PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / iwlwifi / pcie / rx.c
blob08c23d497a02aae938f321fcf751b61e0642b452
1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
33 #include "iwl-prph.h"
34 #include "iwl-io.h"
35 #include "internal.h"
36 #include "iwl-op-mode.h"
38 /******************************************************************************
40 * RX path functions
42 ******************************************************************************/
45 * Rx theory of operation
47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48 * each of which point to Receive Buffers to be filled by the NIC. These get
49 * used not only for Rx frames, but for any command response or notification
50 * from the NIC. The driver and NIC manage the Rx buffers by means
51 * of indexes into the circular buffer.
53 * Rx Queue Indexes
54 * The host/firmware share two index registers for managing the Rx buffers.
56 * The READ index maps to the first position that the firmware may be writing
57 * to -- the driver can read up to (but not including) this position and get
58 * good data.
59 * The READ index is managed by the firmware once the card is enabled.
61 * The WRITE index maps to the last position the driver has read from -- the
62 * position preceding WRITE is the last slot the firmware can place a packet.
64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
65 * WRITE = READ.
67 * During initialization, the host sets up the READ queue position to the first
68 * INDEX position, and WRITE to the last (READ - 1 wrapped)
70 * When the firmware places a packet in a buffer, it will advance the READ index
71 * and fire the RX interrupt. The driver can then query the READ index and
72 * process as many packets as possible, moving the WRITE index forward as it
73 * resets the Rx queue buffers with new memory.
75 * The management in the driver is as follows:
76 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
77 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78 * to replenish the iwl->rxq->rx_free.
79 * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
80 * iwl->rxq is replenished and the READ INDEX is updated (updating the
81 * 'processed' and 'read' driver indexes as well)
82 * + A received packet is processed and handed to the kernel network stack,
83 * detached from the iwl->rxq. The driver 'processed' index is updated.
84 * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
85 * rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
86 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
87 * If there were enough free buffers and RX_STALLED is set it is cleared.
90 * Driver sequence:
92 * iwl_rxq_alloc() Allocates rx_free
93 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
94 * iwl_pcie_rxq_restock
95 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
96 * queue, updates firmware pointers, and updates
97 * the WRITE index. If insufficient rx_free buffers
98 * are available, schedules iwl_pcie_rx_replenish
100 * -- enable interrupts --
101 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
102 * READ INDEX, detaching the SKB from the pool.
103 * Moves the packet buffer from queue to rx_used.
104 * Calls iwl_pcie_rxq_restock to refill any empty
105 * slots.
106 * ...
111 * iwl_rxq_space - Return number of free slots available in queue.
113 static int iwl_rxq_space(const struct iwl_rxq *rxq)
115 /* Make sure RX_QUEUE_SIZE is a power of 2 */
116 BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
119 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
120 * between empty and completely full queues.
121 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
122 * defined for negative dividends.
124 return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
128 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
130 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
132 return cpu_to_le32((u32)(dma_addr >> 8));
136 * iwl_pcie_rx_stop - stops the Rx DMA
138 int iwl_pcie_rx_stop(struct iwl_trans *trans)
140 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
141 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
142 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
146 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
148 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
149 struct iwl_rxq *rxq)
151 u32 reg;
153 spin_lock(&rxq->lock);
155 if (rxq->need_update == 0)
156 goto exit_unlock;
158 if (trans->cfg->base_params->shadow_reg_enable) {
159 /* shadow register enabled */
160 /* Device expects a multiple of 8 */
161 rxq->write_actual = (rxq->write & ~0x7);
162 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
163 } else {
164 /* If power-saving is in use, make sure device is awake */
165 if (test_bit(STATUS_TPOWER_PMI, &trans->status)) {
166 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
168 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
169 IWL_DEBUG_INFO(trans,
170 "Rx queue requesting wakeup,"
171 " GP1 = 0x%x\n", reg);
172 iwl_set_bit(trans, CSR_GP_CNTRL,
173 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
174 goto exit_unlock;
177 rxq->write_actual = (rxq->write & ~0x7);
178 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
179 rxq->write_actual);
181 /* Else device is assumed to be awake */
182 } else {
183 /* Device expects a multiple of 8 */
184 rxq->write_actual = (rxq->write & ~0x7);
185 iwl_write_direct32(trans, FH_RSCSR_CHNL0_WPTR,
186 rxq->write_actual);
189 rxq->need_update = 0;
191 exit_unlock:
192 spin_unlock(&rxq->lock);
196 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
198 * If there are slots in the RX queue that need to be restocked,
199 * and we have free pre-allocated buffers, fill the ranks as much
200 * as we can, pulling from rx_free.
