
1211 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1213 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1215 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1216 *coef_exponent = coef_exp - 16;
1219 /* AR9330 WAR:
1220 * call external reset function to reset WMAC if:
1221 * - doing a cold reset
1222 * - we have pending frames in the TX queues.
1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1226 int i, npend = 0;
1228 for (i = 0; i < AR_NUM_QCU; i++) {
1229 npend = ath9k_hw_numtxpending(ah, i);
1230 if (npend)
1231 break;
1234 if (ah->external_reset &&
1235 (npend || type == ATH9K_RESET_COLD)) {
1236 int reset_err = 0;
1238 ath_dbg(ath9k_hw_common(ah), RESET,
1239 "reset MAC via external reset\n");
1241 reset_err = ah->external_reset();
1242 if (reset_err) {
1243 ath_err(ath9k_hw_common(ah),
1244 "External reset failed, err=%d\n",
1245 reset_err);
1246 return false;
1249 REG_WRITE(ah, AR_RTC_RESET, 1);
1252 return true;
1255 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1257 u32 rst_flags;
1258 u32 tmpReg;
1260 if (AR_SREV_9100(ah)) {
1261 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1262 AR_RTC_DERIVED_CLK_PERIOD, 1);
1263 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1266 ENABLE_REGWRITE_BUFFER(ah);
1268 if (AR_SREV_9300_20_OR_LATER(ah)) {
1269 REG_WRITE(ah, AR_WA, ah->WARegVal);
1270 udelay(10);
1273 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1274 AR_RTC_FORCE_WAKE_ON_INT);
1276 if (AR_SREV_9100(ah)) {
1277 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1278 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1279 } else {
1280 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1281 if (AR_SREV_9340(ah))
1282 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1283 else
1284 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1285 AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1287 if (tmpReg) {
1288 u32 val;
1289 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1291 val = AR_RC_HOSTIF;
1292 if (!AR_SREV_9300_20_OR_LATER(ah))
1293 val |= AR_RC_AHB;
1294 REG_WRITE(ah, AR_RC, val);
1296 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1297 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1299 rst_flags = AR_RTC_RC_MAC_WARM;
1300 if (type == ATH9K_RESET_COLD)
1301 rst_flags |= AR_RTC_RC_MAC_COLD;
1304 if (AR_SREV_9330(ah)) {
1305 if (!ath9k_hw_ar9330_reset_war(ah, type))
1306 return false;
1309 if (ath9k_hw_mci_is_enabled(ah))
1310 ar9003_mci_check_gpm_offset(ah);
1312 REG_WRITE(ah, AR_RTC_RC, rst_flags);
1314 REGWRITE_BUFFER_FLUSH(ah);
1316 if (AR_SREV_9300_20_OR_LATER(ah))
1317 udelay(50);
1318 else if (AR_SREV_9100(ah))
1319 mdelay(10);
1320 else
1321 udelay(100);
1323 REG_WRITE(ah, AR_RTC_RC, 0);
1324 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1325 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1326 return false;
1329 if (!AR_SREV_9100(ah))
1330 REG_WRITE(ah, AR_RC, 0);
1332 if (AR_SREV_9100(ah))
1333 udelay(50);
1335 return true;
1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1340 ENABLE_REGWRITE_BUFFER(ah);
1342 if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 udelay(10);
1347 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 AR_RTC_FORCE_WAKE_ON_INT);
1350 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1351 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353 REG_WRITE(ah, AR_RTC_RESET, 0);
1355 REGWRITE_BUFFER_FLUSH(ah);
1357 udelay(2);
1359 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1360 REG_WRITE(ah, AR_RC, 0);
1362 REG_WRITE(ah, AR_RTC_RESET, 1);
1364 if (!ath9k_hw_wait(ah,
1365 AR_RTC_STATUS,
1366 AR_RTC_STATUS_M,
1367 AR_RTC_STATUS_ON,
1368 AH_WAIT_TIMEOUT)) {
1369 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1370 return false;
1373 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1376 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1378 bool ret = false;
1380 if (AR_SREV_9300_20_OR_LATER(ah)) {
1381 REG_WRITE(ah, AR_WA, ah->WARegVal);
1382 udelay(10);
1385 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1386 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1388 if (!ah->reset_power_on)
1389 type = ATH9K_RESET_POWER_ON;
1391 switch (type) {
1392 case ATH9K_RESET_POWER_ON:
1393 ret = ath9k_hw_set_reset_power_on(ah);
1394 if (ret)
1395 ah->reset_power_on = true;
1396 break;
1397 case ATH9K_RESET_WARM:
1398 case ATH9K_RESET_COLD:
1399 ret = ath9k_hw_set_reset(ah, type);
1400 break;
1401 default:
1402 break;
1405 return ret;
1408 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1409 struct ath9k_channel *chan)
1411 int reset_type = ATH9K_RESET_WARM;
1413 if (AR_SREV_9280(ah)) {
1414 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1415 reset_type = ATH9K_RESET_POWER_ON;
1416 else
1417 reset_type = ATH9K_RESET_COLD;
1418 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1419 (REG_READ(ah, AR_CR) & AR_CR_RXE))
1420 reset_type = ATH9K_RESET_COLD;
1422 if (!ath9k_hw_set_reset_reg(ah, reset_type))
1423 return false;
1425 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1426 return false;
1428 ah->chip_fullsleep = false;
1430 if (AR_SREV_9330(ah))
1431 ar9003_hw_internal_regulator_apply(ah);
1432 ath9k_hw_init_pll(ah, chan);
1434 return true;
1437 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1438 struct ath9k_channel *chan)
1440 struct ath_common *common = ath9k_hw_common(ah);
1441 struct ath9k_hw_capabilities *pCap = &ah->caps;
1442 bool band_switch = false, mode_diff = false;
1443 u8 ini_reloaded = 0;
1444 u32 qnum;
1445 int r;
1447 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1448 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1449 band_switch = !!(flags_diff & CHANNEL_5GHZ);
1450 mode_diff = !!(flags_diff & ~CHANNEL_HT);
1453 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1454 if (ath9k_hw_numtxpending(ah, qnum)) {
1455 ath_dbg(common, QUEUE,
1456 "Transmit frames pending on queue %d\n", qnum);
1457 return false;
1461 if (!ath9k_hw_rfbus_req(ah)) {
