2 * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
3 * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
4 * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
13 * - Add TSF sync and fix IBSS beacon transmission by adding
14 * competition for "air time" at TBTT
15 * - RX filtering based on filter configuration (data->rx_filter)
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <linux/if_arp.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/etherdevice.h>
28 #include <linux/platform_device.h>
29 #include <linux/debugfs.h>
30 #include <linux/module.h>
31 #include <linux/ktime.h>
32 #include <net/genetlink.h>
33 #include "mac80211_hwsim.h"
35 #define WARN_QUEUE 100
38 MODULE_AUTHOR("Jouni Malinen");
39 MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
40 MODULE_LICENSE("GPL");
42 static u32 wmediumd_portid
;
44 static int radios
= 2;
45 module_param(radios
, int, 0444);
46 MODULE_PARM_DESC(radios
, "Number of simulated radios");
48 static int channels
= 1;
49 module_param(channels
, int, 0444);
50 MODULE_PARM_DESC(channels
, "Number of concurrent channels");
52 static bool paged_rx
= false;
53 module_param(paged_rx
, bool, 0644);
54 MODULE_PARM_DESC(paged_rx
, "Use paged SKBs for RX instead of linear ones");
56 static bool rctbl
= false;
57 module_param(rctbl
, bool, 0444);
58 MODULE_PARM_DESC(rctbl
, "Handle rate control table");
61 * enum hwsim_regtest - the type of regulatory tests we offer
63 * These are the different values you can use for the regtest
64 * module parameter. This is useful to help test world roaming
65 * and the driver regulatory_hint() call and combinations of these.
66 * If you want to do specific alpha2 regulatory domain tests simply
67 * use the userspace regulatory request as that will be respected as
68 * well without the need of this module parameter. This is designed
69 * only for testing the driver regulatory request, world roaming
70 * and all possible combinations.
72 * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
73 * this is the default value.
74 * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
75 * hint, only one driver regulatory hint will be sent as such the
76 * secondary radios are expected to follow.
77 * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
78 * request with all radios reporting the same regulatory domain.
79 * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
80 * different regulatory domains requests. Expected behaviour is for
81 * an intersection to occur but each device will still use their
82 * respective regulatory requested domains. Subsequent radios will
83 * use the resulting intersection.
84 * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
85 * this by using a custom beacon-capable regulatory domain for the first
86 * radio. All other device world roam.
87 * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
88 * domain requests. All radios will adhere to this custom world regulatory
90 * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
91 * domain requests. The first radio will adhere to the first custom world
92 * regulatory domain, the second one to the second custom world regulatory
93 * domain. All other devices will world roam.
94 * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
95 * settings, only the first radio will send a regulatory domain request
96 * and use strict settings. The rest of the radios are expected to follow.
97 * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
98 * settings. All radios will adhere to this.
99 * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
100 * domain settings, combined with secondary driver regulatory domain
101 * settings. The first radio will get a strict regulatory domain setting
102 * using the first driver regulatory request and the second radio will use
103 * non-strict settings using the second driver regulatory request. All
104 * other devices should follow the intersection created between the
106 * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
107 * at least 6 radios for a complete test. We will test in this order:
108 * 1 - driver custom world regulatory domain
109 * 2 - second custom world regulatory domain
110 * 3 - first driver regulatory domain request
111 * 4 - second driver regulatory domain request
112 * 5 - strict regulatory domain settings using the third driver regulatory
114 * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
115 * regulatory requests.
118 HWSIM_REGTEST_DISABLED
= 0,
119 HWSIM_REGTEST_DRIVER_REG_FOLLOW
= 1,
120 HWSIM_REGTEST_DRIVER_REG_ALL
= 2,
121 HWSIM_REGTEST_DIFF_COUNTRY
= 3,
122 HWSIM_REGTEST_WORLD_ROAM
= 4,
123 HWSIM_REGTEST_CUSTOM_WORLD
= 5,
124 HWSIM_REGTEST_CUSTOM_WORLD_2
= 6,
125 HWSIM_REGTEST_STRICT_FOLLOW
= 7,
126 HWSIM_REGTEST_STRICT_ALL
= 8,
127 HWSIM_REGTEST_STRICT_AND_DRIVER_REG
= 9,
128 HWSIM_REGTEST_ALL
= 10,
131 /* Set to one of the HWSIM_REGTEST_* values above */
132 static int regtest
= HWSIM_REGTEST_DISABLED
;
133 module_param(regtest
, int, 0444);
134 MODULE_PARM_DESC(regtest
, "The type of regulatory test we want to run");
136 static const char *hwsim_alpha2s
[] = {
145 static const struct ieee80211_regdomain hwsim_world_regdom_custom_01
= {
149 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
150 REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
151 REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
152 REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
156 static const struct ieee80211_regdomain hwsim_world_regdom_custom_02
= {
160 REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
161 REG_RULE(5725-10, 5850+10, 40, 0, 30,
166 static const struct ieee80211_regdomain
*hwsim_world_regdom_custom
[] = {
167 &hwsim_world_regdom_custom_01
,
168 &hwsim_world_regdom_custom_02
,
171 struct hwsim_vif_priv
{
179 #define HWSIM_VIF_MAGIC 0x69537748
181 static inline void hwsim_check_magic(struct ieee80211_vif
*vif
)
183 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
184 WARN(vp
->magic
!= HWSIM_VIF_MAGIC
,
185 "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
186 vif
, vp
->magic
, vif
->addr
, vif
->type
, vif
->p2p
);
189 static inline void hwsim_set_magic(struct ieee80211_vif
*vif
)
191 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
192 vp
->magic
= HWSIM_VIF_MAGIC
;
195 static inline void hwsim_clear_magic(struct ieee80211_vif
*vif
)
197 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
201 struct hwsim_sta_priv
{
205 #define HWSIM_STA_MAGIC 0x6d537749
207 static inline void hwsim_check_sta_magic(struct ieee80211_sta
*sta
)
209 struct hwsim_sta_priv
*sp
= (void *)sta
->drv_priv
;
210 WARN_ON(sp
->magic
!= HWSIM_STA_MAGIC
);
213 static inline void hwsim_set_sta_magic(struct ieee80211_sta
*sta
)
215 struct hwsim_sta_priv
*sp
= (void *)sta
->drv_priv
;
216 sp
->magic
= HWSIM_STA_MAGIC
;
219 static inline void hwsim_clear_sta_magic(struct ieee80211_sta
*sta
)
221 struct hwsim_sta_priv
*sp
= (void *)sta
->drv_priv
;
225 struct hwsim_chanctx_priv
{
229 #define HWSIM_CHANCTX_MAGIC 0x6d53774a
231 static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf
*c
)
233 struct hwsim_chanctx_priv
*cp
= (void *)c
->drv_priv
;
234 WARN_ON(cp
->magic
!= HWSIM_CHANCTX_MAGIC
);
237 static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf
*c
)
239 struct hwsim_chanctx_priv
*cp
= (void *)c
->drv_priv
;
240 cp
->magic
= HWSIM_CHANCTX_MAGIC
;
243 static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf
*c
)
245 struct hwsim_chanctx_priv
*cp
= (void *)c
->drv_priv
;
249 static struct class *hwsim_class
;
251 static struct net_device
*hwsim_mon
; /* global monitor netdev */
253 #define CHAN2G(_freq) { \
254 .band = IEEE80211_BAND_2GHZ, \
255 .center_freq = (_freq), \
256 .hw_value = (_freq), \
260 #define CHAN5G(_freq) { \
261 .band = IEEE80211_BAND_5GHZ, \
262 .center_freq = (_freq), \
263 .hw_value = (_freq), \
267 static const struct ieee80211_channel hwsim_channels_2ghz
[] = {
268 CHAN2G(2412), /* Channel 1 */
269 CHAN2G(2417), /* Channel 2 */
270 CHAN2G(2422), /* Channel 3 */
271 CHAN2G(2427), /* Channel 4 */
272 CHAN2G(2432), /* Channel 5 */
273 CHAN2G(2437), /* Channel 6 */
274 CHAN2G(2442), /* Channel 7 */
275 CHAN2G(2447), /* Channel 8 */
276 CHAN2G(2452), /* Channel 9 */
277 CHAN2G(2457), /* Channel 10 */
278 CHAN2G(2462), /* Channel 11 */
279 CHAN2G(2467), /* Channel 12 */
280 CHAN2G(2472), /* Channel 13 */
281 CHAN2G(2484), /* Channel 14 */
284 static const struct ieee80211_channel hwsim_channels_5ghz
[] = {
285 CHAN5G(5180), /* Channel 36 */
286 CHAN5G(5200), /* Channel 40 */
287 CHAN5G(5220), /* Channel 44 */
288 CHAN5G(5240), /* Channel 48 */
290 CHAN5G(5260), /* Channel 52 */
291 CHAN5G(5280), /* Channel 56 */
292 CHAN5G(5300), /* Channel 60 */
293 CHAN5G(5320), /* Channel 64 */
295 CHAN5G(5500), /* Channel 100 */
296 CHAN5G(5520), /* Channel 104 */
297 CHAN5G(5540), /* Channel 108 */
298 CHAN5G(5560), /* Channel 112 */
299 CHAN5G(5580), /* Channel 116 */
300 CHAN5G(5600), /* Channel 120 */
301 CHAN5G(5620), /* Channel 124 */
302 CHAN5G(5640), /* Channel 128 */
303 CHAN5G(5660), /* Channel 132 */
304 CHAN5G(5680), /* Channel 136 */
305 CHAN5G(5700), /* Channel 140 */
307 CHAN5G(5745), /* Channel 149 */
308 CHAN5G(5765), /* Channel 153 */
309 CHAN5G(5785), /* Channel 157 */
310 CHAN5G(5805), /* Channel 161 */
311 CHAN5G(5825), /* Channel 165 */
314 static const struct ieee80211_rate hwsim_rates
[] = {
316 { .bitrate
= 20, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
317 { .bitrate
= 55, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
318 { .bitrate
= 110, .flags
= IEEE80211_RATE_SHORT_PREAMBLE
},
329 static const struct ieee80211_iface_limit hwsim_if_limits
[] = {
330 { .max
= 1, .types
= BIT(NL80211_IFTYPE_ADHOC
) },
331 { .max
= 2048, .types
= BIT(NL80211_IFTYPE_STATION
) |
332 BIT(NL80211_IFTYPE_P2P_CLIENT
) |
333 #ifdef CONFIG_MAC80211_MESH
334 BIT(NL80211_IFTYPE_MESH_POINT
) |
336 BIT(NL80211_IFTYPE_AP
) |
337 BIT(NL80211_IFTYPE_P2P_GO
) },
338 { .max
= 1, .types
= BIT(NL80211_IFTYPE_P2P_DEVICE
) },
341 static const struct ieee80211_iface_limit hwsim_if_dfs_limits
[] = {
342 { .max
= 8, .types
= BIT(NL80211_IFTYPE_AP
) },
345 static const struct ieee80211_iface_combination hwsim_if_comb
[] = {
347 .limits
= hwsim_if_limits
,
348 .n_limits
= ARRAY_SIZE(hwsim_if_limits
),
349 .max_interfaces
= 2048,
350 .num_different_channels
= 1,
353 .limits
= hwsim_if_dfs_limits
,
354 .n_limits
= ARRAY_SIZE(hwsim_if_dfs_limits
),
356 .num_different_channels
= 1,
357 .radar_detect_widths
= BIT(NL80211_CHAN_WIDTH_20_NOHT
) |
358 BIT(NL80211_CHAN_WIDTH_20
) |
359 BIT(NL80211_CHAN_WIDTH_40
) |
360 BIT(NL80211_CHAN_WIDTH_80
) |
361 BIT(NL80211_CHAN_WIDTH_160
),
365 static spinlock_t hwsim_radio_lock
;
366 static struct list_head hwsim_radios
;
367 static int hwsim_radio_idx
;
369 static struct platform_driver mac80211_hwsim_driver
= {
371 .name
= "mac80211_hwsim",
372 .owner
= THIS_MODULE
,
376 struct mac80211_hwsim_data
{
377 struct list_head list
;
378 struct ieee80211_hw
*hw
;
380 struct ieee80211_supported_band bands
[IEEE80211_NUM_BANDS
];
381 struct ieee80211_channel channels_2ghz
[ARRAY_SIZE(hwsim_channels_2ghz
)];
382 struct ieee80211_channel channels_5ghz
[ARRAY_SIZE(hwsim_channels_5ghz
)];
383 struct ieee80211_rate rates
[ARRAY_SIZE(hwsim_rates
)];
384 struct ieee80211_iface_combination if_combination
;
386 struct mac_address addresses
[2];
389 struct ieee80211_channel
*tmp_chan
;
390 struct delayed_work roc_done
;
391 struct delayed_work hw_scan
;
392 struct cfg80211_scan_request
*hw_scan_request
;
393 struct ieee80211_vif
*hw_scan_vif
;
396 struct ieee80211_channel
*channel
;
397 u64 beacon_int
/* beacon interval in us */;
398 unsigned int rx_filter
;
399 bool started
, idle
, scanning
;
401 struct tasklet_hrtimer beacon_timer
;
403 PS_DISABLED
, PS_ENABLED
, PS_AUTO_POLL
, PS_MANUAL_POLL
405 bool ps_poll_pending
;
406 struct dentry
*debugfs
;
408 struct sk_buff_head pending
; /* packets pending */
410 * Only radios in the same group can communicate together (the
411 * channel has to match too). Each bit represents a group. A
412 * radio can be in more then one group.
