PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
blob2bde6729f5e61e4923c472bade9da057e850b0e0
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 Module: rt2x00lib
22 Abstract: rt2x00 generic device routines.
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
34 * Utility functions.
36 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
37 struct ieee80211_vif *vif)
40 * When in STA mode, bssidx is always 0 otherwise local_address[5]
41 * contains the bss number, see BSS_ID_MASK comments for details.
43 if (rt2x00dev->intf_sta_count)
44 return 0;
45 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50 * Radio control handlers.
52 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
54 int status;
57 * Don't enable the radio twice.
58 * And check if the hardware button has been disabled.
60 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
61 return 0;
64 * Initialize all data queues.
66 rt2x00queue_init_queues(rt2x00dev);
69 * Enable radio.
71 status =
72 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
73 if (status)
74 return status;
76 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
78 rt2x00leds_led_radio(rt2x00dev, true);
79 rt2x00led_led_activity(rt2x00dev, true);
81 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84 * Enable queues.
86 rt2x00queue_start_queues(rt2x00dev);
87 rt2x00link_start_tuner(rt2x00dev);
88 rt2x00link_start_agc(rt2x00dev);
89 if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
90 rt2x00link_start_vcocal(rt2x00dev);
93 * Start watchdog monitoring.
95 rt2x00link_start_watchdog(rt2x00dev);
97 return 0;
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103 return;
106 * Stop watchdog monitoring.
108 rt2x00link_stop_watchdog(rt2x00dev);
111 * Stop all queues
113 rt2x00link_stop_agc(rt2x00dev);
114 if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
115 rt2x00link_stop_vcocal(rt2x00dev);
116 rt2x00link_stop_tuner(rt2x00dev);
117 rt2x00queue_stop_queues(rt2x00dev);
118 rt2x00queue_flush_queues(rt2x00dev, true);
121 * Disable radio.
123 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
124 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
125 rt2x00led_led_activity(rt2x00dev, false);
126 rt2x00leds_led_radio(rt2x00dev, false);
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130 struct ieee80211_vif *vif)
132 struct rt2x00_dev *rt2x00dev = data;
133 struct rt2x00_intf *intf = vif_to_intf(vif);
136 * It is possible the radio was disabled while the work had been
137 * scheduled. If that happens we should return here immediately,
138 * note that in the spinlock protected area above the delayed_flags
139 * have been cleared correctly.
141 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
142 return;
144 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
145 rt2x00queue_update_beacon(rt2x00dev, vif);
148 static void rt2x00lib_intf_scheduled(struct work_struct *work)
150 struct rt2x00_dev *rt2x00dev =
151 container_of(work, struct rt2x00_dev, intf_work);
154 * Iterate over each interface and perform the
155 * requested configurations.
157 ieee80211_iterate_active_interfaces(rt2x00dev->hw,
158 IEEE80211_IFACE_ITER_RESUME_ALL,
159 rt2x00lib_intf_scheduled_iter,
160 rt2x00dev);
163 static void rt2x00lib_autowakeup(struct work_struct *work)
165 struct rt2x00_dev *rt2x00dev =
166 container_of(work, struct rt2x00_dev, autowakeup_work.work);
168 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
169 return;
171 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
172 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
173 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
177 * Interrupt context handlers.
179 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
180 struct ieee80211_vif *vif)
182 struct ieee80211_tx_control control = {};
183 struct rt2x00_dev *rt2x00dev = data;
184 struct sk_buff *skb;
187 * Only AP mode interfaces do broad- and multicast buffering
189 if (vif->type != NL80211_IFTYPE_AP)
190 return;
193 * Send out buffered broad- and multicast frames
195 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
196 while (skb) {
197 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
202 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
203 struct ieee80211_vif *vif)
205 struct rt2x00_dev *rt2x00dev = data;
207 if (vif->type != NL80211_IFTYPE_AP &&
208 vif->type != NL80211_IFTYPE_ADHOC &&
209 vif->type != NL80211_IFTYPE_MESH_POINT &&
210 vif->type != NL80211_IFTYPE_WDS)
211 return;
214 * Update the beacon without locking. This is safe on PCI devices
215 * as they only update the beacon periodically here. This should
216 * never be called for USB devices.