1462 ath_err(common, "Could not kill baseband RX\n");
1463 return false;
1466 if (band_switch || mode_diff) {
1467 ath9k_hw_mark_phy_inactive(ah);
1468 udelay(5);
1470 if (band_switch)
1471 ath9k_hw_init_pll(ah, chan);
1473 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1474 ath_err(common, "Failed to do fast channel change\n");
1475 return false;
1479 ath9k_hw_set_channel_regs(ah, chan);
1481 r = ath9k_hw_rf_set_freq(ah, chan);
1482 if (r) {
1483 ath_err(common, "Failed to set channel\n");
1484 return false;
1486 ath9k_hw_set_clockrate(ah);
1487 ath9k_hw_apply_txpower(ah, chan, false);
1489 ath9k_hw_set_delta_slope(ah, chan);
1490 ath9k_hw_spur_mitigate_freq(ah, chan);
1492 if (band_switch || ini_reloaded)
1493 ah->eep_ops->set_board_values(ah, chan);
1495 ath9k_hw_init_bb(ah, chan);
1496 ath9k_hw_rfbus_done(ah);
1498 if (band_switch || ini_reloaded) {
1499 ah->ah_flags |= AH_FASTCC;
1500 ath9k_hw_init_cal(ah, chan);
1501 ah->ah_flags &= ~AH_FASTCC;
1504 return true;
1507 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1509 u32 gpio_mask = ah->gpio_mask;
1510 int i;
1512 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1513 if (!(gpio_mask & 1))
1514 continue;
1516 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1517 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1521 void ath9k_hw_check_nav(struct ath_hw *ah)
1523 struct ath_common *common = ath9k_hw_common(ah);
1524 u32 val;
1526 val = REG_READ(ah, AR_NAV);
1527 if (val != 0xdeadbeef && val > 0x7fff) {
1528 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1529 REG_WRITE(ah, AR_NAV, 0);
1532 EXPORT_SYMBOL(ath9k_hw_check_nav);
1534 bool ath9k_hw_check_alive(struct ath_hw *ah)
1536 int count = 50;
1537 u32 reg;
1539 if (AR_SREV_9300(ah))
1540 return !ath9k_hw_detect_mac_hang(ah);
1542 if (AR_SREV_9285_12_OR_LATER(ah))
1543 return true;
1545 do {
1546 reg = REG_READ(ah, AR_OBS_BUS_1);
1548 if ((reg & 0x7E7FFFEF) == 0x00702400)
1549 continue;
1551 switch (reg & 0x7E000B00) {
1552 case 0x1E000000:
1553 case 0x52000B00:
1554 case 0x18000B00:
1555 continue;
1556 default:
1557 return true;
1559 } while (count-- > 0);
1561 return false;
1563 EXPORT_SYMBOL(ath9k_hw_check_alive);
1565 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1567 /* Setup MFP options for CCMP */
1568 if (AR_SREV_9280_20_OR_LATER(ah)) {
1569 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1570 * frames when constructing CCMP AAD. */
1571 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1572 0xc7ff);
1573 ah->sw_mgmt_crypto = false;
1574 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1575 /* Disable hardware crypto for management frames */
1576 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1577 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1578 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1579 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1580 ah->sw_mgmt_crypto = true;
1581 } else {
1582 ah->sw_mgmt_crypto = true;
1586 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1587 u32 macStaId1, u32 saveDefAntenna)
1589 struct ath_common *common = ath9k_hw_common(ah);
1591 ENABLE_REGWRITE_BUFFER(ah);
1593 REG_RMW(ah, AR_STA_ID1, macStaId1
1594 | AR_STA_ID1_RTS_USE_DEF
1595 | ah->sta_id1_defaults,
1596 ~AR_STA_ID1_SADH_MASK);
1597 ath_hw_setbssidmask(common);
1598 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1599 ath9k_hw_write_associd(ah);
1600 REG_WRITE(ah, AR_ISR, ~0);
1601 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1603 REGWRITE_BUFFER_FLUSH(ah);
1605 ath9k_hw_set_operating_mode(ah, ah->opmode);
1608 static void ath9k_hw_init_queues(struct ath_hw *ah)
1610 int i;
1612 ENABLE_REGWRITE_BUFFER(ah);
1614 for (i = 0; i < AR_NUM_DCU; i++)
1615 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1617 REGWRITE_BUFFER_FLUSH(ah);
1619 ah->intr_txqs = 0;
1620 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1621 ath9k_hw_resettxqueue(ah, i);
1625 * For big endian systems turn on swapping for descriptors
1627 static void ath9k_hw_init_desc(struct ath_hw *ah)
1629 struct ath_common *common = ath9k_hw_common(ah);
1631 if (AR_SREV_9100(ah)) {
1632 u32 mask;
1633 mask = REG_READ(ah, AR_CFG);
1634 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1635 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1636 mask);
1637 } else {
1638 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1639 REG_WRITE(ah, AR_CFG, mask);
1640 ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1641 REG_READ(ah, AR_CFG));
1643 } else {
1644 if (common->bus_ops->ath_bus_type == ATH_USB) {
1645 /* Configure AR9271 target WLAN */
1646 if (AR_SREV_9271(ah))
1647 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1648 else
1649 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1651 #ifdef __BIG_ENDIAN
1652 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1653 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1654 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1655 else
1656 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1657 #endif
1662 * Fast channel change:
1663 * (Change synthesizer based on channel freq without resetting chip)
1665 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1667 struct ath_common *common = ath9k_hw_common(ah);
1668 struct ath9k_hw_capabilities *pCap = &ah->caps;
1669 int ret;
1671 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1672 goto fail;
1674 if (ah->chip_fullsleep)
1675 goto fail;
1677 if (!ah->curchan)
1678 goto fail;
1680 if (chan->channel == ah->curchan->channel)
1681 goto fail;
1683 if ((ah->curchan->channelFlags | chan->channelFlags) &
1684 (CHANNEL_HALF | CHANNEL_QUARTER))
1685 goto fail;
1688 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1690 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1691 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1692 goto fail;
1694 if (!ath9k_hw_check_alive(ah))
1695 goto fail;
1698 * For AR9462, make sure that calibration data for
1699 * re-using are present.
