PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
blob3aba49259ef1886d09157559977cb7f72ac1d944
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <j@w1.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then refers to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
166 #include <net/lib80211.h>
168 #include "ipw2100.h"
169 #include "ipw.h"
171 #define IPW2100_VERSION "git-1.2.2"
173 #define DRV_NAME "ipw2100"
174 #define DRV_VERSION IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
178 static struct pm_qos_request ipw2100_pm_qos_req;
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG /* Reception debugging */
183 #endif
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217 if (ipw2100_debug_level & (level)) { \
218 printk(KERN_DEBUG "ipw2100: %c %s ", \
219 in_interrupt() ? 'I' : 'U', __func__); \
220 printk(message); \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif /* CONFIG_IPW2100_DEBUG */
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229 "undefined",
230 "unused", /* HOST_ATTENTION */
231 "HOST_COMPLETE",
232 "unused", /* SLEEP */
233 "unused", /* HOST_POWER_DOWN */
234 "unused",
235 "SYSTEM_CONFIG",
236 "unused", /* SET_IMR */
237 "SSID",
238 "MANDATORY_BSSID",
239 "AUTHENTICATION_TYPE",
240 "ADAPTER_ADDRESS",
241 "PORT_TYPE",
242 "INTERNATIONAL_MODE",
243 "CHANNEL",
244 "RTS_THRESHOLD",
245 "FRAG_THRESHOLD",
246 "POWER_MODE",
247 "TX_RATES",
248 "BASIC_TX_RATES",
249 "WEP_KEY_INFO",
250 "unused",
251 "unused",
252 "unused",
253 "unused",
254 "WEP_KEY_INDEX",
255 "WEP_FLAGS",
256 "ADD_MULTICAST",
257 "CLEAR_ALL_MULTICAST",
258 "BEACON_INTERVAL",
259 "ATIM_WINDOW",
260 "CLEAR_STATISTICS",
261 "undefined",
262 "undefined",
263 "undefined",
264 "undefined",
265 "TX_POWER_INDEX",
266 "undefined",
267 "undefined",
268 "undefined",
269 "undefined",
270 "undefined",
271 "undefined",
272 "BROADCAST_SCAN",
273 "CARD_DISABLE",
274 "PREFERRED_BSSID",
275 "SET_SCAN_OPTIONS",
276 "SCAN_DWELL_TIME",
277 "SWEEP_TABLE",
278 "AP_OR_STATION_TABLE",
279 "GROUP_ORDINALS",
280 "SHORT_RETRY_LIMIT",
281 "LONG_RETRY_LIMIT",
282 "unused", /* SAVE_CALIBRATION */
283 "unused", /* RESTORE_CALIBRATION */
284 "undefined",
285 "undefined",
286 "undefined",
287 "HOST_PRE_POWER_DOWN",
288 "unused", /* HOST_INTERRUPT_COALESCING */
289 "undefined",
290 "CARD_DISABLE_PHY_OFF",
291 "MSDU_TX_RATES",
292 "undefined",
293 "SET_STATION_STAT_BITS",
294 "CLEAR_STATIONS_STAT_BITS",
295 "LEAP_ROGUE_MODE",
296 "SET_SECURITY_INFORMATION",
297 "DISASSOCIATION_BSSID",
298 "SET_WPA_ASS_IE"
300 #endif
302 static const long ipw2100_frequencies[] = {
303 2412, 2417, 2422, 2427,
304 2432, 2437, 2442, 2447,
305 2452, 2457, 2462, 2467,
306 2472, 2484
309 #define FREQ_COUNT ARRAY_SIZE(ipw2100_frequencies)
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312 { .bitrate = 10 },
313 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330 struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334 size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336 size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338 struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340 struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
347 struct ipw2100_priv *priv = libipw_priv(dev);
349 *val = ioread32(priv->ioaddr + reg);
350 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
355 struct ipw2100_priv *priv = libipw_priv(dev);
357 iowrite32(val, priv->ioaddr + reg);
358 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362 u16 * val)
364 struct ipw2100_priv *priv = libipw_priv(dev);
366 *val = ioread16(priv->ioaddr + reg);
367 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
372 struct ipw2100_priv *priv = libipw_priv(dev);
374 *val = ioread8(priv->ioaddr + reg);
375 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
380 struct ipw2100_priv *priv = libipw_priv(dev);
382 iowrite16(val, priv->ioaddr + reg);
383 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
388 struct ipw2100_priv *priv = libipw_priv(dev);
390 iowrite8(val, priv->ioaddr + reg);
391 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
396 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397 addr & IPW_REG_INDIRECT_ADDR_MASK);
398 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
403 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404 addr & IPW_REG_INDIRECT_ADDR_MASK);
405 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
410 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411 addr & IPW_REG_INDIRECT_ADDR_MASK);
412 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
417 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418 addr & IPW_REG_INDIRECT_ADDR_MASK);
419 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
424 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425 addr & IPW_REG_INDIRECT_ADDR_MASK);
426 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
431 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432 addr & IPW_REG_INDIRECT_ADDR_MASK);
433 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439 addr & IPW_REG_INDIRECT_ADDR_MASK);
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
444 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448 const u8 * buf)
450 u32 aligned_addr;
451 u32 aligned_len;
452 u32 dif_len;
453 u32 i;
455 /* read first nibble byte by byte */
456 aligned_addr = addr & (~0x3);
457 dif_len = addr - aligned_addr;
458 if (dif_len) {
459 /* Start reading at aligned_addr + dif_len */
460 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461 aligned_addr);
462 for (i = dif_len; i < 4; i++, buf++)
463 write_register_byte(dev,
464 IPW_REG_INDIRECT_ACCESS_DATA + i,
465 *buf);
467 len -= dif_len;
468 aligned_addr += 4;
471 /* read DWs through autoincrement registers */
472 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473 aligned_len = len & (~0x3);
474 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
477 /* copy the last nibble */
478 dif_len = len - aligned_len;
479 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480 for (i = 0; i < dif_len; i++, buf++)
481 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482 *buf);
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486 u8 * buf)
488 u32 aligned_addr;
489 u32 aligned_len;
490 u32 dif_len;
491 u32 i;
493 /* read first nibble byte by byte */
494 aligned_addr = addr & (~0x3);
495 dif_len = addr - aligned_addr;
496 if (dif_len) {
497 /* Start reading at aligned_addr + dif_len */
498 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499 aligned_addr);
500 for (i = dif_len; i < 4; i++, buf++)
501 read_register_byte(dev,
502 IPW_REG_INDIRECT_ACCESS_DATA + i,
503 buf);
505 len -= dif_len;
506 aligned_addr += 4;
509 /* read DWs through autoincrement registers */
510 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511 aligned_len = len & (~0x3);
512 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
515 /* copy the last nibble */
516 dif_len = len - aligned_len;
517 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518 for (i = 0; i < dif_len; i++, buf++)
519 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
524 u32 dbg;
526 read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
528 return dbg == IPW_DATA_DOA_DEBUG_VALUE;
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532 void *val, u32 * len)
534 struct ipw2100_ordinals *ordinals = &priv->ordinals;
535 u32 addr;
536 u32 field_info;
537 u16 field_len;
538 u16 field_count;
539 u32 total_length;
541 if (ordinals->table1_addr == 0) {
542 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543 "before they have been loaded.\n");
544 return -EINVAL;
547 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
551 printk(KERN_WARNING DRV_NAME
552 ": ordinal buffer length too small, need %zd\n",
553 IPW_ORD_TAB_1_ENTRY_SIZE);
555 return -EINVAL;
558 read_nic_dword(priv->net_dev,
559 ordinals->table1_addr + (ord << 2), &addr);
560 read_nic_dword(priv->net_dev, addr, val);
562 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
564 return 0;
567 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
569 ord -= IPW_START_ORD_TAB_2;
571 /* get the address of statistic */
572 read_nic_dword(priv->net_dev,
573 ordinals->table2_addr + (ord << 3), &addr);
575 /* get the second DW of statistics ;
576 * two 16-bit words - first is length, second is count */
577 read_nic_dword(priv->net_dev,
578 ordinals->table2_addr + (ord << 3) + sizeof(u32),
579 &field_info);
581 /* get each entry length */
582 field_len = *((u16 *) & field_info);
584 /* get number of entries */
585 field_count = *(((u16 *) & field_info) + 1);
587 /* abort if no enough memory */
588 total_length = field_len * field_count;
589 if (total_length > *len) {
590 *len = total_length;
591 return -EINVAL;
594 *len = total_length;
595 if (!total_length)
596 return 0;
598 /* read the ordinal data from the SRAM */
599 read_nic_memory(priv->net_dev, addr, total_length, val);
601 return 0;
604 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605 "in table 2\n", ord);
607 return -EINVAL;
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611 u32 * len)
613 struct ipw2100_ordinals *ordinals = &priv->ordinals;
614 u32 addr;
616 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619 IPW_DEBUG_INFO("wrong size\n");
620 return -EINVAL;
623 read_nic_dword(priv->net_dev,
624 ordinals->table1_addr + (ord << 2), &addr);
626 write_nic_dword(priv->net_dev, addr, *val);
628 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
630 return 0;
633 IPW_DEBUG_INFO("wrong table\n");
634 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635 return -EINVAL;
637 return -EINVAL;
640 static char *snprint_line(char *buf, size_t count,
641 const u8 * data, u32 len, u32 ofs)
643 int out, i, j, l;
644 char c;
646 out = snprintf(buf, count, "%08X", ofs);
648 for (l = 0, i = 0; i < 2; i++) {
649 out += snprintf(buf + out, count - out, " ");
650 for (j = 0; j < 8 && l < len; j++, l++)
651 out += snprintf(buf + out, count - out, "%02X ",
652 data[(i * 8 + j)]);
653 for (; j < 8; j++)
654 out += snprintf(buf + out, count - out, " ");
657 out += snprintf(buf + out, count - out, " ");
658 for (l = 0, i = 0; i < 2; i++) {
659 out += snprintf(buf + out, count - out, " ");
660 for (j = 0; j < 8 && l < len; j++, l++) {
661 c = data[(i * 8 + j)];
662 if (!isascii(c) || !isprint(c))
663 c = '.';
665 out += snprintf(buf + out, count - out, "%c", c);
668 for (; j < 8; j++)
669 out += snprintf(buf + out, count - out, " ");
672 return buf;
675 static void printk_buf(int level, const u8 * data, u32 len)
677 char line[81];
678 u32 ofs = 0;
679 if (!(ipw2100_debug_level & level))
680 return;
682 while (len) {
683 printk(KERN_DEBUG "%s\n",
684 snprint_line(line, sizeof(line), &data[ofs],
685 min(len, 16U), ofs));
686 ofs += 16;
687 len -= min(len, 16U);
691 #define MAX_RESET_BACKOFF 10
693 static void schedule_reset(struct ipw2100_priv *priv)
695 unsigned long now = get_seconds();
697 /* If we haven't received a reset request within the backoff period,
698 * then we can reset the backoff interval so this reset occurs
699 * immediately */
700 if (priv->reset_backoff &&
701 (now - priv->last_reset > priv->reset_backoff))
702 priv->reset_backoff = 0;
704 priv->last_reset = get_seconds();
706 if (!(priv->status & STATUS_RESET_PENDING)) {
707 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708 priv->net_dev->name, priv->reset_backoff);
709 netif_carrier_off(priv->net_dev);
710 netif_stop_queue(priv->net_dev);
711 priv->status |= STATUS_RESET_PENDING;
712 if (priv->reset_backoff)
713 schedule_delayed_work(&priv->reset_work,
714 priv->reset_backoff * HZ);
715 else
716 schedule_delayed_work(&priv->reset_work, 0);
718 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719 priv->reset_backoff++;
721 wake_up_interruptible(&priv->wait_command_queue);
722 } else
723 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724 priv->net_dev->name);
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730 struct host_command *cmd)
732 struct list_head *element;
733 struct ipw2100_tx_packet *packet;
734 unsigned long flags;
735 int err = 0;
737 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738 command_types[cmd->host_command], cmd->host_command,
739 cmd->host_command_length);
740 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741 cmd->host_command_length);
743 spin_lock_irqsave(&priv->low_lock, flags);
745 if (priv->fatal_error) {
746 IPW_DEBUG_INFO
747 ("Attempt to send command while hardware in fatal error condition.\n");
748 err = -EIO;
749 goto fail_unlock;
752 if (!(priv->status & STATUS_RUNNING)) {
753 IPW_DEBUG_INFO
754 ("Attempt to send command while hardware is not running.\n");
755 err = -EIO;
756 goto fail_unlock;
759 if (priv->status & STATUS_CMD_ACTIVE) {
760 IPW_DEBUG_INFO
761 ("Attempt to send command while another command is pending.\n");
762 err = -EBUSY;
763 goto fail_unlock;
766 if (list_empty(&priv->msg_free_list)) {
767 IPW_DEBUG_INFO("no available msg buffers\n");
768 goto fail_unlock;
771 priv->status |= STATUS_CMD_ACTIVE;
772 priv->messages_sent++;
774 element = priv->msg_free_list.next;
776 packet = list_entry(element, struct ipw2100_tx_packet, list);
777 packet->jiffy_start = jiffies;
779 /* initialize the firmware command packet */
780 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782 packet->info.c_struct.cmd->host_command_len_reg =
783 cmd->host_command_length;
784 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
786 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787 cmd->host_command_parameters,
788 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
790 list_del(element);
791 DEC_STAT(&priv->msg_free_stat);
793 list_add_tail(element, &priv->msg_pend_list);
794 INC_STAT(&priv->msg_pend_stat);
796 ipw2100_tx_send_commands(priv);
797 ipw2100_tx_send_data(priv);
799 spin_unlock_irqrestore(&priv->low_lock, flags);
802 * We must wait for this command to complete before another
803 * command can be sent... but if we wait more than 3 seconds
804 * then there is a problem.
807 err =
808 wait_event_interruptible_timeout(priv->wait_command_queue,
809 !(priv->
810 status & STATUS_CMD_ACTIVE),
811 HOST_COMPLETE_TIMEOUT);
813 if (err == 0) {
814 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817 priv->status &= ~STATUS_CMD_ACTIVE;
818 schedule_reset(priv);
819 return -EIO;
822 if (priv->fatal_error) {
823 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824 priv->net_dev->name);
825 return -EIO;
828 /* !!!!! HACK TEST !!!!!
829 * When lots of debug trace statements are enabled, the driver
830 * doesn't seem to have as many firmware restart cycles...
832 * As a test, we're sticking in a 1/100s delay here */
833 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
835 return 0;
837 fail_unlock:
838 spin_unlock_irqrestore(&priv->low_lock, flags);
840 return err;
844 * Verify the values and data access of the hardware
845 * No locks needed or used. No functions called.
847 static int ipw2100_verify(struct ipw2100_priv *priv)
849 u32 data1, data2;
850 u32 address;
852 u32 val1 = 0x76543210;
853 u32 val2 = 0xFEDCBA98;
855 /* Domain 0 check - all values should be DOA_DEBUG */
856 for (address = IPW_REG_DOA_DEBUG_AREA_START;
857 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858 read_register(priv->net_dev, address, &data1);
859 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860 return -EIO;
863 /* Domain 1 check - use arbitrary read/write compare */
864 for (address = 0; address < 5; address++) {
865 /* The memory area is not used now */
866 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867 val1);
868 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869 val2);
870 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871 &data1);
872 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873 &data2);
874 if (val1 == data1 && val2 == data2)
875 return 0;
878 return -EIO;
883 * Loop until the CARD_DISABLED bit is the same value as the
884 * supplied parameter
886 * TODO: See if it would be more efficient to do a wait/wake
887 * cycle and have the completion event trigger the wakeup
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
893 int i;
894 u32 card_state;
895 u32 len = sizeof(card_state);
896 int err;
898 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900 &card_state, &len);
901 if (err) {
902 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903 "failed.\n");
904 return 0;
907 /* We'll break out if either the HW state says it is
908 * in the state we want, or if HOST_COMPLETE command
909 * finishes */
910 if ((card_state == state) ||
911 ((priv->status & STATUS_ENABLED) ?
912 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913 if (state == IPW_HW_STATE_ENABLED)
914 priv->status |= STATUS_ENABLED;
915 else
916 priv->status &= ~STATUS_ENABLED;
918 return 0;
921 udelay(50);
924 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925 state ? "DISABLED" : "ENABLED");
926 return -EIO;
929 /*********************************************************************
930 Procedure : sw_reset_and_clock
931 Purpose : Asserts s/w reset, asserts clock initialization
932 and waits for clock stabilization
933 ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
936 int i;
937 u32 r;
939 // assert s/w reset
940 write_register(priv->net_dev, IPW_REG_RESET_REG,
941 IPW_AUX_HOST_RESET_REG_SW_RESET);
943 // wait for clock stabilization
944 for (i = 0; i < 1000; i++) {
945 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
947 // check clock ready bit
948 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950 break;
953 if (i == 1000)
954 return -EIO; // TODO: better error value
956 /* set "initialization complete" bit to move adapter to
957 * D0 state */
958 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
961 /* wait for clock stabilization */
962 for (i = 0; i < 10000; i++) {
963 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
965 /* check clock ready bit */
966 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968 break;
971 if (i == 10000)
972 return -EIO; /* TODO: better error value */
974 /* set D0 standby bit */
975 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
979 return 0;
982 /*********************************************************************
983 Procedure : ipw2100_download_firmware
984 Purpose : Initiaze adapter after power on.
985 The sequence is:
986 1. assert s/w reset first!
987 2. awake clocks & wait for clock stabilization
988 3. hold ARC (don't ask me why...)
989 4. load Dino ucode and reset/clock init again
990 5. zero-out shared mem
991 6. download f/w
992 *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
995 u32 address;
996 int err;
998 #ifndef CONFIG_PM
999 /* Fetch the firmware and microcode */
1000 struct ipw2100_fw ipw2100_firmware;
1001 #endif
1003 if (priv->fatal_error) {
1004 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005 "fatal error %d. Interface must be brought down.\n",
1006 priv->net_dev->name, priv->fatal_error);
1007 return -EINVAL;
1009 #ifdef CONFIG_PM
1010 if (!ipw2100_firmware.version) {
1011 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012 if (err) {
1013 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014 priv->net_dev->name, err);
1015 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016 goto fail;
1019 #else
1020 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021 if (err) {
1022 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023 priv->net_dev->name, err);
1024 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025 goto fail;
1027 #endif
1028 priv->firmware_version = ipw2100_firmware.version;
1030 /* s/w reset and clock stabilization */
1031 err = sw_reset_and_clock(priv);
1032 if (err) {
1033 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034 priv->net_dev->name, err);
1035 goto fail;
1038 err = ipw2100_verify(priv);
1039 if (err) {
1040 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041 priv->net_dev->name, err);
1042 goto fail;
1045 /* Hold ARC */
1046 write_nic_dword(priv->net_dev,
1047 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1049 /* allow ARC to run */
1050 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1052 /* load microcode */
1053 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054 if (err) {
1055 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056 priv->net_dev->name, err);
1057 goto fail;
1060 /* release ARC */
1061 write_nic_dword(priv->net_dev,
1062 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1064 /* s/w reset and clock stabilization (again!!!) */
1065 err = sw_reset_and_clock(priv);
1066 if (err) {
1067 printk(KERN_ERR DRV_NAME
1068 ": %s: sw_reset_and_clock failed: %d\n",
1069 priv->net_dev->name, err);
1070 goto fail;
1073 /* load f/w */
1074 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075 if (err) {
1076 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077 priv->net_dev->name, err);
1078 goto fail;
1080 #ifndef CONFIG_PM
1082 * When the .resume method of the driver is called, the other
1083 * part of the system, i.e. the ide driver could still stay in
1084 * the suspend stage. This prevents us from loading the firmware
1085 * from the disk. --YZ
1088 /* free any storage allocated for firmware image */
1089 ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1092 /* zero out Domain 1 area indirectly (Si requirement) */
1093 for (address = IPW_HOST_FW_SHARED_AREA0;
1094 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095 write_nic_dword(priv->net_dev, address, 0);
1096 for (address = IPW_HOST_FW_SHARED_AREA1;
1097 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098 write_nic_dword(priv->net_dev, address, 0);
1099 for (address = IPW_HOST_FW_SHARED_AREA2;
1100 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101 write_nic_dword(priv->net_dev, address, 0);
1102 for (address = IPW_HOST_FW_SHARED_AREA3;
1103 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104 write_nic_dword(priv->net_dev, address, 0);
1105 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107 write_nic_dword(priv->net_dev, address, 0);
1109 return 0;
1111 fail:
1112 ipw2100_release_firmware(priv, &ipw2100_firmware);
1113 return err;
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1118 if (priv->status & STATUS_INT_ENABLED)
1119 return;
1120 priv->status |= STATUS_INT_ENABLED;
1121 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1126 if (!(priv->status & STATUS_INT_ENABLED))
1127 return;
1128 priv->status &= ~STATUS_INT_ENABLED;
1129 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1134 struct ipw2100_ordinals *ord = &priv->ordinals;
1136 IPW_DEBUG_INFO("enter\n");
1138 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139 &ord->table1_addr);
1141 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142 &ord->table2_addr);
1144 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1147 ord->table2_size &= 0x0000FFFF;
1149 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151 IPW_DEBUG_INFO("exit\n");
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1156 u32 reg = 0;
1158 * Set GPIO 3 writable by FW; GPIO 1 writable
1159 * by driver and enable clock
1161 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162 IPW_BIT_GPIO_LED_OFF);
1163 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1171 unsigned short value = 0;
1172 u32 reg = 0;
1173 int i;
1175 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177 priv->status &= ~STATUS_RF_KILL_HW;
1178 return 0;
1181 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182 udelay(RF_KILL_CHECK_DELAY);
1183 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1187 if (value == 0) {
1188 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189 priv->status |= STATUS_RF_KILL_HW;
1190 } else {
1191 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192 priv->status &= ~STATUS_RF_KILL_HW;
1195 return (value == 0);
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1200 u32 addr, len;
1201 u32 val;
1204 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1206 len = sizeof(addr);
1207 if (ipw2100_get_ordinal
1208 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210 __LINE__);
1211 return -EIO;
1214 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1217 * EEPROM version is the byte at offset 0xfd in firmware
1218 * We read 4 bytes, then shift out the byte we actually want */
1219 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220 priv->eeprom_version = (val >> 24) & 0xFF;
1221 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1224 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1226 * notice that the EEPROM bit is reverse polarity, i.e.
1227 * bit = 0 signifies HW RF kill switch is supported
1228 * bit = 1 signifies HW RF kill switch is NOT supported
1230 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231 if (!((val >> 24) & 0x01))
1232 priv->hw_features |= HW_FEATURE_RFKILL;
1234 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1237 return 0;
1241 * Start firmware execution after power on and intialization
1242 * The sequence is:
1243 * 1. Release ARC
1244 * 2. Wait for f/w initialization completes;
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1248 int i;
1249 u32 inta, inta_mask, gpio;
1251 IPW_DEBUG_INFO("enter\n");
1253 if (priv->status & STATUS_RUNNING)
1254 return 0;
1257 * Initialize the hw - drive adapter to DO state by setting
1258 * init_done bit. Wait for clk_ready bit and Download
1259 * fw & dino ucode
1261 if (ipw2100_download_firmware(priv)) {
1262 printk(KERN_ERR DRV_NAME
1263 ": %s: Failed to power on the adapter.\n",
1264 priv->net_dev->name);
1265 return -EIO;
1268 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269 * in the firmware RBD and TBD ring queue */
1270 ipw2100_queues_initialize(priv);
1272 ipw2100_hw_set_gpio(priv);
1274 /* TODO -- Look at disabling interrupts here to make sure none
1275 * get fired during FW initialization */
1277 /* Release ARC - clear reset bit */
1278 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1280 /* wait for f/w intialization complete */
1281 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282 i = 5000;
1283 do {
1284 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285 /* Todo... wait for sync command ... */
1287 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1289 /* check "init done" bit */
1290 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291 /* reset "init done" bit */
1292 write_register(priv->net_dev, IPW_REG_INTA,
1293 IPW2100_INTA_FW_INIT_DONE);
1294 break;
1297 /* check error conditions : we check these after the firmware
1298 * check so that if there is an error, the interrupt handler
1299 * will see it and the adapter will be reset */
1300 if (inta &
1301 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302 /* clear error conditions */
1303 write_register(priv->net_dev, IPW_REG_INTA,
1304 IPW2100_INTA_FATAL_ERROR |
1305 IPW2100_INTA_PARITY_ERROR);
1307 } while (--i);
1309 /* Clear out any pending INTAs since we aren't supposed to have
1310 * interrupts enabled at this point... */
1311 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313 inta &= IPW_INTERRUPT_MASK;
1314 /* Clear out any pending interrupts */
1315 if (inta & inta_mask)
1316 write_register(priv->net_dev, IPW_REG_INTA, inta);
1318 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319 i ? "SUCCESS" : "FAILED");
1321 if (!i) {
1322 printk(KERN_WARNING DRV_NAME
1323 ": %s: Firmware did not initialize.\n",
1324 priv->net_dev->name);
1325 return -EIO;
1328 /* allow firmware to write to GPIO1 & GPIO3 */
1329 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1331 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1333 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1335 /* Ready to receive commands */
1336 priv->status |= STATUS_RUNNING;
1338 /* The adapter has been reset; we are not associated */
1339 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1341 IPW_DEBUG_INFO("exit\n");
1343 return 0;
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1348 if (!priv->fatal_error)
1349 return;
1351 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353 priv->fatal_error = 0;
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1359 u32 reg;
1360 int i;
1362 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1364 ipw2100_hw_set_gpio(priv);
1366 /* Step 1. Stop Master Assert */
1367 write_register(priv->net_dev, IPW_REG_RESET_REG,
1368 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1370 /* Step 2. Wait for stop Master Assert
1371 * (not more than 50us, otherwise ret error */
1372 i = 5;
1373 do {
1374 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1377 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378 break;
1379 } while (--i);
1381 priv->status &= ~STATUS_RESET_PENDING;
1383 if (!i) {
1384 IPW_DEBUG_INFO
1385 ("exit - waited too long for master assert stop\n");
1386 return -EIO;
1389 write_register(priv->net_dev, IPW_REG_RESET_REG,
1390 IPW_AUX_HOST_RESET_REG_SW_RESET);
1392 /* Reset any fatal_error conditions */
1393 ipw2100_reset_fatalerror(priv);
1395 /* At this point, the adapter is now stopped and disabled */
1396 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397 STATUS_ASSOCIATED | STATUS_ENABLED);
1399 return 0;
1403 * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1405 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1407 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408 * if STATUS_ASSN_LOST is sent.
