PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / init.c
blob1fc2e5a26b525b5695be27cd3d29d71b6732118d
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/dma-mapping.h>
20 #include <linux/slab.h>
21 #include <linux/ath9k_platform.h>
22 #include <linux/module.h>
23 #include <linux/relay.h>
24 #include <net/ieee80211_radiotap.h>
26 #include "ath9k.h"
28 struct ath9k_eeprom_ctx {
29 struct completion complete;
30 struct ath_hw *ah;
33 static char *dev_info = "ath9k";
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
41 module_param_named(debug, ath9k_debug, uint, 0);
42 MODULE_PARM_DESC(debug, "Debugging mask");
44 int ath9k_modparam_nohwcrypt;
45 module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
48 int led_blink;
49 module_param_named(blink, led_blink, int, 0444);
50 MODULE_PARM_DESC(blink, "Enable LED blink on activity");
52 static int ath9k_btcoex_enable;
53 module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
54 MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
56 static int ath9k_bt_ant_diversity;
57 module_param_named(bt_ant_diversity, ath9k_bt_ant_diversity, int, 0444);
58 MODULE_PARM_DESC(bt_ant_diversity, "Enable WLAN/BT RX antenna diversity");
60 static int ath9k_ps_enable;
61 module_param_named(ps_enable, ath9k_ps_enable, int, 0444);
62 MODULE_PARM_DESC(ps_enable, "Enable WLAN PowerSave");
64 bool is_ath9k_unloaded;
65 /* We use the hw_value as an index into our private channel structure */
67 #define CHAN2G(_freq, _idx) { \
68 .band = IEEE80211_BAND_2GHZ, \
69 .center_freq = (_freq), \
70 .hw_value = (_idx), \
71 .max_power = 20, \
74 #define CHAN5G(_freq, _idx) { \
75 .band = IEEE80211_BAND_5GHZ, \
76 .center_freq = (_freq), \
77 .hw_value = (_idx), \
78 .max_power = 20, \
81 /* Some 2 GHz radios are actually tunable on 2312-2732
82 * on 5 MHz steps, we support the channels which we know
83 * we have calibration data for all cards though to make
84 * this static */
85 static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
86 CHAN2G(2412, 0), /* Channel 1 */
87 CHAN2G(2417, 1), /* Channel 2 */
88 CHAN2G(2422, 2), /* Channel 3 */
89 CHAN2G(2427, 3), /* Channel 4 */
90 CHAN2G(2432, 4), /* Channel 5 */
91 CHAN2G(2437, 5), /* Channel 6 */
92 CHAN2G(2442, 6), /* Channel 7 */
93 CHAN2G(2447, 7), /* Channel 8 */
94 CHAN2G(2452, 8), /* Channel 9 */
95 CHAN2G(2457, 9), /* Channel 10 */
96 CHAN2G(2462, 10), /* Channel 11 */
97 CHAN2G(2467, 11), /* Channel 12 */
98 CHAN2G(2472, 12), /* Channel 13 */
99 CHAN2G(2484, 13), /* Channel 14 */
102 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
103 * on 5 MHz steps, we support the channels which we know
104 * we have calibration data for all cards though to make
105 * this static */
106 static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
107 /* _We_ call this UNII 1 */
108 CHAN5G(5180, 14), /* Channel 36 */
109 CHAN5G(5200, 15), /* Channel 40 */
110 CHAN5G(5220, 16), /* Channel 44 */
111 CHAN5G(5240, 17), /* Channel 48 */
112 /* _We_ call this UNII 2 */
113 CHAN5G(5260, 18), /* Channel 52 */