1701 if (AR_SREV_9462(ah) && (ah->caldata &&
1702 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1703 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1704 !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1705 goto fail;
1707 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1708 ah->curchan->channel, chan->channel);
1710 ret = ath9k_hw_channel_change(ah, chan);
1711 if (!ret)
1712 goto fail;
1714 if (ath9k_hw_mci_is_enabled(ah))
1715 ar9003_mci_2g5g_switch(ah, false);
1717 ath9k_hw_loadnf(ah, ah->curchan);
1718 ath9k_hw_start_nfcal(ah, true);
1720 if (AR_SREV_9271(ah))
1721 ar9002_hw_load_ani_reg(ah, chan);
1723 return 0;
1724 fail:
1725 return -EINVAL;
1728 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1729 struct ath9k_hw_cal_data *caldata, bool fastcc)
1731 struct ath_common *common = ath9k_hw_common(ah);
1732 struct timespec ts;
1733 u32 saveLedState;
1734 u32 saveDefAntenna;
1735 u32 macStaId1;
1736 u64 tsf = 0;
1737 s64 usec = 0;
1738 int r;
1739 bool start_mci_reset = false;
1740 bool save_fullsleep = ah->chip_fullsleep;
1742 if (ath9k_hw_mci_is_enabled(ah)) {
1743 start_mci_reset = ar9003_mci_start_reset(ah, chan);
1744 if (start_mci_reset)
1745 return 0;
1748 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1749 return -EIO;
1751 if (ah->curchan && !ah->chip_fullsleep)
1752 ath9k_hw_getnf(ah, ah->curchan);
1754 ah->caldata = caldata;
1755 if (caldata && (chan->channel != caldata->channel ||
1756 chan->channelFlags != caldata->channelFlags)) {
1757 /* Operating channel changed, reset channel calibration data */
1758 memset(caldata, 0, sizeof(*caldata));
1759 ath9k_init_nfcal_hist_buffer(ah, chan);
1760 } else if (caldata) {
1761 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1763 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1765 if (fastcc) {
1766 r = ath9k_hw_do_fastcc(ah, chan);
1767 if (!r)
1768 return r;
1771 if (ath9k_hw_mci_is_enabled(ah))
1772 ar9003_mci_stop_bt(ah, save_fullsleep);
1774 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1775 if (saveDefAntenna == 0)
1776 saveDefAntenna = 1;
1778 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1780 /* Save TSF before chip reset, a cold reset clears it */
1781 tsf = ath9k_hw_gettsf64(ah);
1782 getrawmonotonic(&ts);
1783 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1785 saveLedState = REG_READ(ah, AR_CFG_LED) &
1786 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1787 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1789 ath9k_hw_mark_phy_inactive(ah);
1791 ah->paprd_table_write_done = false;
1793 /* Only required on the first reset */
1794 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1795 REG_WRITE(ah,
1796 AR9271_RESET_POWER_DOWN_CONTROL,
1797 AR9271_RADIO_RF_RST);
1798 udelay(50);
1801 if (!ath9k_hw_chip_reset(ah, chan)) {
1802 ath_err(common, "Chip reset failed\n");
1803 return -EINVAL;
1806 /* Only required on the first reset */
1807 if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1808 ah->htc_reset_init = false;
1809 REG_WRITE(ah,
1810 AR9271_RESET_POWER_DOWN_CONTROL,
1811 AR9271_GATE_MAC_CTL);
1812 udelay(50);
1815 /* Restore TSF */
1816 getrawmonotonic(&ts);
1817 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1818 ath9k_hw_settsf64(ah, tsf + usec);
1820 if (AR_SREV_9280_20_OR_LATER(ah))
1821 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1823 if (!AR_SREV_9300_20_OR_LATER(ah))
1824 ar9002_hw_enable_async_fifo(ah);
1826 r = ath9k_hw_process_ini(ah, chan);
1827 if (r)
1828 return r;
1830 ath9k_hw_set_rfmode(ah, chan);
1832 if (ath9k_hw_mci_is_enabled(ah))
1833 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1836 * Some AR91xx SoC devices frequently fail to accept TSF writes
1837 * right after the chip reset. When that happens, write a new
1838 * value after the initvals have been applied, with an offset
1839 * based on measured time difference
1841 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1842 tsf += 1500;
1843 ath9k_hw_settsf64(ah, tsf);
1846 ath9k_hw_init_mfp(ah);
1848 ath9k_hw_set_delta_slope(ah, chan);
1849 ath9k_hw_spur_mitigate_freq(ah, chan);
1850 ah->eep_ops->set_board_values(ah, chan);
1852 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1854 r = ath9k_hw_rf_set_freq(ah, chan);
1855 if (r)
1856 return r;
1858 ath9k_hw_set_clockrate(ah);
1860 ath9k_hw_init_queues(ah);
1861 ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1862 ath9k_hw_ani_cache_ini_regs(ah);
1863 ath9k_hw_init_qos(ah);
1865 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1866 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1868 ath9k_hw_init_global_settings(ah);
1870 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1871 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1872 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1873 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1874 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1875 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1876 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1879 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1881 ath9k_hw_set_dma(ah);
1883 if (!ath9k_hw_mci_is_enabled(ah))
1884 REG_WRITE(ah, AR_OBS, 8);
1886 if (ah->config.rx_intr_mitigation) {
1887 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1888 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1891 if (ah->config.tx_intr_mitigation) {
1892 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1893 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1896 ath9k_hw_init_bb(ah, chan);
1898 if (caldata) {
1899 clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1900 clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1902 if (!ath9k_hw_init_cal(ah, chan))
1903 return -EIO;
1905 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1906 return -EIO;
1908 ENABLE_REGWRITE_BUFFER(ah);
1910 ath9k_hw_restore_chainmask(ah);
1911 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1913 REGWRITE_BUFFER_FLUSH(ah);
1915 ath9k_hw_init_desc(ah);
1917 if (ath9k_hw_btcoex_is_enabled(ah))
1918 ath9k_hw_btcoex_enable(ah);
1920 if (ath9k_hw_mci_is_enabled(ah))
1921 ar9003_mci_check_bt(ah);
1923 ath9k_hw_loadnf(ah, chan);
1924 ath9k_hw_start_nfcal(ah, true);
1926 if (AR_SREV_9300_20_OR_LATER(ah))
1927 ar9003_hw_bb_watchdog_config(ah);
1929 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1930 ar9003_hw_disable_phy_restart(ah);
1932 ath9k_hw_apply_gpio_override(ah);
1934 if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1935 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1937 return 0;
1939 EXPORT_SYMBOL(ath9k_hw_reset);
1941 /******************************/
1942 /* Power Management (Chipset) */
1943 /******************************/
1946 * Notify Power Mgt is disabled in self-generated frames.