418 /* difference between this hw's clock and the real clock, in usecs */
421 /* absolute beacon transmission time. Used to cover up "tx" delay. */
426 struct hwsim_radiotap_hdr
{
427 struct ieee80211_radiotap_header hdr
;
435 struct hwsim_radiotap_ack_hdr
{
436 struct ieee80211_radiotap_header hdr
;
443 /* MAC80211_HWSIM netlinf family */
444 static struct genl_family hwsim_genl_family
= {
445 .id
= GENL_ID_GENERATE
,
447 .name
= "MAC80211_HWSIM",
449 .maxattr
= HWSIM_ATTR_MAX
,
452 /* MAC80211_HWSIM netlink policy */
454 static struct nla_policy hwsim_genl_policy
[HWSIM_ATTR_MAX
+ 1] = {
455 [HWSIM_ATTR_ADDR_RECEIVER
] = { .type
= NLA_UNSPEC
, .len
= ETH_ALEN
},
456 [HWSIM_ATTR_ADDR_TRANSMITTER
] = { .type
= NLA_UNSPEC
, .len
= ETH_ALEN
},
457 [HWSIM_ATTR_FRAME
] = { .type
= NLA_BINARY
,
458 .len
= IEEE80211_MAX_DATA_LEN
},
459 [HWSIM_ATTR_FLAGS
] = { .type
= NLA_U32
},
460 [HWSIM_ATTR_RX_RATE
] = { .type
= NLA_U32
},
461 [HWSIM_ATTR_SIGNAL
] = { .type
= NLA_U32
},
462 [HWSIM_ATTR_TX_INFO
] = { .type
= NLA_UNSPEC
,
463 .len
= IEEE80211_TX_MAX_RATES
*
464 sizeof(struct hwsim_tx_rate
)},
465 [HWSIM_ATTR_COOKIE
] = { .type
= NLA_U64
},
466 [HWSIM_ATTR_CHANNELS
] = { .type
= NLA_U32
},
467 [HWSIM_ATTR_RADIO_ID
] = { .type
= NLA_U32
},
468 [HWSIM_ATTR_REG_HINT_ALPHA2
] = { .type
= NLA_STRING
, .len
= 2 },
469 [HWSIM_ATTR_REG_CUSTOM_REG
] = { .type
= NLA_U32
},
470 [HWSIM_ATTR_REG_STRICT_REG
] = { .type
= NLA_FLAG
},
473 static void mac80211_hwsim_tx_frame(struct ieee80211_hw
*hw
,
475 struct ieee80211_channel
*chan
);
477 /* sysfs attributes */
478 static void hwsim_send_ps_poll(void *dat
, u8
*mac
, struct ieee80211_vif
*vif
)
480 struct mac80211_hwsim_data
*data
= dat
;
481 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
483 struct ieee80211_pspoll
*pspoll
;
488 wiphy_debug(data
->hw
->wiphy
,
489 "%s: send PS-Poll to %pM for aid %d\n",
490 __func__
, vp
->bssid
, vp
->aid
);
492 skb
= dev_alloc_skb(sizeof(*pspoll
));
495 pspoll
= (void *) skb_put(skb
, sizeof(*pspoll
));
496 pspoll
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_CTL
|
497 IEEE80211_STYPE_PSPOLL
|
499 pspoll
->aid
= cpu_to_le16(0xc000 | vp
->aid
);
500 memcpy(pspoll
->bssid
, vp
->bssid
, ETH_ALEN
);
501 memcpy(pspoll
->ta
, mac
, ETH_ALEN
);
504 mac80211_hwsim_tx_frame(data
->hw
, skb
,
505 rcu_dereference(vif
->chanctx_conf
)->def
.chan
);
509 static void hwsim_send_nullfunc(struct mac80211_hwsim_data
*data
, u8
*mac
,
510 struct ieee80211_vif
*vif
, int ps
)
512 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
514 struct ieee80211_hdr
*hdr
;
519 wiphy_debug(data
->hw
->wiphy
,
520 "%s: send data::nullfunc to %pM ps=%d\n",
521 __func__
, vp
->bssid
, ps
);
523 skb
= dev_alloc_skb(sizeof(*hdr
));
526 hdr
= (void *) skb_put(skb
, sizeof(*hdr
) - ETH_ALEN
);
527 hdr
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_DATA
|
528 IEEE80211_STYPE_NULLFUNC
|
529 (ps
? IEEE80211_FCTL_PM
: 0));
530 hdr
->duration_id
= cpu_to_le16(0);
531 memcpy(hdr
->addr1
, vp
->bssid
, ETH_ALEN
);
532 memcpy(hdr
->addr2
, mac
, ETH_ALEN
);
533 memcpy(hdr
->addr3
, vp
->bssid
, ETH_ALEN
);
536 mac80211_hwsim_tx_frame(data
->hw
, skb
,
537 rcu_dereference(vif
->chanctx_conf
)->def
.chan
);
542 static void hwsim_send_nullfunc_ps(void *dat
, u8
*mac
,
543 struct ieee80211_vif
*vif
)
545 struct mac80211_hwsim_data
*data
= dat
;
546 hwsim_send_nullfunc(data
, mac
, vif
, 1);
549 static void hwsim_send_nullfunc_no_ps(void *dat
, u8
*mac
,
550 struct ieee80211_vif
*vif
)
552 struct mac80211_hwsim_data
*data
= dat
;
553 hwsim_send_nullfunc(data
, mac
, vif
, 0);
556 static int hwsim_fops_ps_read(void *dat
, u64
*val
)
558 struct mac80211_hwsim_data
*data
= dat
;
563 static int hwsim_fops_ps_write(void *dat
, u64 val
)
565 struct mac80211_hwsim_data
*data
= dat
;
568 if (val
!= PS_DISABLED
&& val
!= PS_ENABLED
&& val
!= PS_AUTO_POLL
&&
569 val
!= PS_MANUAL_POLL
)
575 if (val
== PS_MANUAL_POLL
) {
576 ieee80211_iterate_active_interfaces(data
->hw
,
577 IEEE80211_IFACE_ITER_NORMAL
,
578 hwsim_send_ps_poll
, data
);
579 data
->ps_poll_pending
= true;
580 } else if (old_ps
== PS_DISABLED
&& val
!= PS_DISABLED
) {
581 ieee80211_iterate_active_interfaces(data
->hw
,
582 IEEE80211_IFACE_ITER_NORMAL
,
583 hwsim_send_nullfunc_ps
,
585 } else if (old_ps
!= PS_DISABLED
&& val
== PS_DISABLED
) {
586 ieee80211_iterate_active_interfaces(data
->hw
,
587 IEEE80211_IFACE_ITER_NORMAL
,
588 hwsim_send_nullfunc_no_ps
,
595 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps
, hwsim_fops_ps_read
, hwsim_fops_ps_write
,
598 static int hwsim_write_simulate_radar(void *dat
, u64 val
)
600 struct mac80211_hwsim_data
*data
= dat
;
602 ieee80211_radar_detected(data
->hw
);
607 DEFINE_SIMPLE_ATTRIBUTE(hwsim_simulate_radar
, NULL
,
608 hwsim_write_simulate_radar
, "%llu\n");
610 static int hwsim_fops_group_read(void *dat
, u64
*val
)
612 struct mac80211_hwsim_data
*data
= dat
;
617 static int hwsim_fops_group_write(void *dat
, u64 val
)
619 struct mac80211_hwsim_data
*data
= dat
;
624 DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group
,
625 hwsim_fops_group_read
, hwsim_fops_group_write
,
628 static netdev_tx_t
hwsim_mon_xmit(struct sk_buff
*skb
,
629 struct net_device
*dev
)
631 /* TODO: allow packet injection */
636 static inline u64
mac80211_hwsim_get_tsf_raw(void)
638 return ktime_to_us(ktime_get_real());
641 static __le64
__mac80211_hwsim_get_tsf(struct mac80211_hwsim_data
*data
)
643 u64 now
= mac80211_hwsim_get_tsf_raw();
644 return cpu_to_le64(now
+ data
->tsf_offset
);
647 static u64
mac80211_hwsim_get_tsf(struct ieee80211_hw
*hw
,
648 struct ieee80211_vif
*vif
)
650 struct mac80211_hwsim_data
*data
= hw
->priv
;
651 return le64_to_cpu(__mac80211_hwsim_get_tsf(data
));
654 static void mac80211_hwsim_set_tsf(struct ieee80211_hw
*hw
,
655 struct ieee80211_vif
*vif
, u64 tsf
)
657 struct mac80211_hwsim_data
*data
= hw
->priv
;
658 u64 now
= mac80211_hwsim_get_tsf(hw
, vif
);
659 u32 bcn_int
= data
->beacon_int
;
660 s64 delta
= tsf
- now
;
662 data
->tsf_offset
+= delta
;
663 /* adjust after beaconing with new timestamp at old TBTT */
664 data
->bcn_delta
= do_div(delta
, bcn_int
);
667 static void mac80211_hwsim_monitor_rx(struct ieee80211_hw
*hw
,
668 struct sk_buff
*tx_skb
,
669 struct ieee80211_channel
*chan
)
671 struct mac80211_hwsim_data
*data
= hw
->priv
;
673 struct hwsim_radiotap_hdr
*hdr
;
675 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(tx_skb
);
676 struct ieee80211_rate
*txrate
= ieee80211_get_tx_rate(hw
, info
);
678 if (!netif_running(hwsim_mon
))
681 skb
= skb_copy_expand(tx_skb
, sizeof(*hdr
), 0, GFP_ATOMIC
);
685 hdr
= (struct hwsim_radiotap_hdr
*) skb_push(skb
, sizeof(*hdr
));
686 hdr
->hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
688 hdr
->hdr
.it_len
= cpu_to_le16(sizeof(*hdr
));
689 hdr
->hdr
.it_present
= cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
690 (1 << IEEE80211_RADIOTAP_RATE
) |
691 (1 << IEEE80211_RADIOTAP_TSFT
) |
692 (1 << IEEE80211_RADIOTAP_CHANNEL
));
693 hdr
->rt_tsft
= __mac80211_hwsim_get_tsf(data
);
695 hdr
->rt_rate
= txrate
->bitrate
/ 5;
696 hdr
->rt_channel
= cpu_to_le16(chan
->center_freq
);
697 flags
= IEEE80211_CHAN_2GHZ
;
698 if (txrate
->flags
& IEEE80211_RATE_ERP_G
)
699 flags
|= IEEE80211_CHAN_OFDM
;
701 flags
|= IEEE80211_CHAN_CCK
;
702 hdr
->rt_chbitmask
= cpu_to_le16(flags
);
704 skb
->dev
= hwsim_mon
;
705 skb_set_mac_header(skb
, 0);
706 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
707 skb
->pkt_type
= PACKET_OTHERHOST
;
708 skb
->protocol
= htons(ETH_P_802_2
);
709 memset(skb
->cb
, 0, sizeof(skb
->cb
));
714 static void mac80211_hwsim_monitor_ack(struct ieee80211_channel
*chan
,
718 struct hwsim_radiotap_ack_hdr
*hdr
;
720 struct ieee80211_hdr
*hdr11
;
722 if (!netif_running(hwsim_mon
))
725 skb
= dev_alloc_skb(100);
729 hdr
= (struct hwsim_radiotap_ack_hdr
*) skb_put(skb
, sizeof(*hdr
));
730 hdr
->hdr
.it_version
= PKTHDR_RADIOTAP_VERSION
;
732 hdr
->hdr
.it_len
= cpu_to_le16(sizeof(*hdr
));
733 hdr
->hdr
.it_present
= cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS
) |
734 (1 << IEEE80211_RADIOTAP_CHANNEL
));
737 hdr