202 * This moves the 'write' index forward to catch up with 'processed', and
203 * also updates the memory address in the firmware to reference the new
204 * target buffer.
206 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
208 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
209 struct iwl_rxq *rxq = &trans_pcie->rxq;
210 struct iwl_rx_mem_buffer *rxb;
213 * If the device isn't enabled - not need to try to add buffers...
214 * This can happen when we stop the device and still have an interrupt
215 * pending. We stop the APM before we sync the interrupts because we
216 * have to (see comment there). On the other hand, since the APM is
217 * stopped, we cannot access the HW (in particular not prph).
218 * So don't try to restock if the APM has been already stopped.
220 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
221 return;
223 spin_lock(&rxq->lock);
224 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
225 /* The overwritten rxb must be a used one */
226 rxb = rxq->queue[rxq->write];
227 BUG_ON(rxb && rxb->page);
229 /* Get next free Rx buffer, remove from free list */
230 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
231 list);
232 list_del(&rxb->list);
234 /* Point to Rx buffer via next RBD in circular buffer */
235 rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
236 rxq->queue[rxq->write] = rxb;
237 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
238 rxq->free_count--;
240 spin_unlock(&rxq->lock);
241 /* If the pre-allocated buffer pool is dropping low, schedule to
242 * refill it */
243 if (rxq->free_count <= RX_LOW_WATERMARK)
244 schedule_work(&trans_pcie->rx_replenish);
246 /* If we've added more space for the firmware to place data, tell it.
247 * Increment device's write pointer in multiples of 8. */
248 if (rxq->write_actual != (rxq->write & ~0x7)) {
249 spin_lock(&rxq->lock);
250 rxq->need_update = 1;
251 spin_unlock(&rxq->lock);
252 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
257 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
259 * A used RBD is an Rx buffer that has been given to the stack. To use it again
260 * a page must be allocated and the RBD must point to the page. This function
261 * doesn't change the HW pointer but handles the list of pages that is used by
262 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
263 * allocated buffers.
265 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
267 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
268 struct iwl_rxq *rxq = &trans_pcie->rxq;
269 struct iwl_rx_mem_buffer *rxb;
270 struct page *page;
271 gfp_t gfp_mask = priority;
273 while (1) {
274 spin_lock(&rxq->lock);
275 if (list_empty(&rxq->rx_used)) {
276 spin_unlock(&rxq->lock);
277 return;
279 spin_unlock(&rxq->lock);
281 if (rxq->free_count > RX_LOW_WATERMARK)
282 gfp_mask |= __GFP_NOWARN;
284 if (trans_pcie->rx_page_order > 0)
285 gfp_mask |= __GFP_COMP;
287 /* Alloc a new receive buffer */
288 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
289 if (!page) {
290 if (net_ratelimit())
291 IWL_DEBUG_INFO(trans, "alloc_pages failed, "
292 "order: %d\n",
293 trans_pcie->rx_page_order);
295 if ((rxq->free_count <= RX_LOW_WATERMARK) &&
296 net_ratelimit())
297 IWL_CRIT(trans, "Failed to alloc_pages with %s."
298 "Only %u free buffers remaining.\n",
299 priority == GFP_ATOMIC ?