114 CHAN5G(5280, 19), /* Channel 56 */
115 CHAN5G(5300, 20), /* Channel 60 */
116 CHAN5G(5320, 21), /* Channel 64 */
117 /* _We_ call this "Middle band" */
118 CHAN5G(5500, 22), /* Channel 100 */
119 CHAN5G(5520, 23), /* Channel 104 */
120 CHAN5G(5540, 24), /* Channel 108 */
121 CHAN5G(5560, 25), /* Channel 112 */
122 CHAN5G(5580, 26), /* Channel 116 */
123 CHAN5G(5600, 27), /* Channel 120 */
124 CHAN5G(5620, 28), /* Channel 124 */
125 CHAN5G(5640, 29), /* Channel 128 */
126 CHAN5G(5660, 30), /* Channel 132 */
127 CHAN5G(5680, 31), /* Channel 136 */
128 CHAN5G(5700, 32), /* Channel 140 */
129 /* _We_ call this UNII 3 */
130 CHAN5G(5745, 33), /* Channel 149 */
131 CHAN5G(5765, 34), /* Channel 153 */
132 CHAN5G(5785, 35), /* Channel 157 */
133 CHAN5G(5805, 36), /* Channel 161 */
134 CHAN5G(5825, 37), /* Channel 165 */
137 /* Atheros hardware rate code addition for short premble */
138 #define SHPCHECK(__hw_rate, __flags) \
139 ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
141 #define RATE(_bitrate, _hw_rate, _flags) { \
142 .bitrate = (_bitrate), \
143 .flags = (_flags), \
144 .hw_value = (_hw_rate), \
145 .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \
148 static struct ieee80211_rate ath9k_legacy_rates[] = {
149 RATE(10, 0x1b, 0),
150 RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
151 RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
152 RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
153 RATE(60, 0x0b, (IEEE80211_RATE_SUPPORTS_5MHZ |
154 IEEE80211_RATE_SUPPORTS_10MHZ)),
155 RATE(90, 0x0f, (IEEE80211_RATE_SUPPORTS_5MHZ |
156 IEEE80211_RATE_SUPPORTS_10MHZ)),
157 RATE(120, 0x0a, (IEEE80211_RATE_SUPPORTS_5MHZ |
158 IEEE80211_RATE_SUPPORTS_10MHZ)),
159 RATE(180, 0x0e, (IEEE80211_RATE_SUPPORTS_5MHZ |
160 IEEE80211_RATE_SUPPORTS_10MHZ)),
161 RATE(240, 0x09, (IEEE80211_RATE_SUPPORTS_5MHZ |
162 IEEE80211_RATE_SUPPORTS_10MHZ)),
163 RATE(360, 0x0d, (IEEE80211_RATE_SUPPORTS_5MHZ |
164 IEEE80211_RATE_SUPPORTS_10MHZ)),
165 RATE(480, 0x08, (IEEE80211_RATE_SUPPORTS_5MHZ |
166 IEEE80211_RATE_SUPPORTS_10MHZ)),
167 RATE(540, 0x0c, (IEEE80211_RATE_SUPPORTS_5MHZ |
168 IEEE80211_RATE_SUPPORTS_10MHZ)),
171 #ifdef CONFIG_MAC80211_LEDS
172 static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
173 { .throughput = 0 * 1024, .blink_time = 334 },
174 { .throughput = 1 * 1024, .blink_time = 260 },
175 { .throughput = 5 * 1024, .blink_time = 220 },
176 { .throughput = 10 * 1024, .blink_time = 190 },
177 { .throughput = 20 * 1024, .blink_time = 170 },
178 { .throughput = 50 * 1024, .blink_time = 150 },
179 { .throughput = 70 * 1024, .blink_time = 130 },
180 { .throughput = 100 * 1024, .blink_time = 110 },
181 { .throughput = 200 * 1024, .blink_time = 80 },
182 { .throughput = 300 * 1024, .blink_time = 50 },
184 #endif
186 static void ath9k_deinit_softc(struct ath_softc *sc);
189 * Read and write, they both share the same lock. We do this to serialize
190 * reads and writes on Atheros 802.11n PCI devices only. This is required
191 * as the FIFO on these devices can only accept sanely 2 requests.