218 WARN_ON(rt2x00_is_usb(rt2x00dev));
219 rt2x00queue_update_beacon_locked(rt2x00dev, vif);
222 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
224 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
225 return;
227 /* send buffered bc/mc frames out for every bssid */
228 ieee80211_iterate_active_interfaces_atomic(
229 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230 rt2x00lib_bc_buffer_iter, rt2x00dev);
232 * Devices with pre tbtt interrupt don't need to update the beacon
233 * here as they will fetch the next beacon directly prior to
234 * transmission.
236 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
237 return;
239 /* fetch next beacon */
240 ieee80211_iterate_active_interfaces_atomic(
241 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242 rt2x00lib_beaconupdate_iter, rt2x00dev);
244 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
246 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
248 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
249 return;
251 /* fetch next beacon */
252 ieee80211_iterate_active_interfaces_atomic(
253 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
254 rt2x00lib_beaconupdate_iter, rt2x00dev);
256 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
258 void rt2x00lib_dmastart(struct queue_entry *entry)
260 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
261 rt2x00queue_index_inc(entry, Q_INDEX);
263 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
265 void rt2x00lib_dmadone(struct queue_entry *entry)
267 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
268 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
269 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
271 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
273 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
275 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
276 struct ieee80211_bar *bar = (void *) entry->skb->data;
277 struct rt2x00_bar_list_entry *bar_entry;
278 int ret;
280 if (likely(!ieee80211_is_back_req(bar->frame_control)))
281 return 0;
284 * Unlike all other frames, the status report for BARs does
285 * not directly come from the hardware as it is incapable of
286 * matching a BA to a previously send BAR. The hardware will
287 * report all BARs as if they weren't acked at all.
289 * Instead the RX-path will scan for incoming BAs and set the
290 * block_acked flag if it sees one that was likely caused by
291 * a BAR from us.
293 * Remove remaining BARs here and return their status for
294 * TX done processing.
296 ret = 0;
297 rcu_read_lock();
298 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
299 if (bar_entry->entry != entry)
300 continue;
302 spin_lock_bh(&rt2x00dev->bar_list_lock);
303 /* Return whether this BAR was blockacked or not */
304 ret = bar_entry->block_acked;
305 /* Remove the BAR from our checklist */
306 list_del_rcu(&bar_entry->list);
307 spin_unlock_bh(&rt2x00dev->bar_list_lock);
308 kfree_rcu(bar_entry, head);
310 break;
312 rcu_read_unlock();
314 return ret;
317 void rt2x00lib_txdone(struct queue_entry *entry,
318 struct txdone_entry_desc *txdesc)
320 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
321 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
322 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
323 unsigned int header_length, i;
324 u8 rate_idx, rate_flags, retry_rates;
325 u8 skbdesc_flags = skbdesc->flags;
326 bool success;
329 * Unmap the skb.
331 rt2x00queue_unmap_skb(entry);
334 * Remove the extra tx headroom from the skb.
336 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
339 * Signal that the TX descriptor is no longer in the skb.
341 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
344 * Determine the length of 802.11 header.
346 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
349 * Remove L2 padding which was added during
351 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
352 rt2x00queue_remove_l2pad(entry->skb, header_length);
355 * If the IV/EIV data was stripped from the frame before it was
356 * passed to the hardware, we should now reinsert it again because
357 * mac80211 will expect the same data to be present it the
358 * frame as it was passed to us.
360 if (rt2x00_has_cap_hw_crypto(rt2x00dev))
361 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
364 * Send frame to debugfs immediately, after this call is completed
365 * we are going to overwrite the skb->cb array.
367 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
370 * Determine if the frame has been successfully transmitted and
371 * remove BARs from our check list while checking for their
372 * TX status.
374 success =
375 rt2x00lib_txdone_bar_status(entry) ||
376 test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
377 test_bit(TXDONE_UNKNOWN, &txdesc->flags);
380 * Update TX statistics.
382 rt2x00dev->link.qual.tx_success += success;
383 rt2x00dev->link.qual.tx_failed += !success;
385 rate_idx = skbdesc->tx_rate_idx;
386 rate_flags = skbdesc->tx_rate_flags;
387 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
388 (txdesc->retry + 1) : 1;
391 * Initialize TX status
393 memset(&tx_info->status, 0, sizeof(tx_info->status));
394 tx_info->status.ack_signal = 0;
397 * Frame was send with retries, hardware tried
398 * different rates to send out the frame, at each
399 * retry it lowered the rate 1 step except when the
400 * lowest rate was used.
