PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
blobd849d590de250b915ddda53ce64c703beef3215e
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt2500usb
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
37 * Allow hardware encryption to be disabled.
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 const unsigned int offset,
60 u16 *value)
62 __le16 reg;
63 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 USB_VENDOR_REQUEST_IN, offset,
65 &reg, sizeof(reg), REGISTER_TIMEOUT);
66 *value = le16_to_cpu(reg);
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 const unsigned int offset,
71 u16 *value)
73 __le16 reg;
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 &reg, sizeof(reg), REGISTER_TIMEOUT);
77 *value = le16_to_cpu(reg);
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u16 length)
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
86 value, length,
87 REGISTER_TIMEOUT16(length));
90 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
91 const unsigned int offset,
92 u16 value)
94 __le16 reg = cpu_to_le16(value);
95 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
96 USB_VENDOR_REQUEST_OUT, offset,
97 &reg, sizeof(reg), REGISTER_TIMEOUT);
100 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
101 const unsigned int offset,
102 u16 value)
104 __le16 reg = cpu_to_le16(value);
105 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
106 USB_VENDOR_REQUEST_OUT, offset,
107 &reg, sizeof(reg), REGISTER_TIMEOUT);
110 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
111 const unsigned int offset,
112 void *value, const u16 length)
114 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
115 USB_VENDOR_REQUEST_OUT, offset,
116 value, length,
117 REGISTER_TIMEOUT16(length));
120 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
121 const unsigned int offset,
122 struct rt2x00_field16 field,
123 u16 *reg)
125 unsigned int i;
127 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
128 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
129 if (!rt2x00_get_field16(*reg, field))
130 return 1;
131 udelay(REGISTER_BUSY_DELAY);
134 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
135 offset, *reg);
136 *reg = ~0;
138 return 0;
141 #define WAIT_FOR_BBP(__dev, __reg) \
142 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
143 #define WAIT_FOR_RF(__dev, __reg) \
144 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
146 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
147 const unsigned int word, const u8 value)
149 u16 reg;
151 mutex_lock(&rt2x00dev->csr_mutex);
154 * Wait until the BBP becomes available, afterwards we
155 * can safely write the new data into the register.
157 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
158 reg = 0;
159 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
160 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
161 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
163 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166 mutex_unlock(&rt2x00dev->csr_mutex);
169 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
170 const unsigned int word, u8 *value)
172 u16 reg;
174 mutex_lock(&rt2x00dev->csr_mutex);
177 * Wait until the BBP becomes available, afterwards we
178 * can safely write the read request into the register.
179 * After the data has been written, we wait until hardware
180 * returns the correct value, if at any time the register
181 * doesn't become available in time, reg will be 0xffffffff
182 * which means we return 0xff to the caller.
184 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
185 reg = 0;
186 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
187 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
189 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
191 if (WAIT_FOR_BBP(rt2x00dev, &reg))
192 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
197 mutex_unlock(&rt2x00dev->csr_mutex);
200 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
201 const unsigned int word, const u32 value)
203 u16 reg;
205 mutex_lock(&rt2x00dev->csr_mutex);
208 * Wait until the RF becomes available, afterwards we
209 * can safely write the new data into the register.
211 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
212 reg = 0;
213 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
214 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
216 reg = 0;
217 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
218 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
219 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
220 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
222 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
223 rt2x00_rf_write(rt2x00dev, word, value);
226 mutex_unlock(&rt2x00dev->csr_mutex);
229 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
230 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
231 const unsigned int offset,
232 u32 *value)
234 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
238 const unsigned int offset,
239 u32 value)
241 rt2500usb_register_write(rt2x00dev, offset, value);
244 static const struct rt2x00debug rt2500usb_rt2x00debug = {
245 .owner = THIS_MODULE,
246 .csr = {
247 .read = _rt2500usb_register_read,
248 .write = _rt2500usb_register_write,
249 .flags = RT2X00DEBUGFS_OFFSET,
250 .word_base = CSR_REG_BASE,
251 .word_size = sizeof(u16),
252 .word_count = CSR_REG_SIZE / sizeof(u16),
254 .eeprom = {
255 .read = rt2x00_eeprom_read,
256 .write = rt2x00_eeprom_write,
257 .word_base = EEPROM_BASE,
258 .word_size = sizeof(u16),
259 .word_count = EEPROM_SIZE / sizeof(u16),
261 .bbp = {
262 .read = rt2500usb_bbp_read,
263 .write = rt2500usb_bbp_write,
264 .word_base = BBP_BASE,
265 .word_size = sizeof(u8),
266 .word_count = BBP_SIZE / sizeof(u8),
268 .rf = {
269 .read = rt2x00_rf_read,
270 .write = rt2500usb_rf_write,
271 .word_base = RF_BASE,
272 .word_size = sizeof(u32),
273 .word_count = RF_SIZE / sizeof(u32),
276 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 u16 reg;
282 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
283 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
286 #ifdef CONFIG_RT2X00_LIB_LEDS
287 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
288 enum led_brightness brightness)
290 struct rt2x00_led *led =
291 container_of(led_cdev, struct rt2x00_led, led_dev);
292 unsigned int enabled = brightness != LED_OFF;
293 u16 reg;
295 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
298 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
299 else if (led->type == LED_TYPE_ACTIVITY)
300 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
306 unsigned long *delay_on,
307 unsigned long *delay_off)
309 struct rt2x00_led *led =
310 container_of(led_cdev, struct rt2x00_led, led_dev);
311 u16 reg;
313 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
314 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
315 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
316 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318 return 0;
321 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
322 struct rt2x00_led *led,
323 enum led_type type)
325 led->rt2x00dev = rt2x00dev;
326 led->type = type;
327 led->led_dev.brightness_set = rt2500usb_brightness_set;
328 led->led_dev.blink_set = rt2500usb_blink_set;
329 led->flags = LED_INITIALIZED;
331 #endif /* CONFIG_RT2X00_LIB_LEDS */
334 * Configuration handlers.