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1415 struct host_command cmd = {
1416 .host_command = CARD_DISABLE_PHY_OFF,
1417 .host_command_sequence = 0,
1418 .host_command_length = 0,
1420 int err, i;
1421 u32 val1, val2;
1423 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1425 /* Turn off the radio */
1426 err = ipw2100_hw_send_command(priv, &cmd);
1427 if (err)
1428 return err;
1430 for (i = 0; i < 2500; i++) {
1431 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1434 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435 (val2 & IPW2100_COMMAND_PHY_OFF))
1436 return 0;
1438 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1441 return -EIO;
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1446 struct host_command cmd = {
1447 .host_command = HOST_COMPLETE,
1448 .host_command_sequence = 0,
1449 .host_command_length = 0
1451 int err = 0;
1453 IPW_DEBUG_HC("HOST_COMPLETE\n");
1455 if (priv->status & STATUS_ENABLED)
1456 return 0;
1458 mutex_lock(&priv->adapter_mutex);
1460 if (rf_kill_active(priv)) {
1461 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462 goto fail_up;
1465 err = ipw2100_hw_send_command(priv, &cmd);
1466 if (err) {
1467 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468 goto fail_up;
1471 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472 if (err) {
1473 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474 priv->net_dev->name);
1475 goto fail_up;
1478 if (priv->stop_hang_check) {
1479 priv->stop_hang_check = 0;
1480 schedule_delayed_work(&priv->hang_check, HZ / 2);
1483 fail_up:
1484 mutex_unlock(&priv->adapter_mutex);
1485 return err;
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1492 struct host_command cmd = {
1493 .host_command = HOST_PRE_POWER_DOWN,
1494 .host_command_sequence = 0,
1495 .host_command_length = 0,
1497 int err, i;
1498 u32 reg;
1500 if (!(priv->status & STATUS_RUNNING))
1501 return 0;
1503 priv->status |= STATUS_STOPPING;
1505 /* We can only shut down the card if the firmware is operational. So,
1506 * if we haven't reset since a fatal_error, then we can not send the
1507 * shutdown commands. */
1508 if (!priv->fatal_error) {
1509 /* First, make sure the adapter is enabled so that the PHY_OFF
1510 * command can shut it down */
1511 ipw2100_enable_adapter(priv);
1513 err = ipw2100_hw_phy_off(priv);
1514 if (err)
1515 printk(KERN_WARNING DRV_NAME
1516 ": Error disabling radio %d\n", err);
1519 * If in D0-standby mode going directly to D3 may cause a
1520 * PCI bus violation. Therefore we must change out of the D0
1521 * state.
1523 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524 * hardware from going into standby mode and will transition
1525 * out of D0-standby if it is already in that state.
1527 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528 * driver upon completion. Once received, the driver can
1529 * proceed to the D3 state.
1531 * Prepare for power down command to fw. This command would
1532 * take HW out of D0-standby and prepare it for D3 state.
1534 * Currently FW does not support event notification for this
1535 * event. Therefore, skip waiting for it. Just wait a fixed
1536 * 100ms
1538 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1540 err = ipw2100_hw_send_command(priv, &cmd);
1541 if (err)
1542 printk(KERN_WARNING DRV_NAME ": "
1543 "%s: Power down command failed: Error %d\n",
1544 priv->net_dev->name, err);
1545 else
1546 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1549 priv->status &= ~STATUS_ENABLED;
1552 * Set GPIO 3 writable by FW; GPIO 1 writable
1553 * by driver and enable clock
1555 ipw2100_hw_set_gpio(priv);
1558 * Power down adapter. Sequence:
1559 * 1. Stop master assert (RESET_REG[9]=1)
1560 * 2. Wait for stop master (RESET_REG[8]==1)
1561 * 3. S/w reset assert (RESET_REG[7] = 1)
1564 /* Stop master assert */
1565 write_register(priv->net_dev, IPW_REG_RESET_REG,
1566 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1568 /* wait stop master not more than 50 usec.
1569 * Otherwise return error. */
1570 for (i = 5; i > 0; i--) {
1571 udelay(10);
1573 /* Check master stop bit */
1574 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1576 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577 break;
1580 if (i == 0)
1581 printk(KERN_WARNING DRV_NAME
1582 ": %s: Could now power down adapter.\n",
1583 priv->net_dev->name);
1585 /* assert s/w reset */
1586 write_register(priv->net_dev, IPW_REG_RESET_REG,
1587 IPW_AUX_HOST_RESET_REG_SW_RESET);
1589 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1591 return 0;
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1596 struct host_command cmd = {
1597 .host_command = CARD_DISABLE,
1598 .host_command_sequence = 0,
1599 .host_command_length = 0
1601 int err = 0;
1603 IPW_DEBUG_HC("CARD_DISABLE\n");
1605 if (!(priv->status & STATUS_ENABLED))
1606 return 0;
1608 /* Make sure we clear the associated state */
1609 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1611 if (!priv->stop_hang_check) {
1612 priv->stop_hang_check = 1;
1613 cancel_delayed_work(&priv->hang_check);
1616 mutex_lock(&priv->adapter_mutex);
1618 err = ipw2100_hw_send_command(priv, &cmd);
1619 if (err) {
1620 printk(KERN_WARNING DRV_NAME
1621 ": exit - failed to send CARD_DISABLE command\n");
1622 goto fail_up;
1625 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626 if (err) {
1627 printk(KERN_WARNING DRV_NAME
1628 ": exit - card failed to change to DISABLED\n");
1629 goto fail_up;
1632 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1634 fail_up:
1635 mutex_unlock(&priv->adapter_mutex);
1636 return err;
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1641 struct host_command cmd = {
1642 .host_command = SET_SCAN_OPTIONS,
1643 .host_command_sequence = 0,
1644 .host_command_length = 8
1646 int err;
1648 IPW_DEBUG_INFO("enter\n");
1650 IPW_DEBUG_SCAN("setting scan options\n");
1652 cmd.host_command_parameters[0] = 0;
1654 if (!(priv->config & CFG_ASSOCIATE))
1655 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658 if (priv->config & CFG_PASSIVE_SCAN)
1659 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1661 cmd.host_command_parameters[1] = priv->channel_mask;
1663 err = ipw2100_hw_send_command(priv, &cmd);
1665 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666 cmd.host_command_parameters[0]);
1668 return err;
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1673 struct host_command cmd = {
1674 .host_command = BROADCAST_SCAN,
1675 .host_command_sequence = 0,
1676 .host_command_length = 4
1678 int err;
1680 IPW_DEBUG_HC("START_SCAN\n");
1682 cmd.host_command_parameters[0] = 0;
1684 /* No scanning if in monitor mode */
1685 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686 return 1;
1688 if (priv->status & STATUS_SCANNING) {
1689 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690 return 0;
1693 IPW_DEBUG_INFO("enter\n");
1695 /* Not clearing here; doing so makes iwlist always return nothing...
1697 * We should modify the table logic to use aging tables vs. clearing
1698 * the table on each scan start.
1700 IPW_DEBUG_SCAN("starting scan\n");
1702 priv->status |= STATUS_SCANNING;
1703 err = ipw2100_hw_send_command(priv, &cmd);
1704 if (err)
1705 priv->status &= ~STATUS_SCANNING;
1707 IPW_DEBUG_INFO("exit\n");
1709 return err;
1712 static const struct libipw_geo ipw_geos[] = {
1713 { /* Restricted */
1714 "---",
1715 .bg_channels = 14,
1716 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717 {2427, 4}, {2432, 5}, {2437, 6},
1718 {2442, 7}, {2447, 8}, {2452, 9},
1719 {2457, 10}, {2462, 11}, {2467, 12},
1720 {2472, 13}, {2484, 14}},
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1726 unsigned long flags;
1727 int rc = 0;
1728 u32 lock;
1729 u32 ord_len = sizeof(lock);
1731 /* Age scan list entries found before suspend */
1732 if (priv->suspend_time) {
1733 libipw_networks_age(priv->ieee, priv->suspend_time);
1734 priv->suspend_time = 0;
1737 /* Quiet if manually disabled. */
1738 if (priv->status & STATUS_RF_KILL_SW) {
1739 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740 "switch\n", priv->net_dev->name);
1741 return 0;
1744 /* the ipw2100 hardware really doesn't want power management delays
1745 * longer than 175usec
1747 pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1749 /* If the interrupt is enabled, turn it off... */
1750 spin_lock_irqsave(&priv->low_lock, flags);
1751 ipw2100_disable_interrupts(priv);
1753 /* Reset any fatal_error conditions */
1754 ipw2100_reset_fatalerror(priv);
1755 spin_unlock_irqrestore(&priv->low_lock, flags);
1757 if (priv->status & STATUS_POWERED ||
1758 (priv->status & STATUS_RESET_PENDING)) {
1759 /* Power cycle the card ... */
1760 if (ipw2100_power_cycle_adapter(priv)) {
1761 printk(KERN_WARNING DRV_NAME
1762 ": %s: Could not cycle adapter.\n",
1763 priv->net_dev->name);
1764 rc = 1;
1765 goto exit;
1767 } else
1768 priv->status |= STATUS_POWERED;
1770 /* Load the firmware, start the clocks, etc. */
1771 if (ipw2100_start_adapter(priv)) {
1772 printk(KERN_ERR DRV_NAME
1773 ": %s: Failed to start the firmware.\n",
1774 priv->net_dev->name);
1775 rc = 1;
1776 goto exit;
1779 ipw2100_initialize_ordinals(priv);
1781 /* Determine capabilities of this particular HW configuration */
1782 if (ipw2100_get_hw_features(priv)) {
1783 printk(KERN_ERR DRV_NAME
1784 ": %s: Failed to determine HW features.\n",
1785 priv->net_dev->name);
1786 rc = 1;
1787 goto exit;
1790 /* Initialize the geo */
1791 libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792 priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1794 lock = LOCK_NONE;
1795 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796 printk(KERN_ERR DRV_NAME
1797 ": %s: Failed to clear ordinal lock.\n",
1798 priv->net_dev->name);
1799 rc = 1;
1800 goto exit;
1803 priv->status &= ~STATUS_SCANNING;
1805 if (rf_kill_active(priv)) {
1806 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807 priv->net_dev->name);
1809 if (priv->stop_rf_kill) {
1810 priv->stop_rf_kill = 0;
1811 schedule_delayed_work(&priv->rf_kill,
1812 round_jiffies_relative(HZ));
1815 deferred = 1;
1818 /* Turn on the interrupt so that commands can be processed */
1819 ipw2100_enable_interrupts(priv);
1821 /* Send all of the commands that must be sent prior to
1822 * HOST_COMPLETE */
1823 if (ipw2100_adapter_setup(priv)) {
1824 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825 priv->net_dev->name);
1826 rc = 1;
1827 goto exit;
1830 if (!deferred) {
1831 /* Enable the adapter - sends HOST_COMPLETE */
1832 if (ipw2100_enable_adapter(priv)) {
1833 printk(KERN_ERR DRV_NAME ": "
1834 "%s: failed in call to enable adapter.\n",
1835 priv->net_dev->name);
1836 ipw2100_hw_stop_adapter(priv);
1837 rc = 1;
1838 goto exit;
1841 /* Start a scan . . . */
1842 ipw2100_set_scan_options(priv);
1843 ipw2100_start_scan(priv);
1846 exit:
1847 return rc;
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1852 unsigned long flags;
1853 union iwreq_data wrqu = {
1854 .ap_addr = {
1855 .sa_family = ARPHRD_ETHER}
1857 int associated = priv->status & STATUS_ASSOCIATED;
1859 /* Kill the RF switch timer */
1860 if (!priv->stop_rf_kill) {
1861 priv->stop_rf_kill = 1;
1862 cancel_delayed_work(&priv->rf_kill);
1865 /* Kill the firmware hang check timer */
1866 if (!priv->stop_hang_check) {
1867 priv->stop_hang_check = 1;
1868 cancel_delayed_work(&priv->hang_check);
1871 /* Kill any pending resets */
1872 if (priv->status & STATUS_RESET_PENDING)
1873 cancel_delayed_work(&priv->reset_work);
1875 /* Make sure the interrupt is on so that FW commands will be
1876 * processed correctly */
1877 spin_lock_irqsave(&priv->low_lock, flags);
1878 ipw2100_enable_interrupts(priv);
1879 spin_unlock_irqrestore(&priv->low_lock, flags);
1881 if (ipw2100_hw_stop_adapter(priv))
1882 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883 priv->net_dev->name);
1885 /* Do not disable the interrupt until _after_ we disable
1886 * the adaptor. Otherwise the CARD_DISABLE command will never
1887 * be ack'd by the firmware */
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 ipw2100_disable_interrupts(priv);
1890 spin_unlock_irqrestore(&priv->low_lock, flags);
1892 pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1894 /* We have to signal any supplicant if we are disassociating */
1895 if (associated)
1896 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1898 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899 netif_carrier_off(priv->net_dev);
1900 netif_stop_queue(priv->net_dev);
1903 static int ipw2100_wdev_init(struct net_device *dev)
1905 struct ipw2100_priv *priv = libipw_priv(dev);
1906 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907 struct wireless_dev *wdev = &priv->ieee->wdev;
1908 int i;
1910 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1912 /* fill-out priv->ieee->bg_band */
1913 if (geo->bg_channels) {
1914 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1916 bg_band->band = IEEE80211_BAND_2GHZ;
1917 bg_band->n_channels = geo->bg_channels;
1918 bg_band->channels = kcalloc(geo->bg_channels,
1919 sizeof(struct ieee80211_channel),
1920 GFP_KERNEL);
1921 if (!bg_band->channels) {
1922 ipw2100_down(priv);
1923 return -ENOMEM;
1925 /* translate geo->bg to bg_band.channels */
1926 for (i = 0; i < geo->bg_channels; i++) {
1927 bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928 bg_band->channels[i].center_freq = geo->bg[i].freq;
1929 bg_band->channels[i].hw_value = geo->bg[i].channel;
1930 bg_band->channels[i].max_power = geo->bg[i].max_power;
1931 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932 bg_band->channels[i].flags |=
1933 IEEE80211_CHAN_NO_IR;
1934 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935 bg_band->channels[i].flags |=
1936 IEEE80211_CHAN_NO_IR;
1937 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938 bg_band->channels[i].flags |=
1939 IEEE80211_CHAN_RADAR;
1940 /* No equivalent for LIBIPW_CH_80211H_RULES,
1941 LIBIPW_CH_UNIFORM_SPREADING, or
1942 LIBIPW_CH_B_ONLY... */
1944 /* point at bitrate info */
1945 bg_band->bitrates = ipw2100_bg_rates;
1946 bg_band->n_bitrates = RATE_COUNT;
1948 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1951 wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1954 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955 if (wiphy_register(wdev->wiphy))
1956 return -EIO;
1957 return 0;
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1962 struct ipw2100_priv *priv =
1963 container_of(work, struct ipw2100_priv, reset_work.work);
1964 unsigned long flags;
1965 union iwreq_data wrqu = {
1966 .ap_addr = {
1967 .sa_family = ARPHRD_ETHER}
1969 int associated = priv->status & STATUS_ASSOCIATED;
1971 spin_lock_irqsave(&priv->low_lock, flags);
1972 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973 priv->resets++;
1974 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975 priv->status |= STATUS_SECURITY_UPDATED;
1977 /* Force a power cycle even if interface hasn't been opened
1978 * yet */
1979 cancel_delayed_work(&priv->reset_work);
1980 priv->status |= STATUS_RESET_PENDING;
1981 spin_unlock_irqrestore(&priv->low_lock, flags);
1983 mutex_lock(&priv->action_mutex);
1984 /* stop timed checks so that they don't interfere with reset */
1985 priv->stop_hang_check = 1;
1986 cancel_delayed_work(&priv->hang_check);
1988 /* We have to signal any supplicant if we are disassociating */
1989 if (associated)
1990 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1992 ipw2100_up(priv, 0);
1993 mutex_unlock(&priv->action_mutex);
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001 int ret;
2002 unsigned int len, essid_len;
2003 char essid[IW_ESSID_MAX_SIZE];
2004 u32 txrate;
2005 u32 chan;
2006 char *txratename;
2007 u8 bssid[ETH_ALEN];
2008 DECLARE_SSID_BUF(ssid);
2011 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012 * an actual MAC of the AP. Seems like FW sets this
2013 * address too late. Read it later and expose through
2014 * /proc or schedule a later task to query and update
2017 essid_len = IW_ESSID_MAX_SIZE;
2018 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019 essid, &essid_len);
2020 if (ret) {
2021 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022 __LINE__);
2023 return;
2026 len = sizeof(u32);
2027 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028 if (ret) {
2029 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030 __LINE__);
2031 return;
2034 len = sizeof(u32);
2035 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036 if (ret) {
2037 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038 __LINE__);
2039 return;
2041 len = ETH_ALEN;
2042 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043 &len);
2044 if (ret) {
2045 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046 __LINE__);
2047 return;
2049 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2051 switch (txrate) {
2052 case TX_RATE_1_MBIT:
2053 txratename = "1Mbps";
2054 break;
2055 case TX_RATE_2_MBIT:
2056 txratename = "2Mbsp";
2057 break;
2058 case TX_RATE_5_5_MBIT:
2059 txratename = "5.5Mbps";
2060 break;
2061 case TX_RATE_11_MBIT:
2062 txratename = "11Mbps";
2063 break;
2064 default:
2065 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066 txratename = "unknown rate";
2067 break;
2070 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071 priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072 txratename, chan, bssid);
2074 /* now we copy read ssid into dev */
2075 if (!(priv->config & CFG_STATIC_ESSID)) {
2076 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077 memcpy(priv->essid, essid, priv->essid_len);
2079 priv->channel = chan;
2080 memcpy(priv->bssid, bssid, ETH_ALEN);
2082 priv->status |= STATUS_ASSOCIATING;
2083 priv->connect_start = get_seconds();
2085 schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089 int length, int batch_mode)
2091 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092 struct host_command cmd = {
2093 .host_command = SSID,
2094 .host_command_sequence = 0,
2095 .host_command_length = ssid_len
2097 int err;
2098 DECLARE_SSID_BUF(ssid);
2100 IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2102 if (ssid_len)
2103 memcpy(cmd.host_command_parameters, essid, ssid_len);
2105 if (!batch_mode) {
2106 err = ipw2100_disable_adapter(priv);
2107 if (err)
2108 return err;
2111 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112 * disable auto association -- so we cheat by setting a bogus SSID */
2113 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114 int i;
2115 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117 bogus[i] = 0x18 + i;
2118 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2121 /* NOTE: We always send the SSID command even if the provided ESSID is
2122 * the same as what we currently think is set. */
2124 err = ipw2100_hw_send_command(priv, &cmd);
2125 if (!err) {
2126 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127 memcpy(priv->essid, essid, ssid_len);
2128 priv->essid_len = ssid_len;
2131 if (!batch_mode) {
2132 if (ipw2100_enable_adapter(priv))
2133 err = -EIO;
2136 return err;
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2141 DECLARE_SSID_BUF(ssid);
2143 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144 "disassociated: '%s' %pM\n",
2145 print_ssid(ssid, priv->essid, priv->essid_len),
2146 priv->bssid);
2148 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2150 if (priv->status & STATUS_STOPPING) {
2151 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152 return;
2155 memset(priv->bssid, 0, ETH_ALEN);
2156 memset(priv->ieee->bssid, 0, ETH_ALEN);
2158 netif_carrier_off(priv->net_dev);
2159 netif_stop_queue(priv->net_dev);
2161 if (!(priv->status & STATUS_RUNNING))
2162 return;
2164 if (priv->status & STATUS_SECURITY_UPDATED)
2165 schedule_delayed_work(&priv->security_work, 0);
2167 schedule_delayed_work(&priv->wx_event_work, 0);
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2172 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173 priv->net_dev->name);
2175 /* RF_KILL is now enabled (else we wouldn't be here) */
2176 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177 priv->status |= STATUS_RF_KILL_HW;
2179 /* Make sure the RF Kill check timer is running */
2180 priv->stop_rf_kill = 0;
2181 mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2184 static void ipw2100_scan_event(struct work_struct *work)
2186 struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187 scan_event.work);
2188 union iwreq_data wrqu;
2190 wrqu.data.length = 0;
2191 wrqu.data.flags = 0;
2192 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2197 IPW_DEBUG_SCAN("scan complete\n");
2198 /* Age the scan results... */
2199 priv->ieee->scans++;
2200 priv->status &= ~STATUS_SCANNING;
2202 /* Only userspace-requested scan completion events go out immediately */
2203 if (!priv->user_requested_scan) {
2204 schedule_delayed_work(&priv->scan_event,
2205 round_jiffies_relative(msecs_to_jiffies(4000)));
2206 } else {
2207 priv->user_requested_scan = 0;
2208 mod_delayed_work(system_wq, &priv->scan_event, 0);
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215 int status;
2216 void (*cb) (struct ipw2100_priv * priv, u32 status);
2217 char *name;
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222 int status;
2223 void (*cb) (struct ipw2100_priv * priv, u32 status);
2225 #endif /* CONFIG_IPW2100_DEBUG */
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2229 IPW_DEBUG_SCAN("Scanning...\n");
2230 priv->status |= STATUS_SCANNING;
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246 IPW2100_HANDLER(-1, NULL)
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2251 int i;
2253 if (status == IPW_STATE_SCANNING &&
2254 priv->status & STATUS_ASSOCIATED &&
2255 !(priv->status & STATUS_SCANNING)) {
2256 IPW_DEBUG_INFO("Scan detected while associated, with "
2257 "no scan request. Restarting firmware.\n");
2259 /* Wake up any sleeping jobs */
2260 schedule_reset(priv);
2263 for (i = 0; status_handlers[i].status != -1; i++) {
2264 if (status == status_handlers[i].status) {
2265 IPW_DEBUG_NOTIF("Status change: %s\n",
2266 status_handlers[i].name);
2267 if (status_handlers[i].cb)
2268 status_handlers[i].cb(priv, status);
2269 priv->wstats.status = status;
2270 return;
2274 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278 struct ipw2100_cmd_header *cmd)
2280 #ifdef CONFIG_IPW2100_DEBUG
2281 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283 command_types[cmd->host_command_reg],
2284 cmd->host_command_reg);
2286 #endif
2287 if (cmd->host_command_reg == HOST_COMPLETE)
2288 priv->status |= STATUS_ENABLED;
2290 if (cmd->host_command_reg == CARD_DISABLE)
2291 priv->status &= ~STATUS_ENABLED;
2293 priv->status &= ~STATUS_CMD_ACTIVE;
2295 wake_up_interruptible(&priv->wait_command_queue);
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300 "COMMAND_STATUS_VAL",
2301 "STATUS_CHANGE_VAL",
2302 "P80211_DATA_VAL",
2303 "P8023_DATA_VAL",
2304 "HOST_NOTIFICATION_VAL"
2306 #endif
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309 struct ipw2100_rx_packet *packet)
2311 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312 if (!packet->skb)
2313 return -ENOMEM;
2315 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317 sizeof(struct ipw2100_rx),
2318 PCI_DMA_FROMDEVICE);
2319 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320 * dma_addr */
2322 return 0;
2325 #define SEARCH_ERROR 0xffffffff
2326 #define SEARCH_FAIL 0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2334 int i;
2335 if (!priv->snapshot[0])
2336 return;
2337 for (i = 0; i < 0x30; i++)
2338 kfree(priv->snapshot[i]);
2339 priv->snapshot[0] = NULL;
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2345 int i;
2346 if (priv->snapshot[0])
2347 return 1;
2348 for (i = 0; i < 0x30; i++) {
2349 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350 if (!priv->snapshot[i]) {
2351 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352 "buffer %d\n", priv->net_dev->name, i);
2353 while (i > 0)
2354 kfree(priv->snapshot[--i]);
2355 priv->snapshot[0] = NULL;
2356 return 0;
2360 return 1;
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364 size_t len, int mode)
2366 u32 i, j;
2367 u32 tmp;
2368 u8 *s, *d;
2369 u32 ret;
2371 s = in_buf;
2372 if (mode == SEARCH_SNAPSHOT) {
2373 if (!ipw2100_snapshot_alloc(priv))
2374 mode = SEARCH_DISCARD;
2377 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378 read_nic_dword(priv->net_dev, i, &tmp);
2379 if (mode == SEARCH_SNAPSHOT)
2380 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381 if (ret == SEARCH_FAIL) {
2382 d = (u8 *) & tmp;
2383 for (j = 0; j < 4; j++) {
2384 if (*s != *d) {
2385 s = in_buf;
2386 continue;
2389 s++;
2390 d++;
2392 if ((s - in_buf) == len)
2393 ret = (i + j) - len + 1;
2395 } else if (mode == SEARCH_DISCARD)
2396 return ret;
2399 return ret;
2401 #endif
2405 * 0) Disconnect the SKB from the firmware (just unmap)
2406 * 1) Pack the ETH header into the SKB
2407 * 2) Pass the SKB to the network stack
2409 * When packet is provided by the firmware, it contains the following:
2411 * . libipw_hdr
2412 * . libipw_snap_hdr
2414 * The size of the constructed ethernet
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2423 #ifdef IPW2100_DEBUG_C3
2424 struct ipw2100_status *status = &priv->status_queue.drv[i];
2425 u32 match, reg;
2426 int j;
2427 #endif
2429 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430 i * sizeof(struct ipw2100_status));
2432 #ifdef IPW2100_DEBUG_C3
2433 /* Halt the firmware so we can get a good image */
2434 write_register(priv->net_dev, IPW_REG_RESET_REG,
2435 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436 j = 5;
2437 do {
2438 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2441 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442 break;
2443 } while (j--);
2445 match = ipw2100_match_buf(priv, (u8 *) status,
2446 sizeof(struct ipw2100_status),
2447 SEARCH_SNAPSHOT);
2448 if (match < SEARCH_SUCCESS)
2449 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450 "offset 0x%06X, length %d:\n",
2451 priv->net_dev->name, match,
2452 sizeof(struct ipw2100_status));
2453 else
2454 IPW_DEBUG_INFO("%s: No DMA status match in "
2455 "Firmware.\n", priv->net_dev->name);
2457 printk_buf((u8 *) priv->status_queue.drv,
2458 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2461 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462 priv->net_dev->stats.rx_errors++;
2463 schedule_reset(priv);
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467 struct libipw_rx_stats *stats)
2469 struct net_device *dev = priv->net_dev;
2470 struct ipw2100_status *status = &priv->status_queue.drv[i];
2471 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2473 IPW_DEBUG_RX("Handler...\n");
2475 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477 " Dropping.\n",
2478 dev->name,
2479 status->frame_size, skb_tailroom(packet->skb));
2480 dev->stats.rx_errors++;
2481 return;
2484 if (unlikely(!netif_running(dev))) {
2485 dev->stats.rx_errors++;
2486 priv->wstats.discard.misc++;
2487 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488 return;
2491 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492 !(priv->status & STATUS_ASSOCIATED))) {
2493 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494 priv->wstats.discard.misc++;
2495 return;
2498 pci_unmap_single(priv->pci_dev,
2499 packet->dma_addr,
2500 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2502 skb_put(packet->skb, status->frame_size);
2504 #ifdef IPW2100_RX_DEBUG
2505 /* Make a copy of the frame so we can dump it to the logs if
2506 * libipw_rx fails */
2507 skb_copy_from_linear_data(packet->skb, packet_data,
2508 min_t(u32, status->frame_size,
2509 IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2512 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515 dev->name);
2516 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518 dev->stats.rx_errors++;
2520 /* libipw_rx failed, so it didn't free the SKB */
2521 dev_kfree_skb_any(packet->skb);
2522 packet->skb = NULL;
2525 /* We need to allocate a new SKB and attach it to the RDB. */
2526 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527 printk(KERN_WARNING DRV_NAME ": "
2528 "%s: Unable to allocate SKB onto RBD ring - disabling "
2529 "adapter.\n", dev->name);
2530 /* TODO: schedule adapter shutdown */
2531 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2534 /* Update the RDB entry */
2535 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2538 #ifdef CONFIG_IPW2100_MONITOR
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541 struct libipw_rx_stats *stats)
2543 struct net_device *dev = priv->net_dev;
2544 struct ipw2100_status *status = &priv->status_queue.drv[i];
2545 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2547 /* Magic struct that slots into the radiotap header -- no reason
2548 * to build this manually element by element, we can write it much
2549 * more efficiently than we can parse it. ORDER MATTERS HERE */
2550 struct ipw_rt_hdr {
2551 struct ieee80211_radiotap_header rt_hdr;
2552 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553 } *ipw_rt;
2555 IPW_DEBUG_RX("Handler...\n");
2557 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558 sizeof(struct ipw_rt_hdr))) {
2559 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560 " Dropping.\n",
2561 dev->name,
2562 status->frame_size,
2563 skb_tailroom(packet->skb));
2564 dev->stats.rx_errors++;
2565 return;
2568 if (unlikely(!netif_running(dev))) {
2569 dev->stats.rx_errors++;
2570 priv->wstats.discard.misc++;
2571 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572 return;
2575 if (unlikely(priv->config & CFG_CRC_CHECK &&
2576 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2578 dev->stats.rx_errors++;
2579 return;
2582 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585 packet->skb->data, status->frame_size);
2587 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2589 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2593 ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2595 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2597 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2599 if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600 dev->stats.rx_errors++;
2602 /* libipw_rx failed, so it didn't free the SKB */
2603 dev_kfree_skb_any(packet->skb);
2604 packet->skb = NULL;
2607 /* We need to allocate a new SKB and attach it to the RDB. */
2608 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609 IPW_DEBUG_WARNING(
2610 "%s: Unable to allocate SKB onto RBD ring - disabling "
2611 "adapter.\n", dev->name);
2612 /* TODO: schedule adapter shutdown */
2613 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2616 /* Update the RDB entry */
2617 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2620 #endif
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2624 struct ipw2100_status *status = &priv->status_queue.drv[i];
2625 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2628 switch (frame_type) {
2629 case COMMAND_STATUS_VAL:
2630 return (status->frame_size != sizeof(u->rx_data.command));
2631 case STATUS_CHANGE_VAL:
2632 return (status->frame_size != sizeof(u->rx_data.status));
2633 case HOST_NOTIFICATION_VAL:
2634 return (status->frame_size < sizeof(u->rx_data.notification));
2635 case P80211_DATA_VAL:
2636 case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638 return 0;
2639 #else
2640 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641 case IEEE80211_FTYPE_MGMT:
2642 case IEEE80211_FTYPE_CTL:
2643 return 0;
2644 case IEEE80211_FTYPE_DATA:
2645 return (status->frame_size >
2646 IPW_MAX_802_11_PAYLOAD_LENGTH);
2648 #endif
2651 return 1;
2655 * ipw2100 interrupts are disabled at this point, and the ISR
2656 * is the only code that calls this method. So, we do not need
2657 * to play with any locks.