402 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
403 tx_info->status.rates[i].idx = rate_idx - i;
404 tx_info->status.rates[i].flags = rate_flags;
406 if (rate_idx - i == 0) {
408 * The lowest rate (index 0) was used until the
409 * number of max retries was reached.
411 tx_info->status.rates[i].count = retry_rates - i;
412 i++;
413 break;
415 tx_info->status.rates[i].count = 1;
417 if (i < (IEEE80211_TX_MAX_RATES - 1))
418 tx_info->status.rates[i].idx = -1; /* terminate */
420 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
421 if (success)
422 tx_info->flags |= IEEE80211_TX_STAT_ACK;
423 else
424 rt2x00dev->low_level_stats.dot11ACKFailureCount++;
428 * Every single frame has it's own tx status, hence report
429 * every frame as ampdu of size 1.
431 * TODO: if we can find out how many frames were aggregated
432 * by the hw we could provide the real ampdu_len to mac80211
433 * which would allow the rc algorithm to better decide on
434 * which rates are suitable.
436 if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
437 tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
438 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
439 tx_info->status.ampdu_len = 1;
440 tx_info->status.ampdu_ack_len = success ? 1 : 0;
442 if (!success)
443 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
446 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
447 if (success)
448 rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
449 else
450 rt2x00dev->low_level_stats.dot11RTSFailureCount++;
454 * Only send the status report to mac80211 when it's a frame
455 * that originated in mac80211. If this was a extra frame coming
456 * through a mac80211 library call (RTS/CTS) then we should not
457 * send the status report back.
459 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
460 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
461 ieee80211_tx_status(rt2x00dev->hw, entry->skb);
462 else
463 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
464 } else
465 dev_kfree_skb_any(entry->skb);
468 * Make this entry available for reuse.
470 entry->skb = NULL;
471 entry->flags = 0;
473 rt2x00dev->ops->lib->clear_entry(entry);
475 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
478 * If the data queue was below the threshold before the txdone
479 * handler we must make sure the packet queue in the mac80211 stack
480 * is reenabled when the txdone handler has finished. This has to be
481 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
482 * before it was stopped.
484 spin_lock_bh(&entry->queue->tx_lock);
485 if (!rt2x00queue_threshold(entry->queue))
486 rt2x00queue_unpause_queue(entry->queue);
487 spin_unlock_bh(&entry->queue->tx_lock);
489 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
491 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
493 struct txdone_entry_desc txdesc;
495 txdesc.flags = 0;
496 __set_bit(status, &txdesc.flags);
497 txdesc.retry = 0;
499 rt2x00lib_txdone(entry, &txdesc);
501 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
503 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
505 struct ieee80211_mgmt *mgmt = (void *)data;
506 u8 *pos, *end;
508 pos = (u8 *)mgmt->u.beacon.variable;
509 end = data + len;
510 while (pos < end) {
511 if (pos + 2 + pos[1] > end)
512 return NULL;
514 if (pos[0] == ie)
515 return pos;
517 pos += 2 + pos[1];
520 return NULL;
523 static void rt2x00lib_sleep(struct work_struct *work)
525 struct rt2x00_dev *rt2x00dev =
526 container_of(work, struct rt2x00_dev, sleep_work);
528 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
529 return;
532 * Check again is powersaving is enabled, to prevent races from delayed
533 * work execution.