194 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
196 struct ath_hw *ah = (struct ath_hw *) hw_priv;
197 struct ath_common *common = ath9k_hw_common(ah);
198 struct ath_softc *sc = (struct ath_softc *) common->priv;
200 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
201 unsigned long flags;
202 spin_lock_irqsave(&sc->sc_serial_rw, flags);
203 iowrite32(val, sc->mem + reg_offset);
204 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
205 } else
206 iowrite32(val, sc->mem + reg_offset);
209 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
211 struct ath_hw *ah = (struct ath_hw *) hw_priv;
212 struct ath_common *common = ath9k_hw_common(ah);
213 struct ath_softc *sc = (struct ath_softc *) common->priv;
214 u32 val;
216 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
217 unsigned long flags;
218 spin_lock_irqsave(&sc->sc_serial_rw, flags);
219 val = ioread32(sc->mem + reg_offset);
220 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
221 } else
222 val = ioread32(sc->mem + reg_offset);
223 return val;
226 static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset,
227 u32 set, u32 clr)
229 u32 val;
231 val = ioread32(sc->mem + reg_offset);
232 val &= ~clr;
233 val |= set;
234 iowrite32(val, sc->mem + reg_offset);
236 return val;
239 static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
241 struct ath_hw *ah = (struct ath_hw *) hw_priv;
242 struct ath_common *common = ath9k_hw_common(ah);
243 struct ath_softc *sc = (struct ath_softc *) common->priv;
244 unsigned long uninitialized_var(flags);
245 u32 val;
247 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
248 spin_lock_irqsave(&sc->sc_serial_rw, flags);
249 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
250 spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
251 } else
252 val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
254 return val;
257 /**************************/
258 /* Initialization */
259 /**************************/
261 static void setup_ht_cap(struct ath_softc *sc,
262 struct ieee80211_sta_ht_cap *ht_info)
264 struct ath_hw *ah = sc->sc_ah;
265 struct ath_common *common = ath9k_hw_common(ah);
266 u8 tx_streams, rx_streams;
267 int i, max_streams;
269 ht_info->ht_supported = true;
270 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
271 IEEE80211_HT_CAP_SM_PS |
272 IEEE80211_HT_CAP_SGI_40 |
273 IEEE80211_HT_CAP_DSSSCCK40;
275 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
276 ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
278 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
279 ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
281 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
282 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
284 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah))
285 max_streams = 1;
286 else if (AR_SREV_9462(ah))
287 max_streams = 2;
288 else if (AR_SREV_9300_20_OR_LATER(ah))
289 max_streams = 3;
290 else
291 max_streams = 2;
293 if (AR_SREV_9280_20_OR_LATER(ah)) {
294 if (max_streams >= 2)
295 ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
296 ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
299 /* set up supported mcs set */
300 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
301 tx_streams = ath9k_cmn_count_streams(ah->txchainmask, max_streams);
302 rx_streams = ath9k_cmn_count_streams(ah->rxchainmask, max_streams);
304 ath_dbg(common, CONFIG, "TX streams %d, RX streams: %d\n",
305 tx_streams, rx_streams);
307 if (tx_streams != rx_streams) {
308 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
309 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
310 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
313 for (i = 0; i < rx_streams; i++)
314 ht_info->mcs.rx_mask[i] = 0xff;
316 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
319 static void ath9k_reg_notifier(struct wiphy *wiphy,
320 struct regulatory_request *request)
322 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
323 struct ath_softc *sc = hw->priv;
324 struct ath_hw *ah = sc->sc_ah;
325 struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
327 ath_reg_notifier_apply(wiphy, request, reg);
329 /* Set tx power */
330 if (ah->curchan) {
331 sc->config.txpowlimit = 2 * ah->curchan->chan->max_power;
332 ath9k_ps_wakeup(sc);
333 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit, false);
334 sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
335 /* synchronize DFS detector if regulatory domain changed */
336 if (sc->dfs_detector != NULL)
337 sc->dfs_detector->set_dfs_domain(sc->dfs_detector,
338 request->dfs_region);
339 ath9k_ps_restore(sc);
344 * This function will allocate both the DMA descriptor structure, and the
345 * buffers it contains. These are used to contain the descriptors used
346 * by the system.
348 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
349 struct list_head *head, const char *name,
350 int nbuf, int ndesc, bool is_tx)
352 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
353 u8 *ds;
354 int i, bsize, desc_len;
356 ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
357 name, nbuf, ndesc);
359 INIT_LIST_HEAD(head);
361 if (is_tx)
362 desc_len = sc->sc_ah->caps.tx_desc_len;
363 else
364 desc_len = sizeof(struct ath_desc);
366 /* ath_desc must be a multiple of DWORDs */
367 if ((desc_len % 4) != 0) {
368 ath_err(common, "ath_desc not DWORD aligned\n");
369 BUG_ON((desc_len % 4) != 0);
370 return -ENOMEM;
373 dd->dd_desc_len = desc_len * nbuf * ndesc;
376 * Need additional DMA memory because we can't use
377 * descriptors that cross the 4K page boundary. Assume
378 * one skipped descriptor per 4K page.
380 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
381 u32 ndesc_skipped =
382 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
383 u32 dma_len;
385 while (ndesc_skipped) {
386 dma_len = ndesc_skipped * desc_len;
387 dd->dd_desc_len += dma_len;
389 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
393 /* allocate descriptors */
394 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
395 &dd->dd_desc_paddr, GFP_KERNEL);
396 if (!dd->dd_desc)
397 return -ENOMEM;
399 ds = (u8 *) dd->dd_desc;
400 ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
401 name, ds, (u32) dd->dd_desc_len,
402 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
404 /* allocate buffers */
405 if (is_tx) {
406 struct ath_buf *bf;
408 bsize = sizeof(struct ath_buf) * nbuf;
409 bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
410 if (!bf)
411 return -ENOMEM;
413 for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
414 bf->bf_desc = ds;
415 bf->bf_daddr = DS2PHYS(dd, ds);
417 if (!(sc->sc_ah->caps.hw_caps &
418 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
420 * Skip descriptor addresses which can cause 4KB
421 * boundary crossing (addr + length) with a 32 dword
422 * descriptor fetch.