->rt_channel
= cpu_to_le16(chan
->center_freq
);
738 flags
= IEEE80211_CHAN_2GHZ
;
739 hdr
->rt_chbitmask
= cpu_to_le16(flags
);
741 hdr11
= (struct ieee80211_hdr
*) skb_put(skb
, 10);
742 hdr11
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_CTL
|
743 IEEE80211_STYPE_ACK
);
744 hdr11
->duration_id
= cpu_to_le16(0);
745 memcpy(hdr11
->addr1
, addr
, ETH_ALEN
);
747 skb
->dev
= hwsim_mon
;
748 skb_set_mac_header(skb
, 0);
749 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
750 skb
->pkt_type
= PACKET_OTHERHOST
;
751 skb
->protocol
= htons(ETH_P_802_2
);
752 memset(skb
->cb
, 0, sizeof(skb
->cb
));
757 static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data
*data
,
766 /* TODO: accept (some) Beacons by default and other frames only
767 * if pending PS-Poll has been sent */
770 /* Allow unicast frames to own address if there is a pending
772 if (data
->ps_poll_pending
&&
773 memcmp(data
->hw
->wiphy
->perm_addr
, skb
->data
+ 4,
775 data
->ps_poll_pending
= false;
785 struct mac80211_hwsim_addr_match_data
{
790 static void mac80211_hwsim_addr_iter(void *data
, u8
*mac
,
791 struct ieee80211_vif
*vif
)
793 struct mac80211_hwsim_addr_match_data
*md
= data
;
794 if (memcmp(mac
, md
->addr
, ETH_ALEN
) == 0)
799 static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data
*data
,
802 struct mac80211_hwsim_addr_match_data md
;
804 if (memcmp(addr
, data
->hw
->wiphy
->perm_addr
, ETH_ALEN
) == 0)
809 ieee80211_iterate_active_interfaces_atomic(data
->hw
,
810 IEEE80211_IFACE_ITER_NORMAL
,
811 mac80211_hwsim_addr_iter
,
817 static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw
*hw
,
818 struct sk_buff
*my_skb
,
822 struct mac80211_hwsim_data
*data
= hw
->priv
;
823 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) my_skb
->data
;
824 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(my_skb
);
826 unsigned int hwsim_flags
= 0;
828 struct hwsim_tx_rate tx_attempts
[IEEE80211_TX_MAX_RATES
];
830 if (data
->ps
!= PS_DISABLED
)
831 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_PM
);
832 /* If the queue contains MAX_QUEUE skb's drop some */
833 if (skb_queue_len(&data
->pending
) >= MAX_QUEUE
) {
834 /* Droping until WARN_QUEUE level */
835 while (skb_queue_len(&data
->pending
) >= WARN_QUEUE
)
836 skb_dequeue(&data
->pending
);
839 skb
= genlmsg_new(GENLMSG_DEFAULT_SIZE
, GFP_ATOMIC
);
841 goto nla_put_failure
;
843 msg_head
= genlmsg_put(skb
, 0, 0, &hwsim_genl_family
, 0,
845 if (msg_head
== NULL
) {
846 printk(KERN_DEBUG
"mac80211_hwsim: problem with msg_head\n");
847 goto nla_put_failure
;
850 if (nla_put(skb
, HWSIM_ATTR_ADDR_TRANSMITTER
,
851 ETH_ALEN
, data
->addresses
[1].addr
))
852 goto nla_put_failure
;
854 /* We get the skb->data */
855 if (nla_put(skb
, HWSIM_ATTR_FRAME
, my_skb
->len
, my_skb
->data
))
856 goto nla_put_failure
;
858 /* We get the flags for this transmission, and we translate them to
861 if (info
->flags
& IEEE80211_TX_CTL_REQ_TX_STATUS
)
862 hwsim_flags
|= HWSIM_TX_CTL_REQ_TX_STATUS
;
864 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
865 hwsim_flags
|= HWSIM_TX_CTL_NO_ACK
;
867 if (nla_put_u32(skb
, HWSIM_ATTR_FLAGS
, hwsim_flags
))
868 goto nla_put_failure
;
870 /* We get the tx control (rate and retries) info*/
872 for (i
= 0; i
< IEEE80211_TX_MAX_RATES
; i
++) {
873 tx_attempts
[i
].idx
= info
->status
.rates
[i
].idx
;
874 tx_attempts
[i
].count
= info
->status
.rates
[i
].count
;
877 if (nla_put(skb
, HWSIM_ATTR_TX_INFO
,
878 sizeof(struct hwsim_tx_rate
)*IEEE80211_TX_MAX_RATES
,
880 goto nla_put_failure
;
882 /* We create a cookie to identify this skb */
883 if (nla_put_u64(skb
, HWSIM_ATTR_COOKIE
, (unsigned long) my_skb
))
884 goto nla_put_failure
;
886 genlmsg_end(skb
, msg_head
);
887 genlmsg_unicast(&init_net
, skb
, dst_portid
);
889 /* Enqueue the packet */
890 skb_queue_tail(&data
->pending
, my_skb
);
894 printk(KERN_DEBUG
"mac80211_hwsim: error occurred in %s\n", __func__
);
897 static bool hwsim_chans_compat(struct ieee80211_channel
*c1
,
898 struct ieee80211_channel
*c2
)
903 return c1
->center_freq
== c2
->center_freq
;
906 struct tx_iter_data
{
907 struct ieee80211_channel
*channel
;
911 static void mac80211_hwsim_tx_iter(void *_data
, u8
*addr
,
912 struct ieee80211_vif
*vif
)
914 struct tx_iter_data
*data
= _data
;
916 if (!vif
->chanctx_conf
)
919 if (!hwsim_chans_compat(data
->channel
,
920 rcu_dereference(vif
->chanctx_conf
)->def
.chan
))
923 data
->receive
= true;
926 static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw
*hw
,
928 struct ieee80211_channel
*chan
)
930 struct mac80211_hwsim_data
*data
= hw
->priv
, *data2
;
932 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
933 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(skb
);
934 struct ieee80211_rx_status rx_status
;
937 memset(&rx_status
, 0, sizeof(rx_status
));
938 rx_status
.flag
|= RX_FLAG_MACTIME_START
;
939 rx_status
.freq
= chan
->center_freq
;
940 rx_status
.band
= chan
->band
;
941 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_VHT_MCS
) {
943 ieee80211_rate_get_vht_mcs(&info
->control
.rates
[0]);
945 ieee80211_rate_get_vht_nss(&info
->control
.rates
[0]);
946 rx_status
.flag
|= RX_FLAG_VHT
;
948 rx_status
.rate_idx
= info
->control
.rates
[0].idx
;
949 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_MCS
)
950 rx_status
.flag
|= RX_FLAG_HT
;
952 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
953 rx_status
.flag
|= RX_FLAG_40MHZ
;
954 if (info
->control
.rates
[0].flags
& IEEE80211_TX_RC_SHORT_GI
)
955 rx_status
.flag
|= RX_FLAG_SHORT_GI
;
956 /* TODO: simulate real signal strength (and optional packet loss) */
957 rx_status
.signal
= data
->power_level
- 50;
959 if (data
->ps
!= PS_DISABLED
)
960 hdr
->frame_control
|= cpu_to_le16(IEEE80211_FCTL_PM
);
962 /* release the skb's source info */
970 * Get absolute mactime here so all HWs RX at the "same time", and
971 * absolute TX time for beacon mactime so the timestamp matches.
972 * Giving beacons a different mactime than non-beacons looks messy, but
973 * it helps the Toffset be exact and a ~10us mactime discrepancy
974 * probably doesn't really matter.
976 if (ieee80211_is_beacon(hdr
->frame_control
) ||
977 ieee80211_is_probe_resp(hdr
->frame_control
))
978 now
= data
->abs_bcn_ts
;
980 now
= mac80211_hwsim_get_tsf_raw();
982 /* Copy skb to all enabled radios that are on the current frequency */
983 spin_lock(&hwsim_radio_lock
);
984 list_for_each_entry(data2
, &hwsim_radios
, list
) {
985 struct sk_buff
*nskb
;
986 struct tx_iter_data tx_iter_data
= {
994 if (!data2
->started
|| (data2
->idle
&& !data2
->tmp_chan
) ||
995 !hwsim_ps_rx_ok(data2
, skb
))
998 if (!(data
->group
& data2
->group
))
1001 if (!hwsim_chans_compat(chan
, data2
->tmp_chan
) &&
1002 !hwsim_chans_compat(chan
, data2
->channel
)) {
1003 ieee80211_iterate_active_interfaces_atomic(
1004 data2
->hw
, IEEE80211_IFACE_ITER_NORMAL
,
1005 mac80211_hwsim_tx_iter
, &tx_iter_data
);
1006 if (!tx_iter_data
.receive
)
1011 * reserve some space for our vendor and the normal
1012 * radiotap header, since we're copying anyway
1014 if (skb
->len
< PAGE_SIZE
&& paged_rx
) {
1015 struct page
*page
= alloc_page(GFP_ATOMIC
);
1020 nskb
= dev_alloc_skb(128);
1026 memcpy(page_address(page
), skb
->data
, skb
->len
);
1027 skb_add_rx_frag(nskb
, 0, page
, 0, skb
->len
, skb
->len
);
1029 nskb
= skb_copy(skb
, GFP_ATOMIC
);
1034 if (mac80211_hwsim_addr_match(data2
, hdr
->addr1
))
1037 rx_status
.mactime
= now
+ data2
->tsf_offset
;
1040 * Don't enable this code by default as the OUI 00:00:00
1041 * is registered to Xerox so we shouldn't use it here, it
1042 * might find its way into pcap files.
1043 * Note that this code requires the headroom in the SKB
1044 * that was allocated earlier.
1046 rx_status
.vendor_radiotap_oui
[0] = 0x00;
1047 rx_status
.vendor_radiotap_oui
[1] = 0x00;
1048 rx_status
.vendor_radiotap_oui
[2] = 0x00;
1049 rx_status
.vendor_radiotap_subns
= 127;
1051 * Radiotap vendor namespaces can (and should) also be
1052 * split into fields by using the standard radiotap
1053 * presence bitmap mechanism. Use just BIT(0) here for
1054 * the presence bitmap.