300 "GFP_ATOMIC" : "GFP_KERNEL",
301 rxq->free_count);
302 /* We don't reschedule replenish work here -- we will
303 * call the restock method and if it still needs
304 * more buffers it will schedule replenish */
305 return;
308 spin_lock(&rxq->lock);
310 if (list_empty(&rxq->rx_used)) {
311 spin_unlock(&rxq->lock);
312 __free_pages(page, trans_pcie->rx_page_order);
313 return;
315 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
316 list);
317 list_del(&rxb->list);
318 spin_unlock(&rxq->lock);
320 BUG_ON(rxb->page);
321 rxb->page = page;
322 /* Get physical address of the RB */
323 rxb->page_dma =
324 dma_map_page(trans->dev, page, 0,
325 PAGE_SIZE << trans_pcie->rx_page_order,
326 DMA_FROM_DEVICE);
327 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
328 rxb->page = NULL;
329 spin_lock(&rxq->lock);
330 list_add(&rxb->list, &rxq->rx_used);
331 spin_unlock(&rxq->lock);
332 __free_pages(page, trans_pcie->rx_page_order);
333 return;
335 /* dma address must be no more than 36 bits */
336 BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
337 /* and also 256 byte aligned! */
338 BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
340 spin_lock(&rxq->lock);
342 list_add_tail(&rxb->list, &rxq->rx_free);
343 rxq->free_count++;
345 spin_unlock(&rxq->lock);
349 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
351 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
352 struct iwl_rxq *rxq = &trans_pcie->rxq;
353 int i;
355 lockdep_assert_held(&rxq->lock);
357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
358 if (!rxq->pool[i].page)
359 continue;
360 dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
361 PAGE_SIZE << trans_pcie->rx_page_order,
362 DMA_FROM_DEVICE);
363 __free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
364 rxq->pool[i].page = NULL;
369 * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
371 * When moving to rx_free an page is allocated for the slot.
373 * Also restock the Rx queue via iwl_pcie_rxq_restock.
374 * This is called as a scheduled work item (except for during initialization)
376 static void iwl_pcie_rx_replenish(struct iwl_trans *trans)
378 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
380 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL);
382 spin_lock(&trans_pcie->irq_lock);
383 iwl_pcie_rxq_restock(trans);
384 spin_unlock(&trans_pcie->irq_lock);
387 static void iwl_pcie_rx_replenish_now(struct iwl_trans *trans)
389 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC);
391 iwl_pcie_rxq_restock(trans);
394 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
396 struct iwl_trans_pcie *trans_pcie =
397 container_of(data, struct iwl_trans_pcie, rx_replenish);
399 iwl_pcie_rx_replenish(trans_pcie->trans);
402 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
404 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
405 struct iwl_rxq *rxq = &trans_pcie->rxq;
406 struct device *dev = trans->dev;
408 memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
410 spin_lock_init(&rxq->lock);
412 if (WARN_ON(rxq->bd || rxq->rb_stts))
413 return -EINVAL;
415 /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
416 rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
417 &rxq->bd_dma, GFP_KERNEL);
418 if (!rxq->bd)
419 goto err_bd;
421 /*Allocate the driver's pointer to receive buffer status */
422 rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
423 &rxq->rb_stts_dma, GFP_KERNEL);
424 if (!rxq->rb_stts)
425 goto err_rb_stts;
427 return 0;
429 err_rb_stts:
430 dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
431 rxq->bd, rxq->bd_dma);
432 rxq->bd_dma = 0;
433 rxq->bd = NULL;
434 err_bd:
435 return -ENOMEM;
438 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
440 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
441 u32 rb_size;
442 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
444 if (trans_pcie->rx_buf_size_8k)
445 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
446 else
447 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
449 /* Stop Rx DMA */
450 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
451 /* reset and flush pointers */
452 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
453 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
454 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
456 /* Reset driver's Rx queue write index */
457 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
459 /* Tell device where to find RBD circular buffer in DRAM */
460 iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
461 (u32)(rxq->bd_dma >> 8));
463 /* Tell device where in DRAM to update its Rx status */
464 iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
465 rxq->rb_stts_dma >> 4);
467 /* Enable Rx DMA
468 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
469 * the credit mechanism in 5000 HW RX FIFO
470 * Direct rx interrupts to hosts
471 * Rx buffer size 4 or 8k
472 * RB timeout 0x10
473 * 256 RBDs
475 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
476 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