2659 * RX Queue works as follows:
2661 * Read index - firmware places packet in entry identified by the
2662 * Read index and advances Read index. In this manner,
2663 * Read index will always point to the next packet to
2664 * be filled--but not yet valid.
2666 * Write index - driver fills this entry with an unused RBD entry.
2667 * This entry has not filled by the firmware yet.
2669 * In between the W and R indexes are the RBDs that have been received
2670 * but not yet processed.
2672 * The process of handling packets will start at WRITE + 1 and advance
2673 * until it reaches the READ index.
2675 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2680 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681 struct ipw2100_status_queue *sq = &priv->status_queue;
2682 struct ipw2100_rx_packet *packet;
2683 u16 frame_type;
2684 u32 r, w, i, s;
2685 struct ipw2100_rx *u;
2686 struct libipw_rx_stats stats = {
2687 .mac_time = jiffies,
2690 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2693 if (r >= rxq->entries) {
2694 IPW_DEBUG_RX("exit - bad read index\n");
2695 return;
2698 i = (rxq->next + 1) % rxq->entries;
2699 s = i;
2700 while (i != r) {
2701 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702 r, rxq->next, i); */
2704 packet = &priv->rx_buffers[i];
2706 /* Sync the DMA for the RX buffer so CPU is sure to get
2707 * the correct values */
2708 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709 sizeof(struct ipw2100_rx),
2710 PCI_DMA_FROMDEVICE);
2712 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713 ipw2100_corruption_detected(priv, i);
2714 goto increment;
2717 u = packet->rxp;
2718 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720 stats.len = sq->drv[i].frame_size;
2722 stats.mask = 0;
2723 if (stats.rssi != 0)
2724 stats.mask |= LIBIPW_STATMASK_RSSI;
2725 stats.freq = LIBIPW_24GHZ_BAND;
2727 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728 priv->net_dev->name, frame_types[frame_type],
2729 stats.len);
2731 switch (frame_type) {
2732 case COMMAND_STATUS_VAL:
2733 /* Reset Rx watchdog */
2734 isr_rx_complete_command(priv, &u->rx_data.command);
2735 break;
2737 case STATUS_CHANGE_VAL:
2738 isr_status_change(priv, u->rx_data.status);
2739 break;
2741 case P80211_DATA_VAL:
2742 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745 isr_rx_monitor(priv, i, &stats);
2746 break;
2748 #endif
2749 if (stats.len < sizeof(struct libipw_hdr_3addr))
2750 break;
2751 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752 case IEEE80211_FTYPE_MGMT:
2753 libipw_rx_mgt(priv->ieee,
2754 &u->rx_data.header, &stats);
2755 break;
2757 case IEEE80211_FTYPE_CTL:
2758 break;
2760 case IEEE80211_FTYPE_DATA:
2761 isr_rx(priv, i, &stats);
2762 break;
2765 break;
2768 increment:
2769 /* clear status field associated with this RBD */
2770 rxq->drv[i].status.info.field = 0;
2772 i = (i + 1) % rxq->entries;
2775 if (i != s) {
2776 /* backtrack one entry, wrapping to end if at 0 */
2777 rxq->next = (i ? i : rxq->entries) - 1;
2779 write_register(priv->net_dev,
2780 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2785 * __ipw2100_tx_process
2787 * This routine will determine whether the next packet on
2788 * the fw_pend_list has been processed by the firmware yet.
2790 * If not, then it does nothing and returns.
2792 * If so, then it removes the item from the fw_pend_list, frees
2793 * any associated storage, and places the item back on the
2794 * free list of its source (either msg_free_list or tx_free_list)
2796 * TX Queue works as follows:
2798 * Read index - points to the next TBD that the firmware will
2799 * process. The firmware will read the data, and once
2800 * done processing, it will advance the Read index.
2802 * Write index - driver fills this entry with an constructed TBD
2803 * entry. The Write index is not advanced until the
2804 * packet has been configured.
2806 * In between the W and R indexes are the TBDs that have NOT been
2807 * processed. Lagging behind the R index are packets that have
2808 * been processed but have not been freed by the driver.
2810 * In order to free old storage, an internal index will be maintained
2811 * that points to the next packet to be freed. When all used
2812 * packets have been freed, the oldest index will be the same as the
2813 * firmware's read index.
2815 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2817 * Because the TBD structure can not contain arbitrary data, the
2818 * driver must keep an internal queue of cached allocations such that
2819 * it can put that data back into the tx_free_list and msg_free_list
2820 * for use by future command and data packets.
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2825 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826 struct ipw2100_bd *tbd;
2827 struct list_head *element;
2828 struct ipw2100_tx_packet *packet;
2829 int descriptors_used;
2830 int e, i;
2831 u32 r, w, frag_num = 0;
2833 if (list_empty(&priv->fw_pend_list))
2834 return 0;
2836 element = priv->fw_pend_list.next;
2838 packet = list_entry(element, struct ipw2100_tx_packet, list);
2839 tbd = &txq->drv[packet->index];
2841 /* Determine how many TBD entries must be finished... */
2842 switch (packet->type) {
2843 case COMMAND:
2844 /* COMMAND uses only one slot; don't advance */
2845 descriptors_used = 1;
2846 e = txq->oldest;
2847 break;
2849 case DATA:
2850 /* DATA uses two slots; advance and loop position. */
2851 descriptors_used = tbd->num_fragments;
2852 frag_num = tbd->num_fragments - 1;
2853 e = txq->oldest + frag_num;
2854 e %= txq->entries;
2855 break;
2857 default:
2858 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859 priv->net_dev->name);
2860 return 0;
2863 /* if the last TBD is not done by NIC yet, then packet is
2864 * not ready to be released.
2867 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868 &r);
2869 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870 &w);
2871 if (w != txq->next)
2872 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873 priv->net_dev->name);
2876 * txq->next is the index of the last packet written txq->oldest is
2877 * the index of the r is the index of the next packet to be read by
2878 * firmware
2882 * Quick graphic to help you visualize the following
2883 * if / else statement
2885 * ===>| s---->|===============
2886 * e>|
2887 * | a | b | c | d | e | f | g | h | i | j | k | l
2888 * r---->|
2891 * w - updated by driver
2892 * r - updated by firmware
2893 * s - start of oldest BD entry (txq->oldest)
2894 * e - end of oldest BD entry
2897 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899 return 0;
2902 list_del(element);
2903 DEC_STAT(&priv->fw_pend_stat);
2905 #ifdef CONFIG_IPW2100_DEBUG
2907 i = txq->oldest;
2908 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909 &txq->drv[i],
2910 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911 txq->drv[i].host_addr, txq->drv[i].buf_length);
2913 if (packet->type == DATA) {
2914 i = (i + 1) % txq->entries;
2916 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917 &txq->drv[i],
2918 (u32) (txq->nic + i *
2919 sizeof(struct ipw2100_bd)),
2920 (u32) txq->drv[i].host_addr,
2921 txq->drv[i].buf_length);
2924 #endif
2926 switch (packet->type) {
2927 case DATA:
2928 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2930 "Expecting DATA TBD but pulled "
2931 "something else: ids %d=%d.\n",
2932 priv->net_dev->name, txq->oldest, packet->index);
2934 /* DATA packet; we have to unmap and free the SKB */
2935 for (i = 0; i < frag_num; i++) {
2936 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2938 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939 (packet->index + 1 + i) % txq->entries,
2940 tbd->host_addr, tbd->buf_length);
2942 pci_unmap_single(priv->pci_dev,
2943 tbd->host_addr,
2944 tbd->buf_length, PCI_DMA_TODEVICE);
2947 libipw_txb_free(packet->info.d_struct.txb);
2948 packet->info.d_struct.txb = NULL;
2950 list_add_tail(element, &priv->tx_free_list);
2951 INC_STAT(&priv->tx_free_stat);
2953 /* We have a free slot in the Tx queue, so wake up the
2954 * transmit layer if it is stopped. */
2955 if (priv->status & STATUS_ASSOCIATED)
2956 netif_wake_queue(priv->net_dev);
2958 /* A packet was processed by the hardware, so update the
2959 * watchdog */
2960 priv->net_dev->trans_start = jiffies;
2962 break;
2964 case COMMAND:
2965 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2967 "Expecting COMMAND TBD but pulled "
2968 "something else: ids %d=%d.\n",
2969 priv->net_dev->name, txq->oldest, packet->index);
2971 #ifdef CONFIG_IPW2100_DEBUG
2972 if (packet->info.c_struct.cmd->host_command_reg <
2973 ARRAY_SIZE(command_types))
2974 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975 command_types[packet->info.c_struct.cmd->
2976 host_command_reg],
2977 packet->info.c_struct.cmd->
2978 host_command_reg,
2979 packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2982 list_add_tail(element, &priv->msg_free_list);
2983 INC_STAT(&priv->msg_free_stat);
2984 break;
2987 /* advance oldest used TBD pointer to start of next entry */
2988 txq->oldest = (e + 1) % txq->entries;
2989 /* increase available TBDs number */
2990 txq->available += descriptors_used;
2991 SET_STAT(&priv->txq_stat, txq->available);
2993 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2994 jiffies - packet->jiffy_start);
2996 return (!list_empty(&priv->fw_pend_list));
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3001 int i = 0;
3003 while (__ipw2100_tx_process(priv) && i < 200)
3004 i++;
3006 if (i == 200) {
3007 printk(KERN_WARNING DRV_NAME ": "
3008 "%s: Driver is running slow (%d iters).\n",
3009 priv->net_dev->name, i);
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3015 struct list_head *element;
3016 struct ipw2100_tx_packet *packet;
3017 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018 struct ipw2100_bd *tbd;
3019 int next = txq->next;
3021 while (!list_empty(&priv->msg_pend_list)) {
3022 /* if there isn't enough space in TBD queue, then
3023 * don't stuff a new one in.
3024 * NOTE: 3 are needed as a command will take one,
3025 * and there is a minimum of 2 that must be
3026 * maintained between the r and w indexes
3028 if (txq->available <= 3) {
3029 IPW_DEBUG_TX("no room in tx_queue\n");
3030 break;
3033 element = priv->msg_pend_list.next;
3034 list_del(element);
3035 DEC_STAT(&priv->msg_pend_stat);
3037 packet = list_entry(element, struct ipw2100_tx_packet, list);
3039 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040 &txq->drv[txq->next],
3041 (u32) (txq->nic + txq->next *
3042 sizeof(struct ipw2100_bd)));
3044 packet->index = txq->next;
3046 tbd = &txq->drv[txq->next];
3048 /* initialize TBD */
3049 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051 /* not marking number of fragments causes problems
3052 * with f/w debug version */
3053 tbd->num_fragments = 1;
3054 tbd->status.info.field =
3055 IPW_BD_STATUS_TX_FRAME_COMMAND |
3056 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3058 /* update TBD queue counters */
3059 txq->next++;
3060 txq->next %= txq->entries;
3061 txq->available--;
3062 DEC_STAT(&priv->txq_stat);
3064 list_add_tail(element, &priv->fw_pend_list);
3065 INC_STAT(&priv->fw_pend_stat);
3068 if (txq->next != next) {
3069 /* kick off the DMA by notifying firmware the
3070 * write index has moved; make sure TBD stores are sync'd */
3071 wmb();
3072 write_register(priv->net_dev,
3073 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074 txq->next);
3079 * ipw2100_tx_send_data
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3084 struct list_head *element;
3085 struct ipw2100_tx_packet *packet;
3086 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087 struct ipw2100_bd *tbd;
3088 int next = txq->next;
3089 int i = 0;
3090 struct ipw2100_data_header *ipw_hdr;
3091 struct libipw_hdr_3addr *hdr;
3093 while (!list_empty(&priv->tx_pend_list)) {
3094 /* if there isn't enough space in TBD queue, then
3095 * don't stuff a new one in.
3096 * NOTE: 4 are needed as a data will take two,
3097 * and there is a minimum of 2 that must be
3098 * maintained between the r and w indexes
3100 element = priv->tx_pend_list.next;
3101 packet = list_entry(element, struct ipw2100_tx_packet, list);
3103 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104 IPW_MAX_BDS)) {
3105 /* TODO: Support merging buffers if more than
3106 * IPW_MAX_BDS are used */
3107 IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded. "
3108 "Increase fragmentation level.\n",
3109 priv->net_dev->name);
3112 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113 IPW_DEBUG_TX("no room in tx_queue\n");
3114 break;
3117 list_del(element);
3118 DEC_STAT(&priv->tx_pend_stat);
3120 tbd = &txq->drv[txq->next];
3122 packet->index = txq->next;
3124 ipw_hdr = packet->info.d_struct.data;
3125 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126 fragments[0]->data;
3128 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129 /* To DS: Addr1 = BSSID, Addr2 = SA,
3130 Addr3 = DA */
3131 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135 Addr3 = BSSID */
3136 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3140 ipw_hdr->host_command_reg = SEND;
3141 ipw_hdr->host_command_reg1 = 0;
3143 /* For now we only support host based encryption */
3144 ipw_hdr->needs_encryption = 0;
3145 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146 if (packet->info.d_struct.txb->nr_frags > 1)
3147 ipw_hdr->fragment_size =
3148 packet->info.d_struct.txb->frag_size -
3149 LIBIPW_3ADDR_LEN;
3150 else
3151 ipw_hdr->fragment_size = 0;
3153 tbd->host_addr = packet->info.d_struct.data_phys;
3154 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156 tbd->status.info.field =
3157 IPW_BD_STATUS_TX_FRAME_802_3 |
3158 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159 txq->next++;
3160 txq->next %= txq->entries;
3162 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163 packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165 if (packet->info.d_struct.txb->nr_frags > 1)
3166 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167 packet->info.d_struct.txb->nr_frags);
3168 #endif
3170 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171 tbd = &txq->drv[txq->next];
3172 if (i == packet->info.d_struct.txb->nr_frags - 1)
3173 tbd->status.info.field =
3174 IPW_BD_STATUS_TX_FRAME_802_3 |
3175 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176 else
3177 tbd->status.info.field =
3178 IPW_BD_STATUS_TX_FRAME_802_3 |
3179 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3181 tbd->buf_length = packet->info.d_struct.txb->
3182 fragments[i]->len - LIBIPW_3ADDR_LEN;
3184 tbd->host_addr = pci_map_single(priv->pci_dev,
3185 packet->info.d_struct.
3186 txb->fragments[i]->
3187 data +
3188 LIBIPW_3ADDR_LEN,
3189 tbd->buf_length,
3190 PCI_DMA_TODEVICE);
3192 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193 txq->next, tbd->host_addr,
3194 tbd->buf_length);
3196 pci_dma_sync_single_for_device(priv->pci_dev,
3197 tbd->host_addr,
3198 tbd->buf_length,
3199 PCI_DMA_TODEVICE);
3201 txq->next++;
3202 txq->next %= txq->entries;
3205 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206 SET_STAT(&priv->txq_stat, txq->available);
3208 list_add_tail(element, &priv->fw_pend_list);
3209 INC_STAT(&priv->fw_pend_stat);
3212 if (txq->next != next) {
3213 /* kick off the DMA by notifying firmware the
3214 * write index has moved; make sure TBD stores are sync'd */
3215 write_register(priv->net_dev,
3216 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217 txq->next);
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3223 struct net_device *dev = priv->net_dev;
3224 unsigned long flags;
3225 u32 inta, tmp;
3227 spin_lock_irqsave(&priv->low_lock, flags);
3228 ipw2100_disable_interrupts(priv);
3230 read_register(dev, IPW_REG_INTA, &inta);
3232 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233 (unsigned long)inta & IPW_INTERRUPT_MASK);
3235 priv->in_isr++;
3236 priv->interrupts++;
3238 /* We do not loop and keep polling for more interrupts as this
3239 * is frowned upon and doesn't play nicely with other potentially
3240 * chained IRQs */
3241 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242 (unsigned long)inta & IPW_INTERRUPT_MASK);
3244 if (inta & IPW2100_INTA_FATAL_ERROR) {
3245 printk(KERN_WARNING DRV_NAME
3246 ": Fatal interrupt. Scheduling firmware restart.\n");
3247 priv->inta_other++;
3248 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3250 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252 priv->net_dev->name, priv->fatal_error);
3254 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256 priv->net_dev->name, tmp);
3258 /* Wake up any sleeping jobs */
3259 schedule_reset(priv);
3262 if (inta & IPW2100_INTA_PARITY_ERROR) {
3263 printk(KERN_ERR DRV_NAME
3264 ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265 priv->inta_other++;
3266 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269 if (inta & IPW2100_INTA_RX_TRANSFER) {
3270 IPW_DEBUG_ISR("RX interrupt\n");
3272 priv->rx_interrupts++;
3274 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3276 __ipw2100_rx_process(priv);
3277 __ipw2100_tx_complete(priv);
3280 if (inta & IPW2100_INTA_TX_TRANSFER) {
3281 IPW_DEBUG_ISR("TX interrupt\n");
3283 priv->tx_interrupts++;
3285 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3287 __ipw2100_tx_complete(priv);
3288 ipw2100_tx_send_commands(priv);
3289 ipw2100_tx_send_data(priv);
3292 if (inta & IPW2100_INTA_TX_COMPLETE) {
3293 IPW_DEBUG_ISR("TX complete\n");
3294 priv->inta_other++;
3295 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3297 __ipw2100_tx_complete(priv);
3300 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301 /* ipw2100_handle_event(dev); */
3302 priv->inta_other++;
3303 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307 IPW_DEBUG_ISR("FW init done interrupt\n");
3308 priv->inta_other++;
3310 read_register(dev, IPW_REG_INTA, &tmp);
3311 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312 IPW2100_INTA_PARITY_ERROR)) {
3313 write_register(dev, IPW_REG_INTA,
3314 IPW2100_INTA_FATAL_ERROR |
3315 IPW2100_INTA_PARITY_ERROR);
3318 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322 IPW_DEBUG_ISR("Status change interrupt\n");
3323 priv->inta_other++;
3324 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329 priv->inta_other++;
3330 write_register(dev, IPW_REG_INTA,
3331 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334 priv->in_isr--;
3335 ipw2100_enable_interrupts(priv);
3337 spin_unlock_irqrestore(&priv->low_lock, flags);
3339 IPW_DEBUG_ISR("exit\n");
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3344 struct ipw2100_priv *priv = data;
3345 u32 inta, inta_mask;
3347 if (!data)
3348 return IRQ_NONE;
3350 spin_lock(&priv->low_lock);
3352 /* We check to see if we should be ignoring interrupts before
3353 * we touch the hardware. During ucode load if we try and handle
3354 * an interrupt we can cause keyboard problems as well as cause
3355 * the ucode to fail to initialize */
3356 if (!(priv->status & STATUS_INT_ENABLED)) {
3357 /* Shared IRQ */
3358 goto none;
3361 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3364 if (inta == 0xFFFFFFFF) {
3365 /* Hardware disappeared */
3366 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367 goto none;
3370 inta &= IPW_INTERRUPT_MASK;
3372 if (!(inta & inta_mask)) {
3373 /* Shared interrupt */
3374 goto none;
3377 /* We disable the hardware interrupt here just to prevent unneeded
3378 * calls to be made. We disable this again within the actual
3379 * work tasklet, so if another part of the code re-enables the
3380 * interrupt, that is fine */
3381 ipw2100_disable_interrupts(priv);
3383 tasklet_schedule(&priv->irq_tasklet);
3384 spin_unlock(&priv->low_lock);
3386 return IRQ_HANDLED;
3387 none:
3388 spin_unlock(&priv->low_lock);
3389 return IRQ_NONE;
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393 struct net_device *dev, int pri)
3395 struct ipw2100_priv *priv = libipw_priv(dev);
3396 struct list_head *element;
3397 struct ipw2100_tx_packet *packet;
3398 unsigned long flags;
3400 spin_lock_irqsave(&priv->low_lock, flags);
3402 if (!(priv->status & STATUS_ASSOCIATED)) {
3403 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404 priv->net_dev->stats.tx_carrier_errors++;
3405 netif_stop_queue(dev);
3406 goto fail_unlock;
3409 if (list_empty(&priv->tx_free_list))
3410 goto fail_unlock;
3412 element = priv->tx_free_list.next;
3413 packet = list_entry(element, struct ipw2100_tx_packet, list);
3415 packet->info.d_struct.txb = txb;
3417 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3420 packet->jiffy_start = jiffies;
3422 list_del(element);
3423 DEC_STAT(&priv->tx_free_stat);
3425 list_add_tail(element, &priv->tx_pend_list);
3426 INC_STAT(&priv->tx_pend_stat);
3428 ipw2100_tx_send_data(priv);
3430 spin_unlock_irqrestore(&priv->low_lock, flags);
3431 return NETDEV_TX_OK;
3433 fail_unlock:
3434 netif_stop_queue(dev);
3435 spin_unlock_irqrestore(&priv->low_lock, flags);
3436 return NETDEV_TX_BUSY;
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3441 int i, j, err = -EINVAL;
3442 void *v;
3443 dma_addr_t p;
3445 priv->msg_buffers =
3446 kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447 GFP_KERNEL);
3448 if (!priv->msg_buffers)
3449 return -ENOMEM;
3451 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452 v = pci_alloc_consistent(priv->pci_dev,
3453 sizeof(struct ipw2100_cmd_header), &p);
3454 if (!v) {
3455 printk(KERN_ERR DRV_NAME ": "
3456 "%s: PCI alloc failed for msg "
3457 "buffers.\n", priv->net_dev->name);
3458 err = -ENOMEM;
3459 break;
3462 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3464 priv->msg_buffers[i].type = COMMAND;
3465 priv->msg_buffers[i].info.c_struct.cmd =
3466 (struct ipw2100_cmd_header *)v;
3467 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3470 if (i == IPW_COMMAND_POOL_SIZE)
3471 return 0;
3473 for (j = 0; j < i; j++) {
3474 pci_free_consistent(priv->pci_dev,
3475 sizeof(struct ipw2100_cmd_header),
3476 priv->msg_buffers[j].info.c_struct.cmd,
3477 priv->msg_buffers[j].info.c_struct.
3478 cmd_phys);
3481 kfree(priv->msg_buffers);
3482 priv->msg_buffers = NULL;
3484 return err;
3487 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3489 int i;
3491 INIT_LIST_HEAD(&priv->msg_free_list);
3492 INIT_LIST_HEAD(&priv->msg_pend_list);
3494 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3495 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3496 SET_STAT(&priv->msg_free_stat, i);
3498 return 0;
3501 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3503 int i;
3505 if (!priv->msg_buffers)
3506 return;
3508 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3509 pci_free_consistent(priv->pci_dev,
3510 sizeof(struct ipw2100_cmd_header),
3511 priv->msg_buffers[i].info.c_struct.cmd,
3512 priv->msg_buffers[i].info.c_struct.