1947 * If requested, force chip to sleep.
1949 static void ath9k_set_power_sleep(struct ath_hw *ah)
1951 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1953 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1954 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1955 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1956 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1957 /* xxx Required for WLAN only case ? */
1958 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1959 udelay(100);
1963 * Clear the RTC force wake bit to allow the
1964 * mac to go to sleep.
1966 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1968 if (ath9k_hw_mci_is_enabled(ah))
1969 udelay(100);
1971 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1972 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1974 /* Shutdown chip. Active low */
1975 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1976 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1977 udelay(2);
1980 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1981 if (AR_SREV_9300_20_OR_LATER(ah))
1982 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1986 * Notify Power Management is enabled in self-generating
1987 * frames. If request, set power mode of chip to
1988 * auto/normal. Duration in units of 128us (1/8 TU).
1990 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1992 struct ath9k_hw_capabilities *pCap = &ah->caps;
1994 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1996 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1997 /* Set WakeOnInterrupt bit; clear ForceWake bit */
1998 REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1999 AR_RTC_FORCE_WAKE_ON_INT);
2000 } else {
2002 /* When chip goes into network sleep, it could be waken
2003 * up by MCI_INT interrupt caused by BT's HW messages
2004 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2005 * rate (~100us). This will cause chip to leave and
2006 * re-enter network sleep mode frequently, which in
2007 * consequence will have WLAN MCI HW to generate lots of
2008 * SYS_WAKING and SYS_SLEEPING messages which will make
2009 * BT CPU to busy to process.
2011 if (ath9k_hw_mci_is_enabled(ah))
2012 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2013 AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2015 * Clear the RTC force wake bit to allow the
2016 * mac to go to sleep.
2018 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2020 if (ath9k_hw_mci_is_enabled(ah))
2021 udelay(30);
2024 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2025 if (AR_SREV_9300_20_OR_LATER(ah))
2026 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2029 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2031 u32 val;
2032 int i;
2034 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2035 if (AR_SREV_9300_20_OR_LATER(ah)) {
2036 REG_WRITE(ah, AR_WA, ah->WARegVal);
2037 udelay(10);
2040 if ((REG_READ(ah, AR_RTC_STATUS) &
2041 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2042 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2043 return false;
2045 if (!AR_SREV_9300_20_OR_LATER(ah))
2046 ath9k_hw_init_pll(ah, NULL);
2048 if (AR_SREV_9100(ah))
2049 REG_SET_BIT(ah, AR_RTC_RESET,
2050 AR_RTC_RESET_EN);
2052 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2053 AR_RTC_FORCE_WAKE_EN);
2054 if (AR_SREV_9100(ah))
2055 mdelay(10);
2056 else
2057 udelay(50);
2059 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2060 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2061 if (val == AR_RTC_STATUS_ON)
2062 break;
2063 udelay(50);
2064 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2065 AR_RTC_FORCE_WAKE_EN);
2067 if (i == 0) {
2068 ath_err(ath9k_hw_common(ah),
2069 "Failed to wakeup in %uus\n",
2070 POWER_UP_TIME / 20);
2071 return false;
2074 if (ath9k_hw_mci_is_enabled(ah))
2075 ar9003_mci_set_power_awake(ah);
2077 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2079 return true;
2082 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2084 struct ath_common *common = ath9k_hw_common(ah);
2085 int status = true;
2086 static const char *modes[] = {
2087 "AWAKE",
2088 "FULL-SLEEP",
2089 "NETWORK SLEEP",
2090 "UNDEFINED"
2093 if (ah->power_mode == mode)
2094 return status;
2096 ath_dbg(common, RESET, "%s -> %s\n",
2097 modes[ah->power_mode], modes[mode]);
2099 switch (mode) {
2100 case ATH9K_PM_AWAKE:
2101 status = ath9k_hw_set_power_awake(ah);
2102 break;
2103 case ATH9K_PM_FULL_SLEEP:
2104 if (ath9k_hw_mci_is_enabled(ah))
2105 ar9003_mci_set_full_sleep(ah);
2107 ath9k_set_power_sleep(ah);
2108 ah->chip_fullsleep = true;
2109 break;
2110 case ATH9K_PM_NETWORK_SLEEP:
2111 ath9k_set_power_network_sleep(ah);
2112 break;
2113 default:
2114 ath_err(common, "Unknown power mode %u\n", mode);
2115 return false;
2117 ah->power_mode = mode;
2120 * XXX: If this warning never comes up after a while then
2121 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2122 * ath9k_hw_setpower() return type void.