424 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
425 BUG_ON((caddr_t) bf->bf_desc >=
426 ((caddr_t) dd->dd_desc +
427 dd->dd_desc_len));
429 ds += (desc_len * ndesc);
430 bf->bf_desc = ds;
431 bf->bf_daddr = DS2PHYS(dd, ds);
434 list_add_tail(&bf->list, head);
436 } else {
437 struct ath_rxbuf *bf;
439 bsize = sizeof(struct ath_rxbuf) * nbuf;
440 bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
441 if (!bf)
442 return -ENOMEM;
444 for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
445 bf->bf_desc = ds;
446 bf->bf_daddr = DS2PHYS(dd, ds);
448 if (!(sc->sc_ah->caps.hw_caps &
449 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
451 * Skip descriptor addresses which can cause 4KB
452 * boundary crossing (addr + length) with a 32 dword
453 * descriptor fetch.
455 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
456 BUG_ON((caddr_t) bf->bf_desc >=
457 ((caddr_t) dd->dd_desc +
458 dd->dd_desc_len));
460 ds += (desc_len * ndesc);
461 bf->bf_desc = ds;
462 bf->bf_daddr = DS2PHYS(dd, ds);
465 list_add_tail(&bf->list, head);
468 return 0;
471 static int ath9k_init_queues(struct ath_softc *sc)
473 int i = 0;
475 sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
476 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
477 ath_cabq_update(sc);
479 sc->tx.uapsdq = ath_txq_setup(sc, ATH9K_TX_QUEUE_UAPSD, 0);
481 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
482 sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
483 sc->tx.txq_map[i]->mac80211_qnum = i;
484 sc->tx.txq_max_pending[i] = ATH_MAX_QDEPTH;
486 return 0;
489 static int ath9k_init_channels_rates(struct ath_softc *sc)
491 void *channels;
493 BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
494 ARRAY_SIZE(ath9k_5ghz_chantable) !=
495 ATH9K_NUM_CHANNELS);
497 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
498 channels = devm_kzalloc(sc->dev,
499 sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
500 if (!channels)
501 return -ENOMEM;
503 memcpy(channels, ath9k_2ghz_chantable,
504 sizeof(ath9k_2ghz_chantable));
505 sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
506 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
507 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
508 ARRAY_SIZE(ath9k_2ghz_chantable);
509 sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
510 sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
511 ARRAY_SIZE(ath9k_legacy_rates);
514 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
515 channels = devm_kzalloc(sc->dev,
516 sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
517 if (!channels)
518 return -ENOMEM;
520 memcpy(channels, ath9k_5ghz_chantable,
521 sizeof(ath9k_5ghz_chantable));
522 sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
523 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
524 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
525 ARRAY_SIZE(ath9k_5ghz_chantable);
526 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
527 ath9k_legacy_rates + 4;
528 sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
529 ARRAY_SIZE(ath9k_legacy_rates) - 4;
531 return 0;
534 static void ath9k_init_misc(struct ath_softc *sc)
536 struct ath_common *common = ath9k_hw_common(sc->sc_ah);
537 int i = 0;
539 setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
541 sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
542 sc->config.txpowlimit = ATH_TXPOWER_MAX;
543 memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
544 sc->beacon.slottime = ATH9K_SLOT_TIME_9;
546 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
547 sc->beacon.bslot[i] = NULL;
549 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
550 sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
552 sc->spec_config.enabled = 0;
553 sc->spec_config.short_repeat = true;
554 sc->spec_config.count = 8;
555 sc->spec_config.endless = false;
556 sc->spec_config.period = 0xFF;
557 sc->spec_config.fft_period = 0xF;
560 static void ath9k_init_pcoem_platform(struct ath_softc *sc)
562 struct ath_hw *ah = sc->sc_ah;
563 struct ath9k_hw_capabilities *pCap = &ah->caps;
564 struct ath_common *common = ath9k_hw_common(ah);
566 if (common->bus_ops->ath_bus_type != ATH_PCI)
567 return;
569 if (sc->driver_data & (ATH9K_PCI_CUS198 |
570 ATH9K_PCI_CUS230)) {
571 ah->config.xlna_gpio = 9;
572 ah->config.xatten_margin_cfg = true;
573 ah->config.alt_mingainidx = true;
574 ah->config.ant_ctrl_comm2g_switch_enable = 0x000BBB88;
575 sc->ant_comb.low_rssi_thresh = 20;
576 sc->ant_comb.fast_div_bias = 3;
578 ath_info(common, "Set parameters for %s\n",
579 (sc->driver_data & ATH9K_PCI_CUS198) ?