3513 cmd_phys);
3516 kfree(priv->msg_buffers);
3517 priv->msg_buffers = NULL;
3520 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3521 char *buf)
3523 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3524 char *out = buf;
3525 int i, j;
3526 u32 val;
3528 for (i = 0; i < 16; i++) {
3529 out += sprintf(out, "[%08X] ", i * 16);
3530 for (j = 0; j < 16; j += 4) {
3531 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3532 out += sprintf(out, "%08X ", val);
3534 out += sprintf(out, "\n");
3537 return out - buf;
3540 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3542 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3543 char *buf)
3545 struct ipw2100_priv *p = dev_get_drvdata(d);
3546 return sprintf(buf, "0x%08x\n", (int)p->config);
3549 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3551 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3552 char *buf)
3554 struct ipw2100_priv *p = dev_get_drvdata(d);
3555 return sprintf(buf, "0x%08x\n", (int)p->status);
3558 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3560 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3561 char *buf)
3563 struct ipw2100_priv *p = dev_get_drvdata(d);
3564 return sprintf(buf, "0x%08x\n", (int)p->capability);
3567 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3569 #define IPW2100_REG(x) { IPW_ ##x, #x }
3570 static const struct {
3571 u32 addr;
3572 const char *name;
3573 } hw_data[] = {
3574 IPW2100_REG(REG_GP_CNTRL),
3575 IPW2100_REG(REG_GPIO),
3576 IPW2100_REG(REG_INTA),
3577 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3578 #define IPW2100_NIC(x, s) { x, #x, s }
3579 static const struct {
3580 u32 addr;
3581 const char *name;
3582 size_t size;
3583 } nic_data[] = {
3584 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3585 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3586 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3587 static const struct {
3588 u8 index;
3589 const char *name;
3590 const char *desc;
3591 } ord_data[] = {
3592 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3593 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3594 "successful Host Tx's (MSDU)"),
3595 IPW2100_ORD(STAT_TX_DIR_DATA,
3596 "successful Directed Tx's (MSDU)"),
3597 IPW2100_ORD(STAT_TX_DIR_DATA1,
3598 "successful Directed Tx's (MSDU) @ 1MB"),
3599 IPW2100_ORD(STAT_TX_DIR_DATA2,
3600 "successful Directed Tx's (MSDU) @ 2MB"),
3601 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3602 "successful Directed Tx's (MSDU) @ 5_5MB"),
3603 IPW2100_ORD(STAT_TX_DIR_DATA11,
3604 "successful Directed Tx's (MSDU) @ 11MB"),
3605 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3606 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3607 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3608 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3609 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3610 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3611 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3612 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3613 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3614 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3615 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3616 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3617 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3618 IPW2100_ORD(STAT_TX_ASSN_RESP,
3619 "successful Association response Tx's"),
3620 IPW2100_ORD(STAT_TX_REASSN,
3621 "successful Reassociation Tx's"),
3622 IPW2100_ORD(STAT_TX_REASSN_RESP,
3623 "successful Reassociation response Tx's"),
3624 IPW2100_ORD(STAT_TX_PROBE,
3625 "probes successfully transmitted"),
3626 IPW2100_ORD(STAT_TX_PROBE_RESP,
3627 "probe responses successfully transmitted"),
3628 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3629 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3630 IPW2100_ORD(STAT_TX_DISASSN,
3631 "successful Disassociation TX"),
3632 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3633 IPW2100_ORD(STAT_TX_DEAUTH,
3634 "successful Deauthentication TX"),
3635 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3636 "Total successful Tx data bytes"),
3637 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3638 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3639 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3640 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3641 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3642 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3643 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3644 "times max tries in a hop failed"),
3645 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3646 "times disassociation failed"),
3647 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3648 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3649 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3650 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3651 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3652 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3653 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3654 "directed packets at 5.5MB"),
3655 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3656 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3657 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3658 "nondirected packets at 1MB"),
3659 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3660 "nondirected packets at 2MB"),
3661 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3662 "nondirected packets at 5.5MB"),
3663 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3664 "nondirected packets at 11MB"),
3665 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3666 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3667 "Rx CTS"),
3668 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3669 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3670 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3671 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3672 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3673 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3674 IPW2100_ORD(STAT_RX_REASSN_RESP,
3675 "Reassociation response Rx's"),
3676 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3677 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3678 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3679 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3680 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3681 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3682 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3683 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3684 "Total rx data bytes received"),
3685 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3686 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3687 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3688 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3689 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3690 IPW2100_ORD(STAT_RX_DUPLICATE1,
3691 "duplicate rx packets at 1MB"),
3692 IPW2100_ORD(STAT_RX_DUPLICATE2,
3693 "duplicate rx packets at 2MB"),
3694 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3695 "duplicate rx packets at 5.5MB"),
3696 IPW2100_ORD(STAT_RX_DUPLICATE11,
3697 "duplicate rx packets at 11MB"),
3698 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3699 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3700 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3701 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3702 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3703 "rx frames with invalid protocol"),
3704 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3705 IPW2100_ORD(STAT_RX_NO_BUFFER,
3706 "rx frames rejected due to no buffer"),
3707 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3708 "rx frames dropped due to missing fragment"),
3709 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3710 "rx frames dropped due to non-sequential fragment"),
3711 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3712 "rx frames dropped due to unmatched 1st frame"),
3713 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3714 "rx frames dropped due to uncompleted frame"),
3715 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3716 "ICV errors during decryption"),
3717 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3718 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3719 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3720 "poll response timeouts"),
3721 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3722 "timeouts waiting for last {broad,multi}cast pkt"),
3723 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3724 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3725 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3726 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3727 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3728 "current calculation of % missed beacons"),
3729 IPW2100_ORD(STAT_PERCENT_RETRIES,
3730 "current calculation of % missed tx retries"),
3731 IPW2100_ORD(ASSOCIATED_AP_PTR,
3732 "0 if not associated, else pointer to AP table entry"),
3733 IPW2100_ORD(AVAILABLE_AP_CNT,
3734 "AP's decsribed in the AP table"),
3735 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3736 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3737 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3738 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3739 "failures due to response fail"),
3740 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3741 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3742 IPW2100_ORD(STAT_ROAM_INHIBIT,
3743 "times roaming was inhibited due to activity"),
3744 IPW2100_ORD(RSSI_AT_ASSN,
3745 "RSSI of associated AP at time of association"),
3746 IPW2100_ORD(STAT_ASSN_CAUSE1,
3747 "reassociation: no probe response or TX on hop"),
3748 IPW2100_ORD(STAT_ASSN_CAUSE2,
3749 "reassociation: poor tx/rx quality"),
3750 IPW2100_ORD(STAT_ASSN_CAUSE3,
3751 "reassociation: tx/rx quality (excessive AP load"),
3752 IPW2100_ORD(STAT_ASSN_CAUSE4,
3753 "reassociation: AP RSSI level"),
3754 IPW2100_ORD(STAT_ASSN_CAUSE5,
3755 "reassociations due to load leveling"),
3756 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3757 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3758 "times authentication response failed"),
3759 IPW2100_ORD(STATION_TABLE_CNT,
3760 "entries in association table"),
3761 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3762 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3763 IPW2100_ORD(COUNTRY_CODE,
3764 "IEEE country code as recv'd from beacon"),
3765 IPW2100_ORD(COUNTRY_CHANNELS,
3766 "channels supported by country"),
3767 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3768 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3769 IPW2100_ORD(ANTENNA_DIVERSITY,
3770 "TRUE if antenna diversity is disabled"),
3771 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3772 IPW2100_ORD(OUR_FREQ,
3773 "current radio freq lower digits - channel ID"),
3774 IPW2100_ORD(RTC_TIME, "current RTC time"),
3775 IPW2100_ORD(PORT_TYPE, "operating mode"),
3776 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3777 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3778 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3779 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3780 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3781 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3782 IPW2100_ORD(CAPABILITIES,
3783 "Management frame capability field"),
3784 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3785 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3786 IPW2100_ORD(RTS_THRESHOLD,
3787 "Min packet length for RTS handshaking"),
3788 IPW2100_ORD(INT_MODE, "International mode"),
3789 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3790 "protocol frag threshold"),
3791 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3792 "EEPROM offset in SRAM"),
3793 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3794 "EEPROM size in SRAM"),
3795 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3796 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3797 "EEPROM IBSS 11b channel set"),
3798 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3799 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3800 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3801 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3802 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3804 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3805 char *buf)
3807 int i;
3808 struct ipw2100_priv *priv = dev_get_drvdata(d);
3809 struct net_device *dev = priv->net_dev;
3810 char *out = buf;
3811 u32 val = 0;
3813 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3815 for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3816 read_register(dev, hw_data[i].addr, &val);
3817 out += sprintf(out, "%30s [%08X] : %08X\n",
3818 hw_data[i].name, hw_data[i].addr, val);
3821 return out - buf;
3824 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3826 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3827 char *buf)
3829 struct ipw2100_priv *priv = dev_get_drvdata(d);
3830 struct net_device *dev = priv->net_dev;
3831 char *out = buf;
3832 int i;
3834 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3836 for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3837 u8 tmp8;
3838 u16 tmp16;
3839 u32 tmp32;
3841 switch (nic_data[i].size) {
3842 case 1:
3843 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3844 out += sprintf(out, "%30s [%08X] : %02X\n",
3845 nic_data[i].name, nic_data[i].addr,
3846 tmp8);
3847 break;
3848 case 2:
3849 read_nic_word(dev, nic_data[i].addr, &tmp16);
3850 out += sprintf(out, "%30s [%08X] : %04X\n",
3851 nic_data[i].name, nic_data[i].addr,
3852 tmp16);
3853 break;
3854 case 4:
3855 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3856 out += sprintf(out, "%30s [%08X] : %08X\n",
3857 nic_data[i].name, nic_data[i].addr,
3858 tmp32);
3859 break;
3862 return out - buf;
3865 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3867 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3868 char *buf)
3870 struct ipw2100_priv *priv = dev_get_drvdata(d);
3871 struct net_device *dev = priv->net_dev;
3872 static unsigned long loop = 0;
3873 int len = 0;
3874 u32 buffer[4];
3875 int i;
3876 char line[81];
3878 if (loop >= 0x30000)
3879 loop = 0;
3881 /* sysfs provides us PAGE_SIZE buffer */
3882 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3884 if (priv->snapshot[0])
3885 for (i = 0; i < 4; i++)
3886 buffer[i] =
3887 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3888 else
3889 for (i = 0; i < 4; i++)
3890 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3892 if (priv->dump_raw)
3893 len += sprintf(buf + len,
3894 "%c%c%c%c"
3895 "%c%c%c%c"
3896 "%c%c%c%c"
3897 "%c%c%c%c",
3898 ((u8 *) buffer)[0x0],
3899 ((u8 *) buffer)[0x1],
3900 ((u8 *) buffer)[0x2],
3901 ((u8 *) buffer)[0x3],
3902 ((u8 *) buffer)[0x4],
3903 ((u8 *) buffer)[0x5],
3904 ((u8 *) buffer)[0x6],
3905 ((u8 *) buffer)[0x7],
3906 ((u8 *) buffer)[0x8],
3907 ((u8 *) buffer)[0x9],
3908 ((u8 *) buffer)[0xa],
3909 ((u8 *) buffer)[0xb],
3910 ((u8 *) buffer)[0xc],
3911 ((u8 *) buffer)[0xd],
3912 ((u8 *) buffer)[0xe],
3913 ((u8 *) buffer)[0xf]);
3914 else
3915 len += sprintf(buf + len, "%s\n",
3916 snprint_line(line, sizeof(line),
3917 (u8 *) buffer, 16, loop));
3918 loop += 16;
3921 return len;
3924 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3925 const char *buf, size_t count)
3927 struct ipw2100_priv *priv = dev_get_drvdata(d);
3928 struct net_device *dev = priv->net_dev;
3929 const char *p = buf;
3931 (void)dev; /* kill unused-var warning for debug-only code */
3933 if (count < 1)
3934 return count;
3936 if (p[0] == '1' ||
3937 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3938 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3939 dev->name);
3940 priv->dump_raw = 1;
3942 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3943 tolower(p[1]) == 'f')) {
3944 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3945 dev->name);
3946 priv->dump_raw = 0;
3948 } else if (tolower(p[0]) == 'r') {
3949 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3950 ipw2100_snapshot_free(priv);
3952 } else
3953 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3954 "reset = clear memory snapshot\n", dev->name);
3956 return count;
3959 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3961 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3962 char *buf)
3964 struct ipw2100_priv *priv = dev_get_drvdata(d);
3965 u32 val = 0;
3966 int len = 0;
3967 u32 val_len;
3968 static int loop = 0;
3970 if (priv->status & STATUS_RF_KILL_MASK)
3971 return 0;
3973 if (loop >= ARRAY_SIZE(ord_data))
3974 loop = 0;
3976 /* sysfs provides us PAGE_SIZE buffer */
3977 while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3978 val_len = sizeof(u32);
3980 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3981 &val_len))
3982 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3983 ord_data[loop].index,
3984 ord_data[loop].desc);
3985 else
3986 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3987 ord_data[loop].index, val,
3988 ord_data[loop].desc);
3989 loop++;
3992 return len;
3995 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3997 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3998 char *buf)
4000 struct ipw2100_priv *priv = dev_get_drvdata(d);
4001 char *out = buf;
4003 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4004 priv->interrupts, priv->tx_interrupts,
4005 priv->rx_interrupts, priv->inta_other);
4006 out += sprintf(out, "firmware resets: %d\n", priv->resets);
4007 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4008 #ifdef CONFIG_IPW2100_DEBUG
4009 out += sprintf(out, "packet mismatch image: %s\n",
4010 priv->snapshot[0] ? "YES" : "NO");
4011 #endif
4013 return out - buf;
4016 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4018 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4020 int err;
4022 if (mode == priv->ieee->iw_mode)
4023 return 0;
4025 err = ipw2100_disable_adapter(priv);
4026 if (err) {
4027 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4028 priv->net_dev->name, err);
4029 return err;
4032 switch (mode) {
4033 case IW_MODE_INFRA:
4034 priv->net_dev->type = ARPHRD_ETHER;
4035 break;
4036 case IW_MODE_ADHOC:
4037 priv->net_dev->type = ARPHRD_ETHER;
4038 break;
4039 #ifdef CONFIG_IPW2100_MONITOR
4040 case IW_MODE_MONITOR:
4041 priv->last_mode = priv->ieee->iw_mode;
4042 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4043 break;
4044 #endif /* CONFIG_IPW2100_MONITOR */
4047 priv->ieee->iw_mode = mode;
4049 #ifdef CONFIG_PM
4050 /* Indicate ipw2100_download_firmware download firmware
4051 * from disk instead of memory. */
4052 ipw2100_firmware.version = 0;
4053 #endif
4055 printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4056 priv->reset_backoff = 0;
4057 schedule_reset(priv);
4059 return 0;
4062 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4063 char *buf)
4065 struct ipw2100_priv *priv = dev_get_drvdata(d);
4066 int len = 0;
4068 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4070 if (priv->status & STATUS_ASSOCIATED)
4071 len += sprintf(buf + len, "connected: %lu\n",
4072 get_seconds() - priv->connect_start);
4073 else
4074 len += sprintf(buf + len, "not connected\n");
4076 DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4077 DUMP_VAR(status, "08lx");
4078 DUMP_VAR(config, "08lx");
4079 DUMP_VAR(capability, "08lx");
4081 len +=
4082 sprintf(buf + len, "last_rtc: %lu\n",
4083 (unsigned long)priv->last_rtc);
4085 DUMP_VAR(fatal_error, "d");
4086 DUMP_VAR(stop_hang_check, "d");
4087 DUMP_VAR(stop_rf_kill, "d");
4088 DUMP_VAR(messages_sent, "d");
4090 DUMP_VAR(tx_pend_stat.value, "d");
4091 DUMP_VAR(tx_pend_stat.hi, "d");
4093 DUMP_VAR(tx_free_stat.value, "d");
4094 DUMP_VAR(tx_free_stat.lo, "d");
4096 DUMP_VAR(msg_free_stat.value, "d");
4097 DUMP_VAR(msg_free_stat.lo, "d");
4099 DUMP_VAR(msg_pend_stat.value, "d");
4100 DUMP_VAR(msg_pend_stat.hi, "d");
4102 DUMP_VAR(fw_pend_stat.value, "d");
4103 DUMP_VAR(fw_pend_stat.hi, "d");
4105 DUMP_VAR(txq_stat.value, "d");
4106 DUMP_VAR(txq_stat.lo, "d");
4108 DUMP_VAR(ieee->scans, "d");
4109 DUMP_VAR(reset_backoff, "d");
4111 return len;
4114 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4116 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4117 char *buf)
4119 struct ipw2100_priv *priv = dev_get_drvdata(d);
4120 char essid[IW_ESSID_MAX_SIZE + 1];
4121 u8 bssid[ETH_ALEN];
4122 u32 chan = 0;
4123 char *out = buf;
4124 unsigned int length;
4125 int ret;
4127 if (priv->status & STATUS_RF_KILL_MASK)
4128 return 0;
4130 memset(essid, 0, sizeof(essid));
4131 memset(bssid, 0, sizeof(bssid));
4133 length = IW_ESSID_MAX_SIZE;
4134 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4135 if (ret)
4136 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4137 __LINE__);
4139 length = sizeof(bssid);
4140 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4141 bssid, &length);
4142 if (ret)
4143 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144 __LINE__);
4146 length = sizeof(u32);
4147 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4148 if (ret)
4149 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150 __LINE__);
4152 out += sprintf(out, "ESSID: %s\n", essid);
4153 out += sprintf(out, "BSSID: %pM\n", bssid);
4154 out += sprintf(out, "Channel: %d\n", chan);
4156 return out - buf;
4159 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4161 #ifdef CONFIG_IPW2100_DEBUG
4162 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4164 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4167 static ssize_t store_debug_level(struct device_driver *d,
4168 const char *buf, size_t count)
4170 u32 val;
4171 int ret;
4173 ret = kstrtou32(buf, 0, &val);
4174 if (ret)
4175 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4176 else
4177 ipw2100_debug_level = val;
4179 return strnlen(buf, count);
4182 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4183 store_debug_level);
4184 #endif /* CONFIG_IPW2100_DEBUG */
4186 static ssize_t show_fatal_error(struct device *d,
4187 struct device_attribute *attr, char *buf)
4189 struct ipw2100_priv *priv = dev_get_drvdata(d);
4190 char *out = buf;
4191 int i;
4193 if (priv->fatal_error)
4194 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195 else
4196 out += sprintf(out, "0\n");
4198 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199 if (!priv->fatal_errors[(priv->fatal_index - i) %
4200 IPW2100_ERROR_QUEUE])
4201 continue;
4203 out += sprintf(out, "%d. 0x%08X\n", i,
4204 priv->fatal_errors[(priv->fatal_index - i) %
4205 IPW2100_ERROR_QUEUE]);
4208 return out - buf;
4211 static ssize_t store_fatal_error(struct device *d,
4212 struct device_attribute *attr, const char *buf,
4213 size_t count)
4215 struct ipw2100_priv *priv = dev_get_drvdata(d);
4216 schedule_reset(priv);
4217 return count;
4220 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4221 store_fatal_error);
4223 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4224 char *buf)
4226 struct ipw2100_priv *priv = dev_get_drvdata(d);
4227 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4230 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4231 const char *buf, size_t count)
4233 struct ipw2100_priv *priv = dev_get_drvdata(d);
4234 struct net_device *dev = priv->net_dev;
4235 unsigned long val;
4236 int ret;
4238 (void)dev; /* kill unused-var warning for debug-only code */
4240 IPW_DEBUG_INFO("enter\n");
4242 ret = kstrtoul(buf, 0, &val);
4243 if (ret) {
4244 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4245 } else {
4246 priv->ieee->scan_age = val;
4247 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4250 IPW_DEBUG_INFO("exit\n");
4251 return strnlen(buf, count);
4254 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4256 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4257 char *buf)
4259 /* 0 - RF kill not enabled
4260 1 - SW based RF kill active (sysfs)
4261 2 - HW based RF kill active
4262 3 - Both HW and SW baed RF kill active */
4263 struct ipw2100_priv *priv = dev_get_drvdata(d);
4264 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4265 (rf_kill_active(priv) ? 0x2 : 0x0);
4266 return sprintf(buf, "%i\n", val);
4269 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4271 if ((disable_radio ? 1 : 0) ==
4272 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4273 return 0;
4275 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4276 disable_radio ? "OFF" : "ON");
4278 mutex_lock(&priv->action_mutex);
4280 if (disable_radio) {
4281 priv->status |= STATUS_RF_KILL_SW;
4282 ipw2100_down(priv);
4283 } else {
4284 priv->status &= ~STATUS_RF_KILL_SW;
4285 if (rf_kill_active(priv)) {
4286 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4287 "disabled by HW switch\n");
4288 /* Make sure the RF_KILL check timer is running */
4289 priv->stop_rf_kill = 0;
4290 mod_delayed_work(system_wq, &priv->rf_kill,
4291 round_jiffies_relative(HZ));
4292 } else
4293 schedule_reset(priv);
4296 mutex_unlock(&priv->action_mutex);
4297 return 1;
4300 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4301 const char *buf, size_t count)
4303 struct ipw2100_priv *priv = dev_get_drvdata(d);
4304 ipw_radio_kill_sw(priv, buf[0] == '1');
4305 return count;
4308 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4310 static struct attribute *ipw2100_sysfs_entries[] = {
4311 &dev_attr_hardware.attr,
4312 &dev_attr_registers.attr,
4313 &dev_attr_ordinals.attr,
4314 &dev_attr_pci.attr,
4315 &dev_attr_stats.attr,
4316 &dev_attr_internals.attr,
4317 &dev_attr_bssinfo.attr,
4318 &dev_attr_memory.attr,
4319 &dev_attr_scan_age.attr,
4320 &dev_attr_fatal_error.attr,
4321 &dev_attr_rf_kill.attr,
4322 &dev_attr_cfg.attr,
4323 &dev_attr_status.attr,
4324 &dev_attr_capability.attr,
4325 NULL,
4328 static struct attribute_group ipw2100_attribute_group = {
4329 .attrs = ipw2100_sysfs_entries,
4332 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4334 struct ipw2100_status_queue *q = &priv->status_queue;
4336 IPW_DEBUG_INFO("enter\n");
4338 q->size = entries * sizeof(struct ipw2100_status);
4339 q->drv =
4340 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4341 q->size, &q->nic);
4342 if (!q->drv) {
4343 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4344 return -ENOMEM;
4347 memset(q->drv, 0, q->size);
4349 IPW_DEBUG_INFO("exit\n");
4351 return 0;
4354 static void status_queue_free(struct ipw2100_priv *priv)
4356 IPW_DEBUG_INFO("enter\n");
4358 if (priv->status_queue.drv) {
4359 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4360 priv->status_queue.drv,
4361 priv->status_queue.nic);
4362 priv->status_queue.drv = NULL;
4365 IPW_DEBUG_INFO("exit\n");
4368 static int bd_queue_allocate(struct ipw2100_priv *priv,
4369 struct ipw2100_bd_queue *q, int entries)
4371 IPW_DEBUG_INFO("enter\n");
4373 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4375 q->entries = entries;
4376 q->size = entries * sizeof(struct ipw2100_bd);
4377 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4378 if (!q->drv) {
4379 IPW_DEBUG_INFO
4380 ("can't allocate shared memory for buffer descriptors\n");
4381 return -ENOMEM;
4383 memset(q->drv, 0, q->size);
4385 IPW_DEBUG_INFO("exit\n");
4387 return 0;
4390 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4392 IPW_DEBUG_INFO("enter\n");
4394 if (!q)
4395 return;
4397 if (q->drv) {
4398 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4399 q->drv = NULL;
4402 IPW_DEBUG_INFO("exit\n");
4405 static void bd_queue_initialize(struct ipw2100_priv *priv,
4406 struct ipw2100_bd_queue *q, u32 base, u32 size,
4407 u32 r, u32 w)
4409 IPW_DEBUG_INFO("enter\n");
4411 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4412 (u32) q->nic);
4414 write_register(priv->net_dev, base, q->nic);
4415 write_register(priv->net_dev, size, q->entries);
4416 write_register(priv->net_dev, r, q->oldest);
4417 write_register(priv->net_dev, w, q->next);
4419 IPW_DEBUG_INFO("exit\n");
4422 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4424 priv->stop_rf_kill = 1;
4425 priv->stop_hang_check = 1;
4426 cancel_delayed_work_sync(&priv->reset_work);
4427 cancel_delayed_work_sync(&priv->security_work);
4428 cancel_delayed_work_sync(&priv->wx_event_work);
4429 cancel_delayed_work_sync(&priv->hang_check);
4430 cancel_delayed_work_sync(&priv->rf_kill);
4431 cancel_delayed_work_sync(&priv->scan_event);
4434 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4436 int i, j, err = -EINVAL;
4437 void *v;
4438 dma_addr_t p;
4440 IPW_DEBUG_INFO("enter\n");
4442 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4443 if (err) {
4444 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4445 priv->net_dev->name);
4446 return err;
4449 priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4450 sizeof(struct ipw2100_tx_packet),
4451 GFP_ATOMIC);
4452 if (!priv->tx_buffers) {
4453 bd_queue_free(priv, &priv->tx_queue);
4454 return -ENOMEM;
4457 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458 v = pci_alloc_consistent(priv->pci_dev,
4459 sizeof(struct ipw2100_data_header),
4460 &p);
4461 if (!v) {
4462 printk(KERN_ERR DRV_NAME
4463 ": %s: PCI alloc failed for tx " "buffers.\n",
4464 priv->net_dev->name);
4465 err = -ENOMEM;
4466 break;
4469 priv->tx_buffers[i].type = DATA;
4470 priv->tx_buffers[i].info.d_struct.data =
4471 (struct ipw2100_data_header *)v;
4472 priv->tx_buffers[i].info.d_struct.data_phys = p;
4473 priv->tx_buffers[i].info.d_struct.txb = NULL;
4476 if (i == TX_PENDED_QUEUE_LENGTH)
4477 return 0;
4479 for (j = 0; j < i; j++) {
4480 pci_free_consistent(priv->pci_dev,
4481 sizeof(struct ipw2100_data_header),
4482 priv->tx_buffers[j].info.d_struct.data,
4483 priv->tx_buffers[j].info.d_struct.