1056 rx_status
.vendor_radiotap_bitmap
= BIT(0);
1057 /* We have 8 bytes of (dummy) data */
1058 rx_status
.vendor_radiotap_len
= 8;
1059 /* For testing, also require it to be aligned */
1060 rx_status
.vendor_radiotap_align
= 8;
1062 memcpy(skb_push(nskb
, 8), "ABCDEFGH", 8);
1065 memcpy(IEEE80211_SKB_RXCB(nskb
), &rx_status
, sizeof(rx_status
));
1066 ieee80211_rx_irqsafe(data2
->hw
, nskb
);
1068 spin_unlock(&hwsim_radio_lock
);
1073 static void mac80211_hwsim_tx(struct ieee80211_hw
*hw
,
1074 struct ieee80211_tx_control
*control
,
1075 struct sk_buff
*skb
)
1077 struct mac80211_hwsim_data
*data
= hw
->priv
;
1078 struct ieee80211_tx_info
*txi
= IEEE80211_SKB_CB(skb
);
1079 struct ieee80211_chanctx_conf
*chanctx_conf
;
1080 struct ieee80211_channel
*channel
;
1084 if (WARN_ON(skb
->len
< 10)) {
1085 /* Should not happen; just a sanity check for addr1 use */
1086 ieee80211_free_txskb(hw
, skb
);
1090 if (data
->channels
== 1) {
1091 channel
= data
->channel
;
1092 } else if (txi
->hw_queue
== 4) {
1093 channel
= data
->tmp_chan
;
1095 chanctx_conf
= rcu_dereference(txi
->control
.vif
->chanctx_conf
);
1097 channel
= chanctx_conf
->def
.chan
;
1102 if (WARN(!channel
, "TX w/o channel - queue = %d\n", txi
->hw_queue
)) {
1103 ieee80211_free_txskb(hw
, skb
);
1107 if (data
->idle
&& !data
->tmp_chan
) {
1108 wiphy_debug(hw
->wiphy
, "Trying to TX when idle - reject\n");
1109 ieee80211_free_txskb(hw
, skb
);
1113 if (txi
->control
.vif
)
1114 hwsim_check_magic(txi
->control
.vif
);
1116 hwsim_check_sta_magic(control
->sta
);
1118 if (hw
->flags
& IEEE80211_HW_SUPPORTS_RC_TABLE
)
1119 ieee80211_get_tx_rates(txi
->control
.vif
, control
->sta
, skb
,
1121 ARRAY_SIZE(txi
->control
.rates
));
1123 txi
->rate_driver_data
[0] = channel
;
1124 mac80211_hwsim_monitor_rx(hw
, skb
, channel
);
1126 /* wmediumd mode check */
1127 _portid
= ACCESS_ONCE(wmediumd_portid
);
1130 return mac80211_hwsim_tx_frame_nl(hw
, skb
, _portid
);
1132 /* NO wmediumd detected, perfect medium simulation */
1133 ack
= mac80211_hwsim_tx_frame_no_nl(hw
, skb
, channel
);
1135 if (ack
&& skb
->len
>= 16) {
1136 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1137 mac80211_hwsim_monitor_ack(channel
, hdr
->addr2
);
1140 ieee80211_tx_info_clear_status(txi
);
1142 /* frame was transmitted at most favorable rate at first attempt */
1143 txi
->control
.rates
[0].count
= 1;
1144 txi
->control
.rates
[1].idx
= -1;
1146 if (!(txi
->flags
& IEEE80211_TX_CTL_NO_ACK
) && ack
)
1147 txi
->flags
|= IEEE80211_TX_STAT_ACK
;
1148 ieee80211_tx_status_irqsafe(hw
, skb
);
1152 static int mac80211_hwsim_start(struct ieee80211_hw
*hw
)
1154 struct mac80211_hwsim_data
*data
= hw
->priv
;
1155 wiphy_debug(hw
->wiphy
, "%s\n", __func__
);
1156 data
->started
= true;
1161 static void mac80211_hwsim_stop(struct ieee80211_hw
*hw
)
1163 struct mac80211_hwsim_data
*data
= hw
->priv
;
1164 data
->started
= false;
1165 tasklet_hrtimer_cancel(&data
->beacon_timer
);
1166 wiphy_debug(hw
->wiphy
, "%s\n", __func__
);
1170 static int mac80211_hwsim_add_interface(struct ieee80211_hw
*hw
,
1171 struct ieee80211_vif
*vif
)
1173 wiphy_debug(hw
->wiphy
, "%s (type=%d mac_addr=%pM)\n",
1174 __func__
, ieee80211_vif_type_p2p(vif
),
1176 hwsim_set_magic(vif
);
1179 vif
->hw_queue
[IEEE80211_AC_VO
] = 0;
1180 vif
->hw_queue
[IEEE80211_AC_VI
] = 1;
1181 vif
->hw_queue
[IEEE80211_AC_BE
] = 2;
1182 vif
->hw_queue
[IEEE80211_AC_BK
] = 3;
1188 static int mac80211_hwsim_change_interface(struct ieee80211_hw
*hw
,
1189 struct ieee80211_vif
*vif
,
1190 enum nl80211_iftype newtype
,
1193 newtype
= ieee80211_iftype_p2p(newtype
, newp2p
);
1194 wiphy_debug(hw
->wiphy
,
1195 "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
1196 __func__
, ieee80211_vif_type_p2p(vif
),
1197 newtype
, vif
->addr
);
1198 hwsim_check_magic(vif
);
1201 * interface may change from non-AP to AP in
1202 * which case this needs to be set up again
1209 static void mac80211_hwsim_remove_interface(
1210 struct ieee80211_hw
*hw
, struct ieee80211_vif
*vif
)
1212 wiphy_debug(hw
->wiphy
, "%s (type=%d mac_addr=%pM)\n",
1213 __func__
, ieee80211_vif_type_p2p(vif
),
1215 hwsim_check_magic(vif
);
1216 hwsim_clear_magic(vif
);
1219 static void mac80211_hwsim_tx_frame(struct ieee80211_hw
*hw
,
1220 struct sk_buff
*skb
,
1221 struct ieee80211_channel
*chan
)
1223 u32 _pid
= ACCESS_ONCE(wmediumd_portid
);
1225 if (hw
->flags
& IEEE80211_HW_SUPPORTS_RC_TABLE
) {
1226 struct ieee80211_tx_info
*txi
= IEEE80211_SKB_CB(skb
);
1227 ieee80211_get_tx_rates(txi
->control
.vif
, NULL
, skb
,
1229 ARRAY_SIZE(txi
->control
.rates
));
1232 mac80211_hwsim_monitor_rx(hw
, skb
, chan
);
1235 return mac80211_hwsim_tx_frame_nl(hw
, skb
, _pid
);
1237 mac80211_hwsim_tx_frame_no_nl(hw
, skb
, chan
);
1241 static void mac80211_hwsim_beacon_tx(void *arg
, u8
*mac
,
1242 struct ieee80211_vif
*vif
)
1244 struct mac80211_hwsim_data
*data
= arg
;
1245 struct ieee80211_hw
*hw
= data
->hw
;
1246 struct ieee80211_tx_info
*info
;
1247 struct ieee80211_rate
*txrate
;
1248 struct ieee80211_mgmt
*mgmt
;
1249 struct sk_buff
*skb
;
1251 hwsim_check_magic(vif
);
1253 if (vif
->type
!= NL80211_IFTYPE_AP
&&
1254 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
1255 vif
->type
!= NL80211_IFTYPE_ADHOC
)
1258 skb
= ieee80211_beacon_get(hw
, vif
);
1261 info
= IEEE80211_SKB_CB(skb
);
1262 if (hw
->flags
& IEEE80211_HW_SUPPORTS_RC_TABLE
)
1263 ieee80211_get_tx_rates(vif
, NULL
, skb
,
1264 info
->control
.rates
,
1265 ARRAY_SIZE(info
->control
.rates
));
1267 txrate
= ieee80211_get_tx_rate(hw
, info
);
1269 mgmt
= (struct ieee80211_mgmt
*) skb
->data
;
1270 /* fake header transmission time */
1271 data
->abs_bcn_ts
= mac80211_hwsim_get_tsf_raw();
1272 mgmt
->u
.beacon
.timestamp
= cpu_to_le64(data
->abs_bcn_ts
+
1274 24 * 8 * 10 / txrate
->bitrate
);
1276 mac80211_hwsim_tx_frame(hw
, skb
,
1277 rcu_dereference(vif
->chanctx_conf
)->def
.chan
);
1280 static enum hrtimer_restart
1281 mac80211_hwsim_beacon(struct hrtimer
*timer
)
1283 struct mac80211_hwsim_data
*data
=
1284 container_of(timer
, struct mac80211_hwsim_data
,
1285 beacon_timer
.timer
);
1286 struct ieee80211_hw
*hw
= data
->hw
;
1287 u64 bcn_int
= data
->beacon_int
;
1293 ieee80211_iterate_active_interfaces_atomic(
1294 hw
, IEEE80211_IFACE_ITER_NORMAL
,
1295 mac80211_hwsim_beacon_tx
, data
);
1297 /* beacon at new TBTT + beacon interval */
1298 if (data
->bcn_delta
) {
1299 bcn_int
-= data
->bcn_delta
;
1300 data
->bcn_delta
= 0;
1303 next_bcn
= ktime_add(hrtimer_get_expires(timer
),
1304 ns_to_ktime(bcn_int
* 1000));
1305 tasklet_hrtimer_start(&data
->beacon_timer
, next_bcn
, HRTIMER_MODE_ABS
);
1307 return HRTIMER_NORESTART
;
1310 static const char * const hwsim_chanwidths
[] = {
1311 [NL80211_CHAN_WIDTH_20_NOHT
] = "noht",
1312 [NL80211_CHAN_WIDTH_20
] = "ht20",
1313 [NL80211_CHAN_WIDTH_40
] = "ht40",
1314 [NL80211_CHAN_WIDTH_80
] = "vht80",
1315 [NL80211_CHAN_WIDTH_80P80
] = "vht80p80",
1316 [NL80211_CHAN_WIDTH_160
] = "vht160",
1319 static int mac80211_hwsim_config(struct ieee80211_hw
*hw
, u32 changed
)
1321 struct mac80211_hwsim_data
*data
= hw
->priv
;
1322 struct ieee80211_conf
*conf
= &hw
->conf
;
1323 static const char *smps_modes
[IEEE80211_SMPS_NUM_MODES
] = {
1324 [IEEE80211_SMPS_AUTOMATIC
] = "auto",
1325 [IEEE80211_SMPS_OFF
] = "off",
1326 [IEEE80211_SMPS_STATIC
] = "static",
1327 [IEEE80211_SMPS_DYNAMIC
] = "dynamic",
1330 if (conf
->chandef
.chan
)
1331 wiphy_debug(hw
->wiphy
,
1332 "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
1334 conf
->chandef
.chan
->center_freq
,
1335 conf
->chandef
.center_freq1
,
1336 conf
->chandef
.center_freq2
,
1337 hwsim_chanwidths
[conf
->chandef
.width
],
1338 !!(conf
->flags
& IEEE80211_CONF_IDLE
),
1339 !!(conf
->flags
& IEEE80211_CONF_PS
),
1340 smps_modes
[conf
->smps_mode
]);
1342 wiphy_debug(hw
->wiphy
,
1343 "%s (freq=0 idle=%d ps=%d smps=%s)\n",
1345 !!(conf
->flags
& IEEE80211_CONF_IDLE
),
1346 !!(conf
->flags
& IEEE80211_CONF_PS
),
1347 smps_modes
[conf
->smps_mode
]);
1349 data
->idle
= !!(conf
->flags
& IEEE80211_CONF_IDLE
);
1351 data
->channel
= conf
->chandef
.chan
;
1353 WARN_ON(data
->channel
&& data
->channels
> 1);
1355 data
->power_level
= conf
->power_level
;
1356 if (!data
->started
|| !data
->beacon_int
)
1357 tasklet_hrtimer_cancel(&data
->beacon_timer
);
1358 else if (!hrtimer_is_queued(&data
->beacon_timer
.timer
)) {
1359 u64 tsf
= mac80211_hwsim_get_tsf(hw
, NULL
);
1360 u32 bcn_int
= data
->beacon_int
;
1361 u64 until_tbtt
= bcn_int
- do_div(tsf
, bcn_int
);
1363 tasklet_hrtimer_start(&data
->beacon_timer
,
1364 ns_to_ktime(until_tbtt
* 1000),
1372 static void mac80211_hwsim_configure_filter(struct ieee80211_hw
*hw
,
1373 unsigned int changed_flags
,
1374 unsigned int *total_flags
,u64 multicast
)
1376 struct mac80211_hwsim_data
*data
= hw
->priv
;
1378 wiphy_debug(hw
->wiphy
, "%s\n", __func__
);
1380 data
->rx_filter
= 0;
1381 if (*total_flags
& FIF_PROMISC_IN_BSS
)
1382 data
->rx_filter
|= FIF_PROMISC_IN_BSS
;
1383 if (*total_flags
& FIF_ALLMULTI
)
1384 data
->rx_filter