535 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
537 IEEE80211_CONF_CHANGE_PS);
540 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
541 struct sk_buff *skb,
542 struct rxdone_entry_desc *rxdesc)
544 struct rt2x00_bar_list_entry *entry;
545 struct ieee80211_bar *ba = (void *)skb->data;
547 if (likely(!ieee80211_is_back(ba->frame_control)))
548 return;
550 if (rxdesc->size < sizeof(*ba) + FCS_LEN)
551 return;
553 rcu_read_lock();
554 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
556 if (ba->start_seq_num != entry->start_seq_num)
557 continue;
559 #define TID_CHECK(a, b) ( \
560 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \
561 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \
563 if (!TID_CHECK(ba->control, entry->control))
564 continue;
566 #undef TID_CHECK
568 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
569 continue;
571 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
572 continue;
574 /* Mark BAR since we received the according BA */
575 spin_lock_bh(&rt2x00dev->bar_list_lock);
576 entry->block_acked = 1;
577 spin_unlock_bh(&rt2x00dev->bar_list_lock);
578 break;
580 rcu_read_unlock();
584 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
585 struct sk_buff *skb,
586 struct rxdone_entry_desc *rxdesc)
588 struct ieee80211_hdr *hdr = (void *) skb->data;
589 struct ieee80211_tim_ie *tim_ie;
590 u8 *tim;
591 u8 tim_len;
592 bool cam;
594 /* If this is not a beacon, or if mac80211 has no powersaving
595 * configured, or if the device is already in powersaving mode
596 * we can exit now. */
597 if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
598 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
599 return;
601 /* min. beacon length + FCS_LEN */
602 if (skb->len <= 40 + FCS_LEN)
603 return;
605 /* and only beacons from the associated BSSID, please */
606 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
607 !rt2x00dev->aid)
608 return;
610 rt2x00dev->last_beacon = jiffies;
612 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
613 if (!tim)
614 return;
616 if (tim[1] < sizeof(*tim_ie))
617 return;
619 tim_len = tim[1];
620 tim_ie = (struct ieee80211_tim_ie *) &tim[2];
622 /* Check whenever the PHY can be turned off again. */
624 /* 1. What about buffered unicast traffic for our AID? */
625 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
627 /* 2. Maybe the AP wants to send multicast/broadcast data? */
628 cam |= (tim_ie->bitmap_ctrl & 0x01);
630 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
631 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
634 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
635 struct rxdone_entry_desc *rxdesc)
637 struct ieee80211_supported_band *sband;
638 const struct rt2x00_rate *rate;
639 unsigned int i;
640 int signal = rxdesc->signal;
641 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
643 switch (rxdesc->rate_mode) {
644 case RATE_MODE_CCK:
645 case RATE_MODE_OFDM:
647 * For non-HT rates the MCS value needs to contain the
648 * actually used rate modulation (CCK or OFDM).
650 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
651 signal = RATE_MCS(rxdesc->rate_mode, signal);
653 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
654 for (i = 0; i < sband->n_bitrates; i++) {
655 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
656 if (((type == RXDONE_SIGNAL_PLCP) &&
657 (rate->plcp == signal)) ||
658 ((type == RXDONE_SIGNAL_BITRATE) &&
659 (rate->bitrate == signal)) ||
660 ((type == RXDONE_SIGNAL_MCS) &&
661 (rate->mcs == signal))) {
662 return i;
665 break;
666 case RATE_MODE_HT_MIX:
667 case RATE_MODE_HT_GREENFIELD:
668 if (signal >= 0 && signal <= 76)
669 return signal;
670 break;
671 default:
672 break;
675 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
676 rxdesc->rate_mode, signal, type);
677 return 0;
680 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
682 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
683 struct rxdone_entry_desc rxdesc;
684 struct sk_buff *skb;
685 struct ieee80211_rx_status *rx_status;
686 unsigned int header_length;
687 int rate_idx;
689 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
690 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
691 goto submit_entry;
693 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
694 goto submit_entry;
697 * Allocate a new sk_buffer. If no new buffer available, drop the
698 * received frame and reuse the existing buffer.
700 skb = rt2x00queue_alloc_rxskb(entry, gfp);
701 if (!skb)
702 goto submit_entry;
705 * Unmap the skb.
707 rt2x00queue_unmap_skb(entry);
710 * Extract the RXD details.
712 memset(&rxdesc, 0, sizeof(rxdesc));
713 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
716 * Check for valid size in case we get corrupted descriptor from
717 * hardware.
719 if (unlikely(rxdesc.size == 0 ||
720 rxdesc.size > entry->queue->data_size)) {
721 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
722 rxdesc.size, entry->queue->data_size);
723 dev_kfree_skb(entry->skb);
724 goto renew_skb;
728 * The data behind the ieee80211 header must be
729 * aligned on a 4 byte boundary.
731 header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
734 * Hardware might have stripped the IV/EIV/ICV data,
735 * in that case it is possible that the data was
736 * provided separately (through hardware descriptor)
737 * in which case we should reinsert the data into the frame.