4484 data_phys);
4487 kfree(priv->tx_buffers);
4488 priv->tx_buffers = NULL;
4490 return err;
4493 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4495 int i;
4497 IPW_DEBUG_INFO("enter\n");
4500 * reinitialize packet info lists
4502 INIT_LIST_HEAD(&priv->fw_pend_list);
4503 INIT_STAT(&priv->fw_pend_stat);
4506 * reinitialize lists
4508 INIT_LIST_HEAD(&priv->tx_pend_list);
4509 INIT_LIST_HEAD(&priv->tx_free_list);
4510 INIT_STAT(&priv->tx_pend_stat);
4511 INIT_STAT(&priv->tx_free_stat);
4513 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4514 /* We simply drop any SKBs that have been queued for
4515 * transmit */
4516 if (priv->tx_buffers[i].info.d_struct.txb) {
4517 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4518 txb);
4519 priv->tx_buffers[i].info.d_struct.txb = NULL;
4522 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4525 SET_STAT(&priv->tx_free_stat, i);
4527 priv->tx_queue.oldest = 0;
4528 priv->tx_queue.available = priv->tx_queue.entries;
4529 priv->tx_queue.next = 0;
4530 INIT_STAT(&priv->txq_stat);
4531 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4533 bd_queue_initialize(priv, &priv->tx_queue,
4534 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4535 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4536 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4537 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4539 IPW_DEBUG_INFO("exit\n");
4543 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4545 int i;
4547 IPW_DEBUG_INFO("enter\n");
4549 bd_queue_free(priv, &priv->tx_queue);
4551 if (!priv->tx_buffers)
4552 return;
4554 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4555 if (priv->tx_buffers[i].info.d_struct.txb) {
4556 libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4557 txb);
4558 priv->tx_buffers[i].info.d_struct.txb = NULL;
4560 if (priv->tx_buffers[i].info.d_struct.data)
4561 pci_free_consistent(priv->pci_dev,
4562 sizeof(struct ipw2100_data_header),
4563 priv->tx_buffers[i].info.d_struct.
4564 data,
4565 priv->tx_buffers[i].info.d_struct.
4566 data_phys);
4569 kfree(priv->tx_buffers);
4570 priv->tx_buffers = NULL;
4572 IPW_DEBUG_INFO("exit\n");
4575 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4577 int i, j, err = -EINVAL;
4579 IPW_DEBUG_INFO("enter\n");
4581 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4582 if (err) {
4583 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4584 return err;
4587 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4588 if (err) {
4589 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4590 bd_queue_free(priv, &priv->rx_queue);
4591 return err;
4595 * allocate packets
4597 priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4598 sizeof(struct ipw2100_rx_packet),
4599 GFP_KERNEL);
4600 if (!priv->rx_buffers) {
4601 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4603 bd_queue_free(priv, &priv->rx_queue);
4605 status_queue_free(priv);
4607 return -ENOMEM;
4610 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4611 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4613 err = ipw2100_alloc_skb(priv, packet);
4614 if (unlikely(err)) {
4615 err = -ENOMEM;
4616 break;
4619 /* The BD holds the cache aligned address */
4620 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4621 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4622 priv->status_queue.drv[i].status_fields = 0;
4625 if (i == RX_QUEUE_LENGTH)
4626 return 0;
4628 for (j = 0; j < i; j++) {
4629 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4630 sizeof(struct ipw2100_rx_packet),
4631 PCI_DMA_FROMDEVICE);
4632 dev_kfree_skb(priv->rx_buffers[j].skb);
4635 kfree(priv->rx_buffers);
4636 priv->rx_buffers = NULL;
4638 bd_queue_free(priv, &priv->rx_queue);
4640 status_queue_free(priv);
4642 return err;
4645 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4647 IPW_DEBUG_INFO("enter\n");
4649 priv->rx_queue.oldest = 0;
4650 priv->rx_queue.available = priv->rx_queue.entries - 1;
4651 priv->rx_queue.next = priv->rx_queue.entries - 1;
4653 INIT_STAT(&priv->rxq_stat);
4654 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4656 bd_queue_initialize(priv, &priv->rx_queue,
4657 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4658 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4659 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4660 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4662 /* set up the status queue */
4663 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4664 priv->status_queue.nic);
4666 IPW_DEBUG_INFO("exit\n");
4669 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4671 int i;
4673 IPW_DEBUG_INFO("enter\n");
4675 bd_queue_free(priv, &priv->rx_queue);
4676 status_queue_free(priv);
4678 if (!priv->rx_buffers)
4679 return;
4681 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4682 if (priv->rx_buffers[i].rxp) {
4683 pci_unmap_single(priv->pci_dev,
4684 priv->rx_buffers[i].dma_addr,
4685 sizeof(struct ipw2100_rx),
4686 PCI_DMA_FROMDEVICE);
4687 dev_kfree_skb(priv->rx_buffers[i].skb);
4691 kfree(priv->rx_buffers);
4692 priv->rx_buffers = NULL;
4694 IPW_DEBUG_INFO("exit\n");
4697 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4699 u32 length = ETH_ALEN;
4700 u8 addr[ETH_ALEN];
4702 int err;
4704 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4705 if (err) {
4706 IPW_DEBUG_INFO("MAC address read failed\n");
4707 return -EIO;
4710 memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4711 IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4713 return 0;
4716 /********************************************************************
4718 * Firmware Commands
4720 ********************************************************************/
4722 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4724 struct host_command cmd = {
4725 .host_command = ADAPTER_ADDRESS,
4726 .host_command_sequence = 0,
4727 .host_command_length = ETH_ALEN
4729 int err;
4731 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4733 IPW_DEBUG_INFO("enter\n");
4735 if (priv->config & CFG_CUSTOM_MAC) {
4736 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4737 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4738 } else
4739 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4740 ETH_ALEN);
4742 err = ipw2100_hw_send_command(priv, &cmd);
4744 IPW_DEBUG_INFO("exit\n");
4745 return err;
4748 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4749 int batch_mode)
4751 struct host_command cmd = {
4752 .host_command = PORT_TYPE,
4753 .host_command_sequence = 0,
4754 .host_command_length = sizeof(u32)
4756 int err;
4758 switch (port_type) {
4759 case IW_MODE_INFRA:
4760 cmd.host_command_parameters[0] = IPW_BSS;
4761 break;
4762 case IW_MODE_ADHOC:
4763 cmd.host_command_parameters[0] = IPW_IBSS;
4764 break;
4767 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4768 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4770 if (!batch_mode) {
4771 err = ipw2100_disable_adapter(priv);
4772 if (err) {
4773 printk(KERN_ERR DRV_NAME
4774 ": %s: Could not disable adapter %d\n",
4775 priv->net_dev->name, err);
4776 return err;
4780 /* send cmd to firmware */
4781 err = ipw2100_hw_send_command(priv, &cmd);
4783 if (!batch_mode)
4784 ipw2100_enable_adapter(priv);
4786 return err;
4789 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4790 int batch_mode)
4792 struct host_command cmd = {
4793 .host_command = CHANNEL,
4794 .host_command_sequence = 0,
4795 .host_command_length = sizeof(u32)
4797 int err;
4799 cmd.host_command_parameters[0] = channel;
4801 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4803 /* If BSS then we don't support channel selection */
4804 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4805 return 0;
4807 if ((channel != 0) &&
4808 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4809 return -EINVAL;
4811 if (!batch_mode) {
4812 err = ipw2100_disable_adapter(priv);
4813 if (err)
4814 return err;
4817 err = ipw2100_hw_send_command(priv, &cmd);
4818 if (err) {
4819 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4820 return err;
4823 if (channel)
4824 priv->config |= CFG_STATIC_CHANNEL;
4825 else
4826 priv->config &= ~CFG_STATIC_CHANNEL;
4828 priv->channel = channel;
4830 if (!batch_mode) {
4831 err = ipw2100_enable_adapter(priv);
4832 if (err)
4833 return err;
4836 return 0;
4839 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4841 struct host_command cmd = {
4842 .host_command = SYSTEM_CONFIG,
4843 .host_command_sequence = 0,
4844 .host_command_length = 12,
4846 u32 ibss_mask, len = sizeof(u32);
4847 int err;
4849 /* Set system configuration */
4851 if (!batch_mode) {
4852 err = ipw2100_disable_adapter(priv);
4853 if (err)
4854 return err;
4857 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4858 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4860 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4861 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4863 if (!(priv->config & CFG_LONG_PREAMBLE))
4864 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4866 err = ipw2100_get_ordinal(priv,
4867 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4868 &ibss_mask, &len);
4869 if (err)
4870 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4872 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4873 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4875 /* 11b only */
4876 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4878 err = ipw2100_hw_send_command(priv, &cmd);
4879 if (err)
4880 return err;
4882 /* If IPv6 is configured in the kernel then we don't want to filter out all
4883 * of the multicast packets as IPv6 needs some. */
4884 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4885 cmd.host_command = ADD_MULTICAST;
4886 cmd.host_command_sequence = 0;
4887 cmd.host_command_length = 0;
4889 ipw2100_hw_send_command(priv, &cmd);
4890 #endif
4891 if (!batch_mode) {
4892 err = ipw2100_enable_adapter(priv);
4893 if (err)
4894 return err;
4897 return 0;
4900 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4901 int batch_mode)
4903 struct host_command cmd = {
4904 .host_command = BASIC_TX_RATES,
4905 .host_command_sequence = 0,
4906 .host_command_length = 4
4908 int err;
4910 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4912 if (!batch_mode) {
4913 err = ipw2100_disable_adapter(priv);
4914 if (err)
4915 return err;
4918 /* Set BASIC TX Rate first */
4919 ipw2100_hw_send_command(priv, &cmd);
4921 /* Set TX Rate */
4922 cmd.host_command = TX_RATES;
4923 ipw2100_hw_send_command(priv, &cmd);
4925 /* Set MSDU TX Rate */
4926 cmd.host_command = MSDU_TX_RATES;
4927 ipw2100_hw_send_command(priv, &cmd);
4929 if (!batch_mode) {
4930 err = ipw2100_enable_adapter(priv);
4931 if (err)
4932 return err;
4935 priv->tx_rates = rate;
4937 return 0;
4940 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4942 struct host_command cmd = {
4943 .host_command = POWER_MODE,
4944 .host_command_sequence = 0,
4945 .host_command_length = 4
4947 int err;
4949 cmd.host_command_parameters[0] = power_level;
4951 err = ipw2100_hw_send_command(priv, &cmd);
4952 if (err)
4953 return err;
4955 if (power_level == IPW_POWER_MODE_CAM)
4956 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4957 else
4958 priv->power_mode = IPW_POWER_ENABLED | power_level;
4960 #ifdef IPW2100_TX_POWER
4961 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4962 /* Set beacon interval */
4963 cmd.host_command = TX_POWER_INDEX;
4964 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4966 err = ipw2100_hw_send_command(priv, &cmd);
4967 if (err)
4968 return err;
4970 #endif
4972 return 0;
4975 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4977 struct host_command cmd = {
4978 .host_command = RTS_THRESHOLD,
4979 .host_command_sequence = 0,
4980 .host_command_length = 4
4982 int err;
4984 if (threshold & RTS_DISABLED)
4985 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4986 else
4987 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4989 err = ipw2100_hw_send_command(priv, &cmd);
4990 if (err)
4991 return err;
4993 priv->rts_threshold = threshold;
4995 return 0;
4998 #if 0
4999 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5000 u32 threshold, int batch_mode)
5002 struct host_command cmd = {
5003 .host_command = FRAG_THRESHOLD,
5004 .host_command_sequence = 0,
5005 .host_command_length = 4,
5006 .host_command_parameters[0] = 0,
5008 int err;
5010 if (!batch_mode) {
5011 err = ipw2100_disable_adapter(priv);
5012 if (err)
5013 return err;
5016 if (threshold == 0)
5017 threshold = DEFAULT_FRAG_THRESHOLD;
5018 else {
5019 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5020 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5023 cmd.host_command_parameters[0] = threshold;
5025 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5027 err = ipw2100_hw_send_command(priv, &cmd);
5029 if (!batch_mode)
5030 ipw2100_enable_adapter(priv);
5032 if (!err)
5033 priv->frag_threshold = threshold;
5035 return err;
5037 #endif
5039 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5041 struct host_command cmd = {
5042 .host_command = SHORT_RETRY_LIMIT,
5043 .host_command_sequence = 0,
5044 .host_command_length = 4
5046 int err;
5048 cmd.host_command_parameters[0] = retry;
5050 err = ipw2100_hw_send_command(priv, &cmd);
5051 if (err)
5052 return err;
5054 priv->short_retry_limit = retry;
5056 return 0;
5059 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5061 struct host_command cmd = {
5062 .host_command = LONG_RETRY_LIMIT,
5063 .host_command_sequence = 0,
5064 .host_command_length = 4
5066 int err;
5068 cmd.host_command_parameters[0] = retry;
5070 err = ipw2100_hw_send_command(priv, &cmd);
5071 if (err)
5072 return err;
5074 priv->long_retry_limit = retry;
5076 return 0;
5079 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5080 int batch_mode)
5082 struct host_command cmd = {
5083 .host_command = MANDATORY_BSSID,
5084 .host_command_sequence = 0,
5085 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5087 int err;
5089 #ifdef CONFIG_IPW2100_DEBUG
5090 if (bssid != NULL)
5091 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5092 else
5093 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5094 #endif
5095 /* if BSSID is empty then we disable mandatory bssid mode */
5096 if (bssid != NULL)
5097 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5099 if (!batch_mode) {
5100 err = ipw2100_disable_adapter(priv);
5101 if (err)
5102 return err;
5105 err = ipw2100_hw_send_command(priv, &cmd);
5107 if (!batch_mode)
5108 ipw2100_enable_adapter(priv);
5110 return err;
5113 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5115 struct host_command cmd = {
5116 .host_command = DISASSOCIATION_BSSID,
5117 .host_command_sequence = 0,
5118 .host_command_length = ETH_ALEN
5120 int err;
5121 int len;
5123 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5125 len = ETH_ALEN;
5126 /* The Firmware currently ignores the BSSID and just disassociates from
5127 * the currently associated AP -- but in the off chance that a future
5128 * firmware does use the BSSID provided here, we go ahead and try and
5129 * set it to the currently associated AP's BSSID */
5130 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5132 err = ipw2100_hw_send_command(priv, &cmd);
5134 return err;
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5138 struct ipw2100_wpa_assoc_frame *, int)
5139 __attribute__ ((unused));
5141 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5142 struct ipw2100_wpa_assoc_frame *wpa_frame,
5143 int batch_mode)
5145 struct host_command cmd = {
5146 .host_command = SET_WPA_IE,
5147 .host_command_sequence = 0,
5148 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5150 int err;
5152 IPW_DEBUG_HC("SET_WPA_IE\n");
5154 if (!batch_mode) {
5155 err = ipw2100_disable_adapter(priv);
5156 if (err)
5157 return err;
5160 memcpy(cmd.host_command_parameters, wpa_frame,
5161 sizeof(struct ipw2100_wpa_assoc_frame));
5163 err = ipw2100_hw_send_command(priv, &cmd);
5165 if (!batch_mode) {
5166 if (ipw2100_enable_adapter(priv))
5167 err = -EIO;
5170 return err;
5173 struct security_info_params {
5174 u32 allowed_ciphers;
5175 u16 version;
5176 u8 auth_mode;
5177 u8 replay_counters_number;
5178 u8 unicast_using_group;
5179 } __packed;
5181 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5182 int auth_mode,
5183 int security_level,
5184 int unicast_using_group,
5185 int batch_mode)
5187 struct host_command cmd = {
5188 .host_command = SET_SECURITY_INFORMATION,
5189 .host_command_sequence = 0,
5190 .host_command_length = sizeof(struct security_info_params)
5192 struct security_info_params *security =
5193 (struct security_info_params *)&cmd.host_command_parameters;
5194 int err;
5195 memset(security, 0, sizeof(*security));
5197 /* If shared key AP authentication is turned on, then we need to
5198 * configure the firmware to try and use it.
5200 * Actual data encryption/decryption is handled by the host. */
5201 security->auth_mode = auth_mode;
5202 security->unicast_using_group = unicast_using_group;
5204 switch (security_level) {
5205 default:
5206 case SEC_LEVEL_0:
5207 security->allowed_ciphers = IPW_NONE_CIPHER;
5208 break;
5209 case SEC_LEVEL_1:
5210 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211 IPW_WEP104_CIPHER;
5212 break;
5213 case SEC_LEVEL_2:
5214 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5216 break;
5217 case SEC_LEVEL_2_CKIP:
5218 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5220 break;
5221 case SEC_LEVEL_3:
5222 security->allowed_ciphers = IPW_WEP40_CIPHER |
5223 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5224 break;
5227 IPW_DEBUG_HC
5228 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5229 security->auth_mode, security->allowed_ciphers, security_level);
5231 security->replay_counters_number = 0;
5233 if (!batch_mode) {
5234 err = ipw2100_disable_adapter(priv);
5235 if (err)
5236 return err;
5239 err = ipw2100_hw_send_command(priv, &cmd);
5241 if (!batch_mode)
5242 ipw2100_enable_adapter(priv);
5244 return err;
5247 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5249 struct host_command cmd = {
5250 .host_command = TX_POWER_INDEX,
5251 .host_command_sequence = 0,
5252 .host_command_length = 4
5254 int err = 0;
5255 u32 tmp = tx_power;
5257 if (tx_power != IPW_TX_POWER_DEFAULT)
5258 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5259 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5261 cmd.host_command_parameters[0] = tmp;
5263 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5264 err = ipw2100_hw_send_command(priv, &cmd);
5265 if (!err)
5266 priv->tx_power = tx_power;
5268 return 0;
5271 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5272 u32 interval, int batch_mode)
5274 struct host_command cmd = {
5275 .host_command = BEACON_INTERVAL,
5276 .host_command_sequence = 0,
5277 .host_command_length = 4
5279 int err;
5281 cmd.host_command_parameters[0] = interval;
5283 IPW_DEBUG_INFO("enter\n");
5285 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5286 if (!batch_mode) {
5287 err = ipw2100_disable_adapter(priv);
5288 if (err)
5289 return err;
5292 ipw2100_hw_send_command(priv, &cmd);
5294 if (!batch_mode) {
5295 err = ipw2100_enable_adapter(priv);
5296 if (err)
5297 return err;
5301 IPW_DEBUG_INFO("exit\n");
5303 return 0;
5306 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5308 ipw2100_tx_initialize(priv);
5309 ipw2100_rx_initialize(priv);
5310 ipw2100_msg_initialize(priv);
5313 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5315 ipw2100_tx_free(priv);
5316 ipw2100_rx_free(priv);
5317 ipw2100_msg_free(priv);
5320 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5322 if (ipw2100_tx_allocate(priv) ||
5323 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5324 goto fail;
5326 return 0;
5328 fail:
5329 ipw2100_tx_free(priv);
5330 ipw2100_rx_free(priv);
5331 ipw2100_msg_free(priv);
5332 return -ENOMEM;
5335 #define IPW_PRIVACY_CAPABLE 0x0008
5337 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5338 int batch_mode)
5340 struct host_command cmd = {
5341 .host_command = WEP_FLAGS,
5342 .host_command_sequence = 0,
5343 .host_command_length = 4
5345 int err;
5347 cmd.host_command_parameters[0] = flags;
5349 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5351 if (!batch_mode) {
5352 err = ipw2100_disable_adapter(priv);
5353 if (err) {
5354 printk(KERN_ERR DRV_NAME
5355 ": %s: Could not disable adapter %d\n",
5356 priv->net_dev->name, err);
5357 return err;
5361 /* send cmd to firmware */
5362 err = ipw2100_hw_send_command(priv, &cmd);
5364 if (!batch_mode)
5365 ipw2100_enable_adapter(priv);
5367 return err;
5370 struct ipw2100_wep_key {
5371 u8 idx;
5372 u8 len;
5373 u8 key[13];
5376 /* Macros to ease up priting WEP keys */
5377 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5378 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5379 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5380 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5383 * Set a the wep key
5385 * @priv: struct to work on
5386 * @idx: index of the key we want to set
5387 * @key: ptr to the key data to set
5388 * @len: length of the buffer at @key
5389 * @batch_mode: FIXME perform the operation in batch mode, not
5390 * disabling the device.
5392 * @returns 0 if OK, < 0 errno code on error.
5394 * Fill out a command structure with the new wep key, length an
5395 * index and send it down the wire.
5397 static int ipw2100_set_key(struct ipw2100_priv *priv,
5398 int idx, char *key, int len, int batch_mode)
5400 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5401 struct host_command cmd = {
5402 .host_command = WEP_KEY_INFO,
5403 .host_command_sequence = 0,
5404 .host_command_length = sizeof(struct ipw2100_wep_key),
5406 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5407 int err;
5409 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5410 idx, keylen, len);
5412 /* NOTE: We don't check cached values in case the firmware was reset
5413 * or some other problem is occurring. If the user is setting the key,
5414 * then we push the change */
5416 wep_key->idx = idx;
5417 wep_key->len = keylen;
5419 if (keylen) {
5420 memcpy(wep_key->key, key, len);
5421 memset(wep_key->key + len, 0, keylen - len);
5424 /* Will be optimized out on debug not being configured in */
5425 if (keylen == 0)
5426 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5427 priv->net_dev->name, wep_key->idx);
5428 else if (keylen == 5)
5429 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5430 priv->net_dev->name, wep_key->idx, wep_key->len,
5431 WEP_STR_64(wep_key->key));
5432 else
5433 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5434 "\n",
5435 priv->net_dev->name, wep_key->idx, wep_key->len,
5436 WEP_STR_128(wep_key->key));
5438 if (!batch_mode) {
5439 err = ipw2100_disable_adapter(priv);
5440 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5441 if (err) {
5442 printk(KERN_ERR DRV_NAME
5443 ": %s: Could not disable adapter %d\n",
5444 priv->net_dev->name, err);
5445 return err;
5449 /* send cmd to firmware */
5450 err = ipw2100_hw_send_command(priv, &cmd);
5452 if (!batch_mode) {
5453 int err2 = ipw2100_enable_adapter(priv);
5454 if (err == 0)
5455 err = err2;
5457 return err;
5460 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5461 int idx, int batch_mode)
5463 struct host_command cmd = {
5464 .host_command = WEP_KEY_INDEX,
5465 .host_command_sequence = 0,
5466 .host_command_length = 4,
5467 .host_command_parameters = {idx},
5469 int err;
5471 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5473 if (idx < 0 || idx > 3)
5474 return -EINVAL;
5476 if (!batch_mode) {
5477 err = ipw2100_disable_adapter(priv);
5478 if (err) {
5479 printk(KERN_ERR DRV_NAME
5480 ": %s: Could not disable adapter %d\n",
5481 priv->net_dev->name, err);
5482 return err;
5486 /* send cmd to firmware */
5487 err = ipw2100_hw_send_command(priv, &cmd);
5489 if (!batch_mode)
5490 ipw2100_enable_adapter(priv);
5492 return err;
5495 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5497 int i, err, auth_mode, sec_level, use_group;
5499 if (!(priv->status & STATUS_RUNNING))
5500 return 0;
5502 if (!batch_mode) {
5503 err = ipw2100_disable_adapter(priv);
5504 if (err)
5505 return err;
5508 if (!priv->ieee->sec.enabled) {
5509 err =
5510 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5511 SEC_LEVEL_0, 0, 1);
5512 } else {
5513 auth_mode = IPW_AUTH_OPEN;
5514 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5515 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5516 auth_mode = IPW_AUTH_SHARED;
5517 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5518 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5521 sec_level = SEC_LEVEL_0;
5522 if (priv->ieee->sec.flags & SEC_LEVEL)
5523 sec_level = priv->ieee->sec.level;
5525 use_group = 0;
5526 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5527 use_group = priv->ieee->sec.unicast_uses_group;
5529 err =
5530 ipw2100_set_security_information(priv, auth_mode, sec_level,
5531 use_group, 1);
5534 if (err)
5535 goto exit;
5537 if (priv->ieee->sec.enabled) {
5538 for (i = 0; i < 4; i++) {
5539 if (!(priv->ieee->sec.flags & (1 << i))) {
5540 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5541 priv->ieee->sec.key_sizes[i] = 0;
5542 } else {
5543 err = ipw2100_set_key(priv, i,
5544 priv->ieee->sec.keys[i],
5545 priv->ieee->sec.
5546 key_sizes[i], 1);
5547 if (err)
5548 goto exit;
5552 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5555 /* Always enable privacy so the Host can filter WEP packets if
5556 * encrypted data is sent up */
5557 err =
5558 ipw2100_set_wep_flags(priv,
5559 priv->ieee->sec.
5560 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5561 if (err)
5562 goto exit;
5564 priv->status &= ~STATUS_SECURITY_UPDATED;
5566 exit:
5567 if (!batch_mode)
5568 ipw2100_enable_adapter(priv);
5570 return err;
5573 static void ipw2100_security_work(struct work_struct *work)
5575 struct ipw2100_priv *priv =
5576 container_of(work, struct ipw2100_priv, security_work.work);
5578 /* If we happen to have reconnected before we get a chance to
5579 * process this, then update the security settings--which causes
5580 * a disassociation to occur */
5581 if (!(priv->status & STATUS_ASSOCIATED) &&
5582 priv->status & STATUS_SECURITY_UPDATED)
5583 ipw2100_configure_security(priv, 0);
5586 static void shim__set_security(struct net_device *dev,
5587 struct libipw_security *sec)
5589 struct ipw2100_priv *priv = libipw_priv(dev);
5590 int i, force_update = 0;
5592 mutex_lock(&priv->action_mutex);
5593 if (!(priv->status & STATUS_INITIALIZED))
5594 goto done;
5596 for (i = 0; i < 4; i++) {
5597 if (sec->flags & (1 << i)) {
5598 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5599 if (sec->key_sizes[i] == 0)
5600 priv->ieee->sec.flags &= ~(1 << i);
5601 else
5602 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5603 sec->key_sizes[i]);
5604 if (sec->level == SEC_LEVEL_1) {
5605 priv->ieee->sec.flags |= (1 << i);
5606 priv->status |= STATUS_SECURITY_UPDATED;
5607 } else
5608 priv->ieee->sec.flags &= ~(1 << i);
5612 if ((sec->flags & SEC_ACTIVE_KEY) &&
5613 priv->ieee->sec.active_key != sec->active_key) {
5614 if (sec->active_key <= 3) {
5615 priv->ieee->sec.active_key = sec->active_key;
5616 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5617 } else
5618 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5620 priv->status |= STATUS_SECURITY_UPDATED;
5623 if ((sec->flags & SEC_AUTH_MODE) &&
5624 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5625 priv->ieee->sec.auth_mode = sec->auth_mode;
5626 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5627 priv->status |= STATUS_SECURITY_UPDATED;
5630 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5631 priv->ieee->sec.flags |= SEC_ENABLED;
5632 priv->ieee->sec.enabled = sec->enabled;
5633 priv->status |= STATUS_SECURITY_UPDATED;
5634 force_update = 1;
5637 if (sec->flags & SEC_ENCRYPT)
5638 priv->ieee->sec.encrypt = sec->encrypt;
5640 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5641 priv->ieee->sec.level = sec->level;
5642 priv->ieee->sec.flags |= SEC_LEVEL;
5643 priv->status |= STATUS_SECURITY_UPDATED;
5646 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5647 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5648 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5649 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5650 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5651 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5652 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5653 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5654 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5655 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5657 /* As a temporary work around to enable WPA until we figure out why
5658 * wpa_supplicant toggles the security capability of the driver, which
5659 * forces a disassocation with force_update...