338 * rt2500usb does not differentiate between shared and pairwise
339 * keys, so we should use the same function for both key types.
341 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
342 struct rt2x00lib_crypto *crypto,
343 struct ieee80211_key_conf *key)
345 u32 mask;
346 u16 reg;
347 enum cipher curr_cipher;
349 if (crypto->cmd == SET_KEY) {
351 * Disallow to set WEP key other than with index 0,
352 * it is known that not work at least on some hardware.
353 * SW crypto will be used in that case.
355 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
356 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
357 key->keyidx != 0)
358 return -EOPNOTSUPP;
361 * Pairwise key will always be entry 0, but this
362 * could collide with a shared key on the same
363 * position...
365 mask = TXRX_CSR0_KEY_ID.bit_mask;
367 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
368 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
369 reg &= mask;
371 if (reg && reg == mask)
372 return -ENOSPC;
374 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376 key->hw_key_idx += reg ? ffz(reg) : 0;
378 * Hardware requires that all keys use the same cipher
379 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
380 * If this is not the first key, compare the cipher with the
381 * first one and fall back to SW crypto if not the same.
383 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
384 return -EOPNOTSUPP;
386 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
387 crypto->key, sizeof(crypto->key));
390 * The driver does not support the IV/EIV generation
391 * in hardware. However it demands the data to be provided
392 * both separately as well as inside the frame.
393 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
394 * to ensure rt2x00lib will not strip the data from the
395 * frame after the copy, now we must tell mac80211
396 * to generate the IV/EIV data.
398 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
403 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
404 * a particular key is valid.
406 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
407 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
408 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
411 if (crypto->cmd == SET_KEY)
412 mask |= 1 << key->hw_key_idx;
413 else if (crypto->cmd == DISABLE_KEY)
414 mask &= ~(1 << key->hw_key_idx);
415 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
416 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418 return 0;
421 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
422 const unsigned int filter_flags)
424 u16 reg;
427 * Start configuration steps.
428 * Note that the version error will always be dropped
429 * and broadcast frames will always be accepted since
430 * there is no filter for it at this time.
432 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
433 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
434 !(filter_flags & FIF_FCSFAIL));
435 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
436 !(filter_flags & FIF_PLCPFAIL));
437 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
438 !(filter_flags & FIF_CONTROL));
439 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
440 !(filter_flags & FIF_PROMISC_IN_BSS));
441 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442 !(filter_flags & FIF_PROMISC_IN_BSS) &&
443 !rt2x00dev->intf_ap_count);
444 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
445 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
446 !(filter_flags & FIF_ALLMULTI));
447 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
448 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
451 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
452 struct rt2x00_intf *intf,
453 struct rt2x00intf_conf *conf,
454 const unsigned int flags)
456 unsigned int bcn_preload;
457 u16 reg;
459 if (flags & CONFIG_UPDATE_TYPE) {
461 * Enable beacon config
463 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
464 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
465 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
466 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
467 2 * (conf->type != NL80211_IFTYPE_STATION));
468 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
471 * Enable synchronisation.
473 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
474 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
475 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
477 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
478 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
479 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
482 if (flags & CONFIG_UPDATE_MAC)
483 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
484 (3 * sizeof(__le16)));
486 if (flags & CONFIG_UPDATE_BSSID)
487 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
488 (3 * sizeof(__le16)));
491 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
492 struct rt2x00lib_erp *erp,
493 u32 changed)
495 u16 reg;
497 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
498 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
499 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
500 !!erp->short_preamble);
501 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
504 if (changed & BSS_CHANGED_BASIC_RATES)
505 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
506 erp->basic_rates);
508 if (changed & BSS_CHANGED_BEACON_INT) {
509 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
510 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
511 erp->beacon_int * 4);
512 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
515 if (changed & BSS_CHANGED_ERP_SLOT) {
516 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
517 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
518 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
522 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
523 struct antenna_setup *ant)
525 u8 r2;
526 u8 r14;
527 u16 csr5;
528 u16 csr6;
531 * We should never come here because rt2x00lib is supposed
532 * to catch this and send us the correct antenna explicitely.