2125 if (!(ah->ah_flags & AH_UNPLUGGED))
2126 ATH_DBG_WARN_ON_ONCE(!status);
2128 return status;
2130 EXPORT_SYMBOL(ath9k_hw_setpower);
2132 /*******************/
2133 /* Beacon Handling */
2134 /*******************/
2136 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2138 int flags = 0;
2140 ENABLE_REGWRITE_BUFFER(ah);
2142 switch (ah->opmode) {
2143 case NL80211_IFTYPE_ADHOC:
2144 REG_SET_BIT(ah, AR_TXCFG,
2145 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2146 case NL80211_IFTYPE_MESH_POINT:
2147 case NL80211_IFTYPE_AP:
2148 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2149 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2150 TU_TO_USEC(ah->config.dma_beacon_response_time));
2151 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2152 TU_TO_USEC(ah->config.sw_beacon_response_time));
2153 flags |=
2154 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2155 break;
2156 default:
2157 ath_dbg(ath9k_hw_common(ah), BEACON,
2158 "%s: unsupported opmode: %d\n", __func__, ah->opmode);
2159 return;
2160 break;
2163 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2164 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2165 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2167 REGWRITE_BUFFER_FLUSH(ah);
2169 REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2171 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2173 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2174 const struct ath9k_beacon_state *bs)
2176 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2177 struct ath9k_hw_capabilities *pCap = &ah->caps;
2178 struct ath_common *common = ath9k_hw_common(ah);
2180 ENABLE_REGWRITE_BUFFER(ah);
2182 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2183 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2184 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2186 REGWRITE_BUFFER_FLUSH(ah);
2188 REG_RMW_FIELD(ah, AR_RSSI_THR,
2189 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2191 beaconintval = bs->bs_intval;
2193 if (bs->bs_sleepduration > beaconintval)
2194 beaconintval = bs->bs_sleepduration;
2196 dtimperiod = bs->bs_dtimperiod;
2197 if (bs->bs_sleepduration > dtimperiod)
2198 dtimperiod = bs->bs_sleepduration;
2200 if (beaconintval == dtimperiod)
2201 nextTbtt = bs->bs_nextdtim;
2202 else
2203 nextTbtt = bs->bs_nexttbtt;
2205 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2206 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2207 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2208 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2210 ENABLE_REGWRITE_BUFFER(ah);
2212 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2213 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2215 REG_WRITE(ah, AR_SLEEP1,
2216 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2217 | AR_SLEEP1_ASSUME_DTIM);
2219 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2220 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2221 else
2222 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2224 REG_WRITE(ah, AR_SLEEP2,
2225 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2227 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2228 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2230 REGWRITE_BUFFER_FLUSH(ah);
2232 REG_SET_BIT(ah, AR_TIMER_MODE,
2233 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2234 AR_DTIM_TIMER_EN);
2236 /* TSF Out of Range Threshold */
2237 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2239 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2241 /*******************/
2242 /* HW Capabilities */
2243 /*******************/
2245 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2247 eeprom_chainmask &= chip_chainmask;
2248 if (eeprom_chainmask)
2249 return eeprom_chainmask;
2250 else
2251 return chip_chainmask;
2255 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2256 * @ah: the atheros hardware data structure
2258 * We enable DFS support upstream on chipsets which have passed a series
2259 * of tests. The testing requirements are going to be documented. Desired
2260 * test requirements are documented at:
2262 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2264 * Once a new chipset gets properly tested an individual commit can be used
2265 * to document the testing for DFS for that chipset.
2267 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2270 switch (ah->hw_version.macVersion) {
2271 /* for temporary testing DFS with 9280 */
2272 case AR_SREV_VERSION_9280:
2273 /* AR9580 will likely be our first target to get testing on */
2274 case AR_SREV_VERSION_9580:
2275 return true;
2276 default:
2277 return false;
2281 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2283 struct ath9k_hw_capabilities *pCap = &ah->caps;
2284 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2285 struct ath_common *common = ath9k_hw_common(ah);
2286 unsigned int chip_chainmask;
2288 u16 eeval;
2289 u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2291 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2292 regulatory->current_rd = eeval;
2294 if (ah->opmode != NL80211_IFTYPE_AP &&
2295 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2296 if (regulatory->current_rd == 0x64 ||
2297 regulatory->current_rd == 0x65)
2298 regulatory->current_rd += 5;
2299 else if (regulatory->current_rd == 0x41)
2300 regulatory->current_rd = 0x43;
2301 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2302 regulatory->current_rd);
2305 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2306 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2307 ath_err(common,
2308 "no band has been marked as supported in EEPROM\n");
2309 return -EINVAL;
2312 if (eeval & AR5416_OPFLAGS_11A)
2313 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2315 if (eeval & AR5416_OPFLAGS_11G)
2316 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2318 if (AR_SREV_9485(ah) ||
2319 AR_SREV_9285(ah) ||
2320 AR_SREV_9330(ah) ||
2321 AR_SREV_9565(ah))
2322 chip_chainmask = 1;
2323 else if (AR_SREV_9462(ah))
2324 chip_chainmask = 3;
2325 else if (!AR_SREV_9280_20_OR_LATER(ah))
2326 chip_chainmask = 7;
2327 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2328 chip_chainmask = 3;
2329 else
2330 chip_chainmask = 7;
2332 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2334 * For AR9271 we will temporarilly uses the rx chainmax as read from
2335 * the EEPROM.