5661 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5662 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5663 ipw2100_configure_security(priv, 0);
5664 done:
5665 mutex_unlock(&priv->action_mutex);
5668 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5670 int err;
5671 int batch_mode = 1;
5672 u8 *bssid;
5674 IPW_DEBUG_INFO("enter\n");
5676 err = ipw2100_disable_adapter(priv);
5677 if (err)
5678 return err;
5679 #ifdef CONFIG_IPW2100_MONITOR
5680 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5681 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5682 if (err)
5683 return err;
5685 IPW_DEBUG_INFO("exit\n");
5687 return 0;
5689 #endif /* CONFIG_IPW2100_MONITOR */
5691 err = ipw2100_read_mac_address(priv);
5692 if (err)
5693 return -EIO;
5695 err = ipw2100_set_mac_address(priv, batch_mode);
5696 if (err)
5697 return err;
5699 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5700 if (err)
5701 return err;
5703 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5705 if (err)
5706 return err;
5709 err = ipw2100_system_config(priv, batch_mode);
5710 if (err)
5711 return err;
5713 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5714 if (err)
5715 return err;
5717 /* Default to power mode OFF */
5718 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5719 if (err)
5720 return err;
5722 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5723 if (err)
5724 return err;
5726 if (priv->config & CFG_STATIC_BSSID)
5727 bssid = priv->bssid;
5728 else
5729 bssid = NULL;
5730 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5731 if (err)
5732 return err;
5734 if (priv->config & CFG_STATIC_ESSID)
5735 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5736 batch_mode);
5737 else
5738 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5739 if (err)
5740 return err;
5742 err = ipw2100_configure_security(priv, batch_mode);
5743 if (err)
5744 return err;
5746 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5747 err =
5748 ipw2100_set_ibss_beacon_interval(priv,
5749 priv->beacon_interval,
5750 batch_mode);
5751 if (err)
5752 return err;
5754 err = ipw2100_set_tx_power(priv, priv->tx_power);
5755 if (err)
5756 return err;
5760 err = ipw2100_set_fragmentation_threshold(
5761 priv, priv->frag_threshold, batch_mode);
5762 if (err)
5763 return err;
5766 IPW_DEBUG_INFO("exit\n");
5768 return 0;
5771 /*************************************************************************
5773 * EXTERNALLY CALLED METHODS
5775 *************************************************************************/
5777 /* This method is called by the network layer -- not to be confused with
5778 * ipw2100_set_mac_address() declared above called by this driver (and this
5779 * method as well) to talk to the firmware */
5780 static int ipw2100_set_address(struct net_device *dev, void *p)
5782 struct ipw2100_priv *priv = libipw_priv(dev);
5783 struct sockaddr *addr = p;
5784 int err = 0;
5786 if (!is_valid_ether_addr(addr->sa_data))
5787 return -EADDRNOTAVAIL;
5789 mutex_lock(&priv->action_mutex);
5791 priv->config |= CFG_CUSTOM_MAC;
5792 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5794 err = ipw2100_set_mac_address(priv, 0);
5795 if (err)
5796 goto done;
5798 priv->reset_backoff = 0;
5799 mutex_unlock(&priv->action_mutex);
5800 ipw2100_reset_adapter(&priv->reset_work.work);
5801 return 0;
5803 done:
5804 mutex_unlock(&priv->action_mutex);
5805 return err;
5808 static int ipw2100_open(struct net_device *dev)
5810 struct ipw2100_priv *priv = libipw_priv(dev);
5811 unsigned long flags;
5812 IPW_DEBUG_INFO("dev->open\n");
5814 spin_lock_irqsave(&priv->low_lock, flags);
5815 if (priv->status & STATUS_ASSOCIATED) {
5816 netif_carrier_on(dev);
5817 netif_start_queue(dev);
5819 spin_unlock_irqrestore(&priv->low_lock, flags);
5821 return 0;
5824 static int ipw2100_close(struct net_device *dev)
5826 struct ipw2100_priv *priv = libipw_priv(dev);
5827 unsigned long flags;
5828 struct list_head *element;
5829 struct ipw2100_tx_packet *packet;
5831 IPW_DEBUG_INFO("enter\n");
5833 spin_lock_irqsave(&priv->low_lock, flags);
5835 if (priv->status & STATUS_ASSOCIATED)
5836 netif_carrier_off(dev);
5837 netif_stop_queue(dev);
5839 /* Flush the TX queue ... */
5840 while (!list_empty(&priv->tx_pend_list)) {
5841 element = priv->tx_pend_list.next;
5842 packet = list_entry(element, struct ipw2100_tx_packet, list);
5844 list_del(element);
5845 DEC_STAT(&priv->tx_pend_stat);
5847 libipw_txb_free(packet->info.d_struct.txb);
5848 packet->info.d_struct.txb = NULL;
5850 list_add_tail(element, &priv->tx_free_list);
5851 INC_STAT(&priv->tx_free_stat);
5853 spin_unlock_irqrestore(&priv->low_lock, flags);
5855 IPW_DEBUG_INFO("exit\n");
5857 return 0;
5861 * TODO: Fix this function... its just wrong
5863 static void ipw2100_tx_timeout(struct net_device *dev)
5865 struct ipw2100_priv *priv = libipw_priv(dev);
5867 dev->stats.tx_errors++;
5869 #ifdef CONFIG_IPW2100_MONITOR
5870 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5871 return;
5872 #endif
5874 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5875 dev->name);
5876 schedule_reset(priv);
5879 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5881 /* This is called when wpa_supplicant loads and closes the driver
5882 * interface. */
5883 priv->ieee->wpa_enabled = value;
5884 return 0;
5887 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5890 struct libipw_device *ieee = priv->ieee;
5891 struct libipw_security sec = {
5892 .flags = SEC_AUTH_MODE,
5894 int ret = 0;
5896 if (value & IW_AUTH_ALG_SHARED_KEY) {
5897 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5898 ieee->open_wep = 0;
5899 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5900 sec.auth_mode = WLAN_AUTH_OPEN;
5901 ieee->open_wep = 1;
5902 } else if (value & IW_AUTH_ALG_LEAP) {
5903 sec.auth_mode = WLAN_AUTH_LEAP;
5904 ieee->open_wep = 1;
5905 } else
5906 return -EINVAL;
5908 if (ieee->set_security)
5909 ieee->set_security(ieee->dev, &sec);
5910 else
5911 ret = -EOPNOTSUPP;
5913 return ret;
5916 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5917 char *wpa_ie, int wpa_ie_len)
5920 struct ipw2100_wpa_assoc_frame frame;
5922 frame.fixed_ie_mask = 0;
5924 /* copy WPA IE */
5925 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5926 frame.var_ie_len = wpa_ie_len;
5928 /* make sure WPA is enabled */
5929 ipw2100_wpa_enable(priv, 1);
5930 ipw2100_set_wpa_ie(priv, &frame, 0);
5933 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5934 struct ethtool_drvinfo *info)
5936 struct ipw2100_priv *priv = libipw_priv(dev);
5937 char fw_ver[64], ucode_ver[64];
5939 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5940 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5942 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5943 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5945 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5946 fw_ver, priv->eeprom_version, ucode_ver);
5948 strlcpy(info->bus_info, pci_name(priv->pci_dev),
5949 sizeof(info->bus_info));
5952 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5954 struct ipw2100_priv *priv = libipw_priv(dev);
5955 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5958 static const struct ethtool_ops ipw2100_ethtool_ops = {
5959 .get_link = ipw2100_ethtool_get_link,
5960 .get_drvinfo = ipw_ethtool_get_drvinfo,
5963 static void ipw2100_hang_check(struct work_struct *work)
5965 struct ipw2100_priv *priv =
5966 container_of(work, struct ipw2100_priv, hang_check.work);
5967 unsigned long flags;
5968 u32 rtc = 0xa5a5a5a5;
5969 u32 len = sizeof(rtc);
5970 int restart = 0;
5972 spin_lock_irqsave(&priv->low_lock, flags);
5974 if (priv->fatal_error != 0) {
5975 /* If fatal_error is set then we need to restart */
5976 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5977 priv->net_dev->name);
5979 restart = 1;
5980 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5981 (rtc == priv->last_rtc)) {
5982 /* Check if firmware is hung */
5983 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5984 priv->net_dev->name);
5986 restart = 1;
5989 if (restart) {
5990 /* Kill timer */
5991 priv->stop_hang_check = 1;
5992 priv->hangs++;
5994 /* Restart the NIC */
5995 schedule_reset(priv);
5998 priv->last_rtc = rtc;
6000 if (!priv->stop_hang_check)
6001 schedule_delayed_work(&priv->hang_check, HZ / 2);
6003 spin_unlock_irqrestore(&priv->low_lock, flags);
6006 static void ipw2100_rf_kill(struct work_struct *work)
6008 struct ipw2100_priv *priv =
6009 container_of(work, struct ipw2100_priv, rf_kill.work);
6010 unsigned long flags;
6012 spin_lock_irqsave(&priv->low_lock, flags);
6014 if (rf_kill_active(priv)) {
6015 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6016 if (!priv->stop_rf_kill)
6017 schedule_delayed_work(&priv->rf_kill,
6018 round_jiffies_relative(HZ));
6019 goto exit_unlock;
6022 /* RF Kill is now disabled, so bring the device back up */
6024 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6025 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6026 "device\n");
6027 schedule_reset(priv);
6028 } else
6029 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
6030 "enabled\n");
6032 exit_unlock:
6033 spin_unlock_irqrestore(&priv->low_lock, flags);
6036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6038 static const struct net_device_ops ipw2100_netdev_ops = {
6039 .ndo_open = ipw2100_open,
6040 .ndo_stop = ipw2100_close,
6041 .ndo_start_xmit = libipw_xmit,
6042 .ndo_change_mtu = libipw_change_mtu,
6043 .ndo_tx_timeout = ipw2100_tx_timeout,
6044 .ndo_set_mac_address = ipw2100_set_address,
6045 .ndo_validate_addr = eth_validate_addr,
6048 /* Look into using netdev destructor to shutdown libipw? */
6050 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6051 void __iomem * ioaddr)
6053 struct ipw2100_priv *priv;
6054 struct net_device *dev;
6056 dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6057 if (!dev)
6058 return NULL;
6059 priv = libipw_priv(dev);
6060 priv->ieee = netdev_priv(dev);
6061 priv->pci_dev = pci_dev;
6062 priv->net_dev = dev;
6063 priv->ioaddr = ioaddr;
6065 priv->ieee->hard_start_xmit = ipw2100_tx;
6066 priv->ieee->set_security = shim__set_security;
6068 priv->ieee->perfect_rssi = -20;
6069 priv->ieee->worst_rssi = -85;
6071 dev->netdev_ops = &ipw2100_netdev_ops;
6072 dev->ethtool_ops = &ipw2100_ethtool_ops;
6073 dev->wireless_handlers = &ipw2100_wx_handler_def;
6074 priv->wireless_data.libipw = priv->ieee;
6075 dev->wireless_data = &priv->wireless_data;
6076 dev->watchdog_timeo = 3 * HZ;
6077 dev->irq = 0;
6079 /* NOTE: We don't use the wireless_handlers hook
6080 * in dev as the system will start throwing WX requests
6081 * to us before we're actually initialized and it just
6082 * ends up causing problems. So, we just handle
6083 * the WX extensions through the ipw2100_ioctl interface */
6085 /* memset() puts everything to 0, so we only have explicitly set
6086 * those values that need to be something else */
6088 /* If power management is turned on, default to AUTO mode */
6089 priv->power_mode = IPW_POWER_AUTO;
6091 #ifdef CONFIG_IPW2100_MONITOR
6092 priv->config |= CFG_CRC_CHECK;
6093 #endif
6094 priv->ieee->wpa_enabled = 0;
6095 priv->ieee->drop_unencrypted = 0;
6096 priv->ieee->privacy_invoked = 0;
6097 priv->ieee->ieee802_1x = 1;
6099 /* Set module parameters */
6100 switch (network_mode) {
6101 case 1:
6102 priv->ieee->iw_mode = IW_MODE_ADHOC;
6103 break;
6104 #ifdef CONFIG_IPW2100_MONITOR
6105 case 2:
6106 priv->ieee->iw_mode = IW_MODE_MONITOR;
6107 break;
6108 #endif
6109 default:
6110 case 0:
6111 priv->ieee->iw_mode = IW_MODE_INFRA;
6112 break;
6115 if (disable == 1)
6116 priv->status |= STATUS_RF_KILL_SW;
6118 if (channel != 0 &&
6119 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6120 priv->config |= CFG_STATIC_CHANNEL;
6121 priv->channel = channel;
6124 if (associate)
6125 priv->config |= CFG_ASSOCIATE;
6127 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6128 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6129 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6130 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6131 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6132 priv->tx_power = IPW_TX_POWER_DEFAULT;
6133 priv->tx_rates = DEFAULT_TX_RATES;
6135 strcpy(priv->nick, "ipw2100");
6137 spin_lock_init(&priv->low_lock);
6138 mutex_init(&priv->action_mutex);
6139 mutex_init(&priv->adapter_mutex);
6141 init_waitqueue_head(&priv->wait_command_queue);
6143 netif_carrier_off(dev);
6145 INIT_LIST_HEAD(&priv->msg_free_list);
6146 INIT_LIST_HEAD(&priv->msg_pend_list);
6147 INIT_STAT(&priv->msg_free_stat);
6148 INIT_STAT(&priv->msg_pend_stat);
6150 INIT_LIST_HEAD(&priv->tx_free_list);
6151 INIT_LIST_HEAD(&priv->tx_pend_list);
6152 INIT_STAT(&priv->tx_free_stat);
6153 INIT_STAT(&priv->tx_pend_stat);
6155 INIT_LIST_HEAD(&priv->fw_pend_list);
6156 INIT_STAT(&priv->fw_pend_stat);
6158 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6159 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6160 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6161 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6162 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6163 INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6165 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6166 ipw2100_irq_tasklet, (unsigned long)priv);
6168 /* NOTE: We do not start the deferred work for status checks yet */
6169 priv->stop_rf_kill = 1;
6170 priv->stop_hang_check = 1;
6172 return dev;
6175 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6176 const struct pci_device_id *ent)
6178 void __iomem *ioaddr;
6179 struct net_device *dev = NULL;
6180 struct ipw2100_priv *priv = NULL;
6181 int err = 0;
6182 int registered = 0;
6183 u32 val;
6185 IPW_DEBUG_INFO("enter\n");
6187 if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6188 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6189 err = -ENODEV;
6190 goto out;
6193 ioaddr = pci_iomap(pci_dev, 0, 0);
6194 if (!ioaddr) {
6195 printk(KERN_WARNING DRV_NAME
6196 "Error calling ioremap_nocache.\n");
6197 err = -EIO;
6198 goto fail;
6201 /* allocate and initialize our net_device */
6202 dev = ipw2100_alloc_device(pci_dev, ioaddr);
6203 if (!dev) {
6204 printk(KERN_WARNING DRV_NAME
6205 "Error calling ipw2100_alloc_device.\n");
6206 err = -ENOMEM;
6207 goto fail;
6210 /* set up PCI mappings for device */
6211 err = pci_enable_device(pci_dev);
6212 if (err) {
6213 printk(KERN_WARNING DRV_NAME
6214 "Error calling pci_enable_device.\n");
6215 return err;
6218 priv = libipw_priv(dev);
6220 pci_set_master(pci_dev);
6221 pci_set_drvdata(pci_dev, priv);
6223 err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6224 if (err) {
6225 printk(KERN_WARNING DRV_NAME
6226 "Error calling pci_set_dma_mask.\n");
6227 pci_disable_device(pci_dev);
6228 return err;
6231 err = pci_request_regions(pci_dev, DRV_NAME);
6232 if (err) {
6233 printk(KERN_WARNING DRV_NAME
6234 "Error calling pci_request_regions.\n");
6235 pci_disable_device(pci_dev);
6236 return err;
6239 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6240 * PCI Tx retries from interfering with C3 CPU state */
6241 pci_read_config_dword(pci_dev, 0x40, &val);
6242 if ((val & 0x0000ff00) != 0)
6243 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6245 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6246 printk(KERN_WARNING DRV_NAME
6247 "Device not found via register read.\n");
6248 err = -ENODEV;
6249 goto fail;
6252 SET_NETDEV_DEV(dev, &pci_dev->dev);
6254 /* Force interrupts to be shut off on the device */
6255 priv->status |= STATUS_INT_ENABLED;
6256 ipw2100_disable_interrupts(priv);
6258 /* Allocate and initialize the Tx/Rx queues and lists */
6259 if (ipw2100_queues_allocate(priv)) {
6260 printk(KERN_WARNING DRV_NAME
6261 "Error calling ipw2100_queues_allocate.\n");
6262 err = -ENOMEM;
6263 goto fail;
6265 ipw2100_queues_initialize(priv);
6267 err = request_irq(pci_dev->irq,
6268 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6269 if (err) {
6270 printk(KERN_WARNING DRV_NAME
6271 "Error calling request_irq: %d.\n", pci_dev->irq);
6272 goto fail;
6274 dev->irq = pci_dev->irq;
6276 IPW_DEBUG_INFO("Attempting to register device...\n");
6278 printk(KERN_INFO DRV_NAME
6279 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6281 err = ipw2100_up(priv, 1);
6282 if (err)
6283 goto fail;
6285 err = ipw2100_wdev_init(dev);
6286 if (err)
6287 goto fail;
6288 registered = 1;
6290 /* Bring up the interface. Pre 0.46, after we registered the
6291 * network device we would call ipw2100_up. This introduced a race
6292 * condition with newer hotplug configurations (network was coming
6293 * up and making calls before the device was initialized).
6295 err = register_netdev(dev);
6296 if (err) {
6297 printk(KERN_WARNING DRV_NAME
6298 "Error calling register_netdev.\n");
6299 goto fail;
6301 registered = 2;
6303 mutex_lock(&priv->action_mutex);
6305 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6307 /* perform this after register_netdev so that dev->name is set */
6308 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6309 if (err)
6310 goto fail_unlock;
6312 /* If the RF Kill switch is disabled, go ahead and complete the
6313 * startup sequence */
6314 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6315 /* Enable the adapter - sends HOST_COMPLETE */
6316 if (ipw2100_enable_adapter(priv)) {
6317 printk(KERN_WARNING DRV_NAME
6318 ": %s: failed in call to enable adapter.\n",
6319 priv->net_dev->name);
6320 ipw2100_hw_stop_adapter(priv);
6321 err = -EIO;
6322 goto fail_unlock;
6325 /* Start a scan . . . */
6326 ipw2100_set_scan_options(priv);
6327 ipw2100_start_scan(priv);
6330 IPW_DEBUG_INFO("exit\n");
6332 priv->status |= STATUS_INITIALIZED;
6334 mutex_unlock(&priv->action_mutex);
6335 out:
6336 return err;
6338 fail_unlock:
6339 mutex_unlock(&priv->action_mutex);
6340 fail:
6341 if (dev) {
6342 if (registered >= 2)
6343 unregister_netdev(dev);
6345 if (registered) {
6346 wiphy_unregister(priv->ieee->wdev.wiphy);
6347 kfree(priv->ieee->bg_band.channels);
6350 ipw2100_hw_stop_adapter(priv);
6352 ipw2100_disable_interrupts(priv);
6354 if (dev->irq)
6355 free_irq(dev->irq, priv);
6357 ipw2100_kill_works(priv);
6359 /* These are safe to call even if they weren't allocated */
6360 ipw2100_queues_free(priv);
6361 sysfs_remove_group(&pci_dev->dev.kobj,
6362 &ipw2100_attribute_group);
6364 free_libipw(dev, 0);
6367 pci_iounmap(pci_dev, ioaddr);
6369 pci_release_regions(pci_dev);
6370 pci_disable_device(pci_dev);
6371 goto out;
6374 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6376 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6377 struct net_device *dev = priv->net_dev;
6379 mutex_lock(&priv->action_mutex);
6381 priv->status &= ~STATUS_INITIALIZED;
6383 sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6385 #ifdef CONFIG_PM
6386 if (ipw2100_firmware.version)
6387 ipw2100_release_firmware(priv, &ipw2100_firmware);
6388 #endif
6389 /* Take down the hardware */
6390 ipw2100_down(priv);
6392 /* Release the mutex so that the network subsystem can
6393 * complete any needed calls into the driver... */
6394 mutex_unlock(&priv->action_mutex);
6396 /* Unregister the device first - this results in close()
6397 * being called if the device is open. If we free storage
6398 * first, then close() will crash.
6399 * FIXME: remove the comment above. */
6400 unregister_netdev(dev);
6402 ipw2100_kill_works(priv);
6404 ipw2100_queues_free(priv);
6406 /* Free potential debugging firmware snapshot */
6407 ipw2100_snapshot_free(priv);
6409 free_irq(dev->irq, priv);
6411 pci_iounmap(pci_dev, priv->ioaddr);
6413 /* wiphy_unregister needs to be here, before free_libipw */
6414 wiphy_unregister(priv->ieee->wdev.wiphy);
6415 kfree(priv->ieee->bg_band.channels);
6416 free_libipw(dev, 0);
6418 pci_release_regions(pci_dev);
6419 pci_disable_device(pci_dev);
6421 IPW_DEBUG_INFO("exit\n");
6424 #ifdef CONFIG_PM
6425 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6427 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428 struct net_device *dev = priv->net_dev;
6430 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6432 mutex_lock(&priv->action_mutex);
6433 if (priv->status & STATUS_INITIALIZED) {
6434 /* Take down the device; powers it off, etc. */
6435 ipw2100_down(priv);
6438 /* Remove the PRESENT state of the device */
6439 netif_device_detach(dev);
6441 pci_save_state(pci_dev);
6442 pci_disable_device(pci_dev);
6443 pci_set_power_state(pci_dev, PCI_D3hot);
6445 priv->suspend_at = get_seconds();
6447 mutex_unlock(&priv->action_mutex);
6449 return 0;
6452 static int ipw2100_resume(struct pci_dev *pci_dev)
6454 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6455 struct net_device *dev = priv->net_dev;
6456 int err;
6457 u32 val;
6459 if (IPW2100_PM_DISABLED)
6460 return 0;
6462 mutex_lock(&priv->action_mutex);
6464 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6466 pci_set_power_state(pci_dev, PCI_D0);
6467 err = pci_enable_device(pci_dev);
6468 if (err) {
6469 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6470 dev->name);
6471 mutex_unlock(&priv->action_mutex);
6472 return err;
6474 pci_restore_state(pci_dev);
6477 * Suspend/Resume resets the PCI configuration space, so we have to
6478 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6479 * from interfering with C3 CPU state. pci_restore_state won't help
6480 * here since it only restores the first 64 bytes pci config header.
6482 pci_read_config_dword(pci_dev, 0x40, &val);
6483 if ((val & 0x0000ff00) != 0)
6484 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6486 /* Set the device back into the PRESENT state; this will also wake
6487 * the queue of needed */
6488 netif_device_attach(dev);
6490 priv->suspend_time = get_seconds() - priv->suspend_at;
6492 /* Bring the device back up */
6493 if (!(priv->status & STATUS_RF_KILL_SW))
6494 ipw2100_up(priv, 0);
6496 mutex_unlock(&priv->action_mutex);
6498 return 0;
6500 #endif
6502 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6504 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6506 /* Take down the device; powers it off, etc. */
6507 ipw2100_down(priv);
6509 pci_disable_device(pci_dev);
6512 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6514 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6515 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6516 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6517 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6518 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6519 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6520 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6521 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6522 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6523 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6524 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6525 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6526 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6527 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6529 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6530 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6531 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6532 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6533 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6535 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6536 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6537 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6538 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6539 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6540 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6541 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6543 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6545 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6546 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6547 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6548 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6549 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6550 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6551 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6553 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6554 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6555 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6556 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6557 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6558 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6560 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6561 {0,},
6564 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6566 static struct pci_driver ipw2100_pci_driver = {
6567 .name = DRV_NAME,
6568 .id_table = ipw2100_pci_id_table,
6569 .probe = ipw2100_pci_init_one,
6570 .remove = ipw2100_pci_remove_one,
6571 #ifdef CONFIG_PM
6572 .suspend = ipw2100_suspend,
6573 .resume = ipw2100_resume,
6574 #endif
6575 .shutdown = ipw2100_shutdown,
6579 * Initialize the ipw2100 driver/module
6581 * @returns 0 if ok, < 0 errno node con error.
6583 * Note: we cannot init the /proc stuff until the PCI driver is there,
6584 * or we risk an unlikely race condition on someone accessing
6585 * uninitialized data in the PCI dev struct through /proc.