534 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
535 ant->tx == ANTENNA_SW_DIVERSITY);
537 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
538 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
539 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
540 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
543 * Configure the TX antenna.
545 switch (ant->tx) {
546 case ANTENNA_HW_DIVERSITY:
547 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
548 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
549 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
550 break;
551 case ANTENNA_A:
552 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
553 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
554 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
555 break;
556 case ANTENNA_B:
557 default:
558 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
559 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
560 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
561 break;
565 * Configure the RX antenna.
567 switch (ant->rx) {
568 case ANTENNA_HW_DIVERSITY:
569 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
570 break;
571 case ANTENNA_A:
572 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
573 break;
574 case ANTENNA_B:
575 default:
576 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
577 break;
581 * RT2525E and RT5222 need to flip TX I/Q
583 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
584 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
585 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
586 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
589 * RT2525E does not need RX I/Q Flip.
591 if (rt2x00_rf(rt2x00dev, RF2525E))
592 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
593 } else {
594 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
595 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
598 rt2500usb_bbp_write(rt2x00dev, 2, r2);
599 rt2500usb_bbp_write(rt2x00dev, 14, r14);
600 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
601 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
604 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
605 struct rf_channel *rf, const int txpower)
608 * Set TXpower.
610 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
613 * For RT2525E we should first set the channel to half band higher.
615 if (rt2x00_rf(rt2x00dev, RF2525E)) {
616 static const u32 vals[] = {
617 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
618 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
619 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
620 0x00000902, 0x00000906
623 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
624 if (rf->rf4)
625 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
628 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
629 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
630 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
631 if (rf->rf4)
632 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
635 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
636 const int txpower)
638 u32 rf3;
640 rt2x00_rf_read(rt2x00dev, 3, &rf3);
641 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
642 rt2500usb_rf_write(rt2x00dev, 3, rf3);
645 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
646 struct rt2x00lib_conf *libconf)
648 enum dev_state state =
649 (libconf->conf->flags & IEEE80211_CONF_PS) ?
650 STATE_SLEEP : STATE_AWAKE;
651 u16 reg;
653 if (state == STATE_SLEEP) {
654 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
655 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
656 rt2x00dev->beacon_int - 20);
657 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
658 libconf->conf->listen_interval - 1);
660 /* We must first disable autowake before it can be enabled */
661 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
664 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
665 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666 } else {
667 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
668 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
669 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
672 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
675 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
676 struct rt2x00lib_conf *libconf,
677 const unsigned int flags)
679 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
680 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
681 libconf->conf->power_level);
682 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
683 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
684 rt2500usb_config_txpower(rt2x00dev,
685 libconf->conf->power_level);
686 if (flags & IEEE80211_CONF_CHANGE_PS)
687 rt2500usb_config_ps(rt2x00dev, libconf);
691 * Link tuning
693 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
694 struct link_qual *qual)
696 u16 reg;
699 * Update FCS error count from register.
701 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
702 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
705 * Update False CCA count from register.
707 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
708 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
711 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
712 struct link_qual *qual)
714 u16 eeprom;
715 u16 value;
717 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
718 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
719 rt2500usb_bbp_write(rt2x00dev, 24, value);
721 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
722 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
723 rt2500usb_bbp_write(rt2x00dev, 25, value);
725 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
726 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
727 rt2500usb_bbp_write(rt2x00dev, 61, value);
729 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
730 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
731 rt2500usb_bbp_write(rt2x00dev, 17, value);
733 qual->vgc_level = value;
737 * Queue handlers.
739 static void rt2500usb_start_queue(struct data_queue *queue)
741 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742 u16 reg;
744 switch (queue->qid) {
745 case QID_RX:
746 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
747 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
748 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
749 break;
750 case QID_BEACON:
751 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
752 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
753 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
754 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
755 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
756 break;
757 default:
758 break;
762 static void rt2500usb_stop_queue(struct data_queue *queue)
764 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
765 u16 reg;
767 switch (queue->qid) {
768 case QID_RX:
769 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
770 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
771 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
772 break;
773 case QID_BEACON:
774 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
775 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
776 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
777 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
778 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
779 break;
780 default:
781 break;
786 * Initialization functions.