477 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
478 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
479 rb_size|
480 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
481 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
483 /* Set interrupt coalescing timer to default (2048 usecs) */
484 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
486 /* W/A for interrupt coalescing bug in 7260 and 3160 */
487 if (trans->cfg->host_interrupt_operation_mode)
488 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
491 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
493 int i;
495 lockdep_assert_held(&rxq->lock);
497 INIT_LIST_HEAD(&rxq->rx_free);
498 INIT_LIST_HEAD(&rxq->rx_used);
499 rxq->free_count = 0;
501 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
502 list_add(&rxq->pool[i].list, &rxq->rx_used);
505 int iwl_pcie_rx_init(struct iwl_trans *trans)
507 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
508 struct iwl_rxq *rxq = &trans_pcie->rxq;
509 int i, err;
511 if (!rxq->bd) {
512 err = iwl_pcie_rx_alloc(trans);
513 if (err)
514 return err;
517 spin_lock(&rxq->lock);
519 INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
521 /* free all first - we might be reconfigured for a different size */
522 iwl_pcie_rxq_free_rbs(trans);
523 iwl_pcie_rx_init_rxb_lists(rxq);
525 for (i = 0; i < RX_QUEUE_SIZE; i++)
526 rxq->queue[i] = NULL;
528 /* Set us so that we have processed and used all buffers, but have
529 * not restocked the Rx queue with fresh buffers */
530 rxq->read = rxq->write = 0;
531 rxq->write_actual = 0;
532 memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
533 spin_unlock(&rxq->lock);
535 iwl_pcie_rx_replenish(trans);
537 iwl_pcie_rx_hw_init(trans, rxq);
539 spin_lock(&trans_pcie->irq_lock);
540 rxq->need_update = 1;
541 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
542 spin_unlock(&trans_pcie->irq_lock);
544 return 0;
547 void iwl_pcie_rx_free(struct iwl_trans *trans)
549 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
550 struct iwl_rxq *rxq = &trans_pcie->rxq;
552 /*if rxq->bd is NULL, it means that nothing has been allocated,
553 * exit now */
554 if (!rxq->bd) {
555 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
556 return;
559 cancel_work_sync(&trans_pcie->rx_replenish);
561 spin_lock(&rxq->lock);
562 iwl_pcie_rxq_free_rbs(trans);
563 spin_unlock(&rxq->lock);
565 dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
566 rxq->bd, rxq->bd_dma);
567 rxq->bd_dma = 0;
568 rxq->bd = NULL;
570 if (rxq->rb_stts)
571 dma_free_coherent(trans->dev,
572 sizeof(struct iwl_rb_status),
573 rxq->rb_stts, rxq->rb_stts_dma);
574 else
575 IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
576 rxq->rb_stts_dma = 0;
577 rxq->rb_stts = NULL;
580 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
581 struct iwl_rx_mem_buffer *rxb)
583 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
584 struct iwl_rxq *rxq = &trans_pcie->rxq;
585 struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
586 bool page_stolen = false;
587 int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
588 u32 offset = 0;
590 if (WARN_ON(!rxb))
591 return;
593 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
595 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
596 struct iwl_rx_packet *pkt;
597 struct iwl_device_cmd *cmd;
598 u16 sequence;
599 bool reclaim;
600 int index, cmd_index, err, len;
601 struct iwl_rx_cmd_buffer rxcb = {
602 ._offset = offset,
603 ._rx_page_order = trans_pcie->rx_page_order,
604 ._page = rxb->page,
605 ._page_stolen = false,
606 .truesize = max_len,
609 pkt = rxb_addr(&rxcb);
611 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
612 break;
614 IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
615 rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd),
616 pkt->hdr.cmd);
618 len = iwl_rx_packet_len(pkt);
619 len += sizeof(u32); /* account for status word */
620 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
621 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
623 /* Reclaim a command buffer only if this packet is a response
624 * to a (driver-originated) command.
625 * If the packet (e.g. Rx frame) originated from uCode,
626 * there is no command buffer to reclaim.
627 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
628 * but apparently a few don't get set; catch them here. */
629 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
630 if (reclaim) {
631 int i;
633 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
634 if (trans_pcie->no_reclaim_cmds[i] ==
635 pkt->hdr.cmd) {
636 reclaim = false;
637 break;
642 sequence = le16_to_cpu(pkt->hdr.sequence);
643 index = SEQ_TO_INDEX(sequence);
644 cmd_index = get_cmd_index(&txq->q, index);
646 if (reclaim)
647 cmd = txq->entries[cmd_index].cmd;
648 else
649 cmd = NULL;
651 err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
653 if (reclaim) {
654 kfree(txq->entries[cmd_index].free_buf);
655 txq->entries[cmd_index].free_buf = NULL;
659 * After here, we should always check rxcb._page_stolen,
660 * if it is true then one of the handlers took the page.