|= FIF_ALLMULTI
;
1386 *total_flags
= data
->rx_filter
;
1389 static void mac80211_hwsim_bcn_en_iter(void *data
, u8
*mac
,
1390 struct ieee80211_vif
*vif
)
1392 unsigned int *count
= data
;
1393 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
1399 static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw
*hw
,
1400 struct ieee80211_vif
*vif
,
1401 struct ieee80211_bss_conf
*info
,
1404 struct hwsim_vif_priv
*vp
= (void *)vif
->drv_priv
;
1405 struct mac80211_hwsim_data
*data
= hw
->priv
;
1407 hwsim_check_magic(vif
);
1409 wiphy_debug(hw
->wiphy
, "%s(changed=0x%x vif->addr=%pM)\n",
1410 __func__
, changed
, vif
->addr
);
1412 if (changed
& BSS_CHANGED_BSSID
) {
1413 wiphy_debug(hw
->wiphy
, "%s: BSSID changed: %pM\n",
1414 __func__
, info
->bssid
);
1415 memcpy(vp
->bssid
, info
->bssid
, ETH_ALEN
);
1418 if (changed
& BSS_CHANGED_ASSOC
) {
1419 wiphy_debug(hw
->wiphy
, " ASSOC: assoc=%d aid=%d\n",
1420 info
->assoc
, info
->aid
);
1421 vp
->assoc
= info
->assoc
;
1422 vp
->aid
= info
->aid
;
1425 if (changed
& BSS_CHANGED_BEACON_INT
) {
1426 wiphy_debug(hw
->wiphy
, " BCNINT: %d\n", info
->beacon_int
);
1427 data
->beacon_int
= info
->beacon_int
* 1024;
1430 if (changed
& BSS_CHANGED_BEACON_ENABLED
) {
1431 wiphy_debug(hw
->wiphy
, " BCN EN: %d\n", info
->enable_beacon
);
1432 vp
->bcn_en
= info
->enable_beacon
;
1433 if (data
->started
&&
1434 !hrtimer_is_queued(&data
->beacon_timer
.timer
) &&
1435 info
->enable_beacon
) {
1436 u64 tsf
, until_tbtt
;
1438 if (WARN_ON(!data
->beacon_int
))
1439 data
->beacon_int
= 1000 * 1024;
1440 tsf
= mac80211_hwsim_get_tsf(hw
, vif
);
1441 bcn_int
= data
->beacon_int
;
1442 until_tbtt
= bcn_int
- do_div(tsf
, bcn_int
);
1443 tasklet_hrtimer_start(&data
->beacon_timer
,
1444 ns_to_ktime(until_tbtt
* 1000),
1446 } else if (!info
->enable_beacon
) {
1447 unsigned int count
= 0;
1448 ieee80211_iterate_active_interfaces_atomic(
1449 data
->hw
, IEEE80211_IFACE_ITER_NORMAL
,
1450 mac80211_hwsim_bcn_en_iter
, &count
);
1451 wiphy_debug(hw
->wiphy
, " beaconing vifs remaining: %u",
1454 tasklet_hrtimer_cancel(&data
->beacon_timer
);
1458 if (changed
& BSS_CHANGED_ERP_CTS_PROT
) {
1459 wiphy_debug(hw
->wiphy
, " ERP_CTS_PROT: %d\n",
1460 info
->use_cts_prot
);
1463 if (changed
& BSS_CHANGED_ERP_PREAMBLE
) {
1464 wiphy_debug(hw
->wiphy
, " ERP_PREAMBLE: %d\n",
1465 info
->use_short_preamble
);
1468 if (changed
& BSS_CHANGED_ERP_SLOT
) {
1469 wiphy_debug(hw
->wiphy
, " ERP_SLOT: %d\n", info
->use_short_slot
);
1472 if (changed
& BSS_CHANGED_HT
) {
1473 wiphy_debug(hw
->wiphy
, " HT: op_mode=0x%x\n",
1474 info
->ht_operation_mode
);
1477 if (changed
& BSS_CHANGED_BASIC_RATES
) {
1478 wiphy_debug(hw
->wiphy
, " BASIC_RATES: 0x%llx\n",
1479 (unsigned long long) info
->basic_rates
);
1482 if (changed
& BSS_CHANGED_TXPOWER
)
1483 wiphy_debug(hw
->wiphy
, " TX Power: %d dBm\n", info
->txpower
);
1486 static int mac80211_hwsim_sta_add(struct ieee80211_hw
*hw
,
1487 struct ieee80211_vif
*vif
,
1488 struct ieee80211_sta
*sta
)
1490 hwsim_check_magic(vif
);
1491 hwsim_set_sta_magic(sta
);
1496 static int mac80211_hwsim_sta_remove(struct ieee80211_hw
*hw
,
1497 struct ieee80211_vif
*vif
,
1498 struct ieee80211_sta
*sta
)
1500 hwsim_check_magic(vif
);
1501 hwsim_clear_sta_magic(sta
);
1506 static void mac80211_hwsim_sta_notify(struct ieee80211_hw
*hw
,
1507 struct ieee80211_vif
*vif
,
1508 enum sta_notify_cmd cmd
,
1509 struct ieee80211_sta
*sta
)
1511 hwsim_check_magic(vif
);
1514 case STA_NOTIFY_SLEEP
:
1515 case STA_NOTIFY_AWAKE
:
1516 /* TODO: make good use of these flags */
1519 WARN(1, "Invalid sta notify: %d\n", cmd
);
1524 static int mac80211_hwsim_set_tim(struct ieee80211_hw
*hw
,
1525 struct ieee80211_sta
*sta
,
1528 hwsim_check_sta_magic(sta
);
1532 static int mac80211_hwsim_conf_tx(
1533 struct ieee80211_hw
*hw
,
1534 struct ieee80211_vif
*vif
, u16 queue
,
1535 const struct ieee80211_tx_queue_params
*params
)
1537 wiphy_debug(hw
->wiphy
,
1538 "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
1540 params
->txop
, params
->cw_min
,
1541 params
->cw_max
, params
->aifs
);
1545 static int mac80211_hwsim_get_survey(
1546 struct ieee80211_hw
*hw
, int idx
,
1547 struct survey_info
*survey
)
1549 struct ieee80211_conf
*conf
= &hw
->conf
;
1551 wiphy_debug(hw
->wiphy
, "%s (idx=%d)\n", __func__
, idx
);
1556 /* Current channel */
1557 survey
->channel
= conf
->chandef
.chan
;
1560 * Magically conjured noise level --- this is only ok for simulated hardware.
1562 * A real driver which cannot determine the real channel noise MUST NOT
1563 * report any noise, especially not a magically conjured one :-)
1565 survey
->filled
= SURVEY_INFO_NOISE_DBM
;
1566 survey
->noise
= -92;
1571 #ifdef CONFIG_NL80211_TESTMODE
1573 * This section contains example code for using netlink
1574 * attributes with the testmode command in nl80211.
1577 /* These enums need to be kept in sync with userspace */
1578 enum hwsim_testmode_attr
{
1579 __HWSIM_TM_ATTR_INVALID
= 0,
1580 HWSIM_TM_ATTR_CMD
= 1,
1581 HWSIM_TM_ATTR_PS
= 2,
1584 __HWSIM_TM_ATTR_AFTER_LAST
,
1585 HWSIM_TM_ATTR_MAX
= __HWSIM_TM_ATTR_AFTER_LAST
- 1
1588 enum hwsim_testmode_cmd
{
1589 HWSIM_TM_CMD_SET_PS
= 0,
1590 HWSIM_TM_CMD_GET_PS
= 1,
1591 HWSIM_TM_CMD_STOP_QUEUES
= 2,
1592 HWSIM_TM_CMD_WAKE_QUEUES
= 3,
1595 static const struct nla_policy hwsim_testmode_policy
[HWSIM_TM_ATTR_MAX
+ 1] = {
1596 [HWSIM_TM_ATTR_CMD
] = { .type
= NLA_U32
},
1597 [HWSIM_TM_ATTR_PS
] = { .type
= NLA_U32
},
1600 static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw
*hw
,
1601 struct ieee80211_vif
*vif
,
1602 void *data
, int len
)
1604 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1605 struct nlattr
*tb
[HWSIM_TM_ATTR_MAX
+ 1];
1606 struct sk_buff
*skb
;
1609 err
= nla_parse(tb
, HWSIM_TM_ATTR_MAX
, data
, len
,
1610 hwsim_testmode_policy
);
1614 if (!tb
[HWSIM_TM_ATTR_CMD
])
1617 switch (nla_get_u32(tb
[HWSIM_TM_ATTR_CMD
])) {
1618 case HWSIM_TM_CMD_SET_PS
:
1619 if (!tb
[HWSIM_TM_ATTR_PS
])
1621 ps
= nla_get_u32(tb
[HWSIM_TM_ATTR_PS
]);
1622 return hwsim_fops_ps_write(hwsim
, ps
);
1623 case HWSIM_TM_CMD_GET_PS
:
1624 skb
= cfg80211_testmode_alloc_reply_skb(hw
->wiphy
,
1625 nla_total_size(sizeof(u32
)));
1628 if (nla_put_u32(skb
, HWSIM_TM_ATTR_PS
, hwsim
->ps
))
1629 goto nla_put_failure
;
1630 return cfg80211_testmode_reply(skb
);
1631 case HWSIM_TM_CMD_STOP_QUEUES
:
1632 ieee80211_stop_queues(hw
);
1634 case HWSIM_TM_CMD_WAKE_QUEUES
:
1635 ieee80211_wake_queues(hw
);
1647 static int mac80211_hwsim_ampdu_action(struct ieee80211_hw
*hw
,
1648 struct ieee80211_vif
*vif
,
1649 enum ieee80211_ampdu_mlme_action action
,
1650 struct ieee80211_sta
*sta
, u16 tid
, u16
*ssn
,
1654 case IEEE80211_AMPDU_TX_START
:
1655 ieee80211_start_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
1657 case IEEE80211_AMPDU_TX_STOP_CONT
:
1658 case IEEE80211_AMPDU_TX_STOP_FLUSH
:
1659 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT
:
1660 ieee80211_stop_tx_ba_cb_irqsafe(vif
, sta
->addr
, tid
);
1662 case IEEE80211_AMPDU_TX_OPERATIONAL
:
1664 case IEEE80211_AMPDU_RX_START
:
1665 case IEEE80211_AMPDU_RX_STOP
:
1674 static void mac80211_hwsim_flush(struct ieee80211_hw
*hw
, u32 queues
, bool drop
)
1676 /* Not implemented, queues only on kernel side */
1679 static void hw_scan_work(struct work_struct
*work
)
1681 struct mac80211_hwsim_data
*hwsim
=
1682 container_of(work
, struct mac80211_hwsim_data
, hw_scan
.work
);
1683 struct cfg80211_scan_request
*req
= hwsim
->hw_scan_request
;
1686 mutex_lock(&hwsim
->mutex
);
1687 if (hwsim
->scan_chan_idx
>= req
->n_channels
) {
1688 wiphy_debug(hwsim
->hw
->wiphy
, "hw scan complete\n");
1689 ieee80211_scan_completed(hwsim
->hw
, false);
1690 hwsim
->hw_scan_request
= NULL
;
1691 hwsim
->hw_scan_vif
= NULL
;
1692 hwsim
->tmp_chan
= NULL
;
1693 mutex_unlock(&hwsim
->mutex
);
1697 wiphy_debug(hwsim
->hw
->wiphy
, "hw scan %d MHz\n",
1698 req
->channels
[hwsim
->scan_chan_idx
]->center_freq
);
1700 hwsim
->tmp_chan
= req
->channels
[hwsim
->scan_chan_idx
];
1701 if (hwsim
->tmp_chan
->flags
& IEEE80211_CHAN_NO_IR
||
1707 for (i
= 0; i
< req
->n_ssids
; i
++) {
1708 struct sk_buff
*probe
;
1710 probe
= ieee80211_probereq_get(hwsim
->hw
,
1713 req
->ssids
[i
].ssid_len
,
1719 memcpy(skb_put(probe
, req
->ie_len
), req
->ie
,
1723 mac80211_hwsim_tx_frame(hwsim
->hw
, probe
,
1728 ieee80211_queue_delayed_work(hwsim
->hw
, &hwsim
->hw_scan
,
1729 msecs_to_jiffies(dwell
));
1730 hwsim
->scan_chan_idx
++;
1731 mutex_unlock(&hwsim
->mutex
);
1734 static int mac80211_hwsim_hw_scan(struct ieee80211_hw
*hw
,
1735 struct ieee80211_vif
*vif
,
1736 struct cfg80211_scan_request
*req
)
1738 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1740 mutex_lock(&hwsim
->mutex
);
1741 if (WARN_ON(hwsim
->tmp_chan
|| hwsim
->hw_scan_request
)) {
1742 mutex_unlock(&hwsim
->mutex
);
1745 hwsim
->hw_scan_request
= req
;
1746 hwsim
->hw_scan_vif
= vif
;
1747 hwsim
->scan_chan_idx
= 0;
1748 mutex_unlock(&hwsim
->mutex
);
1750 wiphy_debug(hw
->wiphy
, "hwsim hw_scan request\n");