788 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
790 u16 reg;
792 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
793 USB_MODE_TEST, REGISTER_TIMEOUT);
794 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
795 0x00f0, REGISTER_TIMEOUT);
797 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
798 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
799 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
801 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
802 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
804 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
805 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
806 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
807 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
808 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
810 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
811 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
812 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
813 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
814 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
816 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
817 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
818 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
819 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
820 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
821 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
823 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
824 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
825 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
826 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
827 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
828 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
830 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
831 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
832 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
833 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
834 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
835 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
837 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
838 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
839 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
840 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
841 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
842 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
844 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
845 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
846 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
847 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
848 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
849 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
851 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
852 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
854 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
855 return -EBUSY;
857 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
858 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
859 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
860 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
861 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
863 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
864 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
865 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
866 } else {
867 reg = 0;
868 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
869 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
871 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
873 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
874 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
875 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
876 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
878 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
879 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
880 rt2x00dev->rx->data_size);
881 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
883 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
884 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
885 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
886 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
887 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
889 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
890 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
891 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
893 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
894 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
895 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
897 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
898 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
899 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
901 return 0;
904 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
906 unsigned int i;
907 u8 value;
909 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
910 rt2500usb_bbp_read(rt2x00dev, 0, &value);
911 if ((value != 0xff) && (value != 0x00))
912 return 0;
913 udelay(REGISTER_BUSY_DELAY);
916 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
917 return -EACCES;
920 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
922 unsigned int i;
923 u16 eeprom;
924 u8 value;
925 u8 reg_id;
927 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
928 return -EACCES;
930 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
931 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
932 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
933 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
934 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
935 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
936 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
937 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
938 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
939 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
940 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
941 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
942 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
943 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
944 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
945 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
946 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
947 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
948 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
949 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
950 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
951 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
952 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
953 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
954 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
955 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
956 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
957 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
958 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
959 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
960 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
962 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
963 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
965 if (eeprom != 0xffff && eeprom != 0x0000) {
966 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
967 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
968 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
972 return 0;
976 * Device state switch handlers.
978 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
981 * Initialize all registers.
983 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
984 rt2500usb_init_bbp(rt2x00dev)))
985 return -EIO;
987 return 0;
990 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
992 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
993 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
996 * Disable synchronisation.
998 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1000 rt2x00usb_disable_radio(rt2x00dev);
1003 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1004 enum dev_state state)
1006 u16 reg;
1007 u16 reg2;
1008 unsigned int i;
1009 char put_to_sleep;
1010 char bbp_state;
1011 char rf_state;
1013 put_to_sleep = (state != STATE_AWAKE);
1015 reg = 0;
1016 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1017 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1018 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1019 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1020 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1021 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1024 * Device is not guaranteed to be in the requested state yet.
1025 * We must wait until the register indicates that the
1026 * device has entered the correct state.
1028 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1029 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1030 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1031 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1032 if (bbp_state == state && rf_state == state)
1033 return 0;
1034 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1035 msleep(30);
1038 return -EBUSY;
1041 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1042 enum dev_state state)
1044 int retval = 0;
1046 switch (state) {
1047 case STATE_RADIO_ON:
1048 retval = rt2500usb_enable_radio(rt2x00dev);
1049 break;
1050 case STATE_RADIO_OFF:
1051 rt2500usb_disable_radio(rt2x00dev);
1052 break;
1053 case STATE_RADIO_IRQ_ON:
1054 case STATE_RADIO_IRQ_OFF:
1055 /* No support, but no error either */
1056 break;
1057 case STATE_DEEP_SLEEP:
1058 case STATE_SLEEP:
1059 case STATE_STANDBY:
1060 case STATE_AWAKE:
1061 retval = rt2500usb_set_state(rt2x00dev, state);
1062 break;
1063 default:
1064 retval = -ENOTSUPP;
1065 break;
1068 if (unlikely(retval))
1069 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1070 state, retval);
1072 return retval;
1076 * TX descriptor initialization
1078 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1079 struct txentry_desc *txdesc)
1081 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1082 __le32 *txd = (__le32 *) entry->skb->data;
1083 u32 word;
1086 * Start writing the descriptor words.
1088 rt2x00_desc_read(txd, 0, &word);
1089 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1090 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1091 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1092 rt2x00_set_field32(&word, TXD_W0_ACK,
1093 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1094 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1095 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1096 rt2x00_set_field32(&word, TXD_W0_OFDM,
1097 (txdesc->rate_mode == RATE_MODE_OFDM));
1098 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1099 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1100 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1101 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1102 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1103 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1104 rt2x00_desc_write(txd, 0, word);
1106 rt2x00_desc_read(txd, 1, &word);
1107 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1108 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1109 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1110 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1111 rt2x00_desc_write(txd, 1, word);
1113 rt2x00_desc_read(txd, 2, &word);
1114 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1115 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1116 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1117 txdesc->u.plcp.length_low);
1118 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1119 txdesc->u.plcp.length_high);
1120 rt2x00_desc_write(txd, 2, word);
1122 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1123 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1124 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1128 * Register descriptor details in skb frame descriptor.
1130 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1131 skbdesc->desc = txd;
1132 skbdesc->desc_len = TXD_DESC_SIZE;
1136 * TX data initialization
1138 static void rt2500usb_beacondone(struct urb *urb);
1140 static void rt2500usb_write_beacon(struct queue_entry *entry,
1141 struct txentry_desc *txdesc)
1143 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1144 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1145 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1146 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1147 int length;
1148 u16 reg, reg0;
1151 * Disable beaconing while we are reloading the beacon data,
1152 * otherwise we might be sending out invalid data.