2337 if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2338 !(eeval & AR5416_OPFLAGS_11A) &&
2339 !(AR_SREV_9271(ah)))
2340 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2341 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2342 else if (AR_SREV_9100(ah))
2343 pCap->rx_chainmask = 0x7;
2344 else
2345 /* Use rx_chainmask from EEPROM. */
2346 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2348 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2349 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2350 ah->txchainmask = pCap->tx_chainmask;
2351 ah->rxchainmask = pCap->rx_chainmask;
2353 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2355 /* enable key search for every frame in an aggregate */
2356 if (AR_SREV_9300_20_OR_LATER(ah))
2357 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2359 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2361 if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2362 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2363 else
2364 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2366 if (AR_SREV_9271(ah))
2367 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2368 else if (AR_DEVID_7010(ah))
2369 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2370 else if (AR_SREV_9300_20_OR_LATER(ah))
2371 pCap->num_gpio_pins = AR9300_NUM_GPIO;
2372 else if (AR_SREV_9287_11_OR_LATER(ah))
2373 pCap->num_gpio_pins = AR9287_NUM_GPIO;
2374 else if (AR_SREV_9285_12_OR_LATER(ah))
2375 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2376 else if (AR_SREV_9280_20_OR_LATER(ah))
2377 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2378 else
2379 pCap->num_gpio_pins = AR_NUM_GPIO;
2381 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2382 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2383 else
2384 pCap->rts_aggr_limit = (8 * 1024);
2386 #ifdef CONFIG_ATH9K_RFKILL
2387 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2388 if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2389 ah->rfkill_gpio =
2390 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2391 ah->rfkill_polarity =
2392 MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2394 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2396 #endif
2397 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2398 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2399 else
2400 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2402 if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2403 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2404 else
2405 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2407 if (AR_SREV_9300_20_OR_LATER(ah)) {
2408 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2409 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2410 pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2412 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2413 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2414 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2415 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2416 pCap->txs_len = sizeof(struct ar9003_txs);
2417 } else {
2418 pCap->tx_desc_len = sizeof(struct ath_desc);
2419 if (AR_SREV_9280_20(ah))
2420 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2423 if (AR_SREV_9300_20_OR_LATER(ah))
2424 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2426 if (AR_SREV_9300_20_OR_LATER(ah))
2427 ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2429 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2430 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2432 if (AR_SREV_9285(ah)) {
2433 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2434 ant_div_ctl1 =
2435 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2436 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2437 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2438 ath_info(common, "Enable LNA combining\n");
2443 if (AR_SREV_9300_20_OR_LATER(ah)) {
2444 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2445 pCap->hw_caps |= ATH9K_HW_CAP_APM;
2448 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2449 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2450 if ((ant_div_ctl1 >> 0x6) == 0x3) {
2451 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2452 ath_info(common, "Enable LNA combining\n");
2456 if (ath9k_hw_dfs_tested(ah))
2457 pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2459 tx_chainmask = pCap->tx_chainmask;
2460 rx_chainmask = pCap->rx_chainmask;
2461 while (tx_chainmask || rx_chainmask) {
2462 if (tx_chainmask & BIT(0))
2463 pCap->max_txchains++;
2464 if (rx_chainmask & BIT(0))
2465 pCap->max_rxchains++;
2467 tx_chainmask >>= 1;
2468 rx_chainmask >>= 1;
2471 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2472 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2473 pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2475 if (AR_SREV_9462_20_OR_LATER(ah))
2476 pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2479 if (AR_SREV_9462(ah))
2480 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2482 if (AR_SREV_9300_20_OR_LATER(ah) &&
2483 ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2484 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2486 return 0;
2489 /****************************/
2490 /* GPIO / RFKILL / Antennae */
2491 /****************************/
2493 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2494 u32 gpio, u32 type)
2496 int addr;
2497 u32 gpio_shift, tmp;
2499 if (gpio > 11)
2500 addr = AR_GPIO_OUTPUT_MUX3;
2501 else if (gpio > 5)
2502 addr = AR_GPIO_OUTPUT_MUX2;
2503 else
2504 addr = AR_GPIO_OUTPUT_MUX1;
2506 gpio_shift = (gpio % 6) * 5;
2508 if (AR_SREV_9280_20_OR_LATER(ah)
2509 || (addr != AR_GPIO_OUTPUT_MUX1)) {
2510 REG_RMW(ah, addr, (type << gpio_shift),
2511 (0x1f << gpio_shift));
2512 } else {
2513 tmp = REG_READ(ah, addr);
2514 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2515 tmp &= ~(0x1f << gpio_shift);
2516 tmp |= (type << gpio_shift);
2517 REG_WRITE(ah, addr, tmp);
2521 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2523 u32 gpio_shift;
2525 BUG_ON(gpio >= ah->caps.num_gpio_pins);
2527 if (AR_DEVID_7010(ah)) {
2528 gpio_shift = gpio;
2529 REG_RMW(ah, AR7010_GPIO_OE,
2530 (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2531 (AR7010_GPIO_OE_MASK << gpio_shift));
2532 return;
2535 gpio_shift = gpio << 1;
2536 REG_RMW(ah,
2537 AR_GPIO_OE_OUT,
2538 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2539 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2541 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2543 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2545 #define MS_REG_READ(x, y) \
2546 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2548 if (gpio >= ah->caps.num_gpio_pins)
2549 return 0xffffffff;
2551 if (AR_DEVID_7010(ah)) {
2552 u32 val;
2553 val = REG_READ(ah, AR7010_GPIO_IN);
2554 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2555 } else if (AR_SREV_9300_20_OR_LATER(ah))
2556 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2557 AR_GPIO_BIT(gpio)) != 0;
2558 else if (AR_SREV_9271(ah))
2559 return MS_REG_READ(AR9271, gpio) != 0;
2560 else if (AR_SREV_9287_11_OR_LATER(ah))
2561 return MS_REG_READ(AR9287, gpio) != 0;
2562 else if (AR_SREV_9285_12_OR_LATER(ah))
2563 return MS_REG_READ(AR9285, gpio) != 0;
2564 else if (AR_SREV_9280_20_OR_LATER(ah))
2565 return MS_REG_READ(AR928X, gpio) != 0;
2566 else
2567 return MS_REG_READ(AR, gpio) != 0;
2569 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2571 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2572 u32 ah_signal_type)
2574 u32 gpio_shift;
2576 if (AR_DEVID_7010(ah)) {
2577 gpio_shift = gpio;
2578 REG_RMW(ah, AR7010_GPIO_OE,
2579 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2580 (AR7010_GPIO_OE_MASK << gpio_shift));
2581 return;
2584 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2585 gpio_shift = 2 * gpio;
2586 REG_RMW(ah,
2587 AR_GPIO_OE_OUT,
2588 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2589 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2591 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2593 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2595 if (AR_DEVID_7010(ah)) {
2596 val = val ? 0 : 1;
2597 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2598 AR_GPIO_BIT(gpio));
2599 return;
2602 if (AR_SREV_9271(ah))
2603 val = ~val;
2605 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2606 AR_GPIO_BIT(gpio));
2608 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2610 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2612 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2614 EXPORT_SYMBOL(ath9k_hw_setantenna);