739 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
740 (rxdesc.flags & RX_FLAG_IV_STRIPPED))
741 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
742 &rxdesc);
743 else if (header_length &&
744 (rxdesc.size > header_length) &&
745 (rxdesc.dev_flags & RXDONE_L2PAD))
746 rt2x00queue_remove_l2pad(entry->skb, header_length);
748 /* Trim buffer to correct size */
749 skb_trim(entry->skb, rxdesc.size);
752 * Translate the signal to the correct bitrate index.
754 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
755 if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
756 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
757 rxdesc.flags |= RX_FLAG_HT;
760 * Check if this is a beacon, and more frames have been
761 * buffered while we were in powersaving mode.
763 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
766 * Check for incoming BlockAcks to match to the BlockAckReqs
767 * we've send out.
769 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
772 * Update extra components
774 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
775 rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
776 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
779 * Initialize RX status information, and send frame
780 * to mac80211.
782 rx_status = IEEE80211_SKB_RXCB(entry->skb);
784 /* Ensure that all fields of rx_status are initialized
785 * properly. The skb->cb array was used for driver
786 * specific informations, so rx_status might contain
787 * garbage.
789 memset(rx_status, 0, sizeof(*rx_status));
791 rx_status->mactime = rxdesc.timestamp;
792 rx_status->band = rt2x00dev->curr_band;
793 rx_status->freq = rt2x00dev->curr_freq;
794 rx_status->rate_idx = rate_idx;
795 rx_status->signal = rxdesc.rssi;
796 rx_status->flag = rxdesc.flags;
797 rx_status->antenna = rt2x00dev->link.ant.active.rx;
799 ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
801 renew_skb:
803 * Replace the skb with the freshly allocated one.
805 entry->skb = skb;
807 submit_entry:
808 entry->flags = 0;
809 rt2x00queue_index_inc(entry, Q_INDEX_DONE);
810 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
811 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
812 rt2x00dev->ops->lib->clear_entry(entry);
814 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
817 * Driver initialization handlers.
819 const struct rt2x00_rate rt2x00_supported_rates[12] = {
821 .flags = DEV_RATE_CCK,
822 .bitrate = 10,
823 .ratemask = BIT(0),
824 .plcp = 0x00,
825 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
828 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
829 .bitrate = 20,
830 .ratemask = BIT(1),
831 .plcp = 0x01,
832 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
835 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
836 .bitrate = 55,
837 .ratemask = BIT(2),
838 .plcp = 0x02,
839 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
842 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
843 .bitrate = 110,
844 .ratemask = BIT(3),
845 .plcp = 0x03,
846 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
849 .flags = DEV_RATE_OFDM,
850 .bitrate = 60,
851 .ratemask = BIT(4),
852 .plcp = 0x0b,
853 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
856 .flags = DEV_RATE_OFDM,
857 .bitrate = 90,
858 .ratemask = BIT(5),
859 .plcp = 0x0f,
860 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
863 .flags = DEV_RATE_OFDM,
864 .bitrate = 120,
865 .ratemask = BIT(6),
866 .plcp = 0x0a,
867 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
870 .flags = DEV_RATE_OFDM,
871 .bitrate = 180,
872 .ratemask = BIT(7),
873 .plcp = 0x0e,
874 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
877 .flags = DEV_RATE_OFDM,
878 .bitrate = 240,
879 .ratemask = BIT(8),
880 .plcp = 0x09,
881 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
884 .flags = DEV_RATE_OFDM,
885 .bitrate = 360,
886 .ratemask = BIT(9),
887 .plcp = 0x0d,
888 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
891 .flags = DEV_RATE_OFDM,
892 .bitrate = 480,
893 .ratemask = BIT(10),
894 .plcp = 0x08,
895 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
898 .flags = DEV_RATE_OFDM,
899 .bitrate = 540,
900 .ratemask = BIT(11),
901 .plcp = 0x0c,
902 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
906 static void rt2x00lib_channel(struct ieee80211_channel *entry,
907 const int channel, const int tx_power,
908 const int value)
910 /* XXX: this assumption about the band is wrong for 802.11j */
911 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
912 entry->center_freq = ieee80211_channel_to_frequency(channel,
913 entry->band);
914 entry->hw_value = value;
915 entry->max_power = tx_power;
916 entry->max_antenna_gain = 0xff;
919 static void rt2x00lib_rate(struct ieee80211_rate *entry,
920 const u16 index, const struct rt2x00_rate *rate)
922 entry->flags = 0;
923 entry->bitrate = rate->bitrate;
924 entry->hw_value = index;
925 entry->hw_value_short = index;
927 if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
928 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
931 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
932 struct hw_mode_spec *spec)
934 struct ieee80211_hw *hw = rt2x00dev->hw;
935 struct ieee80211_channel *channels;
936 struct ieee80211_rate *rates;
937 unsigned int num_rates;
938 unsigned int i;
940 num_rates = 0;
941 if (spec->supported_rates & SUPPORT_RATE_CCK)
942 num_rates += 4;
943 if (spec->supported_rates & SUPPORT_RATE_OFDM)
944 num_rates += 8;
946 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
947 if (!channels)
948 return -ENOMEM;
950 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
951 if (!rates)
952 goto exit_free_channels;
955 * Initialize Rate list.