1154 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1155 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1156 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1159 * Add space for the descriptor in front of the skb.
1161 skb_push(entry->skb, TXD_DESC_SIZE);
1162 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1165 * Write the TX descriptor for the beacon.
1167 rt2500usb_write_tx_desc(entry, txdesc);
1170 * Dump beacon to userspace through debugfs.
1172 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1175 * USB devices cannot blindly pass the skb->len as the
1176 * length of the data to usb_fill_bulk_urb. Pass the skb
1177 * to the driver to determine what the length should be.
1179 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1181 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1182 entry->skb->data, length, rt2500usb_beacondone,
1183 entry);
1186 * Second we need to create the guardian byte.
1187 * We only need a single byte, so lets recycle
1188 * the 'flags' field we are not using for beacons.
1190 bcn_priv->guardian_data = 0;
1191 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1192 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1193 entry);
1196 * Send out the guardian byte.
1198 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1201 * Enable beaconing again.
1203 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1204 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1205 reg0 = reg;
1206 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1208 * Beacon generation will fail initially.
1209 * To prevent this we need to change the TXRX_CSR19
1210 * register several times (reg0 is the same as reg
1211 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1212 * and 1 in reg).
1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1216 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1217 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1218 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1221 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1223 int length;
1226 * The length _must_ be a multiple of 2,
1227 * but it must _not_ be a multiple of the USB packet size.
1229 length = roundup(entry->skb->len, 2);
1230 length += (2 * !(length % entry->queue->usb_maxpacket));
1232 return length;
1236 * RX control handlers
1238 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1239 struct rxdone_entry_desc *rxdesc)
1241 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1242 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1243 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1244 __le32 *rxd =
1245 (__le32 *)(entry->skb->data +
1246 (entry_priv->urb->actual_length -
1247 entry->queue->desc_size));
1248 u32 word0;
1249 u32 word1;
1252 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1253 * frame data in rt2x00usb.
1255 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1256 rxd = (__le32 *)skbdesc->desc;
1259 * It is now safe to read the descriptor on all architectures.
1261 rt2x00_desc_read(rxd, 0, &word0);
1262 rt2x00_desc_read(rxd, 1, &word1);
1264 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1265 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1266 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1267 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1269 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1270 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1271 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1273 if (rxdesc->cipher != CIPHER_NONE) {
1274 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1275 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1276 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1278 /* ICV is located at the end of frame */
1280 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1281 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1282 rxdesc->flags |= RX_FLAG_DECRYPTED;
1283 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1284 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1288 * Obtain the status about this packet.
1289 * When frame was received with an OFDM bitrate,
1290 * the signal is the PLCP value. If it was received with
1291 * a CCK bitrate the signal is the rate in 100kbit/s.
1293 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1294 rxdesc->rssi =
1295 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1296 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1298 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1299 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1300 else
1301 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1302 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1303 rxdesc->dev_flags |= RXDONE_MY_BSS;
1306 * Adjust the skb memory window to the frame boundaries.
1308 skb_trim(entry->skb, rxdesc->size);
1312 * Interrupt functions.
1314 static void rt2500usb_beacondone(struct urb *urb)
1316 struct queue_entry *entry = (struct queue_entry *)urb->context;
1317 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1319 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1320 return;
1323 * Check if this was the guardian beacon,
1324 * if that was the case we need to send the real beacon now.
1325 * Otherwise we should free the sk_buffer, the device
1326 * should be doing the rest of the work now.
1328 if (bcn_priv->guardian_urb == urb) {
1329 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1330 } else if (bcn_priv->urb == urb) {
1331 dev_kfree_skb(entry->skb);
1332 entry->skb = NULL;
1337 * Device probe functions.
1339 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1341 u16 word;
1342 u8 *mac;
1343 u8 bbp;
1345 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1348 * Start validation of the data that has been read.
1350 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1351 if (!is_valid_ether_addr(mac)) {
1352 eth_random_addr(mac);
1353 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1356 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1357 if (word == 0xffff) {
1358 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1359 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1360 ANTENNA_SW_DIVERSITY);
1361 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1362 ANTENNA_SW_DIVERSITY);
1363 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1364 LED_MODE_DEFAULT);
1365 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1366 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1367 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1368 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1369 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1372 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1373 if (word == 0xffff) {
1374 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1375 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1376 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1377 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1378 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1381 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1382 if (word == 0xffff) {
1383 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1384 DEFAULT_RSSI_OFFSET);
1385 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1386 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1387 word);
1390 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1391 if (word == 0xffff) {
1392 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1393 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1394 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1398 * Switch lower vgc bound to current BBP R17 value,
1399 * lower the value a bit for better quality.