580 "CUS198" : "CUS230");
583 if (sc->driver_data & ATH9K_PCI_CUS217)
584 ath_info(common, "CUS217 card detected\n");
586 if (sc->driver_data & ATH9K_PCI_CUS252)
587 ath_info(common, "CUS252 card detected\n");
589 if (sc->driver_data & ATH9K_PCI_AR9565_1ANT)
590 ath_info(common, "WB335 1-ANT card detected\n");
592 if (sc->driver_data & ATH9K_PCI_AR9565_2ANT)
593 ath_info(common, "WB335 2-ANT card detected\n");
595 if (sc->driver_data & ATH9K_PCI_KILLER)
596 ath_info(common, "Killer Wireless card detected\n");
599 * Some WB335 cards do not support antenna diversity. Since
600 * we use a hardcoded value for AR9565 instead of using the
601 * EEPROM/OTP data, remove the combining feature from
602 * the HW capabilities bitmap.
604 if (sc->driver_data & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
605 if (!(sc->driver_data & ATH9K_PCI_BT_ANT_DIV))
606 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
609 if (sc->driver_data & ATH9K_PCI_BT_ANT_DIV) {
610 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
611 ath_info(common, "Set BT/WLAN RX diversity capability\n");
614 if (sc->driver_data & ATH9K_PCI_D3_L1_WAR) {
615 ah->config.pcie_waen = 0x0040473b;
616 ath_info(common, "Enable WAR for ASPM D3/L1\n");
619 if (sc->driver_data & ATH9K_PCI_NO_PLL_PWRSAVE) {
620 ah->config.no_pll_pwrsave = true;
621 ath_info(common, "Disable PLL PowerSave\n");
625 static void ath9k_eeprom_request_cb(const struct firmware *eeprom_blob,
626 void *ctx)
628 struct ath9k_eeprom_ctx *ec = ctx;
630 if (eeprom_blob)
631 ec->ah->eeprom_blob = eeprom_blob;
633 complete(&ec->complete);
636 static int ath9k_eeprom_request(struct ath_softc *sc, const char *name)
638 struct ath9k_eeprom_ctx ec;
639 struct ath_hw *ah = ah = sc->sc_ah;
640 int err;
642 /* try to load the EEPROM content asynchronously */
643 init_completion(&ec.complete);
644 ec.ah = sc->sc_ah;
646 err = request_firmware_nowait(THIS_MODULE, 1, name, sc->dev, GFP_KERNEL,
647 &ec, ath9k_eeprom_request_cb);
648 if (err < 0) {
649 ath_err(ath9k_hw_common(ah),
650 "EEPROM request failed\n");
651 return err;
654 wait_for_completion(&ec.complete);
656 if (!ah->eeprom_blob) {
657 ath_err(ath9k_hw_common(ah),
658 "Unable to load EEPROM file %s\n", name);
659 return -EINVAL;
662 return 0;
665 static void ath9k_eeprom_release(struct ath_softc *sc)
667 release_firmware(sc->sc_ah->eeprom_blob);
670 static int ath9k_init_soc_platform(struct ath_softc *sc)
672 struct ath9k_platform_data *pdata = sc->dev->platform_data;
673 struct ath_hw *ah = sc->sc_ah;
674 int ret = 0;
676 if (!pdata)
677 return 0;
679 if (pdata->eeprom_name) {
680 ret = ath9k_eeprom_request(sc, pdata->eeprom_name);
681 if (ret)
682 return ret;
685 if (pdata->tx_gain_buffalo)
686 ah->config.tx_gain_buffalo = true;
688 return ret;
691 static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
692 const struct ath_bus_ops *bus_ops)
694 struct ath9k_platform_data *pdata = sc->dev->platform_data;
695 struct ath_hw *ah = NULL;
696 struct ath9k_hw_capabilities *pCap;
697 struct ath_common *common;
698 int ret = 0, i;
699 int csz = 0;
701 ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL);
702 if (!ah)
703 return -ENOMEM;
705 ah->dev = sc->dev;
706 ah->hw = sc->hw;
707 ah->hw_version.devid = devid;
708 ah->reg_ops.read = ath9k_ioread32;
709 ah->reg_ops.write = ath9k_iowrite32;
710 ah->reg_ops.rmw = ath9k_reg_rmw;
711 sc->sc_ah = ah;
712 pCap = &ah->caps;
714 common = ath9k_hw_common(ah);
715 sc->dfs_detector = dfs_pattern_detector_init(common, NL80211_DFS_UNSET);
716 sc->tx99_power = MAX_RATE_POWER + 1;
717 init_waitqueue_head(&sc->tx_wait);
719 if (!pdata) {
720 ah->ah_flags |= AH_USE_EEPROM;
721 sc->sc_ah->led_pin = -1;
722 } else {
723 sc->sc_ah->gpio_mask = pdata->gpio_mask;
724 sc->sc_ah->gpio_val = pdata->gpio_val;