663 if (reclaim) {
664 /* Invoke any callbacks, transfer the buffer to caller,
665 * and fire off the (possibly) blocking
666 * iwl_trans_send_cmd()
667 * as we reclaim the driver command queue */
668 if (!rxcb._page_stolen)
669 iwl_pcie_hcmd_complete(trans, &rxcb, err);
670 else
671 IWL_WARN(trans, "Claim null rxb?\n");
674 page_stolen |= rxcb._page_stolen;
675 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
678 /* page was stolen from us -- free our reference */
679 if (page_stolen) {
680 __free_pages(rxb->page, trans_pcie->rx_page_order);
681 rxb->page = NULL;
684 /* Reuse the page if possible. For notification packets and
685 * SKBs that fail to Rx correctly, add them back into the
686 * rx_free list for reuse later. */
687 spin_lock(&rxq->lock);
688 if (rxb->page != NULL) {
689 rxb->page_dma =
690 dma_map_page(trans->dev, rxb->page, 0,
691 PAGE_SIZE << trans_pcie->rx_page_order,
692 DMA_FROM_DEVICE);
693 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
695 * free the page(s) as well to not break
696 * the invariant that the items on the used
697 * list have no page(s)
699 __free_pages(rxb->page, trans_pcie->rx_page_order);
700 rxb->page = NULL;
701 list_add_tail(&rxb->list, &rxq->rx_used);
702 } else {
703 list_add_tail(&rxb->list, &rxq->rx_free);
704 rxq->free_count++;
706 } else
707 list_add_tail(&rxb->list, &rxq->rx_used);
708 spin_unlock(&rxq->lock);
712 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
714 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
716 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
717 struct iwl_rxq *rxq = &trans_pcie->rxq;
718 u32 r, i;
719 u8 fill_rx = 0;
720 u32 count = 8;
721 int total_empty;
723 /* uCode's read index (stored in shared DRAM) indicates the last Rx
724 * buffer that the driver may process (last buffer filled by ucode). */
725 r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
726 i = rxq->read;
728 /* Rx interrupt, but nothing sent from uCode */
729 if (i == r)
730 IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
732 /* calculate total frames need to be restock after handling RX */
733 total_empty = r - rxq->write_actual;
734 if (total_empty < 0)
735 total_empty += RX_QUEUE_SIZE;
737 if (total_empty > (RX_QUEUE_SIZE / 2))
738 fill_rx = 1;
740 while (i != r) {
741 struct iwl_rx_mem_buffer *rxb;
743 rxb = rxq->queue[i];
744 rxq->queue[i] = NULL;
746 IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
747 r, i, rxb);
748 iwl_pcie_rx_handle_rb(trans, rxb);
750 i = (i + 1) & RX_QUEUE_MASK;
751 /* If there are a lot of unused frames,
752 * restock the Rx queue so ucode wont assert. */
753 if (fill_rx) {
754 count++;
755 if (count >= 8) {
756 rxq->read = i;
757 iwl_pcie_rx_replenish_now(trans);
758 count = 0;
763 /* Backtrack one entry */
764 rxq->read = i;
765 if (fill_rx)
766 iwl_pcie_rx_replenish_now(trans);
767 else
768 iwl_pcie_rxq_restock(trans);
772 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
774 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
776 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
778 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
779 if (trans->cfg->internal_wimax_coex &&
780 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
781 APMS_CLK_VAL_MRB_FUNC_MODE) ||
782 (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
783 APMG_PS_CTRL_VAL_RESET_REQ))) {
784 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
785 iwl_op_mode_wimax_active(trans->op_mode);
786 wake_up(&trans_pcie->wait_command_queue);
787 return;
790 iwl_pcie_dump_csr(trans);
791 iwl_dump_fh(trans, NULL);
793 local_bh_disable();
794 /* The STATUS_FW_ERROR bit is set in this function. This must happen
795 * before we wake up the command caller, to ensure a proper cleanup. */
796 iwl_trans_fw_error(trans);
797 local_bh_enable();
799 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
800 wake_up(&trans_pcie->wait_command_queue);
803 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
805 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
806 u32 inta;
808 lockdep_assert_held(&trans_pcie->irq_lock);
810 trace_iwlwifi_dev_irq(trans->dev);
812 /* Discover which interrupts are active/pending */
813 inta = iwl_read32(trans, CSR_INT);
815 /* the thread will service interrupts and re-enable them */
816 return inta;
819 /* a device (PCI-E) page is 4096 bytes long */
820 #define ICT_SHIFT 12
821 #define ICT_SIZE (1 << ICT_SHIFT)
822 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
824 /* interrupt handler using ict table, with this interrupt driver will
825 * stop using INTA register to get device's interrupt, reading this register
826 * is expensive, device will write interrupts in ICT dram table, increment
827 * index then will fire interrupt to driver, driver will OR all ICT table
828 * entries from current index up to table entry with 0 value. the result is
829 * the interrupt we need to service, driver will set the entries back to 0 and
830 * set index.