1401 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1402 bbp -= 6;
1404 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1405 if (word == 0xffff) {
1406 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1407 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1410 } else {
1411 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1412 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1415 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1416 if (word == 0xffff) {
1417 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1418 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1419 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1420 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1423 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1424 if (word == 0xffff) {
1425 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1426 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1427 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1428 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1431 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1432 if (word == 0xffff) {
1433 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1434 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1435 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1436 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1439 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1440 if (word == 0xffff) {
1441 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1442 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1443 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1444 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1447 return 0;
1450 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1452 u16 reg;
1453 u16 value;
1454 u16 eeprom;
1457 * Read EEPROM word for configuration.
1459 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1462 * Identify RF chipset.
1464 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1465 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1466 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1468 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1469 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1470 return -ENODEV;
1473 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1474 !rt2x00_rf(rt2x00dev, RF2523) &&
1475 !rt2x00_rf(rt2x00dev, RF2524) &&
1476 !rt2x00_rf(rt2x00dev, RF2525) &&
1477 !rt2x00_rf(rt2x00dev, RF2525E) &&
1478 !rt2x00_rf(rt2x00dev, RF5222)) {
1479 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1480 return -ENODEV;
1484 * Identify default antenna configuration.
1486 rt2x00dev->default_ant.tx =
1487 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1488 rt2x00dev->default_ant.rx =
1489 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1492 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1493 * I am not 100% sure about this, but the legacy drivers do not
1494 * indicate antenna swapping in software is required when
1495 * diversity is enabled.
1497 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1498 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1499 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1500 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1503 * Store led mode, for correct led behaviour.
1505 #ifdef CONFIG_RT2X00_LIB_LEDS
1506 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1508 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1509 if (value == LED_MODE_TXRX_ACTIVITY ||
1510 value == LED_MODE_DEFAULT ||
1511 value == LED_MODE_ASUS)
1512 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1513 LED_TYPE_ACTIVITY);
1514 #endif /* CONFIG_RT2X00_LIB_LEDS */
1517 * Detect if this device has an hardware controlled radio.
1519 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1520 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1523 * Read the RSSI <-> dBm offset information.
1525 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1526 rt2x00dev->rssi_offset =
1527 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1529 return 0;
1533 * RF value list for RF2522
1534 * Supports: 2.4 GHz
1536 static const struct rf_channel rf_vals_bg_2522[] = {
1537 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1538 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1539 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1540 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1541 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1542 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1543 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1544 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1545 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1546 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1547 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1548 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1549 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1550 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1554 * RF value list for RF2523
1555 * Supports: 2.4 GHz
1557 static const struct rf_channel rf_vals_bg_2523[] = {
1558 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1559 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1560 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1561 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1562 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1563 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1564 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1565 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1566 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1567 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1568 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1569 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1570 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1571 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1575 * RF value list for RF2524
1576 * Supports: 2.4 GHz
1578 static const struct rf_channel rf_vals_bg_2524[] = {
1579 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1580 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1581 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1582 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1583 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1584 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1585 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1586 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1587 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1588 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1589 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1590 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1591 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1592 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1596 * RF value list for RF2525
1597 * Supports: 2.4 GHz
1599 static const struct rf_channel rf_vals_bg_2525[] = {
1600 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1601 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1602 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1603 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1604 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1605 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1606 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1607 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1608 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1609 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1610 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1611 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1612 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1613 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1617 * RF value list for RF2525e
1618 * Supports: 2.4 GHz
1620 static const struct rf_channel rf_vals_bg_2525e[] = {
1621 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1622 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1623 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1624 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1625 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1626 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1627 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1628 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1629 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1630 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1631 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1632 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1633 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1634 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1638 * RF value list for RF5222
1639 * Supports: 2.4 GHz & 5.2 GHz
1641 static const struct rf_channel rf_vals_5222[] = {
1642 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1643 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1644 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1645 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1646 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1647 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1648 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1649 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1650 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1651 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1652 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1653 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1654 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1655 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1657 /* 802.11 UNI / HyperLan 2 */
1658 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1659 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1660 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1661 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1662 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1663 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1664 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1665 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1667 /* 802.11 HyperLan 2 */
1668 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1669 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1670 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1671 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1672 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1673 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1674 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1675 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1676 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1677 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1679 /* 802.11 UNII */
1680 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1681 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1682 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1683 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1684 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1687 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1689 struct hw_mode_spec *spec = &rt2x00dev->spec;
1690 struct channel_info *info;
1691 char *tx_power;
1692 unsigned int i;
1695 * Initialize all hw fields.
1697 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1698 * capable of sending the buffered frames out after the DTIM
1699 * transmission using rt2x00lib_beacondone. This will send out
1700 * multicast and broadcast traffic immediately instead of buffering it
1701 * infinitly and thus dropping it after some time.