1752 ieee80211_queue_delayed_work(hwsim
->hw
, &hwsim
->hw_scan
, 0);
1757 static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw
*hw
,
1758 struct ieee80211_vif
*vif
)
1760 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1762 wiphy_debug(hw
->wiphy
, "hwsim cancel_hw_scan\n");
1764 cancel_delayed_work_sync(&hwsim
->hw_scan
);
1766 mutex_lock(&hwsim
->mutex
);
1767 ieee80211_scan_completed(hwsim
->hw
, true);
1768 hwsim
->tmp_chan
= NULL
;
1769 hwsim
->hw_scan_request
= NULL
;
1770 hwsim
->hw_scan_vif
= NULL
;
1771 mutex_unlock(&hwsim
->mutex
);
1774 static void mac80211_hwsim_sw_scan(struct ieee80211_hw
*hw
)
1776 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1778 mutex_lock(&hwsim
->mutex
);
1780 if (hwsim
->scanning
) {
1781 printk(KERN_DEBUG
"two hwsim sw_scans detected!\n");
1785 printk(KERN_DEBUG
"hwsim sw_scan request, prepping stuff\n");
1786 hwsim
->scanning
= true;
1789 mutex_unlock(&hwsim
->mutex
);
1792 static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw
*hw
)
1794 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1796 mutex_lock(&hwsim
->mutex
);
1798 printk(KERN_DEBUG
"hwsim sw_scan_complete\n");
1799 hwsim
->scanning
= false;
1801 mutex_unlock(&hwsim
->mutex
);
1804 static void hw_roc_done(struct work_struct
*work
)
1806 struct mac80211_hwsim_data
*hwsim
=
1807 container_of(work
, struct mac80211_hwsim_data
, roc_done
.work
);
1809 mutex_lock(&hwsim
->mutex
);
1810 ieee80211_remain_on_channel_expired(hwsim
->hw
);
1811 hwsim
->tmp_chan
= NULL
;
1812 mutex_unlock(&hwsim
->mutex
);
1814 wiphy_debug(hwsim
->hw
->wiphy
, "hwsim ROC expired\n");
1817 static int mac80211_hwsim_roc(struct ieee80211_hw
*hw
,
1818 struct ieee80211_vif
*vif
,
1819 struct ieee80211_channel
*chan
,
1821 enum ieee80211_roc_type type
)
1823 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1825 mutex_lock(&hwsim
->mutex
);
1826 if (WARN_ON(hwsim
->tmp_chan
|| hwsim
->hw_scan_request
)) {
1827 mutex_unlock(&hwsim
->mutex
);
1831 hwsim
->tmp_chan
= chan
;
1832 mutex_unlock(&hwsim
->mutex
);
1834 wiphy_debug(hw
->wiphy
, "hwsim ROC (%d MHz, %d ms)\n",
1835 chan
->center_freq
, duration
);
1837 ieee80211_ready_on_channel(hw
);
1839 ieee80211_queue_delayed_work(hw
, &hwsim
->roc_done
,
1840 msecs_to_jiffies(duration
));
1844 static int mac80211_hwsim_croc(struct ieee80211_hw
*hw
)
1846 struct mac80211_hwsim_data
*hwsim
= hw
->priv
;
1848 cancel_delayed_work_sync(&hwsim
->roc_done
);
1850 mutex_lock(&hwsim
->mutex
);
1851 hwsim
->tmp_chan
= NULL
;
1852 mutex_unlock(&hwsim
->mutex
);
1854 wiphy_debug(hw
->wiphy
, "hwsim ROC canceled\n");
1859 static int mac80211_hwsim_add_chanctx(struct ieee80211_hw
*hw
,
1860 struct ieee80211_chanctx_conf
*ctx
)
1862 hwsim_set_chanctx_magic(ctx
);
1863 wiphy_debug(hw
->wiphy
,
1864 "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1865 ctx
->def
.chan
->center_freq
, ctx
->def
.width
,
1866 ctx
->def
.center_freq1
, ctx
->def
.center_freq2
);
1870 static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw
*hw
,
1871 struct ieee80211_chanctx_conf
*ctx
)
1873 wiphy_debug(hw
->wiphy
,
1874 "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1875 ctx
->def
.chan
->center_freq
, ctx
->def
.width
,
1876 ctx
->def
.center_freq1
, ctx
->def
.center_freq2
);
1877 hwsim_check_chanctx_magic(ctx
);
1878 hwsim_clear_chanctx_magic(ctx
);
1881 static void mac80211_hwsim_change_chanctx(struct ieee80211_hw
*hw
,
1882 struct ieee80211_chanctx_conf
*ctx
,
1885 hwsim_check_chanctx_magic(ctx
);
1886 wiphy_debug(hw
->wiphy
,
1887 "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
1888 ctx
->def
.chan
->center_freq
, ctx
->def
.width
,
1889 ctx
->def
.center_freq1
, ctx
->def
.center_freq2
);
1892 static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw
*hw
,
1893 struct ieee80211_vif
*vif
,
1894 struct ieee80211_chanctx_conf
*ctx
)
1896 hwsim_check_magic(vif
);
1897 hwsim_check_chanctx_magic(ctx
);
1902 static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw
*hw
,
1903 struct ieee80211_vif
*vif
,
1904 struct ieee80211_chanctx_conf
*ctx
)
1906 hwsim_check_magic(vif
);
1907 hwsim_check_chanctx_magic(ctx
);
1910 static const struct ieee80211_ops mac80211_hwsim_ops
= {
1911 .tx
= mac80211_hwsim_tx
,
1912 .start
= mac80211_hwsim_start
,
1913 .stop
= mac80211_hwsim_stop
,
1914 .add_interface
= mac80211_hwsim_add_interface
,
1915 .change_interface
= mac80211_hwsim_change_interface
,
1916 .remove_interface
= mac80211_hwsim_remove_interface
,
1917 .config
= mac80211_hwsim_config
,
1918 .configure_filter
= mac80211_hwsim_configure_filter
,
1919 .bss_info_changed
= mac80211_hwsim_bss_info_changed
,
1920 .sta_add
= mac80211_hwsim_sta_add
,
1921 .sta_remove
= mac80211_hwsim_sta_remove
,
1922 .sta_notify
= mac80211_hwsim_sta_notify
,
1923 .set_tim
= mac80211_hwsim_set_tim
,
1924 .conf_tx
= mac80211_hwsim_conf_tx
,
1925 .get_survey
= mac80211_hwsim_get_survey
,
1926 CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd
)
1927 .ampdu_action
= mac80211_hwsim_ampdu_action
,
1928 .sw_scan_start
= mac80211_hwsim_sw_scan
,
1929 .sw_scan_complete
= mac80211_hwsim_sw_scan_complete
,
1930 .flush
= mac80211_hwsim_flush
,
1931 .get_tsf
= mac80211_hwsim_get_tsf
,
1932 .set_tsf
= mac80211_hwsim_set_tsf
,
1935 static struct ieee80211_ops mac80211_hwsim_mchan_ops
;
1937 static int mac80211_hwsim_create_radio(int channels
, const char *reg_alpha2
,
1938 const struct ieee80211_regdomain
*regd
,
1943 struct mac80211_hwsim_data
*data
;
1944 struct ieee80211_hw
*hw
;
1945 enum ieee80211_band band
;
1946 const struct ieee80211_ops
*ops
= &mac80211_hwsim_ops
;
1949 spin_lock_bh(&hwsim_radio_lock
);
1950 idx
= hwsim_radio_idx
++;
1951 spin_unlock_bh(&hwsim_radio_lock
);
1954 ops
= &mac80211_hwsim_mchan_ops
;
1955 hw
= ieee80211_alloc_hw(sizeof(*data
), ops
);
1957 printk(KERN_DEBUG
"mac80211_hwsim: ieee80211_alloc_hw failed\n");
1964 data
->dev
= device_create(hwsim_class
, NULL
, 0, hw
, "hwsim%d", idx
);
1965 if (IS_ERR(data
->dev
)) {
1967 "mac80211_hwsim: device_create failed (%ld)\n",
1968 PTR_ERR(data
->dev
));
1970 goto failed_drvdata
;
1972 data
->dev
->driver
= &mac80211_hwsim_driver
.driver
;
1973 err
= device_bind_driver(data
->dev
);
1975 printk(KERN_DEBUG
"mac80211_hwsim: device_bind_driver failed (%d)\n",
1980 skb_queue_head_init(&data
->pending
);
1982 SET_IEEE80211_DEV(hw
, data
->dev
);
1983 memset(addr
, 0, ETH_ALEN
);
1987 memcpy(data
->addresses
[0].addr
, addr
, ETH_ALEN
);
1988 memcpy(data
->addresses
[1].addr
, addr
, ETH_ALEN
);
1989 data
->addresses
[1].addr
[0] |= 0x40;
1990 hw
->wiphy
->n_addresses
= 2;
1991 hw
->wiphy
->addresses
= data
->addresses
;
1993 data
->channels
= channels
;
1996 if (data
->channels
> 1) {
1997 hw
->wiphy
->max_scan_ssids
= 255;
1998 hw
->wiphy
->max_scan_ie_len
= IEEE80211_MAX_DATA_LEN
;
1999 hw
->wiphy
->max_remain_on_channel_duration
= 1000;
2000 /* For channels > 1 DFS is not allowed */
2001 hw
->wiphy
->n_iface_combinations
= 1;
2002 hw
->wiphy
->iface_combinations
= &data
->if_combination
;
2003 data
->if_combination
= hwsim_if_comb
[0];
2004 data
->if_combination
.num_different_channels
= data
->channels
;
2006 hw
->wiphy
->iface_combinations
= hwsim_if_comb
;
2007 hw
->wiphy
->n_iface_combinations
= ARRAY_SIZE(hwsim_if_comb
);
2010 INIT_DELAYED_WORK(&data
->roc_done
, hw_roc_done
);
2011 INIT_DELAYED_WORK(&data
->hw_scan
, hw_scan_work
);
2014 hw
->offchannel_tx_hw_queue
= 4;
2015 hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
) |
2016 BIT(NL80211_IFTYPE_AP
) |
2017 BIT(NL80211_IFTYPE_P2P_CLIENT
) |
2018 BIT(NL80211_IFTYPE_P2P_GO
) |
2019 BIT(NL80211_IFTYPE_ADHOC
) |
2020 BIT(NL80211_IFTYPE_MESH_POINT
) |
2021 BIT(NL80211_IFTYPE_P2P_DEVICE
);
2023 hw
->flags
= IEEE80211_HW_MFP_CAPABLE
|
2024 IEEE80211_HW_SIGNAL_DBM
|
2025 IEEE80211_HW_SUPPORTS_STATIC_SMPS
|
2026 IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS
|
2027 IEEE80211_HW_AMPDU_AGGREGATION
|
2028 IEEE80211_HW_WANT_MONITOR_VIF
|
2029 IEEE80211_HW_QUEUE_CONTROL
|
2030 IEEE80211_HW_SUPPORTS_HT_CCK_RATES
;
2032 hw
->flags
|= IEEE80211_HW_SUPPORTS_RC_TABLE
;
2034 hw
->wiphy
->flags
|= WIPHY_FLAG_SUPPORTS_TDLS
|
2035 WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL
|
2036 WIPHY_FLAG_AP_UAPSD
;
2037 hw
->wiphy
->features
|= NL80211_FEATURE_ACTIVE_MONITOR
;
2039 /* ask mac80211 to reserve space for magic */
2040 hw
->vif_data_size
= sizeof(struct hwsim_vif_priv
);
2041 hw
->sta_data_size
= sizeof(struct hwsim_sta_priv
);
2042 hw
->chanctx_data_size
= sizeof(struct hwsim_chanctx_priv
);
2044 memcpy(data
->channels_2ghz
, hwsim_channels_2ghz
,
2045 sizeof(hwsim_channels_2ghz
));
2046 memcpy(data
->channels_5ghz
, hwsim_channels_5ghz
,
2047 sizeof(hwsim_channels_5ghz
));
2048 memcpy(data
->rates
, hwsim_rates
, sizeof(hwsim_rates
));
2050 for (band
= IEEE80211_BAND_2GHZ
; band
< IEEE80211_NUM_BANDS
; band
++) {
2051 struct ieee80211_supported_band
*sband
= &data
->bands
[band
];
2053 case IEEE80211_BAND_2GHZ
:
2054 sband
->channels
= data
->channels_2ghz
;
2055 sband
->n_channels
= ARRAY_SIZE(hwsim_channels_2ghz
);
2056 sband
->bitrates