832 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
834 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
835 u32 inta;
836 u32 val = 0;
837 u32 read;
839 trace_iwlwifi_dev_irq(trans->dev);
841 /* Ignore interrupt if there's nothing in NIC to service.
842 * This may be due to IRQ shared with another device,
843 * or due to sporadic interrupts thrown from our NIC. */
844 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
845 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
846 if (!read)
847 return 0;
850 * Collect all entries up to the first 0, starting from ict_index;
851 * note we already read at ict_index.
853 do {
854 val |= read;
855 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
856 trans_pcie->ict_index, read);
857 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
858 trans_pcie->ict_index =
859 iwl_queue_inc_wrap(trans_pcie->ict_index, ICT_COUNT);
861 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
862 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
863 read);
864 } while (read);
866 /* We should not get this value, just ignore it. */
867 if (val == 0xffffffff)
868 val = 0;
871 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
872 * (bit 15 before shifting it to 31) to clear when using interrupt
873 * coalescing. fortunately, bits 18 and 19 stay set when this happens
874 * so we use them to decide on the real state of the Rx bit.
875 * In order words, bit 15 is set if bit 18 or bit 19 are set.
877 if (val & 0xC0000)
878 val |= 0x8000;
880 inta = (0xff & val) | ((0xff00 & val) << 16);
881 return inta;
884 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
886 struct iwl_trans *trans = dev_id;
887 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
888 struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
889 u32 inta = 0;
890 u32 handled = 0;
891 u32 i;
893 lock_map_acquire(&trans->sync_cmd_lockdep_map);
895 spin_lock(&trans_pcie->irq_lock);
897 /* dram interrupt table not set yet,
898 * use legacy interrupt.
900 if (likely(trans_pcie->use_ict))
901 inta = iwl_pcie_int_cause_ict(trans);
902 else
903 inta = iwl_pcie_int_cause_non_ict(trans);
905 if (iwl_have_debug_level(IWL_DL_ISR)) {
906 IWL_DEBUG_ISR(trans,
907 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
908 inta, trans_pcie->inta_mask,
909 iwl_read32(trans, CSR_INT_MASK),
910 iwl_read32(trans, CSR_FH_INT_STATUS));
911 if (inta & (~trans_pcie->inta_mask))
912 IWL_DEBUG_ISR(trans,
913 "We got a masked interrupt (0x%08x)\n",
914 inta & (~trans_pcie->inta_mask));
917 inta &= trans_pcie->inta_mask;
920 * Ignore interrupt if there's nothing in NIC to service.
921 * This may be due to IRQ shared with another device,
922 * or due to sporadic interrupts thrown from our NIC.
924 if (unlikely(!inta)) {
925 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
927 * Re-enable interrupts here since we don't
928 * have anything to service
930 if (test_bit(STATUS_INT_ENABLED, &trans->status))
931 iwl_enable_interrupts(trans);
932 spin_unlock(&trans_pcie->irq_lock);
933 lock_map_release(&trans->sync_cmd_lockdep_map);
934 return IRQ_NONE;
937 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
939 * Hardware disappeared. It might have
940 * already raised an interrupt.
942 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
943 spin_unlock(&trans_pcie->irq_lock);
944 goto out;
947 /* Ack/clear/reset pending uCode interrupts.
948 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
950 /* There is a hardware bug in the interrupt mask function that some
951 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
952 * they are disabled in the CSR_INT_MASK register. Furthermore the
953 * ICT interrupt handling mechanism has another bug that might cause
954 * these unmasked interrupts fail to be detected. We workaround the
955 * hardware bugs here by ACKing all the possible interrupts so that
956 * interrupt coalescing can still be achieved.