2616 /*********************/
2617 /* General Operation */
2618 /*********************/
2620 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2622 u32 bits = REG_READ(ah, AR_RX_FILTER);
2623 u32 phybits = REG_READ(ah, AR_PHY_ERR);
2625 if (phybits & AR_PHY_ERR_RADAR)
2626 bits |= ATH9K_RX_FILTER_PHYRADAR;
2627 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2628 bits |= ATH9K_RX_FILTER_PHYERR;
2630 return bits;
2632 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2634 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2636 u32 phybits;
2638 ENABLE_REGWRITE_BUFFER(ah);
2640 if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2641 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2643 REG_WRITE(ah, AR_RX_FILTER, bits);
2645 phybits = 0;
2646 if (bits & ATH9K_RX_FILTER_PHYRADAR)
2647 phybits |= AR_PHY_ERR_RADAR;
2648 if (bits & ATH9K_RX_FILTER_PHYERR)
2649 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2650 REG_WRITE(ah, AR_PHY_ERR, phybits);
2652 if (phybits)
2653 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2654 else
2655 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2657 REGWRITE_BUFFER_FLUSH(ah);
2659 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2661 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2663 if (ath9k_hw_mci_is_enabled(ah))
2664 ar9003_mci_bt_gain_ctrl(ah);
2666 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2667 return false;
2669 ath9k_hw_init_pll(ah, NULL);
2670 ah->htc_reset_init = true;
2671 return true;
2673 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2675 bool ath9k_hw_disable(struct ath_hw *ah)
2677 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2678 return false;
2680 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2681 return false;
2683 ath9k_hw_init_pll(ah, NULL);
2684 return true;
2686 EXPORT_SYMBOL(ath9k_hw_disable);
2688 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2690 enum eeprom_param gain_param;
2692 if (IS_CHAN_2GHZ(chan))
2693 gain_param = EEP_ANTENNA_GAIN_2G;
2694 else
2695 gain_param = EEP_ANTENNA_GAIN_5G;
2697 return ah->eep_ops->get_eeprom(ah, gain_param);
2700 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2701 bool test)
2703 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2704 struct ieee80211_channel *channel;
2705 int chan_pwr, new_pwr, max_gain;
2706 int ant_gain, ant_reduction = 0;
2708 if (!chan)
2709 return;
2711 channel = chan->chan;
2712 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2713 new_pwr = min_t(int, chan_pwr, reg->power_limit);
2714 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2716 ant_gain = get_antenna_gain(ah, chan);
2717 if (ant_gain > max_gain)
2718 ant_reduction = ant_gain - max_gain;
2720 ah->eep_ops->set_txpower(ah, chan,
2721 ath9k_regd_get_ctl(reg, chan),
2722 ant_reduction, new_pwr, test);
2725 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2727 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2728 struct ath9k_channel *chan = ah->curchan;
2729 struct ieee80211_channel *channel = chan->chan;
2731 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2732 if (test)
2733 channel->max_power = MAX_RATE_POWER / 2;
2735 ath9k_hw_apply_txpower(ah, chan, test);
2737 if (test)
2738 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2740 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2742 void ath9k_hw_setopmode(struct ath_hw *ah)
2744 ath9k_hw_set_operating_mode(ah, ah->opmode);
2746 EXPORT_SYMBOL(ath9k_hw_setopmode);
2748 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2750 REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2751 REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2753 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2755 void ath9k_hw_write_associd(struct ath_hw *ah)
2757 struct ath_common *common = ath9k_hw_common(ah);
2759 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2760 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2761 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2763 EXPORT_SYMBOL(ath9k_hw_write_associd);
2765 #define ATH9K_MAX_TSF_READ 10
2767 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2769 u32 tsf_lower, tsf_upper1, tsf_upper2;
2770 int i;
2772 tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2773 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2774 tsf_lower = REG_READ(ah, AR_TSF_L32);
2775 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2776 if (tsf_upper2 == tsf_upper1)
2777 break;
2778 tsf_upper1 = tsf_upper2;
2781 WARN_ON( i == ATH9K_MAX_TSF_READ );
2783 return (((u64)tsf_upper1 << 32) | tsf_lower);
2785 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2787 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2789 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2790 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2792 EXPORT_SYMBOL(ath9k_hw_settsf64);
2794 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2796 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2797 AH_TSF_WRITE_TIMEOUT))
2798 ath_dbg(ath9k_hw_common(ah), RESET,
2799 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2801 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2803 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2805 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2807 if (set)
2808 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2809 else
2810 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2812 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2814 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2816 u32 macmode;
2818 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2819 macmode = AR_2040_JOINED_RX_CLEAR;
2820 else
2821 macmode = 0;
2823 REG_WRITE(ah, AR_2040_MODE, macmode);
2826 /* HW Generic timers configuration */
2828 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2830 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2831 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2832 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2833 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2834 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2835 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2836 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2839 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2840 AR_NDP2_TIMER_MODE, 0x0002},
2841 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2842 AR_NDP2_TIMER_MODE, 0x0004},
2843 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2844 AR_NDP2_TIMER_MODE, 0x0008},
2845 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2846 AR_NDP2_TIMER_MODE, 0x0010},
2847 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2848 AR_NDP2_TIMER_MODE, 0x0020},
2849 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2850 AR_NDP2_TIMER_MODE, 0x0040},
2851 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2852 AR_NDP2_TIMER_MODE, 0x0080}
2855 /* HW generic timer primitives */
2857 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2859 return REG_READ(ah, AR_TSF_L32);
2861 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2863 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2864 void (*trigger)(void *),
2865 void (*overflow)(void *),
2866 void *arg,
2867 u8 timer_index)
2869 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2870 struct ath_gen_timer *timer;
2872 if ((timer_index < AR_FIRST_NDP_TIMER) ||
2873 (timer_index >= ATH_MAX_GEN_TIMER))
2874 return NULL;
2876 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2877 if (timer == NULL)
2878 return NULL;
2880 /* allocate a hardware generic timer slot */
2881 timer_table->timers[timer_index] = timer;
2882 timer->index = timer_index;
2883 timer->trigger = trigger;
2884 timer->overflow = overflow;
2885 timer->arg = arg;
2887 return timer;
2889 EXPORT_SYMBOL(ath_gen_timer_alloc);
2891 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2892 struct ath_gen_timer *timer,
2893 u32 timer_next,
2894 u32 timer_period)
2896 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2897 u32 mask = 0;
2899 timer_table->timer_mask |= BIT(timer->index);
2902 * Program generic timer registers
2904 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2905 timer_next);
2906 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2907 timer_period);
2908 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2909 gen_tmr_configuration[timer->index].mode_mask);
2911 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2913 * Starting from AR9462, each generic timer can select which tsf
2914 * to use. But we still follow the old rule, 0 - 7 use tsf and
2915 * 8 - 15 use tsf2.