= data
->rates
;
2057 sband
->n_bitrates
= ARRAY_SIZE(hwsim_rates
);
2059 case IEEE80211_BAND_5GHZ
:
2060 sband
->channels
= data
->channels_5ghz
;
2061 sband
->n_channels
= ARRAY_SIZE(hwsim_channels_5ghz
);
2062 sband
->bitrates
= data
->rates
+ 4;
2063 sband
->n_bitrates
= ARRAY_SIZE(hwsim_rates
) - 4;
2069 sband
->ht_cap
.ht_supported
= true;
2070 sband
->ht_cap
.cap
= IEEE80211_HT_CAP_SUP_WIDTH_20_40
|
2071 IEEE80211_HT_CAP_GRN_FLD
|
2072 IEEE80211_HT_CAP_SGI_40
|
2073 IEEE80211_HT_CAP_DSSSCCK40
;
2074 sband
->ht_cap
.ampdu_factor
= 0x3;
2075 sband
->ht_cap
.ampdu_density
= 0x6;
2076 memset(&sband
->ht_cap
.mcs
, 0,
2077 sizeof(sband
->ht_cap
.mcs
));
2078 sband
->ht_cap
.mcs
.rx_mask
[0] = 0xff;
2079 sband
->ht_cap
.mcs
.rx_mask
[1] = 0xff;
2080 sband
->ht_cap
.mcs
.tx_params
= IEEE80211_HT_MCS_TX_DEFINED
;
2082 hw
->wiphy
->bands
[band
] = sband
;
2084 sband
->vht_cap
.vht_supported
= true;
2085 sband
->vht_cap
.cap
=
2086 IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454
|
2087 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ
|
2088 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ
|
2089 IEEE80211_VHT_CAP_RXLDPC
|
2090 IEEE80211_VHT_CAP_SHORT_GI_80
|
2091 IEEE80211_VHT_CAP_SHORT_GI_160
|
2092 IEEE80211_VHT_CAP_TXSTBC
|
2093 IEEE80211_VHT_CAP_RXSTBC_1
|
2094 IEEE80211_VHT_CAP_RXSTBC_2
|
2095 IEEE80211_VHT_CAP_RXSTBC_3
|
2096 IEEE80211_VHT_CAP_RXSTBC_4
|
2097 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK
;
2098 sband
->vht_cap
.vht_mcs
.rx_mcs_map
=
2099 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8
<< 0 |
2100 IEEE80211_VHT_MCS_SUPPORT_0_8
<< 2 |
2101 IEEE80211_VHT_MCS_SUPPORT_0_9
<< 4 |
2102 IEEE80211_VHT_MCS_SUPPORT_0_8
<< 6 |
2103 IEEE80211_VHT_MCS_SUPPORT_0_8
<< 8 |
2104 IEEE80211_VHT_MCS_SUPPORT_0_9
<< 10 |
2105 IEEE80211_VHT_MCS_SUPPORT_0_9
<< 12 |
2106 IEEE80211_VHT_MCS_SUPPORT_0_8
<< 14);
2107 sband
->vht_cap
.vht_mcs
.tx_mcs_map
=
2108 sband
->vht_cap
.vht_mcs
.rx_mcs_map
;
2111 /* By default all radios belong to the first group */
2113 mutex_init(&data
->mutex
);
2115 /* Enable frame retransmissions for lossy channels */
2117 hw
->max_rate_tries
= 11;
2120 hw
->wiphy
->regulatory_flags
|= REGULATORY_STRICT_REG
;
2122 hw
->wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2123 wiphy_apply_custom_regulatory(hw
->wiphy
, regd
);
2124 /* give the regulatory workqueue a chance to run */
2125 schedule_timeout_interruptible(1);
2128 err
= ieee80211_register_hw(hw
);
2130 printk(KERN_DEBUG
"mac80211_hwsim: ieee80211_register_hw failed (%d)\n",
2135 wiphy_debug(hw
->wiphy
, "hwaddr %pM registered\n", hw
->wiphy
->perm_addr
);
2138 regulatory_hint(hw
->wiphy
, reg_alpha2
);
2140 data
->debugfs
= debugfs_create_dir("hwsim", hw
->wiphy
->debugfsdir
);
2141 debugfs_create_file("ps", 0666, data
->debugfs
, data
, &hwsim_fops_ps
);
2142 debugfs_create_file("group", 0666, data
->debugfs
, data
,
2144 if (data
->channels
== 1)
2145 debugfs_create_file("dfs_simulate_radar", 0222,
2147 data
, &hwsim_simulate_radar
);
2149 tasklet_hrtimer_init(&data
->beacon_timer
,
2150 mac80211_hwsim_beacon
,
2151 CLOCK_MONOTONIC_RAW
, HRTIMER_MODE_ABS
);
2153 spin_lock_bh(&hwsim_radio_lock
);
2154 list_add_tail(&data
->list
, &hwsim_radios
);
2155 spin_unlock_bh(&hwsim_radio_lock
);
2160 device_unregister(data
->dev
);
2162 ieee80211_free_hw(hw
);
2167 static void mac80211_hwsim_destroy_radio(struct mac80211_hwsim_data
*data
)
2169 debugfs_remove_recursive(data
->debugfs
);
2170 ieee80211_unregister_hw(data
->hw
);
2171 device_release_driver(data
->dev
);
2172 device_unregister(data
->dev
);
2173 ieee80211_free_hw(data
->hw
);
2176 static void mac80211_hwsim_free(void)
2178 struct mac80211_hwsim_data
*data
;
2180 spin_lock_bh(&hwsim_radio_lock
);
2181 while ((data
= list_first_entry_or_null(&hwsim_radios
,
2182 struct mac80211_hwsim_data
,
2184 list_del(&data
->list
);
2185 spin_unlock_bh(&hwsim_radio_lock
);
2186 mac80211_hwsim_destroy_radio(data
);
2187 spin_lock_bh(&hwsim_radio_lock
);
2189 spin_unlock_bh(&hwsim_radio_lock
);
2190 class_destroy(hwsim_class
);
2193 static const struct net_device_ops hwsim_netdev_ops
= {
2194 .ndo_start_xmit
= hwsim_mon_xmit
,
2195 .ndo_change_mtu
= eth_change_mtu
,
2196 .ndo_set_mac_address
= eth_mac_addr
,
2197 .ndo_validate_addr
= eth_validate_addr
,
2200 static void hwsim_mon_setup(struct net_device
*dev
)
2202 dev
->netdev_ops
= &hwsim_netdev_ops
;
2203 dev
->destructor
= free_netdev
;
2205 dev
->tx_queue_len
= 0;
2206 dev
->type
= ARPHRD_IEEE80211_RADIOTAP
;
2207 memset(dev
->dev_addr
, 0, ETH_ALEN
);
2208 dev
->dev_addr
[0] = 0x12;
2211 static struct mac80211_hwsim_data
*get_hwsim_data_ref_from_addr(const u8
*addr
)
2213 struct mac80211_hwsim_data
*data
;
2214 bool _found
= false;
2216 spin_lock_bh(&hwsim_radio_lock
);
2217 list_for_each_entry(data
, &hwsim_radios
, list
) {
2218 if (memcmp(data
->addresses
[1].addr
, addr
, ETH_ALEN
) == 0) {
2223 spin_unlock_bh(&hwsim_radio_lock
);
2231 static int hwsim_tx_info_frame_received_nl(struct sk_buff
*skb_2
,
2232 struct genl_info
*info
)
2235 struct ieee80211_hdr
*hdr
;
2236 struct mac80211_hwsim_data
*data2
;
2237 struct ieee80211_tx_info
*txi
;
2238 struct hwsim_tx_rate
*tx_attempts
;
2239 unsigned long ret_skb_ptr
;
2240 struct sk_buff
*skb
, *tmp
;
2242 unsigned int hwsim_flags
;
2246 if (info
->snd_portid
!= wmediumd_portid
)
2249 if (!info
->attrs
[HWSIM_ATTR_ADDR_TRANSMITTER
] ||
2250 !info
->attrs
[HWSIM_ATTR_FLAGS
] ||
2251 !info
->attrs
[HWSIM_ATTR_COOKIE
] ||
2252 !info
->attrs
[HWSIM_ATTR_TX_INFO
])
2255 src
= (void *)nla_data(info
->attrs
[HWSIM_ATTR_ADDR_TRANSMITTER
]);
2256 hwsim_flags
= nla_get_u32(info
->attrs
[HWSIM_ATTR_FLAGS
]);
2257 ret_skb_ptr
= nla_get_u64(info
->attrs
[HWSIM_ATTR_COOKIE
]);
2259 data2
= get_hwsim_data_ref_from_addr(src
);
2263 /* look for the skb matching the cookie passed back from user */
2264 skb_queue_walk_safe(&data2
->pending
, skb
, tmp
) {
2265 if ((unsigned long)skb
== ret_skb_ptr
) {
2266 skb_unlink(skb
, &data2
->pending
);
2276 /* Tx info received because the frame was broadcasted on user space,
2277 so we get all the necessary info: tx attempts and skb control buff */
2279 tx_attempts
= (struct hwsim_tx_rate
*)nla_data(
2280 info
->attrs
[HWSIM_ATTR_TX_INFO
]);
2282 /* now send back TX status */
2283 txi
= IEEE80211_SKB_CB(skb
);
2285 ieee80211_tx_info_clear_status(txi
);
2287 for (i
= 0; i
< IEEE80211_TX_MAX_RATES
; i
++) {
2288 txi
->status
.rates
[i
].idx
= tx_attempts
[i
].idx
;
2289 txi
->status
.rates
[i
].count
= tx_attempts
[i
].count
;
2290 /*txi->status.rates[i].flags = 0;*/
2293 txi
->status
.ack_signal
= nla_get_u32(info
->attrs
[HWSIM_ATTR_SIGNAL
]);
2295 if (!(hwsim_flags
& HWSIM_TX_CTL_NO_ACK
) &&
2296 (hwsim_flags
& HWSIM_TX_STAT_ACK
)) {
2297 if (skb
->len
>= 16) {
2298 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2299 mac80211_hwsim_monitor_ack(data2
->channel
,
2302 txi
->flags
|= IEEE80211_TX_STAT_ACK
;
2304 ieee80211_tx_status_irqsafe(data2
->hw
, skb
);
2311 static int hwsim_cloned_frame_received_nl(struct sk_buff
*skb_2
,
2312 struct genl_info
*info
)
2315 struct mac80211_hwsim_data
*data2
;
2316 struct ieee80211_rx_status rx_status
;
2320 struct sk_buff
*skb
= NULL
;
2322 if (info
->snd_portid
!= wmediumd_portid
)
2325 if (!info
->attrs
[HWSIM_ATTR_ADDR_RECEIVER
] ||
2326 !info
->attrs
[HWSIM_ATTR_FRAME
] ||
2327 !info
->attrs
[HWSIM_ATTR_RX_RATE
] ||
2328 !info
->attrs
[HWSIM_ATTR_SIGNAL
])
2331 dst
= (void *)nla_data(info
->attrs
[HWSIM_ATTR_ADDR_RECEIVER
]);
2332 frame_data_len
= nla_len(info
->attrs
[HWSIM_ATTR_FRAME
]);
2333 frame_data
= (void *)nla_data(info
->attrs
[HWSIM_ATTR_FRAME
]);
2335 /* Allocate new skb here */
2336 skb
= alloc_skb(frame_data_len
, GFP_KERNEL
);
2340 if (frame_data_len
> IEEE80211_MAX_DATA_LEN
)
2344 memcpy(skb_put(skb
, frame_data_len
), frame_data
, frame_data_len
);
2346 data2
= get_hwsim_data_ref_from_addr(dst
);
2350 /* check if radio is configured properly */
2352 if (data2
->idle
|| !data2
->started
)
2355 /* A frame is received from user space */
2356 memset(&rx_status
, 0, sizeof(rx_status
));
2357 rx_status
.freq
= data2
->channel
->center_freq
;
2358 rx_status
.band
= data2
->channel
->band
;
2359 rx_status
.rate_idx
= nla_get_u32(info
->attrs
[HWSIM_ATTR_RX_RATE
]);
2360 rx_status
.signal
= nla_get_u32(info
->attrs
[HWSIM_ATTR_SIGNAL
]);
2362 memcpy(IEEE80211_SKB_RXCB(skb
), &rx_status
, sizeof(rx_status
));
2363 ieee80211_rx_irqsafe(data2
->hw
, skb
);
2367 printk(KERN_DEBUG
"mac80211_hwsim: error occurred in %s\n", __func__
);
2374 static int hwsim_register_received_nl(struct sk_buff
*skb_2
,
2375 struct genl_info
*info
)
2377 struct mac80211_hwsim_data
*data
;
2380 spin_lock_bh(&hwsim_radio_lock
);
2381 list_for_each_entry(data
, &hwsim_radios
, list
)
2382 chans
= max(chans
, data
->channels
);
2383 spin_unlock_bh(&hwsim_radio_lock
);
2385 /* In the future we should revise the userspace API and allow it
2386 * to set a flag that it does support multi-channel, then we can
2387 * let this pass conditionally on the flag.