958 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
960 if (iwl_have_debug_level(IWL_DL_ISR))
961 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
962 inta, iwl_read32(trans, CSR_INT_MASK));
964 spin_unlock(&trans_pcie->irq_lock);
966 /* Now service all interrupt bits discovered above. */
967 if (inta & CSR_INT_BIT_HW_ERR) {
968 IWL_ERR(trans, "Hardware error detected. Restarting.\n");
970 /* Tell the device to stop sending interrupts */
971 iwl_disable_interrupts(trans);
973 isr_stats->hw++;
974 iwl_pcie_irq_handle_error(trans);
976 handled |= CSR_INT_BIT_HW_ERR;
978 goto out;
981 if (iwl_have_debug_level(IWL_DL_ISR)) {
982 /* NIC fires this, but we don't use it, redundant with WAKEUP */
983 if (inta & CSR_INT_BIT_SCD) {
984 IWL_DEBUG_ISR(trans,
985 "Scheduler finished to transmit the frame/frames.\n");
986 isr_stats->sch++;
989 /* Alive notification via Rx interrupt will do the real work */
990 if (inta & CSR_INT_BIT_ALIVE) {
991 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
992 isr_stats->alive++;
996 /* Safely ignore these bits for debug checks below */
997 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
999 /* HW RF KILL switch toggled */
1000 if (inta & CSR_INT_BIT_RF_KILL) {
1001 bool hw_rfkill;
1003 hw_rfkill = iwl_is_rfkill_set(trans);
1004 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1005 hw_rfkill ? "disable radio" : "enable radio");
1007 isr_stats->rfkill++;
1009 iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill);
1010 if (hw_rfkill) {
1011 set_bit(STATUS_RFKILL, &trans->status);
1012 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1013 &trans->status))
1014 IWL_DEBUG_RF_KILL(trans,
1015 "Rfkill while SYNC HCMD in flight\n");
1016 wake_up(&trans_pcie->wait_command_queue);
1017 } else {
1018 clear_bit(STATUS_RFKILL, &trans->status);
1021 handled |= CSR_INT_BIT_RF_KILL;
1024 /* Chip got too hot and stopped itself */
1025 if (inta & CSR_INT_BIT_CT_KILL) {
1026 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1027 isr_stats->ctkill++;
1028 handled |= CSR_INT_BIT_CT_KILL;
1031 /* Error detected by uCode */
1032 if (inta & CSR_INT_BIT_SW_ERR) {
1033 IWL_ERR(trans, "Microcode SW error detected. "
1034 " Restarting 0x%X.\n", inta);
1035 isr_stats->sw++;
1036 iwl_pcie_irq_handle_error(trans);
1037 handled |= CSR_INT_BIT_SW_ERR;
1040 /* uCode wakes up after power-down sleep */
1041 if (inta & CSR_INT_BIT_WAKEUP) {
1042 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1043 iwl_pcie_rxq_inc_wr_ptr(trans, &trans_pcie->rxq);
1044 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++)
1045 iwl_pcie_txq_inc_wr_ptr(trans, &trans_pcie->txq[i]);
1047 isr_stats->wakeup++;
1049 handled |= CSR_INT_BIT_WAKEUP;
1052 /* All uCode command responses, including Tx command responses,
1053 * Rx "responses" (frame-received notification), and other
1054 * notifications from uCode come through here*/
1055 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1056 CSR_INT_BIT_RX_PERIODIC)) {
1057 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1058 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1059 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1060 iwl_write32(trans, CSR_FH_INT_STATUS,
1061 CSR_FH_INT_RX_MASK);
1063 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1064 handled |= CSR_INT_BIT_RX_PERIODIC;
1065 iwl_write32(trans,
1066 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1068 /* Sending RX interrupt require many steps to be done in the
1069 * the device:
1070 * 1- write interrupt to current index in ICT table.
1071 * 2- dma RX frame.
1072 * 3- update RX shared data to indicate last write index.
1073 * 4- send interrupt.
1074 * This could lead to RX race, driver could receive RX interrupt
1075 * but the shared data changes does not reflect this;
1076 * periodic interrupt will detect any dangling Rx activity.