957 for (i = 0; i < num_rates; i++)
958 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
961 * Initialize Channel list.
963 for (i = 0; i < spec->num_channels; i++) {
964 rt2x00lib_channel(&channels[i],
965 spec->channels[i].channel,
966 spec->channels_info[i].max_power, i);
970 * Intitialize 802.11b, 802.11g
971 * Rates: CCK, OFDM.
972 * Channels: 2.4 GHz
974 if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
975 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
976 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
979 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
980 &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
981 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
982 &spec->ht, sizeof(spec->ht));
986 * Intitialize 802.11a
987 * Rates: OFDM.
988 * Channels: OFDM, UNII, HiperLAN2.
990 if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
991 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
992 spec->num_channels - 14;
993 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
994 num_rates - 4;
995 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
996 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
997 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
998 &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
999 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1000 &spec->ht, sizeof(spec->ht));
1003 return 0;
1005 exit_free_channels:
1006 kfree(channels);
1007 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1008 return -ENOMEM;
1011 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1013 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1014 ieee80211_unregister_hw(rt2x00dev->hw);
1016 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1017 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1018 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1019 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1020 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1023 kfree(rt2x00dev->spec.channels_info);
1026 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1028 struct hw_mode_spec *spec = &rt2x00dev->spec;
1029 int status;
1031 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1032 return 0;
1035 * Initialize HW modes.
1037 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1038 if (status)
1039 return status;
1042 * Initialize HW fields.
1044 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1047 * Initialize extra TX headroom required.
1049 rt2x00dev->hw->extra_tx_headroom =
1050 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1051 rt2x00dev->extra_tx_headroom);
1054 * Take TX headroom required for alignment into account.
1056 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1057 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1058 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1059 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1062 * Tell mac80211 about the size of our private STA structure.
1064 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1067 * Allocate tx status FIFO for driver use.
1069 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1071 * Allocate the txstatus fifo. In the worst case the tx
1072 * status fifo has to hold the tx status of all entries
1073 * in all tx queues. Hence, calculate the kfifo size as
1074 * tx_queues * entry_num and round up to the nearest
1075 * power of 2.
1077 int kfifo_size =
1078 roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1079 rt2x00dev->tx->limit *
1080 sizeof(u32));
1082 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1083 GFP_KERNEL);
1084 if (status)
1085 return status;
1089 * Initialize tasklets if used by the driver. Tasklets are
1090 * disabled until the interrupts are turned on. The driver
1091 * has to handle that.
1093 #define RT2X00_TASKLET_INIT(taskletname) \
1094 if (rt2x00dev->ops->lib->taskletname) { \
1095 tasklet_init(&rt2x00dev->taskletname, \
1096 rt2x00dev->ops->lib->taskletname, \
1097 (unsigned long)rt2x00dev); \
1100 RT2X00_TASKLET_INIT(txstatus_tasklet);
1101 RT2X00_TASKLET_INIT(pretbtt_tasklet);
1102 RT2X00_TASKLET_INIT(tbtt_tasklet);
1103 RT2X00_TASKLET_INIT(rxdone_tasklet);
1104 RT2X00_TASKLET_INIT(autowake_tasklet);
1106 #undef RT2X00_TASKLET_INIT
1109 * Register HW.
1111 status = ieee80211_register_hw(rt2x00dev->hw);
1112 if (status)
1113 return status;
1115 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1117 return 0;
1121 * Initialization/uninitialization handlers.
1123 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1125 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1126 return;
1129 * Unregister extra components.
1131 rt2x00rfkill_unregister(rt2x00dev);
1134 * Allow the HW to uninitialize.