1703 rt2x00dev->hw->flags =
1704 IEEE80211_HW_RX_INCLUDES_FCS |
1705 IEEE80211_HW_SIGNAL_DBM |
1706 IEEE80211_HW_SUPPORTS_PS |
1707 IEEE80211_HW_PS_NULLFUNC_STACK;
1710 * Disable powersaving as default.
1712 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1714 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716 rt2x00_eeprom_addr(rt2x00dev,
1717 EEPROM_MAC_ADDR_0));
1720 * Initialize hw_mode information.
1722 spec->supported_bands = SUPPORT_BAND_2GHZ;
1723 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1725 if (rt2x00_rf(rt2x00dev, RF2522)) {
1726 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727 spec->channels = rf_vals_bg_2522;
1728 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730 spec->channels = rf_vals_bg_2523;
1731 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733 spec->channels = rf_vals_bg_2524;
1734 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736 spec->channels = rf_vals_bg_2525;
1737 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739 spec->channels = rf_vals_bg_2525e;
1740 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743 spec->channels = rf_vals_5222;
1747 * Create channel information array
1749 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750 if (!info)
1751 return -ENOMEM;
1753 spec->channels_info = info;
1755 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756 for (i = 0; i < 14; i++) {
1757 info[i].max_power = MAX_TXPOWER;
1758 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1761 if (spec->num_channels > 14) {
1762 for (i = 14; i < spec->num_channels; i++) {
1763 info[i].max_power = MAX_TXPOWER;
1764 info[i].default_power1 = DEFAULT_TXPOWER;
1768 return 0;
1771 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1773 int retval;
1774 u16 reg;
1777 * Allocate eeprom data.
1779 retval = rt2500usb_validate_eeprom(rt2x00dev);
1780 if (retval)
1781 return retval;
1783 retval = rt2500usb_init_eeprom(rt2x00dev);
1784 if (retval)
1785 return retval;
1788 * Enable rfkill polling by setting GPIO direction of the
1789 * rfkill switch GPIO pin correctly.
1791 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792 rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1796 * Initialize hw specifications.
1798 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799 if (retval)
1800 return retval;
1803 * This device requires the atim queue
1805 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807 if (!modparam_nohwcrypt) {
1808 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1811 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1815 * Set the rssi offset.
1817 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1819 return 0;
1822 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823 .tx = rt2x00mac_tx,
1824 .start = rt2x00mac_start,
1825 .stop = rt2x00mac_stop,
1826 .add_interface = rt2x00mac_add_interface,
1827 .remove_interface = rt2x00mac_remove_interface,
1828 .config = rt2x00mac_config,
1829 .configure_filter = rt2x00mac_configure_filter,
1830 .set_tim = rt2x00mac_set_tim,
1831 .set_key = rt2x00mac_set_key,
1832 .sw_scan_start = rt2x00mac_sw_scan_start,
1833 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1834 .get_stats = rt2x00mac_get_stats,
1835 .bss_info_changed = rt2x00mac_bss_info_changed,
1836 .conf_tx = rt2x00mac_conf_tx,
1837 .rfkill_poll = rt2x00mac_rfkill_poll,
1838 .flush = rt2x00mac_flush,
1839 .set_antenna = rt2x00mac_set_antenna,
1840 .get_antenna = rt2x00mac_get_antenna,
1841 .get_ringparam = rt2x00mac_get_ringparam,
1842 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1845 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846 .probe_hw = rt2500usb_probe_hw,
1847 .initialize = rt2x00usb_initialize,
1848 .uninitialize = rt2x00usb_uninitialize,
1849 .clear_entry = rt2x00usb_clear_entry,
1850 .set_device_state = rt2500usb_set_device_state,
1851 .rfkill_poll = rt2500usb_rfkill_poll,
1852 .link_stats = rt2500usb_link_stats,
1853 .reset_tuner = rt2500usb_reset_tuner,
1854 .watchdog = rt2x00usb_watchdog,
1855 .start_queue = rt2500usb_start_queue,
1856 .kick_queue = rt2x00usb_kick_queue,
1857 .stop_queue = rt2500usb_stop_queue,
1858 .flush_queue = rt2x00usb_flush_queue,