1079 /* Disable periodic interrupt; we use it as just a one-shot. */
1080 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1081 CSR_INT_PERIODIC_DIS);
1083 iwl_pcie_rx_handle(trans);
1086 * Enable periodic interrupt in 8 msec only if we received
1087 * real RX interrupt (instead of just periodic int), to catch
1088 * any dangling Rx interrupt. If it was just the periodic
1089 * interrupt, there was no dangling Rx activity, and no need
1090 * to extend the periodic interrupt; one-shot is enough.
1092 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1093 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1094 CSR_INT_PERIODIC_ENA);
1096 isr_stats->rx++;
1099 /* This "Tx" DMA channel is used only for loading uCode */
1100 if (inta & CSR_INT_BIT_FH_TX) {
1101 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1102 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1103 isr_stats->tx++;
1104 handled |= CSR_INT_BIT_FH_TX;
1105 /* Wake up uCode load routine, now that load is complete */
1106 trans_pcie->ucode_write_complete = true;
1107 wake_up(&trans_pcie->ucode_write_waitq);
1110 if (inta & ~handled) {
1111 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1112 isr_stats->unhandled++;
1115 if (inta & ~(trans_pcie->inta_mask)) {
1116 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1117 inta & ~trans_pcie->inta_mask);
1120 /* Re-enable all interrupts */
1121 /* only Re-enable if disabled by irq */
1122 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1123 iwl_enable_interrupts(trans);
1124 /* Re-enable RF_KILL if it occurred */
1125 else if (handled & CSR_INT_BIT_RF_KILL)
1126 iwl_enable_rfkill_int(trans);
1128 out:
1129 lock_map_release(&trans->sync_cmd_lockdep_map);
1130 return IRQ_HANDLED;
1133 /******************************************************************************
1135 * ICT functions
1137 ******************************************************************************/
1139 /* Free dram table */
1140 void iwl_pcie_free_ict(struct iwl_trans *trans)
1142 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1144 if (trans_pcie->ict_tbl) {
1145 dma_free_coherent(trans->dev, ICT_SIZE,
1146 trans_pcie->ict_tbl,
1147 trans_pcie->ict_tbl_dma);
1148 trans_pcie->ict_tbl = NULL;
1149 trans_pcie->ict_tbl_dma = 0;
1154 * allocate dram shared table, it is an aligned memory
1155 * block of ICT_SIZE.
1156 * also reset all data related to ICT table interrupt.
1158 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1160 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1162 trans_pcie->ict_tbl =
1163 dma_zalloc_coherent(trans->dev, ICT_SIZE,
1164 &trans_pcie->ict_tbl_dma,
1165 GFP_KERNEL);
1166 if (!trans_pcie->ict_tbl)
1167 return -ENOMEM;
1169 /* just an API sanity check ... it is guaranteed to be aligned */
1170 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1171 iwl_pcie_free_ict(trans);
1172 return -EINVAL;
1175 IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1176 (unsigned long long)trans_pcie->ict_tbl_dma,
1177 trans_pcie->ict_tbl);
1179 return 0;
1182 /* Device is going up inform it about using ICT interrupt table,
1183 * also we need to tell the driver to start using ICT interrupt.
1185 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1187 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1188 u32 val;
1190 if (!trans_pcie->ict_tbl)
1191 return;
1193 spin_lock(&trans_pcie->irq_lock);
1194 iwl_disable_interrupts(trans);
1196 memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1198 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1200 val |= CSR_DRAM_INT_TBL_ENABLE;
1201 val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1203 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1205 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1206 trans_pcie->use_ict = true;
1207 trans_pcie->ict_index = 0;
1208 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1209 iwl_enable_interrupts(trans);
1210 spin_unlock(&trans_pcie->irq_lock);
1213 /* Device is going down disable ict interrupt usage */
1214 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1216 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1218 spin_lock(&trans_pcie->irq_lock);
1219 trans_pcie->use_ict = false;
1220 spin_unlock(&trans_pcie->irq_lock);
1223 irqreturn_t iwl_pcie_isr(int irq, void *data)
1225 struct iwl_trans *trans = data;
1227 if (!trans)
1228 return IRQ_NONE;
1230 /* Disable (but don't clear!) interrupts here to avoid
1231 * back-to-back ISRs and sporadic interrupts from our NIC.
1232 * If we have something to service, the tasklet will re-enable ints.
1233 * If we *don't* have something, we'll re-enable before leaving here.
1235 iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1237 return IRQ_WAKE_THREAD;