1136 rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1139 * Free allocated queue entries.
1141 rt2x00queue_uninitialize(rt2x00dev);
1144 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1146 int status;
1148 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1149 return 0;
1152 * Allocate all queue entries.
1154 status = rt2x00queue_initialize(rt2x00dev);
1155 if (status)
1156 return status;
1159 * Initialize the device.
1161 status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1162 if (status) {
1163 rt2x00queue_uninitialize(rt2x00dev);
1164 return status;
1167 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1169 return 0;
1172 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1174 int retval;
1176 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1177 return 0;
1180 * If this is the first interface which is added,
1181 * we should load the firmware now.
1183 retval = rt2x00lib_load_firmware(rt2x00dev);
1184 if (retval)
1185 return retval;
1188 * Initialize the device.
1190 retval = rt2x00lib_initialize(rt2x00dev);
1191 if (retval)
1192 return retval;
1194 rt2x00dev->intf_ap_count = 0;
1195 rt2x00dev->intf_sta_count = 0;
1196 rt2x00dev->intf_associated = 0;
1198 /* Enable the radio */
1199 retval = rt2x00lib_enable_radio(rt2x00dev);
1200 if (retval)
1201 return retval;
1203 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1205 return 0;
1208 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1210 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1211 return;
1214 * Perhaps we can add something smarter here,
1215 * but for now just disabling the radio should do.
1217 rt2x00lib_disable_radio(rt2x00dev);
1219 rt2x00dev->intf_ap_count = 0;
1220 rt2x00dev->intf_sta_count = 0;
1221 rt2x00dev->intf_associated = 0;
1224 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1226 struct ieee80211_iface_limit *if_limit;
1227 struct ieee80211_iface_combination *if_combination;
1229 if (rt2x00dev->ops->max_ap_intf < 2)
1230 return;
1233 * Build up AP interface limits structure.
1235 if_limit = &rt2x00dev->if_limits_ap;
1236 if_limit->max = rt2x00dev->ops->max_ap_intf;
1237 if_limit->types = BIT(NL80211_IFTYPE_AP);
1238 #ifdef CONFIG_MAC80211_MESH
1239 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1240 #endif
1243 * Build up AP interface combinations structure.
1245 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1246 if_combination->limits = if_limit;
1247 if_combination->n_limits = 1;
1248 if_combination->max_interfaces = if_limit->max;
1249 if_combination->num_different_channels = 1;
1252 * Finally, specify the possible combinations to mac80211.
1254 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1255 rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1258 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1260 if (WARN_ON(!rt2x00dev->tx))
1261 return 0;
1263 if (rt2x00_is_usb(rt2x00dev))
1264 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1266 return rt2x00dev->tx[0].winfo_size;
1270 * driver allocation handlers.
1272 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1274 int retval = -ENOMEM;
1277 * Set possible interface combinations.
1279 rt2x00lib_set_if_combinations(rt2x00dev);
1282 * Allocate the driver data memory, if necessary.
1284 if (rt2x00dev->ops->drv_data_size > 0) {
1285 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1286 GFP_KERNEL);
1287 if (!rt2x00dev->drv_data) {
1288 retval = -ENOMEM;
1289 goto exit;
1293 spin_lock_init(&rt2x00dev->irqmask_lock);
1294 mutex_init(&rt2x00dev->csr_mutex);
1295 INIT_LIST_HEAD(&rt2x00dev->bar_list);
1296 spin_lock_init(&rt2x00dev->bar_list_lock);
1298 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1301 * Make room for rt2x00_intf inside the per-interface
1302 * structure ieee80211_vif.
1304 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1307 * rt2x00 devices can only use the last n bits of the MAC address
1308 * for virtual interfaces.
1310 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1311 (rt2x00dev->ops->max_ap_intf - 1);
1314 * Initialize work.
1316 rt2x00dev->workqueue =
1317 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1318 if (!rt2x00dev->workqueue) {
1319 retval = -ENOMEM;
1320 goto exit;
1323 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1324 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1325 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1328 * Let the driver probe the device to detect the capabilities.
1330 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1331 if (retval) {
1332 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1333 goto exit;
1337 * Allocate queue array.
1339 retval = rt2x00queue_allocate(rt2x00dev);
1340 if (retval)
1341 goto exit;
1343 /* Cache TX headroom value */
1344 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1347 * Determine which operating modes are supported, all modes
1348 * which require beaconing, depend on the availability of
1349 * beacon entries.