1859 .write_tx_desc = rt2500usb_write_tx_desc,
1860 .write_beacon = rt2500usb_write_beacon,
1861 .get_tx_data_len = rt2500usb_get_tx_data_len,
1862 .fill_rxdone = rt2500usb_fill_rxdone,
1863 .config_shared_key = rt2500usb_config_key,
1864 .config_pairwise_key = rt2500usb_config_key,
1865 .config_filter = rt2500usb_config_filter,
1866 .config_intf = rt2500usb_config_intf,
1867 .config_erp = rt2500usb_config_erp,
1868 .config_ant = rt2500usb_config_ant,
1869 .config = rt2500usb_config,
1872 static void rt2500usb_queue_init(struct data_queue *queue)
1874 switch (queue->qid) {
1875 case QID_RX:
1876 queue->limit = 32;
1877 queue->data_size = DATA_FRAME_SIZE;
1878 queue->desc_size = RXD_DESC_SIZE;
1879 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880 break;
1882 case QID_AC_VO:
1883 case QID_AC_VI:
1884 case QID_AC_BE:
1885 case QID_AC_BK:
1886 queue->limit = 32;
1887 queue->data_size = DATA_FRAME_SIZE;
1888 queue->desc_size = TXD_DESC_SIZE;
1889 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890 break;
1892 case QID_BEACON:
1893 queue->limit = 1;
1894 queue->data_size = MGMT_FRAME_SIZE;
1895 queue->desc_size = TXD_DESC_SIZE;
1896 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897 break;
1899 case QID_ATIM:
1900 queue->limit = 8;
1901 queue->data_size = DATA_FRAME_SIZE;
1902 queue->desc_size = TXD_DESC_SIZE;
1903 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904 break;
1906 default:
1907 BUG();
1908 break;
1912 static const struct rt2x00_ops rt2500usb_ops = {
1913 .name = KBUILD_MODNAME,
1914 .max_ap_intf = 1,
1915 .eeprom_size = EEPROM_SIZE,
1916 .rf_size = RF_SIZE,
1917 .tx_queues = NUM_TX_QUEUES,
1918 .queue_init = rt2500usb_queue_init,
1919 .lib = &rt2500usb_rt2x00_ops,
1920 .hw = &rt2500usb_mac80211_ops,
1921 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922 .debugfs = &rt2500usb_rt2x00debug,
1923 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1927 * rt2500usb module information.
1929 static struct usb_device_id rt2500usb_device_table[] = {
1930 /* ASUS */
1931 { USB_DEVICE(0x0b05, 0x1706) },
1932 { USB_DEVICE(0x0b05, 0x1707) },
1933 /* Belkin */
1934 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1935 { USB_DEVICE(0x050d, 0x7051) },
1936 /* Cisco Systems */
1937 { USB_DEVICE(0x13b1, 0x000d) },
1938 { USB_DEVICE(0x13b1, 0x0011) },
1939 { USB_DEVICE(0x13b1, 0x001a) },
1940 /* Conceptronic */
1941 { USB_DEVICE(0x14b2, 0x3c02) },
1942 /* D-LINK */
1943 { USB_DEVICE(0x2001, 0x3c00) },
1944 /* Gigabyte */
1945 { USB_DEVICE(0x1044, 0x8001) },
1946 { USB_DEVICE(0x1044, 0x8007) },
1947 /* Hercules */
1948 { USB_DEVICE(0x06f8, 0xe000) },
1949 /* Melco */
1950 { USB_DEVICE(0x0411, 0x005e) },
1951 { USB_DEVICE(0x0411, 0x0066) },
1952 { USB_DEVICE(0x0411, 0x0067) },
1953 { USB_DEVICE(0x0411, 0x008b) },
1954 { USB_DEVICE(0x0411, 0x0097) },
1955 /* MSI */
1956 { USB_DEVICE(0x0db0, 0x6861) },
1957 { USB_DEVICE(0x0db0, 0x6865) },
1958 { USB_DEVICE(0x0db0, 0x6869) },
1959 /* Ralink */
1960 { USB_DEVICE(0x148f, 0x1706) },
1961 { USB_DEVICE(0x148f, 0x2570) },
1962 { USB_DEVICE(0x148f, 0x9020) },
1963 /* Sagem */
1964 { USB_DEVICE(0x079b, 0x004b) },
1965 /* Siemens */
1966 { USB_DEVICE(0x0681, 0x3c06) },
1967 /* SMC */
1968 { USB_DEVICE(0x0707, 0xee13) },
1969 /* Spairon */
1970 { USB_DEVICE(0x114b, 0x0110) },
1971 /* SURECOM */
1972 { USB_DEVICE(0x0769, 0x11f3) },
1973 /* Trust */
1974 { USB_DEVICE(0x0eb0, 0x9020) },
1975 /* VTech */
1976 { USB_DEVICE(0x0f88, 0x3012) },
1977 /* Zinwell */
1978 { USB_DEVICE(0x5a57, 0x0260) },
1979 { 0, }
1982 MODULE_AUTHOR(DRV_PROJECT);
1983 MODULE_VERSION(DRV_VERSION);
1984 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987 MODULE_LICENSE("GPL");
1989 static int rt2500usb_probe(struct usb_interface *usb_intf,
1990 const struct usb_device_id *id)
1992 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1995 static struct usb_driver rt2500usb_driver = {
1996 .name = KBUILD_MODNAME,
1997 .id_table = rt2500usb_device_table,
1998 .probe = rt2500usb_probe,
1999 .disconnect = rt2x00usb_disconnect,
2000 .suspend = rt2x00usb_suspend,
2001 .resume = rt2x00usb_resume,
2002 .reset_resume = rt2x00usb_resume,
2003 .disable_hub_initiated_lpm = 1,
2006 module_usb_driver(rt2500usb_driver);