725 sc->sc_ah->led_pin = pdata->led_pin;
726 ah->is_clk_25mhz = pdata->is_clk_25mhz;
727 ah->get_mac_revision = pdata->get_mac_revision;
728 ah->external_reset = pdata->external_reset;
731 common->ops = &ah->reg_ops;
732 common->bus_ops = bus_ops;
733 common->ah = ah;
734 common->hw = sc->hw;
735 common->priv = sc;
736 common->debug_mask = ath9k_debug;
737 common->btcoex_enabled = ath9k_btcoex_enable == 1;
738 common->disable_ani = false;
741 * Platform quirks.
743 ath9k_init_pcoem_platform(sc);
745 ret = ath9k_init_soc_platform(sc);
746 if (ret)
747 return ret;
750 * Enable WLAN/BT RX Antenna diversity only when:
752 * - BTCOEX is disabled.
753 * - the user manually requests the feature.
754 * - the HW cap is set using the platform data.
756 if (!common->btcoex_enabled && ath9k_bt_ant_diversity &&
757 (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV))
758 common->bt_ant_diversity = 1;
760 spin_lock_init(&common->cc_lock);
761 spin_lock_init(&sc->sc_serial_rw);
762 spin_lock_init(&sc->sc_pm_lock);
763 mutex_init(&sc->mutex);
764 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
765 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
766 (unsigned long)sc);
768 setup_timer(&sc->sleep_timer, ath_ps_full_sleep, (unsigned long)sc);
769 INIT_WORK(&sc->hw_reset_work, ath_reset_work);
770 INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
771 INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
774 * Cache line size is used to size and align various
775 * structures used to communicate with the hardware.
777 ath_read_cachesize(common, &csz);
778 common->cachelsz = csz << 2; /* convert to bytes */
780 /* Initializes the hardware for all supported chipsets */
781 ret = ath9k_hw_init(ah);
782 if (ret)
783 goto err_hw;
785 if (pdata && pdata->macaddr)
786 memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
788 ret = ath9k_init_queues(sc);
789 if (ret)
790 goto err_queues;
792 ret = ath9k_init_btcoex(sc);
793 if (ret)
794 goto err_btcoex;
796 ret = ath9k_init_channels_rates(sc);
797 if (ret)
798 goto err_btcoex;
800 ath9k_cmn_init_crypto(sc->sc_ah);
801 ath9k_init_misc(sc);
802 ath_fill_led_pin(sc);
804 if (common->bus_ops->aspm_init)
805 common->bus_ops->aspm_init(common);
807 return 0;
809 err_btcoex:
810 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
811 if (ATH_TXQ_SETUP(sc, i))
812 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
813 err_queues:
814 ath9k_hw_deinit(ah);
815 err_hw:
816 ath9k_eeprom_release(sc);
817 dev_kfree_skb_any(sc->tx99_skb);
818 return ret;
821 static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
823 struct ieee80211_supported_band *sband;
824 struct ieee80211_channel *chan;
825 struct ath_hw *ah = sc->sc_ah;
826 struct cfg80211_chan_def chandef;
827 int i;
829 sband = &sc->sbands[band];
830 for (i = 0; i < sband->n_channels; i++) {
831 chan = &sband->channels[i];
832 ah->curchan = &ah->channels[chan->hw_value];
833 cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
834 ath9k_cmn_get_channel(sc->hw, ah, &chandef);
835 ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
839 static void ath9k_init_txpower_limits(struct ath_softc *sc)
841 struct ath_hw *ah = sc->sc_ah;
842 struct ath9k_channel *curchan = ah->curchan;
844 if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
845 ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
846 if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
847 ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
849 ah->curchan = curchan;
852 void ath9k_reload_chainmask_settings(struct ath_softc *sc)
854 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT))
855 return;
857 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
858 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
859 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