2917 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2918 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2919 (1 << timer->index));
2920 else
2921 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2922 (1 << timer->index));
2925 if (timer->trigger)
2926 mask |= SM(AR_GENTMR_BIT(timer->index),
2927 AR_IMR_S5_GENTIMER_TRIG);
2928 if (timer->overflow)
2929 mask |= SM(AR_GENTMR_BIT(timer->index),
2930 AR_IMR_S5_GENTIMER_THRESH);
2932 REG_SET_BIT(ah, AR_IMR_S5, mask);
2934 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2935 ah->imask |= ATH9K_INT_GENTIMER;
2936 ath9k_hw_set_interrupts(ah);
2939 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2941 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2943 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2945 /* Clear generic timer enable bits. */
2946 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2947 gen_tmr_configuration[timer->index].mode_mask);
2949 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2951 * Need to switch back to TSF if it was using TSF2.
2953 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2954 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2955 (1 << timer->index));
2959 /* Disable both trigger and thresh interrupt masks */
2960 REG_CLR_BIT(ah, AR_IMR_S5,
2961 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2962 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2964 timer_table->timer_mask &= ~BIT(timer->index);
2966 if (timer_table->timer_mask == 0) {
2967 ah->imask &= ~ATH9K_INT_GENTIMER;
2968 ath9k_hw_set_interrupts(ah);
2971 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2973 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2975 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2977 /* free the hardware generic timer slot */
2978 timer_table->timers[timer->index] = NULL;
2979 kfree(timer);
2981 EXPORT_SYMBOL(ath_gen_timer_free);
2984 * Generic Timer Interrupts handling
2986 void ath_gen_timer_isr(struct ath_hw *ah)
2988 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2989 struct ath_gen_timer *timer;
2990 unsigned long trigger_mask, thresh_mask;
2991 unsigned int index;
2993 /* get hardware generic timer interrupt status */
2994 trigger_mask = ah->intr_gen_timer_trigger;
2995 thresh_mask = ah->intr_gen_timer_thresh;
2996 trigger_mask &= timer_table->timer_mask;
2997 thresh_mask &= timer_table->timer_mask;
2999 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3000 timer = timer_table->timers[index];
3001 if (!timer)
3002 continue;
3003 if (!timer->overflow)
3004 continue;
3006 trigger_mask &= ~BIT(index);
3007 timer->overflow(timer->arg);
3010 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3011 timer = timer_table->timers[index];
3012 if (!timer)
3013 continue;
3014 if (!timer->trigger)
3015 continue;
3016 timer->trigger(timer->arg);
3019 EXPORT_SYMBOL(ath_gen_timer_isr);
3021 /********/
3022 /* HTC */
3023 /********/
3025 static struct {
3026 u32 version;
3027 const char * name;
3028 } ath_mac_bb_names[] = {
3029 /* Devices with external radios */
3030 { AR_SREV_VERSION_5416_PCI, "5416" },
3031 { AR_SREV_VERSION_5416_PCIE, "5418" },
3032 { AR_SREV_VERSION_9100, "9100" },
3033 { AR_SREV_VERSION_9160, "9160" },
3034 /* Single-chip solutions */
3035 { AR_SREV_VERSION_9280, "9280" },
3036 { AR_SREV_VERSION_9285, "9285" },
3037 { AR_SREV_VERSION_9287, "9287" },
3038 { AR_SREV_VERSION_9271, "9271" },
3039 { AR_SREV_VERSION_9300, "9300" },
3040 { AR_SREV_VERSION_9330, "9330" },
3041 { AR_SREV_VERSION_9340, "9340" },
3042 { AR_SREV_VERSION_9485, "9485" },
3043 { AR_SREV_VERSION_9462, "9462" },
3044 { AR_SREV_VERSION_9550, "9550" },
3045 { AR_SREV_VERSION_9565, "9565" },
3048 /* For devices with external radios */
3049 static struct {
3050 u16 version;
3051 const char * name;
3052 } ath_rf_names[] = {
3053 { 0, "5133" },
3054 { AR_RAD5133_SREV_MAJOR, "5133" },
3055 { AR_RAD5122_SREV_MAJOR, "5122" },
3056 { AR_RAD2133_SREV_MAJOR, "2133" },
3057 { AR_RAD2122_SREV_MAJOR, "2122" }
3061 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3063 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3065 int i;
3067 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3068 if (ath_mac_bb_names[i].version == mac_bb_version) {
3069 return ath_mac_bb_names[i].name;
3073 return "????";
3077 * Return the RF name. "????" is returned if the RF is unknown.
3078 * Used for devices with external radios.
3080 static const char *ath9k_hw_rf_name(u16 rf_version)
3082 int i;
3084 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3085 if (ath_rf_names[i].version == rf_version) {
3086 return ath_rf_names[i].name;
3090 return "????";
3093 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3095 int used;
3097 /* chipsets >= AR9280 are single-chip */
3098 if (AR_SREV_9280_20_OR_LATER(ah)) {
3099 used = scnprintf(hw_name, len,
3100 "Atheros AR%s Rev:%x",
3101 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3102 ah->hw_version.macRev);
3104 else {
3105 used = scnprintf(hw_name, len,
3106 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3107 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3108 ah->hw_version.macRev,
3109 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3110 & AR_RADIO_SREV_MAJOR)),
3111 ah->hw_version.phyRev);
3114 hw_name[used] = '\0';
3116 EXPORT_SYMBOL(ath9k_hw_name);