1351 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1352 if (rt2x00dev->bcn->limit > 0)
1353 rt2x00dev->hw->wiphy->interface_modes |=
1354 BIT(NL80211_IFTYPE_ADHOC) |
1355 BIT(NL80211_IFTYPE_AP) |
1356 #ifdef CONFIG_MAC80211_MESH
1357 BIT(NL80211_IFTYPE_MESH_POINT) |
1358 #endif
1359 BIT(NL80211_IFTYPE_WDS);
1361 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1364 * Initialize ieee80211 structure.
1366 retval = rt2x00lib_probe_hw(rt2x00dev);
1367 if (retval) {
1368 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1369 goto exit;
1373 * Register extra components.
1375 rt2x00link_register(rt2x00dev);
1376 rt2x00leds_register(rt2x00dev);
1377 rt2x00debug_register(rt2x00dev);
1378 rt2x00rfkill_register(rt2x00dev);
1380 return 0;
1382 exit:
1383 rt2x00lib_remove_dev(rt2x00dev);
1385 return retval;
1387 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1389 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1391 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1394 * Disable radio.
1396 rt2x00lib_disable_radio(rt2x00dev);
1399 * Stop all work.
1401 cancel_work_sync(&rt2x00dev->intf_work);
1402 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1403 cancel_work_sync(&rt2x00dev->sleep_work);
1404 if (rt2x00_is_usb(rt2x00dev)) {
1405 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1406 cancel_work_sync(&rt2x00dev->rxdone_work);
1407 cancel_work_sync(&rt2x00dev->txdone_work);
1409 if (rt2x00dev->workqueue)
1410 destroy_workqueue(rt2x00dev->workqueue);
1413 * Free the tx status fifo.
1415 kfifo_free(&rt2x00dev->txstatus_fifo);
1418 * Kill the tx status tasklet.
1420 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1421 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1422 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1423 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1424 tasklet_kill(&rt2x00dev->autowake_tasklet);
1427 * Uninitialize device.
1429 rt2x00lib_uninitialize(rt2x00dev);
1432 * Free extra components
1434 rt2x00debug_deregister(rt2x00dev);
1435 rt2x00leds_unregister(rt2x00dev);
1438 * Free ieee80211_hw memory.
1440 rt2x00lib_remove_hw(rt2x00dev);
1443 * Free firmware image.
1445 rt2x00lib_free_firmware(rt2x00dev);
1448 * Free queue structures.
1450 rt2x00queue_free(rt2x00dev);
1453 * Free the driver data.
1455 if (rt2x00dev->drv_data)
1456 kfree(rt2x00dev->drv_data);
1458 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1461 * Device state handlers
1463 #ifdef CONFIG_PM
1464 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1466 rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1469 * Prevent mac80211 from accessing driver while suspended.
1471 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1472 return 0;
1475 * Cleanup as much as possible.
1477 rt2x00lib_uninitialize(rt2x00dev);
1480 * Suspend/disable extra components.
1482 rt2x00leds_suspend(rt2x00dev);
1483 rt2x00debug_deregister(rt2x00dev);
1486 * Set device mode to sleep for power management,
1487 * on some hardware this call seems to consistently fail.
1488 * From the specifications it is hard to tell why it fails,
1489 * and if this is a "bad thing".
1490 * Overall it is safe to just ignore the failure and
1491 * continue suspending. The only downside is that the
1492 * device will not be in optimal power save mode, but with
1493 * the radio and the other components already disabled the
1494 * device is as good as disabled.
1496 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1497 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1499 return 0;
1501 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1503 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1505 rt2x00_dbg(rt2x00dev, "Waking up\n");
1508 * Restore/enable extra components.
1510 rt2x00debug_register(rt2x00dev);
1511 rt2x00leds_resume(rt2x00dev);
1514 * We are ready again to receive requests from mac80211.
1516 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1518 return 0;
1520 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1521 #endif /* CONFIG_PM */
1524 * rt2x00lib module information.
1526 MODULE_AUTHOR(DRV_PROJECT);
1527 MODULE_VERSION(DRV_VERSION);
1528 MODULE_DESCRIPTION("rt2x00 library");
1529 MODULE_LICENSE("GPL");