860 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
863 static const struct ieee80211_iface_limit if_limits[] = {
864 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
865 BIT(NL80211_IFTYPE_P2P_CLIENT) |
866 BIT(NL80211_IFTYPE_WDS) },
867 { .max = 8, .types =
868 #ifdef CONFIG_MAC80211_MESH
869 BIT(NL80211_IFTYPE_MESH_POINT) |
870 #endif
871 BIT(NL80211_IFTYPE_AP) |
872 BIT(NL80211_IFTYPE_P2P_GO) },
875 static const struct ieee80211_iface_limit if_dfs_limits[] = {
876 { .max = 1, .types = BIT(NL80211_IFTYPE_AP) |
877 #ifdef CONFIG_MAC80211_MESH
878 BIT(NL80211_IFTYPE_MESH_POINT) |
879 #endif
880 BIT(NL80211_IFTYPE_ADHOC) },
883 static const struct ieee80211_iface_combination if_comb[] = {
885 .limits = if_limits,
886 .n_limits = ARRAY_SIZE(if_limits),
887 .max_interfaces = 2048,
888 .num_different_channels = 1,
889 .beacon_int_infra_match = true,
892 .limits = if_dfs_limits,
893 .n_limits = ARRAY_SIZE(if_dfs_limits),
894 .max_interfaces = 1,
895 .num_different_channels = 1,
896 .beacon_int_infra_match = true,
897 .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
898 BIT(NL80211_CHAN_WIDTH_20),
902 static void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
904 struct ath_hw *ah = sc->sc_ah;
905 struct ath_common *common = ath9k_hw_common(ah);
907 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
908 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
909 IEEE80211_HW_SIGNAL_DBM |
910 IEEE80211_HW_PS_NULLFUNC_STACK |
911 IEEE80211_HW_SPECTRUM_MGMT |
912 IEEE80211_HW_REPORTS_TX_ACK_STATUS |
913 IEEE80211_HW_SUPPORTS_RC_TABLE |
914 IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
916 if (ath9k_ps_enable)
917 hw->flags |= IEEE80211_HW_SUPPORTS_PS;
919 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
920 hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
922 if (AR_SREV_9280_20_OR_LATER(ah))
923 hw->radiotap_mcs_details |=
924 IEEE80211_RADIOTAP_MCS_HAVE_STBC;
927 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
928 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
930 hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
932 if (!config_enabled(CONFIG_ATH9K_TX99)) {
933 hw->wiphy->interface_modes =
934 BIT(NL80211_IFTYPE_P2P_GO) |
935 BIT(NL80211_IFTYPE_P2P_CLIENT) |
936 BIT(NL80211_IFTYPE_AP) |
937 BIT(NL80211_IFTYPE_WDS) |
938 BIT(NL80211_IFTYPE_STATION) |
939 BIT(NL80211_IFTYPE_ADHOC) |
940 BIT(NL80211_IFTYPE_MESH_POINT);
941 hw->wiphy->iface_combinations = if_comb;
942 hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
945 hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
947 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
948 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
949 hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
950 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
951 hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
953 hw->queues = 4;
954 hw->max_rates = 4;
955 hw->max_listen_interval = 1;
956 hw->max_rate_tries = 10;
957 hw->sta_data_size = sizeof(struct ath_node);
958 hw->vif_data_size = sizeof(struct ath_vif);
960 hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1;
961 hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1;
963 /* single chain devices with rx diversity */
964 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
965 hw->wiphy->available_antennas_rx = BIT(0) | BIT(1);
967 sc->ant_rx = hw->wiphy->available_antennas_rx;
968 sc->ant_tx = hw->wiphy->available_antennas_tx;
970 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
971 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
972 &sc->sbands[IEEE80211_BAND_2GHZ];
973 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
974 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
975 &sc->sbands[IEEE80211_BAND_5GHZ];
977 ath9k_init_wow(hw);