6587 static int __init ipw2100_init(void)
6589 int ret;
6591 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6592 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6594 pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6595 PM_QOS_DEFAULT_VALUE);
6597 ret = pci_register_driver(&ipw2100_pci_driver);
6598 if (ret)
6599 goto out;
6601 #ifdef CONFIG_IPW2100_DEBUG
6602 ipw2100_debug_level = debug;
6603 ret = driver_create_file(&ipw2100_pci_driver.driver,
6604 &driver_attr_debug_level);
6605 #endif
6607 out:
6608 return ret;
6612 * Cleanup ipw2100 driver registration
6614 static void __exit ipw2100_exit(void)
6616 /* FIXME: IPG: check that we have no instances of the devices open */
6617 #ifdef CONFIG_IPW2100_DEBUG
6618 driver_remove_file(&ipw2100_pci_driver.driver,
6619 &driver_attr_debug_level);
6620 #endif
6621 pci_unregister_driver(&ipw2100_pci_driver);
6622 pm_qos_remove_request(&ipw2100_pm_qos_req);
6625 module_init(ipw2100_init);
6626 module_exit(ipw2100_exit);
6628 static int ipw2100_wx_get_name(struct net_device *dev,
6629 struct iw_request_info *info,
6630 union iwreq_data *wrqu, char *extra)
6633 * This can be called at any time. No action lock required
6636 struct ipw2100_priv *priv = libipw_priv(dev);
6637 if (!(priv->status & STATUS_ASSOCIATED))
6638 strcpy(wrqu->name, "unassociated");
6639 else
6640 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6642 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6643 return 0;
6646 static int ipw2100_wx_set_freq(struct net_device *dev,
6647 struct iw_request_info *info,
6648 union iwreq_data *wrqu, char *extra)
6650 struct ipw2100_priv *priv = libipw_priv(dev);
6651 struct iw_freq *fwrq = &wrqu->freq;
6652 int err = 0;
6654 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6655 return -EOPNOTSUPP;
6657 mutex_lock(&priv->action_mutex);
6658 if (!(priv->status & STATUS_INITIALIZED)) {
6659 err = -EIO;
6660 goto done;
6663 /* if setting by freq convert to channel */
6664 if (fwrq->e == 1) {
6665 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6666 int f = fwrq->m / 100000;
6667 int c = 0;
6669 while ((c < REG_MAX_CHANNEL) &&
6670 (f != ipw2100_frequencies[c]))
6671 c++;
6673 /* hack to fall through */
6674 fwrq->e = 0;
6675 fwrq->m = c + 1;
6679 if (fwrq->e > 0 || fwrq->m > 1000) {
6680 err = -EOPNOTSUPP;
6681 goto done;
6682 } else { /* Set the channel */
6683 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6684 err = ipw2100_set_channel(priv, fwrq->m, 0);
6687 done:
6688 mutex_unlock(&priv->action_mutex);
6689 return err;
6692 static int ipw2100_wx_get_freq(struct net_device *dev,
6693 struct iw_request_info *info,
6694 union iwreq_data *wrqu, char *extra)
6697 * This can be called at any time. No action lock required
6700 struct ipw2100_priv *priv = libipw_priv(dev);
6702 wrqu->freq.e = 0;
6704 /* If we are associated, trying to associate, or have a statically
6705 * configured CHANNEL then return that; otherwise return ANY */
6706 if (priv->config & CFG_STATIC_CHANNEL ||
6707 priv->status & STATUS_ASSOCIATED)
6708 wrqu->freq.m = priv->channel;
6709 else
6710 wrqu->freq.m = 0;
6712 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6713 return 0;
6717 static int ipw2100_wx_set_mode(struct net_device *dev,
6718 struct iw_request_info *info,
6719 union iwreq_data *wrqu, char *extra)
6721 struct ipw2100_priv *priv = libipw_priv(dev);
6722 int err = 0;
6724 IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6726 if (wrqu->mode == priv->ieee->iw_mode)
6727 return 0;
6729 mutex_lock(&priv->action_mutex);
6730 if (!(priv->status & STATUS_INITIALIZED)) {
6731 err = -EIO;
6732 goto done;
6735 switch (wrqu->mode) {
6736 #ifdef CONFIG_IPW2100_MONITOR
6737 case IW_MODE_MONITOR:
6738 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6739 break;
6740 #endif /* CONFIG_IPW2100_MONITOR */
6741 case IW_MODE_ADHOC:
6742 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6743 break;
6744 case IW_MODE_INFRA:
6745 case IW_MODE_AUTO:
6746 default:
6747 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6748 break;
6751 done:
6752 mutex_unlock(&priv->action_mutex);
6753 return err;
6756 static int ipw2100_wx_get_mode(struct net_device *dev,
6757 struct iw_request_info *info,
6758 union iwreq_data *wrqu, char *extra)
6761 * This can be called at any time. No action lock required
6764 struct ipw2100_priv *priv = libipw_priv(dev);
6766 wrqu->mode = priv->ieee->iw_mode;
6767 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6769 return 0;
6772 #define POWER_MODES 5
6774 /* Values are in microsecond */
6775 static const s32 timeout_duration[POWER_MODES] = {
6776 350000,
6777 250000,
6778 75000,
6779 37000,
6780 25000,
6783 static const s32 period_duration[POWER_MODES] = {
6784 400000,
6785 700000,
6786 1000000,
6787 1000000,
6788 1000000
6791 static int ipw2100_wx_get_range(struct net_device *dev,
6792 struct iw_request_info *info,
6793 union iwreq_data *wrqu, char *extra)
6796 * This can be called at any time. No action lock required
6799 struct ipw2100_priv *priv = libipw_priv(dev);
6800 struct iw_range *range = (struct iw_range *)extra;
6801 u16 val;
6802 int i, level;
6804 wrqu->data.length = sizeof(*range);
6805 memset(range, 0, sizeof(*range));
6807 /* Let's try to keep this struct in the same order as in
6808 * linux/include/wireless.h
6811 /* TODO: See what values we can set, and remove the ones we can't
6812 * set, or fill them with some default data.
6815 /* ~5 Mb/s real (802.11b) */
6816 range->throughput = 5 * 1000 * 1000;
6818 // range->sensitivity; /* signal level threshold range */
6820 range->max_qual.qual = 100;
6821 /* TODO: Find real max RSSI and stick here */
6822 range->max_qual.level = 0;
6823 range->max_qual.noise = 0;
6824 range->max_qual.updated = 7; /* Updated all three */
6826 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6827 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6828 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6829 range->avg_qual.noise = 0;
6830 range->avg_qual.updated = 7; /* Updated all three */
6832 range->num_bitrates = RATE_COUNT;
6834 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6835 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6838 range->min_rts = MIN_RTS_THRESHOLD;
6839 range->max_rts = MAX_RTS_THRESHOLD;
6840 range->min_frag = MIN_FRAG_THRESHOLD;
6841 range->max_frag = MAX_FRAG_THRESHOLD;
6843 range->min_pmp = period_duration[0]; /* Minimal PM period */
6844 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6845 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6846 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6848 /* How to decode max/min PM period */
6849 range->pmp_flags = IW_POWER_PERIOD;
6850 /* How to decode max/min PM period */
6851 range->pmt_flags = IW_POWER_TIMEOUT;
6852 /* What PM options are supported */
6853 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6855 range->encoding_size[0] = 5;
6856 range->encoding_size[1] = 13; /* Different token sizes */
6857 range->num_encoding_sizes = 2; /* Number of entry in the list */
6858 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6859 // range->encoding_login_index; /* token index for login token */
6861 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6862 range->txpower_capa = IW_TXPOW_DBM;
6863 range->num_txpower = IW_MAX_TXPOWER;
6864 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6865 i < IW_MAX_TXPOWER;
6866 i++, level -=
6867 ((IPW_TX_POWER_MAX_DBM -
6868 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6869 range->txpower[i] = level / 16;
6870 } else {
6871 range->txpower_capa = 0;
6872 range->num_txpower = 0;
6875 /* Set the Wireless Extension versions */
6876 range->we_version_compiled = WIRELESS_EXT;
6877 range->we_version_source = 18;
6879 // range->retry_capa; /* What retry options are supported */
6880 // range->retry_flags; /* How to decode max/min retry limit */
6881 // range->r_time_flags; /* How to decode max/min retry life */
6882 // range->min_retry; /* Minimal number of retries */
6883 // range->max_retry; /* Maximal number of retries */
6884 // range->min_r_time; /* Minimal retry lifetime */
6885 // range->max_r_time; /* Maximal retry lifetime */
6887 range->num_channels = FREQ_COUNT;
6889 val = 0;
6890 for (i = 0; i < FREQ_COUNT; i++) {
6891 // TODO: Include only legal frequencies for some countries
6892 // if (local->channel_mask & (1 << i)) {
6893 range->freq[val].i = i + 1;
6894 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6895 range->freq[val].e = 1;
6896 val++;
6897 // }
6898 if (val == IW_MAX_FREQUENCIES)
6899 break;
6901 range->num_frequency = val;
6903 /* Event capability (kernel + driver) */
6904 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6905 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6906 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6908 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6909 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6911 IPW_DEBUG_WX("GET Range\n");
6913 return 0;
6916 static int ipw2100_wx_set_wap(struct net_device *dev,
6917 struct iw_request_info *info,
6918 union iwreq_data *wrqu, char *extra)
6920 struct ipw2100_priv *priv = libipw_priv(dev);
6921 int err = 0;
6923 // sanity checks
6924 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6925 return -EINVAL;
6927 mutex_lock(&priv->action_mutex);
6928 if (!(priv->status & STATUS_INITIALIZED)) {
6929 err = -EIO;
6930 goto done;
6933 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6934 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6935 /* we disable mandatory BSSID association */
6936 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6937 priv->config &= ~CFG_STATIC_BSSID;
6938 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6939 goto done;
6942 priv->config |= CFG_STATIC_BSSID;
6943 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6945 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6947 IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6949 done:
6950 mutex_unlock(&priv->action_mutex);
6951 return err;
6954 static int ipw2100_wx_get_wap(struct net_device *dev,
6955 struct iw_request_info *info,
6956 union iwreq_data *wrqu, char *extra)
6959 * This can be called at any time. No action lock required
6962 struct ipw2100_priv *priv = libipw_priv(dev);
6964 /* If we are associated, trying to associate, or have a statically
6965 * configured BSSID then return that; otherwise return ANY */
6966 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6967 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6968 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6969 } else
6970 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6972 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6973 return 0;
6976 static int ipw2100_wx_set_essid(struct net_device *dev,
6977 struct iw_request_info *info,
6978 union iwreq_data *wrqu, char *extra)
6980 struct ipw2100_priv *priv = libipw_priv(dev);
6981 char *essid = ""; /* ANY */
6982 int length = 0;
6983 int err = 0;
6984 DECLARE_SSID_BUF(ssid);
6986 mutex_lock(&priv->action_mutex);
6987 if (!(priv->status & STATUS_INITIALIZED)) {
6988 err = -EIO;
6989 goto done;
6992 if (wrqu->essid.flags && wrqu->essid.length) {
6993 length = wrqu->essid.length;
6994 essid = extra;
6997 if (length == 0) {
6998 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6999 priv->config &= ~CFG_STATIC_ESSID;
7000 err = ipw2100_set_essid(priv, NULL, 0, 0);
7001 goto done;
7004 length = min(length, IW_ESSID_MAX_SIZE);
7006 priv->config |= CFG_STATIC_ESSID;
7008 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7009 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7010 err = 0;
7011 goto done;
7014 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7015 print_ssid(ssid, essid, length), length);
7017 priv->essid_len = length;
7018 memcpy(priv->essid, essid, priv->essid_len);
7020 err = ipw2100_set_essid(priv, essid, length, 0);
7022 done:
7023 mutex_unlock(&priv->action_mutex);
7024 return err;
7027 static int ipw2100_wx_get_essid(struct net_device *dev,
7028 struct iw_request_info *info,
7029 union iwreq_data *wrqu, char *extra)
7032 * This can be called at any time. No action lock required
7035 struct ipw2100_priv *priv = libipw_priv(dev);
7036 DECLARE_SSID_BUF(ssid);
7038 /* If we are associated, trying to associate, or have a statically
7039 * configured ESSID then return that; otherwise return ANY */
7040 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7041 IPW_DEBUG_WX("Getting essid: '%s'\n",
7042 print_ssid(ssid, priv->essid, priv->essid_len));
7043 memcpy(extra, priv->essid, priv->essid_len);
7044 wrqu->essid.length = priv->essid_len;
7045 wrqu->essid.flags = 1; /* active */
7046 } else {
7047 IPW_DEBUG_WX("Getting essid: ANY\n");
7048 wrqu->essid.length = 0;
7049 wrqu->essid.flags = 0; /* active */
7052 return 0;
7055 static int ipw2100_wx_set_nick(struct net_device *dev,
7056 struct iw_request_info *info,
7057 union iwreq_data *wrqu, char *extra)
7060 * This can be called at any time. No action lock required
7063 struct ipw2100_priv *priv = libipw_priv(dev);
7065 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7066 return -E2BIG;
7068 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7069 memset(priv->nick, 0, sizeof(priv->nick));
7070 memcpy(priv->nick, extra, wrqu->data.length);
7072 IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7074 return 0;
7077 static int ipw2100_wx_get_nick(struct net_device *dev,
7078 struct iw_request_info *info,
7079 union iwreq_data *wrqu, char *extra)
7082 * This can be called at any time. No action lock required
7085 struct ipw2100_priv *priv = libipw_priv(dev);
7087 wrqu->data.length = strlen(priv->nick);
7088 memcpy(extra, priv->nick, wrqu->data.length);
7089 wrqu->data.flags = 1; /* active */
7091 IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7093 return 0;
7096 static int ipw2100_wx_set_rate(struct net_device *dev,
7097 struct iw_request_info *info,
7098 union iwreq_data *wrqu, char *extra)
7100 struct ipw2100_priv *priv = libipw_priv(dev);
7101 u32 target_rate = wrqu->bitrate.value;
7102 u32 rate;
7103 int err = 0;
7105 mutex_lock(&priv->action_mutex);
7106 if (!(priv->status & STATUS_INITIALIZED)) {
7107 err = -EIO;
7108 goto done;
7111 rate = 0;
7113 if (target_rate == 1000000 ||
7114 (!wrqu->bitrate.fixed && target_rate > 1000000))
7115 rate |= TX_RATE_1_MBIT;
7116 if (target_rate == 2000000 ||
7117 (!wrqu->bitrate.fixed && target_rate > 2000000))
7118 rate |= TX_RATE_2_MBIT;
7119 if (target_rate == 5500000 ||
7120 (!wrqu->bitrate.fixed && target_rate > 5500000))
7121 rate |= TX_RATE_5_5_MBIT;
7122 if (target_rate == 11000000 ||
7123 (!wrqu->bitrate.fixed && target_rate > 11000000))
7124 rate |= TX_RATE_11_MBIT;
7125 if (rate == 0)
7126 rate = DEFAULT_TX_RATES;
7128 err = ipw2100_set_tx_rates(priv, rate, 0);
7130 IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7131 done:
7132 mutex_unlock(&priv->action_mutex);
7133 return err;
7136 static int ipw2100_wx_get_rate(struct net_device *dev,
7137 struct iw_request_info *info,
7138 union iwreq_data *wrqu, char *extra)
7140 struct ipw2100_priv *priv = libipw_priv(dev);
7141 int val;
7142 unsigned int len = sizeof(val);
7143 int err = 0;
7145 if (!(priv->status & STATUS_ENABLED) ||
7146 priv->status & STATUS_RF_KILL_MASK ||
7147 !(priv->status & STATUS_ASSOCIATED)) {
7148 wrqu->bitrate.value = 0;
7149 return 0;
7152 mutex_lock(&priv->action_mutex);
7153 if (!(priv->status & STATUS_INITIALIZED)) {
7154 err = -EIO;
7155 goto done;
7158 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7159 if (err) {
7160 IPW_DEBUG_WX("failed querying ordinals.\n");
7161 goto done;
7164 switch (val & TX_RATE_MASK) {
7165 case TX_RATE_1_MBIT:
7166 wrqu->bitrate.value = 1000000;
7167 break;
7168 case TX_RATE_2_MBIT:
7169 wrqu->bitrate.value = 2000000;
7170 break;
7171 case TX_RATE_5_5_MBIT:
7172 wrqu->bitrate.value = 5500000;
7173 break;
7174 case TX_RATE_11_MBIT:
7175 wrqu->bitrate.value = 11000000;
7176 break;
7177 default:
7178 wrqu->bitrate.value = 0;
7181 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7183 done:
7184 mutex_unlock(&priv->action_mutex);
7185 return err;
7188 static int ipw2100_wx_set_rts(struct net_device *dev,
7189 struct iw_request_info *info,
7190 union iwreq_data *wrqu, char *extra)
7192 struct ipw2100_priv *priv = libipw_priv(dev);
7193 int value, err;
7195 /* Auto RTS not yet supported */
7196 if (wrqu->rts.fixed == 0)
7197 return -EINVAL;
7199 mutex_lock(&priv->action_mutex);
7200 if (!(priv->status & STATUS_INITIALIZED)) {
7201 err = -EIO;
7202 goto done;
7205 if (wrqu->rts.disabled)
7206 value = priv->rts_threshold | RTS_DISABLED;
7207 else {
7208 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7209 err = -EINVAL;
7210 goto done;
7212 value = wrqu->rts.value;
7215 err = ipw2100_set_rts_threshold(priv, value);
7217 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7218 done:
7219 mutex_unlock(&priv->action_mutex);
7220 return err;
7223 static int ipw2100_wx_get_rts(struct net_device *dev,
7224 struct iw_request_info *info,
7225 union iwreq_data *wrqu, char *extra)
7228 * This can be called at any time. No action lock required
7231 struct ipw2100_priv *priv = libipw_priv(dev);
7233 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7234 wrqu->rts.fixed = 1; /* no auto select */
7236 /* If RTS is set to the default value, then it is disabled */
7237 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7239 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7241 return 0;
7244 static int ipw2100_wx_set_txpow(struct net_device *dev,
7245 struct iw_request_info *info,
7246 union iwreq_data *wrqu, char *extra)
7248 struct ipw2100_priv *priv = libipw_priv(dev);
7249 int err = 0, value;
7251 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7252 return -EINPROGRESS;
7254 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7255 return 0;
7257 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7258 return -EINVAL;
7260 if (wrqu->txpower.fixed == 0)
7261 value = IPW_TX_POWER_DEFAULT;
7262 else {
7263 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7264 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7265 return -EINVAL;
7267 value = wrqu->txpower.value;
7270 mutex_lock(&priv->action_mutex);
7271 if (!(priv->status & STATUS_INITIALIZED)) {
7272 err = -EIO;
7273 goto done;
7276 err = ipw2100_set_tx_power(priv, value);
7278 IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7280 done:
7281 mutex_unlock(&priv->action_mutex);
7282 return err;
7285 static int ipw2100_wx_get_txpow(struct net_device *dev,
7286 struct iw_request_info *info,
7287 union iwreq_data *wrqu, char *extra)
7290 * This can be called at any time. No action lock required
7293 struct ipw2100_priv *priv = libipw_priv(dev);
7295 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7297 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7298 wrqu->txpower.fixed = 0;
7299 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7300 } else {
7301 wrqu->txpower.fixed = 1;
7302 wrqu->txpower.value = priv->tx_power;
7305 wrqu->txpower.flags = IW_TXPOW_DBM;
7307 IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7309 return 0;
7312 static int ipw2100_wx_set_frag(struct net_device *dev,
7313 struct iw_request_info *info,
7314 union iwreq_data *wrqu, char *extra)
7317 * This can be called at any time. No action lock required
7320 struct ipw2100_priv *priv = libipw_priv(dev);
7322 if (!wrqu->frag.fixed)
7323 return -EINVAL;
7325 if (wrqu->frag.disabled) {
7326 priv->frag_threshold |= FRAG_DISABLED;
7327 priv->ieee->fts = DEFAULT_FTS;
7328 } else {
7329 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7330 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7331 return -EINVAL;
7333 priv->ieee->fts = wrqu->frag.value & ~0x1;
7334 priv->frag_threshold = priv->ieee->fts;
7337 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7339 return 0;
7342 static int ipw2100_wx_get_frag(struct net_device *dev,
7343 struct iw_request_info *info,
7344 union iwreq_data *wrqu, char *extra)
7347 * This can be called at any time. No action lock required
7350 struct ipw2100_priv *priv = libipw_priv(dev);
7351 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7352 wrqu->frag.fixed = 0; /* no auto select */
7353 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7355 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7357 return 0;
7360 static int ipw2100_wx_set_retry(struct net_device *dev,
7361 struct iw_request_info *info,
7362 union iwreq_data *wrqu, char *extra)
7364 struct ipw2100_priv *priv = libipw_priv(dev);
7365 int err = 0;
7367 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7368 return -EINVAL;
7370 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7371 return 0;
7373 mutex_lock(&priv->action_mutex);
7374 if (!(priv->status & STATUS_INITIALIZED)) {
7375 err = -EIO;
7376 goto done;
7379 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7380 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7382 wrqu->retry.value);
7383 goto done;
7386 if (wrqu->retry.flags & IW_RETRY_LONG) {
7387 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7388 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7389 wrqu->retry.value);
7390 goto done;
7393 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7394 if (!err)
7395 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7397 IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7399 done:
7400 mutex_unlock(&priv->action_mutex);
7401 return err;
7404 static int ipw2100_wx_get_retry(struct net_device *dev,
7405 struct iw_request_info *info,
7406 union iwreq_data *wrqu, char *extra)
7409 * This can be called at any time. No action lock required
7412 struct ipw2100_priv *priv = libipw_priv(dev);
7414 wrqu->retry.disabled = 0; /* can't be disabled */
7416 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7417 return -EINVAL;
7419 if (wrqu->retry.flags & IW_RETRY_LONG) {
7420 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7421 wrqu->retry.value = priv->long_retry_limit;
7422 } else {
7423 wrqu->retry.flags =
7424 (priv->short_retry_limit !=
7425 priv->long_retry_limit) ?
7426 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7428 wrqu->retry.value = priv->short_retry_limit;
7431 IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7433 return 0;
7436 static int ipw2100_wx_set_scan(struct net_device *dev,
7437 struct iw_request_info *info,
7438 union iwreq_data *wrqu, char *extra)
7440 struct ipw2100_priv *priv = libipw_priv(dev);
7441 int err = 0;
7443 mutex_lock(&priv->action_mutex);
7444 if (!(priv->status & STATUS_INITIALIZED)) {
7445 err = -EIO;
7446 goto done;
7449 IPW_DEBUG_WX("Initiating scan...\n");
7451 priv->user_requested_scan = 1;
7452 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7453 IPW_DEBUG_WX("Start scan failed.\n");
7455 /* TODO: Mark a scan as pending so when hardware initialized
7456 * a scan starts */
7459 done:
7460 mutex_unlock(&priv->action_mutex);
7461 return err;
7464 static int ipw2100_wx_get_scan(struct net_device *dev,
7465 struct iw_request_info *info,
7466 union iwreq_data *wrqu, char *extra)
7469 * This can be called at any time. No action lock required
7472 struct ipw2100_priv *priv = libipw_priv(dev);
7473 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7477 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7479 static int ipw2100_wx_set_encode(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *key)
7484 * No check of STATUS_INITIALIZED required
7487 struct ipw2100_priv *priv = libipw_priv(dev);
7488 return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7491 static int ipw2100_wx_get_encode(struct net_device *dev,
7492 struct iw_request_info *info,
7493 union iwreq_data *wrqu, char *key)
7496 * This can be called at any time. No action lock required
7499 struct ipw2100_priv *priv = libipw_priv(dev);
7500 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7503 static int ipw2100_wx_set_power(struct net_device *dev,
7504 struct iw_request_info *info,
7505 union iwreq_data *wrqu, char *extra)
7507 struct ipw2100_priv *priv = libipw_priv(dev);
7508 int err = 0;
7510 mutex_lock(&priv->action_mutex);
7511 if (!(priv->status & STATUS_INITIALIZED)) {
7512 err = -EIO;
7513 goto done;
7516 if (wrqu->power.disabled) {
7517 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7518 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7519 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7520 goto done;
7523 switch (wrqu->power.flags & IW_POWER_MODE) {
7524 case IW_POWER_ON: /* If not specified */
7525 case IW_POWER_MODE: /* If set all mask */
7526 case IW_POWER_ALL_R: /* If explicitly state all */
7527 break;
7528 default: /* Otherwise we don't support it */
7529 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7530 wrqu->power.flags);
7531 err = -EOPNOTSUPP;
7532 goto done;
7535 /* If the user hasn't specified a power management mode yet, default
7536 * to BATTERY */
7537 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7538 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7540 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7542 done:
7543 mutex_unlock(&priv->action_mutex);
7544 return err;
7548 static int ipw2100_wx_get_power(struct net_device *dev,
7549 struct iw_request_info *info,
7550 union iwreq_data *wrqu, char *extra)
7553 * This can be called at any time. No action lock required
7556 struct ipw2100_priv *priv = libipw_priv(dev);
7558 if (!(priv->power_mode & IPW_POWER_ENABLED))
7559 wrqu->power.disabled = 1;
7560 else {
7561 wrqu->power.disabled = 0;
7562 wrqu->power.flags = 0;
7565 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7567 return 0;
7571 * WE-18 WPA support
7574 /* SIOCSIWGENIE */
7575 static int ipw2100_wx_set_genie(struct net_device *dev,
7576 struct iw_request_info *info,
7577 union iwreq_data *wrqu, char *extra)
7580 struct ipw2100_priv *priv = libipw_priv(dev);
7581 struct libipw_device *ieee = priv->ieee;
7582 u8 *buf;
7584 if (!ieee->wpa_enabled)
7585 return -EOPNOTSUPP;
7587 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7588 (wrqu->data.length && extra == NULL))
7589 return -EINVAL;
7591 if (wrqu->data.length) {
7592 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7593 if (buf == NULL)
7594 return -ENOMEM;
7596 kfree(ieee->wpa_ie);
7597 ieee->wpa_ie = buf;
7598 ieee->wpa_ie_len = wrqu->data.length;
7599 } else {
7600 kfree(ieee->wpa_ie);
7601 ieee->wpa_ie = NULL;
7602 ieee->wpa_ie_len = 0;
7605 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7607 return 0;
7610 /* SIOCGIWGENIE */
7611 static int ipw2100_wx_get_genie(struct net_device *dev,
7612 struct iw_request_info *info,
7613 union iwreq_data *wrqu, char *extra)
7615 struct ipw2100_priv *priv = libipw_priv(dev);
7616 struct libipw_device *ieee = priv->ieee;
7618 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7619 wrqu->data.length = 0;
7620 return 0;
7623 if (wrqu->data.length < ieee->wpa_ie_len)
7624 return -E2BIG;
7626 wrqu->data.length = ieee->wpa_ie_len;
7627 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7629 return 0;
7632 /* SIOCSIWAUTH */
7633 static int ipw2100_wx_set_auth(struct net_device *dev,
7634 struct iw_request_info *info,
7635 union iwreq_data *wrqu, char *extra)
7637 struct ipw2100_priv *priv = libipw_priv(dev);
7638 struct libipw_device *ieee = priv->ieee;
7639 struct iw_param *param = &wrqu->param;
7640 struct lib80211_crypt_data *crypt;
7641 unsigned long flags;
7642 int ret = 0;
7644 switch (param->flags & IW_AUTH_INDEX) {
7645 case IW_AUTH_WPA_VERSION:
7646 case IW_AUTH_CIPHER_PAIRWISE:
7647 case IW_AUTH_CIPHER_GROUP:
7648 case IW_AUTH_KEY_MGMT:
7650 * ipw2200 does not use these parameters
7652 break;
7654 case IW_AUTH_TKIP_COUNTERMEASURES:
7655 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7656 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7657 break;
7659 flags = crypt->ops->get_flags(crypt->priv);
7661 if (param->value)
7662 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7663 else
7664 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7666 crypt->ops->set_flags(flags, crypt->priv);
7668 break;
7670 case IW_AUTH_DROP_UNENCRYPTED:{
7671 /* HACK:
7673 * wpa_supplicant calls set_wpa_enabled when the driver
7674 * is loaded and unloaded, regardless of if WPA is being
7675 * used. No other calls are made which can be used to
7676 * determine if encryption will be used or not prior to
7677 * association being expected. If encryption is not being
7678 * used, drop_unencrypted is set to false, else true -- we
7679 * can use this to determine if the CAP_PRIVACY_ON bit should
7680 * be set.