2388 * For current userspace, prohibit it since it won't work right.
2393 if (wmediumd_portid
)
2396 wmediumd_portid
= info
->snd_portid
;
2398 printk(KERN_DEBUG
"mac80211_hwsim: received a REGISTER, "
2399 "switching to wmediumd mode with pid %d\n", info
->snd_portid
);
2404 static int hwsim_create_radio_nl(struct sk_buff
*msg
, struct genl_info
*info
)
2406 unsigned int chans
= channels
;
2407 const char *alpha2
= NULL
;
2408 const struct ieee80211_regdomain
*regd
= NULL
;
2409 bool reg_strict
= info
->attrs
[HWSIM_ATTR_REG_STRICT_REG
];
2411 if (info
->attrs
[HWSIM_ATTR_CHANNELS
])
2412 chans
= nla_get_u32(info
->attrs
[HWSIM_ATTR_CHANNELS
]);
2414 if (info
->attrs
[HWSIM_ATTR_REG_HINT_ALPHA2
])
2415 alpha2
= nla_data(info
->attrs
[HWSIM_ATTR_REG_HINT_ALPHA2
]);
2417 if (info
->attrs
[HWSIM_ATTR_REG_CUSTOM_REG
]) {
2418 u32 idx
= nla_get_u32(info
->attrs
[HWSIM_ATTR_REG_CUSTOM_REG
]);
2420 if (idx
>= ARRAY_SIZE(hwsim_world_regdom_custom
))
2422 regd
= hwsim_world_regdom_custom
[idx
];
2425 return mac80211_hwsim_create_radio(chans
, alpha2
, regd
, reg_strict
);
2428 static int hwsim_destroy_radio_nl(struct sk_buff
*msg
, struct genl_info
*info
)
2430 struct mac80211_hwsim_data
*data
;
2433 if (!info
->attrs
[HWSIM_ATTR_RADIO_ID
])
2435 idx
= nla_get_u32(info
->attrs
[HWSIM_ATTR_RADIO_ID
]);
2437 spin_lock_bh(&hwsim_radio_lock
);
2438 list_for_each_entry(data
, &hwsim_radios
, list
) {
2439 if (data
->idx
!= idx
)
2441 list_del(&data
->list
);
2442 spin_unlock_bh(&hwsim_radio_lock
);
2443 mac80211_hwsim_destroy_radio(data
);
2446 spin_unlock_bh(&hwsim_radio_lock
);
2451 /* Generic Netlink operations array */
2452 static const struct genl_ops hwsim_ops
[] = {
2454 .cmd
= HWSIM_CMD_REGISTER
,
2455 .policy
= hwsim_genl_policy
,
2456 .doit
= hwsim_register_received_nl
,
2457 .flags
= GENL_ADMIN_PERM
,
2460 .cmd
= HWSIM_CMD_FRAME
,
2461 .policy
= hwsim_genl_policy
,
2462 .doit
= hwsim_cloned_frame_received_nl
,
2465 .cmd
= HWSIM_CMD_TX_INFO_FRAME
,
2466 .policy
= hwsim_genl_policy
,
2467 .doit
= hwsim_tx_info_frame_received_nl
,
2470 .cmd
= HWSIM_CMD_CREATE_RADIO
,
2471 .policy
= hwsim_genl_policy
,
2472 .doit
= hwsim_create_radio_nl
,
2473 .flags
= GENL_ADMIN_PERM
,
2476 .cmd
= HWSIM_CMD_DESTROY_RADIO
,
2477 .policy
= hwsim_genl_policy
,
2478 .doit
= hwsim_destroy_radio_nl
,
2479 .flags
= GENL_ADMIN_PERM
,
2483 static int mac80211_hwsim_netlink_notify(struct notifier_block
*nb
,
2484 unsigned long state
,
2487 struct netlink_notify
*notify
= _notify
;
2489 if (state
!= NETLINK_URELEASE
)
2492 if (notify
->portid
== wmediumd_portid
) {
2493 printk(KERN_INFO
"mac80211_hwsim: wmediumd released netlink"
2494 " socket, switching to perfect channel medium\n");
2495 wmediumd_portid
= 0;
2501 static struct notifier_block hwsim_netlink_notifier
= {
2502 .notifier_call
= mac80211_hwsim_netlink_notify
,
2505 static int hwsim_init_netlink(void)
2509 printk(KERN_INFO
"mac80211_hwsim: initializing netlink\n");
2511 rc
= genl_register_family_with_ops(&hwsim_genl_family
, hwsim_ops
);
2515 rc
= netlink_register_notifier(&hwsim_netlink_notifier
);
2522 printk(KERN_DEBUG
"mac80211_hwsim: error occurred in %s\n", __func__
);
2526 static void hwsim_exit_netlink(void)
2528 /* unregister the notifier */
2529 netlink_unregister_notifier(&hwsim_netlink_notifier
);
2530 /* unregister the family */
2531 genl_unregister_family(&hwsim_genl_family
);
2534 static int __init
init_mac80211_hwsim(void)
2538 if (radios
< 0 || radios
> 100)
2544 mac80211_hwsim_mchan_ops
= mac80211_hwsim_ops
;
2545 mac80211_hwsim_mchan_ops
.hw_scan
= mac80211_hwsim_hw_scan
;
2546 mac80211_hwsim_mchan_ops
.cancel_hw_scan
= mac80211_hwsim_cancel_hw_scan
;
2547 mac80211_hwsim_mchan_ops
.sw_scan_start
= NULL
;
2548 mac80211_hwsim_mchan_ops
.sw_scan_complete
= NULL
;
2549 mac80211_hwsim_mchan_ops
.remain_on_channel
= mac80211_hwsim_roc
;
2550 mac80211_hwsim_mchan_ops
.cancel_remain_on_channel
= mac80211_hwsim_croc
;
2551 mac80211_hwsim_mchan_ops
.add_chanctx
= mac80211_hwsim_add_chanctx
;
2552 mac80211_hwsim_mchan_ops
.remove_chanctx
= mac80211_hwsim_remove_chanctx
;
2553 mac80211_hwsim_mchan_ops
.change_chanctx
= mac80211_hwsim_change_chanctx
;
2554 mac80211_hwsim_mchan_ops
.assign_vif_chanctx
=
2555 mac80211_hwsim_assign_vif_chanctx
;
2556 mac80211_hwsim_mchan_ops
.unassign_vif_chanctx
=
2557 mac80211_hwsim_unassign_vif_chanctx
;
2559 spin_lock_init(&hwsim_radio_lock
);
2560 INIT_LIST_HEAD(&hwsim_radios
);
2562 err
= platform_driver_register(&mac80211_hwsim_driver
);
2566 hwsim_class
= class_create(THIS_MODULE
, "mac80211_hwsim");
2567 if (IS_ERR(hwsim_class
)) {
2568 err
= PTR_ERR(hwsim_class
);
2569 goto out_unregister_driver
;
2572 for (i
= 0; i
< radios
; i
++) {
2573 const char *reg_alpha2
= NULL
;
2574 const struct ieee80211_regdomain
*regd
= NULL
;
2575 bool reg_strict
= false;
2578 case HWSIM_REGTEST_DIFF_COUNTRY
:
2579 if (i
< ARRAY_SIZE(hwsim_alpha2s
))
2580 reg_alpha2
= hwsim_alpha2s
[i
];
2582 case HWSIM_REGTEST_DRIVER_REG_FOLLOW
:
2584 reg_alpha2
= hwsim_alpha2s
[0];
2586 case HWSIM_REGTEST_STRICT_ALL
:
2588 case HWSIM_REGTEST_DRIVER_REG_ALL
:
2589 reg_alpha2
= hwsim_alpha2s
[0];
2591 case HWSIM_REGTEST_WORLD_ROAM
:
2593 regd
= &hwsim_world_regdom_custom_01
;
2595 case HWSIM_REGTEST_CUSTOM_WORLD
:
2596 regd
= &hwsim_world_regdom_custom_01
;
2598 case HWSIM_REGTEST_CUSTOM_WORLD_2
:
2600 regd
= &hwsim_world_regdom_custom_01
;
2602 regd
= &hwsim_world_regdom_custom_02
;
2604 case HWSIM_REGTEST_STRICT_FOLLOW
:
2607 reg_alpha2
= hwsim_alpha2s
[0];
2610 case HWSIM_REGTEST_STRICT_AND_DRIVER_REG
:
2613 reg_alpha2
= hwsim_alpha2s
[0];
2614 } else if (i
== 1) {
2615 reg_alpha2
= hwsim_alpha2s
[1];
2618 case HWSIM_REGTEST_ALL
:
2621 regd
= &hwsim_world_regdom_custom_01
;
2624 regd
= &hwsim_world_regdom_custom_02
;
2627 reg_alpha2
= hwsim_alpha2s
[0];
2630 reg_alpha2
= hwsim_alpha2s
[1];
2634 reg_alpha2
= hwsim_alpha2s
[2];
2642 err
= mac80211_hwsim_create_radio(channels
, reg_alpha2
,
2645 goto out_free_radios
;
2648 hwsim_mon
= alloc_netdev(0, "hwsim%d", hwsim_mon_setup
);
2649 if (hwsim_mon
== NULL
) {
2651 goto out_free_radios
;
2655 err
= dev_alloc_name(hwsim_mon
, hwsim_mon
->name
);
2658 goto out_free_radios
;
2661 err
= register_netdevice(hwsim_mon
);
2668 err
= hwsim_init_netlink();
2675 free_netdev(hwsim_mon
);
2677 mac80211_hwsim_free();
2678 out_unregister_driver
:
2679 platform_driver_unregister(&mac80211_hwsim_driver
);
2682 module_init(init_mac80211_hwsim
);
2684 static void __exit
exit_mac80211_hwsim(void)
2686 printk(KERN_DEBUG
"mac80211_hwsim: unregister radios\n");
2688 hwsim_exit_netlink();
2690 mac80211_hwsim_free();
2691 unregister_netdev(hwsim_mon
);
2692 platform_driver_unregister(&mac80211_hwsim_driver
);
2694 module_exit(exit_mac80211_hwsim
);