978 ath9k_reload_chainmask_settings(sc);
980 SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
983 int ath9k_init_device(u16 devid, struct ath_softc *sc,
984 const struct ath_bus_ops *bus_ops)
986 struct ieee80211_hw *hw = sc->hw;
987 struct ath_common *common;
988 struct ath_hw *ah;
989 int error = 0;
990 struct ath_regulatory *reg;
992 /* Bring up device */
993 error = ath9k_init_softc(devid, sc, bus_ops);
994 if (error)
995 return error;
997 ah = sc->sc_ah;
998 common = ath9k_hw_common(ah);
999 ath9k_set_hw_capab(sc, hw);
1001 /* Initialize regulatory */
1002 error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1003 ath9k_reg_notifier);
1004 if (error)
1005 goto deinit;
1007 reg = &common->regulatory;
1009 /* Setup TX DMA */
1010 error = ath_tx_init(sc, ATH_TXBUF);
1011 if (error != 0)
1012 goto deinit;
1014 /* Setup RX DMA */
1015 error = ath_rx_init(sc, ATH_RXBUF);
1016 if (error != 0)
1017 goto deinit;
1019 ath9k_init_txpower_limits(sc);
1021 #ifdef CONFIG_MAC80211_LEDS
1022 /* must be initialized before ieee80211_register_hw */
1023 sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
1024 IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
1025 ARRAY_SIZE(ath9k_tpt_blink));
1026 #endif
1028 /* Register with mac80211 */
1029 error = ieee80211_register_hw(hw);
1030 if (error)
1031 goto rx_cleanup;
1033 error = ath9k_init_debug(ah);
1034 if (error) {
1035 ath_err(common, "Unable to create debugfs files\n");
1036 goto unregister;
1039 /* Handle world regulatory */
1040 if (!ath_is_world_regd(reg)) {
1041 error = regulatory_hint(hw->wiphy, reg->alpha2);
1042 if (error)
1043 goto debug_cleanup;
1046 ath_init_leds(sc);
1047 ath_start_rfkill_poll(sc);
1049 return 0;
1051 debug_cleanup:
1052 ath9k_deinit_debug(sc);
1053 unregister:
1054 ieee80211_unregister_hw(hw);
1055 rx_cleanup:
1056 ath_rx_cleanup(sc);
1057 deinit:
1058 ath9k_deinit_softc(sc);
1059 return error;
1062 /*****************************/
1063 /* De-Initialization */
1064 /*****************************/
1066 static void ath9k_deinit_softc(struct ath_softc *sc)
1068 int i = 0;
1070 ath9k_deinit_btcoex(sc);
1072 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1073 if (ATH_TXQ_SETUP(sc, i))
1074 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1076 del_timer_sync(&sc->sleep_timer);
1077 ath9k_hw_deinit(sc->sc_ah);
1078 if (sc->dfs_detector != NULL)
1079 sc->dfs_detector->exit(sc->dfs_detector);
1081 ath9k_eeprom_release(sc);
1084 void ath9k_deinit_device(struct ath_softc *sc)
1086 struct ieee80211_hw *hw = sc->hw;
1088 ath9k_ps_wakeup(sc);
1090 wiphy_rfkill_stop_polling(sc->hw->wiphy);
1091 ath_deinit_leds(sc);
1093 ath9k_ps_restore(sc);
1095 ath9k_deinit_debug(sc);
1096 ieee80211_unregister_hw(hw);
1097 ath_rx_cleanup(sc);
1098 ath9k_deinit_softc(sc);
1101 /************************/
1102 /* Module Hooks */
1103 /************************/
1105 static int __init ath9k_init(void)
1107 int error;
1109 /* Register rate control algorithm */
1110 error = ath_rate_control_register();
1111 if (error != 0) {
1112 pr_err("Unable to register rate control algorithm: %d\n",
1113 error);
1114 goto err_out;
1117 error = ath_pci_init();
1118 if (error < 0) {
1119 pr_err("No PCI devices found, driver not installed\n");
1120 error = -ENODEV;
1121 goto err_rate_unregister;
1124 error = ath_ahb_init();
1125 if (error < 0) {
1126 error = -ENODEV;
1127 goto err_pci_exit;
1130 return 0;
1132 err_pci_exit:
1133 ath_pci_exit();
1135 err_rate_unregister:
1136 ath_rate_control_unregister();
1137 err_out:
1138 return error;
1140 module_init(ath9k_init);
1142 static void __exit ath9k_exit(void)
1144 is_ath9k_unloaded = true;
1145 ath_ahb_exit();
1146 ath_pci_exit();
1147 ath_rate_control_unregister();
1148 pr_info("%s: Driver unloaded\n", dev_info);
1150 module_exit(ath9k_exit);