7682 struct libipw_security sec = {
7683 .flags = SEC_ENABLED,
7684 .enabled = param->value,
7686 priv->ieee->drop_unencrypted = param->value;
7687 /* We only change SEC_LEVEL for open mode. Others
7688 * are set by ipw_wpa_set_encryption.
7690 if (!param->value) {
7691 sec.flags |= SEC_LEVEL;
7692 sec.level = SEC_LEVEL_0;
7693 } else {
7694 sec.flags |= SEC_LEVEL;
7695 sec.level = SEC_LEVEL_1;
7697 if (priv->ieee->set_security)
7698 priv->ieee->set_security(priv->ieee->dev, &sec);
7699 break;
7702 case IW_AUTH_80211_AUTH_ALG:
7703 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7704 break;
7706 case IW_AUTH_WPA_ENABLED:
7707 ret = ipw2100_wpa_enable(priv, param->value);
7708 break;
7710 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7711 ieee->ieee802_1x = param->value;
7712 break;
7714 //case IW_AUTH_ROAMING_CONTROL:
7715 case IW_AUTH_PRIVACY_INVOKED:
7716 ieee->privacy_invoked = param->value;
7717 break;
7719 default:
7720 return -EOPNOTSUPP;
7722 return ret;
7725 /* SIOCGIWAUTH */
7726 static int ipw2100_wx_get_auth(struct net_device *dev,
7727 struct iw_request_info *info,
7728 union iwreq_data *wrqu, char *extra)
7730 struct ipw2100_priv *priv = libipw_priv(dev);
7731 struct libipw_device *ieee = priv->ieee;
7732 struct lib80211_crypt_data *crypt;
7733 struct iw_param *param = &wrqu->param;
7734 int ret = 0;
7736 switch (param->flags & IW_AUTH_INDEX) {
7737 case IW_AUTH_WPA_VERSION:
7738 case IW_AUTH_CIPHER_PAIRWISE:
7739 case IW_AUTH_CIPHER_GROUP:
7740 case IW_AUTH_KEY_MGMT:
7742 * wpa_supplicant will control these internally
7744 ret = -EOPNOTSUPP;
7745 break;
7747 case IW_AUTH_TKIP_COUNTERMEASURES:
7748 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7749 if (!crypt || !crypt->ops->get_flags) {
7750 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7751 "crypt not set!\n");
7752 break;
7755 param->value = (crypt->ops->get_flags(crypt->priv) &
7756 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7758 break;
7760 case IW_AUTH_DROP_UNENCRYPTED:
7761 param->value = ieee->drop_unencrypted;
7762 break;
7764 case IW_AUTH_80211_AUTH_ALG:
7765 param->value = priv->ieee->sec.auth_mode;
7766 break;
7768 case IW_AUTH_WPA_ENABLED:
7769 param->value = ieee->wpa_enabled;
7770 break;
7772 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7773 param->value = ieee->ieee802_1x;
7774 break;
7776 case IW_AUTH_ROAMING_CONTROL:
7777 case IW_AUTH_PRIVACY_INVOKED:
7778 param->value = ieee->privacy_invoked;
7779 break;
7781 default:
7782 return -EOPNOTSUPP;
7784 return 0;
7787 /* SIOCSIWENCODEEXT */
7788 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7789 struct iw_request_info *info,
7790 union iwreq_data *wrqu, char *extra)
7792 struct ipw2100_priv *priv = libipw_priv(dev);
7793 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7796 /* SIOCGIWENCODEEXT */
7797 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7798 struct iw_request_info *info,
7799 union iwreq_data *wrqu, char *extra)
7801 struct ipw2100_priv *priv = libipw_priv(dev);
7802 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7805 /* SIOCSIWMLME */
7806 static int ipw2100_wx_set_mlme(struct net_device *dev,
7807 struct iw_request_info *info,
7808 union iwreq_data *wrqu, char *extra)
7810 struct ipw2100_priv *priv = libipw_priv(dev);
7811 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7812 __le16 reason;
7814 reason = cpu_to_le16(mlme->reason_code);
7816 switch (mlme->cmd) {
7817 case IW_MLME_DEAUTH:
7818 // silently ignore
7819 break;
7821 case IW_MLME_DISASSOC:
7822 ipw2100_disassociate_bssid(priv);
7823 break;
7825 default:
7826 return -EOPNOTSUPP;
7828 return 0;
7833 * IWPRIV handlers
7836 #ifdef CONFIG_IPW2100_MONITOR
7837 static int ipw2100_wx_set_promisc(struct net_device *dev,
7838 struct iw_request_info *info,
7839 union iwreq_data *wrqu, char *extra)
7841 struct ipw2100_priv *priv = libipw_priv(dev);
7842 int *parms = (int *)extra;
7843 int enable = (parms[0] > 0);
7844 int err = 0;
7846 mutex_lock(&priv->action_mutex);
7847 if (!(priv->status & STATUS_INITIALIZED)) {
7848 err = -EIO;
7849 goto done;
7852 if (enable) {
7853 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7854 err = ipw2100_set_channel(priv, parms[1], 0);
7855 goto done;
7857 priv->channel = parms[1];
7858 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7859 } else {
7860 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7861 err = ipw2100_switch_mode(priv, priv->last_mode);
7863 done:
7864 mutex_unlock(&priv->action_mutex);
7865 return err;
7868 static int ipw2100_wx_reset(struct net_device *dev,
7869 struct iw_request_info *info,
7870 union iwreq_data *wrqu, char *extra)
7872 struct ipw2100_priv *priv = libipw_priv(dev);
7873 if (priv->status & STATUS_INITIALIZED)
7874 schedule_reset(priv);
7875 return 0;
7878 #endif
7880 static int ipw2100_wx_set_powermode(struct net_device *dev,
7881 struct iw_request_info *info,
7882 union iwreq_data *wrqu, char *extra)
7884 struct ipw2100_priv *priv = libipw_priv(dev);
7885 int err = 0, mode = *(int *)extra;
7887 mutex_lock(&priv->action_mutex);
7888 if (!(priv->status & STATUS_INITIALIZED)) {
7889 err = -EIO;
7890 goto done;
7893 if ((mode < 0) || (mode > POWER_MODES))
7894 mode = IPW_POWER_AUTO;
7896 if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7897 err = ipw2100_set_power_mode(priv, mode);
7898 done:
7899 mutex_unlock(&priv->action_mutex);
7900 return err;
7903 #define MAX_POWER_STRING 80
7904 static int ipw2100_wx_get_powermode(struct net_device *dev,
7905 struct iw_request_info *info,
7906 union iwreq_data *wrqu, char *extra)
7909 * This can be called at any time. No action lock required
7912 struct ipw2100_priv *priv = libipw_priv(dev);
7913 int level = IPW_POWER_LEVEL(priv->power_mode);
7914 s32 timeout, period;
7916 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7917 snprintf(extra, MAX_POWER_STRING,
7918 "Power save level: %d (Off)", level);
7919 } else {
7920 switch (level) {
7921 case IPW_POWER_MODE_CAM:
7922 snprintf(extra, MAX_POWER_STRING,
7923 "Power save level: %d (None)", level);
7924 break;
7925 case IPW_POWER_AUTO:
7926 snprintf(extra, MAX_POWER_STRING,
7927 "Power save level: %d (Auto)", level);
7928 break;
7929 default:
7930 timeout = timeout_duration[level - 1] / 1000;
7931 period = period_duration[level - 1] / 1000;
7932 snprintf(extra, MAX_POWER_STRING,
7933 "Power save level: %d "
7934 "(Timeout %dms, Period %dms)",
7935 level, timeout, period);
7939 wrqu->data.length = strlen(extra) + 1;
7941 return 0;
7944 static int ipw2100_wx_set_preamble(struct net_device *dev,
7945 struct iw_request_info *info,
7946 union iwreq_data *wrqu, char *extra)
7948 struct ipw2100_priv *priv = libipw_priv(dev);
7949 int err, mode = *(int *)extra;
7951 mutex_lock(&priv->action_mutex);
7952 if (!(priv->status & STATUS_INITIALIZED)) {
7953 err = -EIO;
7954 goto done;
7957 if (mode == 1)
7958 priv->config |= CFG_LONG_PREAMBLE;
7959 else if (mode == 0)
7960 priv->config &= ~CFG_LONG_PREAMBLE;
7961 else {
7962 err = -EINVAL;
7963 goto done;
7966 err = ipw2100_system_config(priv, 0);
7968 done:
7969 mutex_unlock(&priv->action_mutex);
7970 return err;
7973 static int ipw2100_wx_get_preamble(struct net_device *dev,
7974 struct iw_request_info *info,
7975 union iwreq_data *wrqu, char *extra)
7978 * This can be called at any time. No action lock required
7981 struct ipw2100_priv *priv = libipw_priv(dev);
7983 if (priv->config & CFG_LONG_PREAMBLE)
7984 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7985 else
7986 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7988 return 0;
7991 #ifdef CONFIG_IPW2100_MONITOR
7992 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7993 struct iw_request_info *info,
7994 union iwreq_data *wrqu, char *extra)
7996 struct ipw2100_priv *priv = libipw_priv(dev);
7997 int err, mode = *(int *)extra;
7999 mutex_lock(&priv->action_mutex);
8000 if (!(priv->status & STATUS_INITIALIZED)) {
8001 err = -EIO;
8002 goto done;
8005 if (mode == 1)
8006 priv->config |= CFG_CRC_CHECK;
8007 else if (mode == 0)
8008 priv->config &= ~CFG_CRC_CHECK;
8009 else {
8010 err = -EINVAL;
8011 goto done;
8013 err = 0;
8015 done:
8016 mutex_unlock(&priv->action_mutex);
8017 return err;
8020 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8021 struct iw_request_info *info,
8022 union iwreq_data *wrqu, char *extra)
8025 * This can be called at any time. No action lock required
8028 struct ipw2100_priv *priv = libipw_priv(dev);
8030 if (priv->config & CFG_CRC_CHECK)
8031 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8032 else
8033 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8035 return 0;
8037 #endif /* CONFIG_IPW2100_MONITOR */
8039 static iw_handler ipw2100_wx_handlers[] = {
8040 IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8041 IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8042 IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8043 IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8044 IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8045 IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8046 IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8047 IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8048 IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8049 IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8050 IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8051 IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8052 IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8053 IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8054 IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8055 IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8056 IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8057 IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8058 IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8059 IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8060 IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8061 IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8062 IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8063 IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8064 IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8065 IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8066 IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8067 IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8068 IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8069 IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8070 IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8071 IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8072 IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8073 IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8074 IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8077 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8078 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8079 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8080 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8081 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8082 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8083 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8084 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8086 static const struct iw_priv_args ipw2100_private_args[] = {
8088 #ifdef CONFIG_IPW2100_MONITOR
8090 IPW2100_PRIV_SET_MONITOR,
8091 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8093 IPW2100_PRIV_RESET,
8094 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8095 #endif /* CONFIG_IPW2100_MONITOR */
8098 IPW2100_PRIV_SET_POWER,
8099 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8101 IPW2100_PRIV_GET_POWER,
8102 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103 "get_power"},
8105 IPW2100_PRIV_SET_LONGPREAMBLE,
8106 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8108 IPW2100_PRIV_GET_LONGPREAMBLE,
8109 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8110 #ifdef CONFIG_IPW2100_MONITOR
8112 IPW2100_PRIV_SET_CRC_CHECK,
8113 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8115 IPW2100_PRIV_GET_CRC_CHECK,
8116 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8117 #endif /* CONFIG_IPW2100_MONITOR */
8120 static iw_handler ipw2100_private_handler[] = {
8121 #ifdef CONFIG_IPW2100_MONITOR
8122 ipw2100_wx_set_promisc,
8123 ipw2100_wx_reset,
8124 #else /* CONFIG_IPW2100_MONITOR */
8125 NULL,
8126 NULL,
8127 #endif /* CONFIG_IPW2100_MONITOR */
8128 ipw2100_wx_set_powermode,
8129 ipw2100_wx_get_powermode,
8130 ipw2100_wx_set_preamble,
8131 ipw2100_wx_get_preamble,
8132 #ifdef CONFIG_IPW2100_MONITOR
8133 ipw2100_wx_set_crc_check,
8134 ipw2100_wx_get_crc_check,
8135 #else /* CONFIG_IPW2100_MONITOR */
8136 NULL,
8137 NULL,
8138 #endif /* CONFIG_IPW2100_MONITOR */
8142 * Get wireless statistics.
8143 * Called by /proc/net/wireless
8144 * Also called by SIOCGIWSTATS
8146 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8148 enum {
8149 POOR = 30,
8150 FAIR = 60,
8151 GOOD = 80,
8152 VERY_GOOD = 90,
8153 EXCELLENT = 95,
8154 PERFECT = 100
8156 int rssi_qual;
8157 int tx_qual;
8158 int beacon_qual;
8159 int quality;
8161 struct ipw2100_priv *priv = libipw_priv(dev);
8162 struct iw_statistics *wstats;
8163 u32 rssi, tx_retries, missed_beacons, tx_failures;
8164 u32 ord_len = sizeof(u32);
8166 if (!priv)
8167 return (struct iw_statistics *)NULL;
8169 wstats = &priv->wstats;
8171 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8172 * ipw2100_wx_wireless_stats seems to be called before fw is
8173 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8174 * and associated; if not associcated, the values are all meaningless
8175 * anyway, so set them all to NULL and INVALID */
8176 if (!(priv->status & STATUS_ASSOCIATED)) {
8177 wstats->miss.beacon = 0;
8178 wstats->discard.retries = 0;
8179 wstats->qual.qual = 0;
8180 wstats->qual.level = 0;
8181 wstats->qual.noise = 0;
8182 wstats->qual.updated = 7;
8183 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8184 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8185 return wstats;
8188 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8189 &missed_beacons, &ord_len))
8190 goto fail_get_ordinal;
8192 /* If we don't have a connection the quality and level is 0 */
8193 if (!(priv->status & STATUS_ASSOCIATED)) {
8194 wstats->qual.qual = 0;
8195 wstats->qual.level = 0;
8196 } else {
8197 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8198 &rssi, &ord_len))
8199 goto fail_get_ordinal;
8200 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8201 if (rssi < 10)
8202 rssi_qual = rssi * POOR / 10;
8203 else if (rssi < 15)
8204 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8205 else if (rssi < 20)
8206 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8207 else if (rssi < 30)
8208 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8209 10 + GOOD;
8210 else
8211 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8212 10 + VERY_GOOD;
8214 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8215 &tx_retries, &ord_len))
8216 goto fail_get_ordinal;
8218 if (tx_retries > 75)
8219 tx_qual = (90 - tx_retries) * POOR / 15;
8220 else if (tx_retries > 70)
8221 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8222 else if (tx_retries > 65)
8223 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8224 else if (tx_retries > 50)
8225 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8226 15 + GOOD;
8227 else
8228 tx_qual = (50 - tx_retries) *
8229 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8231 if (missed_beacons > 50)
8232 beacon_qual = (60 - missed_beacons) * POOR / 10;
8233 else if (missed_beacons > 40)
8234 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8235 10 + POOR;
8236 else if (missed_beacons > 32)
8237 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8238 18 + FAIR;
8239 else if (missed_beacons > 20)
8240 beacon_qual = (32 - missed_beacons) *
8241 (VERY_GOOD - GOOD) / 20 + GOOD;
8242 else
8243 beacon_qual = (20 - missed_beacons) *
8244 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8246 quality = min(tx_qual, rssi_qual);
8247 quality = min(beacon_qual, quality);
8249 #ifdef CONFIG_IPW2100_DEBUG
8250 if (beacon_qual == quality)
8251 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8252 else if (tx_qual == quality)
8253 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8254 else if (quality != 100)
8255 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8256 else
8257 IPW_DEBUG_WX("Quality not clamped.\n");
8258 #endif
8260 wstats->qual.qual = quality;
8261 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8264 wstats->qual.noise = 0;
8265 wstats->qual.updated = 7;
8266 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8268 /* FIXME: this is percent and not a # */
8269 wstats->miss.beacon = missed_beacons;
8271 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8272 &tx_failures, &ord_len))
8273 goto fail_get_ordinal;
8274 wstats->discard.retries = tx_failures;
8276 return wstats;
8278 fail_get_ordinal:
8279 IPW_DEBUG_WX("failed querying ordinals.\n");
8281 return (struct iw_statistics *)NULL;
8284 static struct iw_handler_def ipw2100_wx_handler_def = {
8285 .standard = ipw2100_wx_handlers,
8286 .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8287 .num_private = ARRAY_SIZE(ipw2100_private_handler),
8288 .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8289 .private = (iw_handler *) ipw2100_private_handler,
8290 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8291 .get_wireless_stats = ipw2100_wx_wireless_stats,
8294 static void ipw2100_wx_event_work(struct work_struct *work)
8296 struct ipw2100_priv *priv =
8297 container_of(work, struct ipw2100_priv, wx_event_work.work);
8298 union iwreq_data wrqu;
8299 unsigned int len = ETH_ALEN;
8301 if (priv->status & STATUS_STOPPING)
8302 return;
8304 mutex_lock(&priv->action_mutex);
8306 IPW_DEBUG_WX("enter\n");
8308 mutex_unlock(&priv->action_mutex);
8310 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8312 /* Fetch BSSID from the hardware */
8313 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8314 priv->status & STATUS_RF_KILL_MASK ||
8315 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8316 &priv->bssid, &len)) {
8317 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8318 } else {
8319 /* We now have the BSSID, so can finish setting to the full
8320 * associated state */
8321 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8322 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8323 priv->status &= ~STATUS_ASSOCIATING;
8324 priv->status |= STATUS_ASSOCIATED;
8325 netif_carrier_on(priv->net_dev);
8326 netif_wake_queue(priv->net_dev);
8329 if (!(priv->status & STATUS_ASSOCIATED)) {
8330 IPW_DEBUG_WX("Configuring ESSID\n");
8331 mutex_lock(&priv->action_mutex);
8332 /* This is a disassociation event, so kick the firmware to
8333 * look for another AP */
8334 if (priv->config & CFG_STATIC_ESSID)
8335 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8337 else
8338 ipw2100_set_essid(priv, NULL, 0, 0);
8339 mutex_unlock(&priv->action_mutex);
8342 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8345 #define IPW2100_FW_MAJOR_VERSION 1
8346 #define IPW2100_FW_MINOR_VERSION 3
8348 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8349 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8351 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8352 IPW2100_FW_MAJOR_VERSION)
8354 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8355 "." __stringify(IPW2100_FW_MINOR_VERSION)
8357 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8361 BINARY FIRMWARE HEADER FORMAT
8363 offset length desc
8364 0 2 version
8365 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8366 4 4 fw_len
8367 8 4 uc_len
8368 C fw_len firmware data
8369 12 + fw_len uc_len microcode data
8373 struct ipw2100_fw_header {
8374 short version;
8375 short mode;
8376 unsigned int fw_size;
8377 unsigned int uc_size;
8378 } __packed;
8380 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8382 struct ipw2100_fw_header *h =
8383 (struct ipw2100_fw_header *)fw->fw_entry->data;
8385 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8386 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8387 "(detected version id of %u). "
8388 "See Documentation/networking/README.ipw2100\n",
8389 h->version);
8390 return 1;
8393 fw->version = h->version;
8394 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8395 fw->fw.size = h->fw_size;
8396 fw->uc.data = fw->fw.data + h->fw_size;
8397 fw->uc.size = h->uc_size;
8399 return 0;
8402 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8403 struct ipw2100_fw *fw)
8405 char *fw_name;
8406 int rc;
8408 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8409 priv->net_dev->name);
8411 switch (priv->ieee->iw_mode) {
8412 case IW_MODE_ADHOC:
8413 fw_name = IPW2100_FW_NAME("-i");
8414 break;
8415 #ifdef CONFIG_IPW2100_MONITOR
8416 case IW_MODE_MONITOR:
8417 fw_name = IPW2100_FW_NAME("-p");
8418 break;
8419 #endif
8420 case IW_MODE_INFRA:
8421 default:
8422 fw_name = IPW2100_FW_NAME("");
8423 break;
8426 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8428 if (rc < 0) {
8429 printk(KERN_ERR DRV_NAME ": "
8430 "%s: Firmware '%s' not available or load failed.\n",
8431 priv->net_dev->name, fw_name);
8432 return rc;
8434 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8435 fw->fw_entry->size);
8437 ipw2100_mod_firmware_load(fw);
8439 return 0;
8442 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8443 #ifdef CONFIG_IPW2100_MONITOR
8444 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8445 #endif
8446 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8448 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8449 struct ipw2100_fw *fw)
8451 fw->version = 0;
8452 release_firmware(fw->fw_entry);
8453 fw->fw_entry = NULL;
8456 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8457 size_t max)
8459 char ver[MAX_FW_VERSION_LEN];
8460 u32 len = MAX_FW_VERSION_LEN;
8461 u32 tmp;
8462 int i;
8463 /* firmware version is an ascii string (max len of 14) */
8464 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8465 return -EIO;
8466 tmp = max;
8467 if (len >= max)
8468 len = max - 1;
8469 for (i = 0; i < len; i++)
8470 buf[i] = ver[i];
8471 buf[i] = '\0';
8472 return tmp;
8475 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8476 size_t max)
8478 u32 ver;
8479 u32 len = sizeof(ver);
8480 /* microcode version is a 32 bit integer */
8481 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8482 return -EIO;
8483 return snprintf(buf, max, "%08X", ver);
8487 * On exit, the firmware will have been freed from the fw list
8489 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8491 /* firmware is constructed of N contiguous entries, each entry is
8492 * structured as:
8494 * offset sie desc
8495 * 0 4 address to write to
8496 * 4 2 length of data run
8497 * 6 length data
8499 unsigned int addr;
8500 unsigned short len;
8502 const unsigned char *firmware_data = fw->fw.data;
8503 unsigned int firmware_data_left = fw->fw.size;
8505 while (firmware_data_left > 0) {
8506 addr = *(u32 *) (firmware_data);
8507 firmware_data += 4;
8508 firmware_data_left -= 4;
8510 len = *(u16 *) (firmware_data);
8511 firmware_data += 2;
8512 firmware_data_left -= 2;
8514 if (len > 32) {
8515 printk(KERN_ERR DRV_NAME ": "
8516 "Invalid firmware run-length of %d bytes\n",
8517 len);
8518 return -EINVAL;
8521 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8522 firmware_data += len;
8523 firmware_data_left -= len;
8526 return 0;
8529 struct symbol_alive_response {
8530 u8 cmd_id;
8531 u8 seq_num;
8532 u8 ucode_rev;
8533 u8 eeprom_valid;
8534 u16 valid_flags;
8535 u8 IEEE_addr[6];
8536 u16 flags;
8537 u16 pcb_rev;
8538 u16 clock_settle_time; // 1us LSB
8539 u16 powerup_settle_time; // 1us LSB
8540 u16 hop_settle_time; // 1us LSB
8541 u8 date[3]; // month, day, year
8542 u8 time[2]; // hours, minutes
8543 u8 ucode_valid;
8546 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8547 struct ipw2100_fw *fw)
8549 struct net_device *dev = priv->net_dev;
8550 const unsigned char *microcode_data = fw->uc.data;
8551 unsigned int microcode_data_left = fw->uc.size;
8552 void __iomem *reg = priv->ioaddr;
8554 struct symbol_alive_response response;
8555 int i, j;
8556 u8 data;
8558 /* Symbol control */
8559 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8560 readl(reg);
8561 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8562 readl(reg);
8564 /* HW config */
8565 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8566 readl(reg);
8567 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8568 readl(reg);
8570 /* EN_CS_ACCESS bit to reset control store pointer */
8571 write_nic_byte(dev, 0x210000, 0x40);
8572 readl(reg);
8573 write_nic_byte(dev, 0x210000, 0x0);
8574 readl(reg);
8575 write_nic_byte(dev, 0x210000, 0x40);
8576 readl(reg);
8578 /* copy microcode from buffer into Symbol */
8580 while (microcode_data_left > 0) {
8581 write_nic_byte(dev, 0x210010, *microcode_data++);
8582 write_nic_byte(dev, 0x210010, *microcode_data++);
8583 microcode_data_left -= 2;
8586 /* EN_CS_ACCESS bit to reset the control store pointer */
8587 write_nic_byte(dev, 0x210000, 0x0);
8588 readl(reg);
8590 /* Enable System (Reg 0)
8591 * first enable causes garbage in RX FIFO */
8592 write_nic_byte(dev, 0x210000, 0x0);
8593 readl(reg);
8594 write_nic_byte(dev, 0x210000, 0x80);
8595 readl(reg);
8597 /* Reset External Baseband Reg */
8598 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8599 readl(reg);
8600 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8601 readl(reg);
8603 /* HW Config (Reg 5) */
8604 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8605 readl(reg);
8606 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8607 readl(reg);
8609 /* Enable System (Reg 0)
8610 * second enable should be OK */
8611 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8612 readl(reg);
8613 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8615 /* check Symbol is enabled - upped this from 5 as it wasn't always
8616 * catching the update */
8617 for (i = 0; i < 10; i++) {
8618 udelay(10);
8620 /* check Dino is enabled bit */
8621 read_nic_byte(dev, 0x210000, &data);
8622 if (data & 0x1)
8623 break;
8626 if (i == 10) {
8627 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8628 dev->name);
8629 return -EIO;
8632 /* Get Symbol alive response */
8633 for (i = 0; i < 30; i++) {
8634 /* Read alive response structure */
8635 for (j = 0;
8636 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8637 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8639 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8640 break;
8641 udelay(10);
8644 if (i == 30) {
8645 printk(KERN_ERR DRV_NAME
8646 ": %s: No response from Symbol - hw not alive\n",
8647 dev->name);
8648 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8649 return -EIO;
8652 return 0;