PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / net / wireless / rtlwifi / rtl8192de / hw.c
blobc4a7db9135d6e3850dcd8490e5e9165807178b64
1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
30 #include "../wifi.h"
31 #include "../efuse.h"
32 #include "../base.h"
33 #include "../regd.h"
34 #include "../cam.h"
35 #include "../ps.h"
36 #include "../pci.h"
37 #include "reg.h"
38 #include "def.h"
39 #include "phy.h"
40 #include "dm.h"
41 #include "fw.h"
42 #include "led.h"
43 #include "sw.h"
44 #include "hw.h"
46 u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
48 struct rtl_priv *rtlpriv = rtl_priv(hw);
49 u32 value;
51 rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
52 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
53 udelay(10);
54 value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
55 return value;
58 void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
59 u16 offset, u32 value, u8 direct)
61 struct rtl_priv *rtlpriv = rtl_priv(hw);
63 rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
64 rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
65 rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
68 static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
69 u8 set_bits, u8 clear_bits)
71 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
72 struct rtl_priv *rtlpriv = rtl_priv(hw);
74 rtlpci->reg_bcn_ctrl_val |= set_bits;
75 rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
76 rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
79 static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
81 struct rtl_priv *rtlpriv = rtl_priv(hw);
82 u8 tmp1byte;
84 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
85 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
86 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
87 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
88 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
89 tmp1byte &= ~(BIT(0));
90 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
93 static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
95 struct rtl_priv *rtlpriv = rtl_priv(hw);
96 u8 tmp1byte;
98 tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
99 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
100 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
101 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
102 tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
103 tmp1byte |= BIT(0);
104 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
107 static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
109 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
112 static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
114 _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
117 void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
119 struct rtl_priv *rtlpriv = rtl_priv(hw);
120 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
121 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
123 switch (variable) {
124 case HW_VAR_RCR:
125 *((u32 *) (val)) = rtlpci->receive_config;
126 break;
127 case HW_VAR_RF_STATE:
128 *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
129 break;
130 case HW_VAR_FWLPS_RF_ON:{
131 enum rf_pwrstate rfState;
132 u32 val_rcr;
134 rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
135 (u8 *) (&rfState));
136 if (rfState == ERFOFF) {
137 *((bool *) (val)) = true;
138 } else {
139 val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
140 val_rcr &= 0x00070000;
141 if (val_rcr)
142 *((bool *) (val)) = false;
143 else
144 *((bool *) (val)) = true;
146 break;
148 case HW_VAR_FW_PSMODE_STATUS:
149 *((bool *) (val)) = ppsc->fw_current_inpsmode;
150 break;
151 case HW_VAR_CORRECT_TSF:{
152 u64 tsf;
153 u32 *ptsf_low = (u32 *)&tsf;
154 u32 *ptsf_high = ((u32 *)&tsf) + 1;
156 *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
157 *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
158 *((u64 *) (val)) = tsf;
159 break;
161 case HW_VAR_INT_MIGRATION:
162 *((bool *)(val)) = rtlpriv->dm.interrupt_migration;
163 break;
164 case HW_VAR_INT_AC:
165 *((bool *)(val)) = rtlpriv->dm.disable_tx_int;
166 break;
167 default:
168 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
169 "switch case not processed\n");
170 break;
174 void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
176 struct rtl_priv *rtlpriv = rtl_priv(hw);
177 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
178 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
179 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
180 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
181 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
182 u8 idx;
184 switch (variable) {
185 case HW_VAR_ETHER_ADDR:
186 for (idx = 0; idx < ETH_ALEN; idx++) {
187 rtl_write_byte(rtlpriv, (REG_MACID + idx),
188 val[idx]);
190 break;
191 case HW_VAR_BASIC_RATE: {
192 u16 rate_cfg = ((u16 *) val)[0];
193 u8 rate_index = 0;
195 rate_cfg = rate_cfg & 0x15f;
196 if (mac->vendor == PEER_CISCO &&
197 ((rate_cfg & 0x150) == 0))
198 rate_cfg |= 0x01;
199 rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
200 rtl_write_byte(rtlpriv, REG_RRSR + 1,
201 (rate_cfg >> 8) & 0xff);
202 while (rate_cfg > 0x1) {
203 rate_cfg = (rate_cfg >> 1);
204 rate_index++;
206 if (rtlhal->fw_version > 0xe)
207 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
208 rate_index);
209 break;
211 case HW_VAR_BSSID:
212 for (idx = 0; idx < ETH_ALEN; idx++) {
213 rtl_write_byte(rtlpriv, (REG_BSSID + idx),
214 val[idx]);
216 break;
217 case HW_VAR_SIFS:
218 rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
219 rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
220 rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
221 rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
222 if (!mac->ht_enable)
223 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
224 0x0e0e);
225 else
226 rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
227 *((u16 *) val));
228 break;
229 case HW_VAR_SLOT_TIME: {
230 u8 e_aci;
232 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
233 "HW_VAR_SLOT_TIME %x\n", val[0]);
234 rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
235 for (e_aci = 0; e_aci < AC_MAX; e_aci++)
236 rtlpriv->cfg->ops->set_hw_reg(hw,
237 HW_VAR_AC_PARAM,
238 (&e_aci));
239 break;
241 case HW_VAR_ACK_PREAMBLE: {
242 u8 reg_tmp;
243 u8 short_preamble = (bool) (*val);
245 reg_tmp = (mac->cur_40_prime_sc) << 5;
246 if (short_preamble)
247 reg_tmp |= 0x80;
248 rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
249 break;
251 case HW_VAR_AMPDU_MIN_SPACE: {
252 u8 min_spacing_to_set;
253 u8 sec_min_space;
255 min_spacing_to_set = *val;
256 if (min_spacing_to_set <= 7) {
257 sec_min_space = 0;
258 if (min_spacing_to_set < sec_min_space)
259 min_spacing_to_set = sec_min_space;
260 mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
261 min_spacing_to_set);
262 *val = min_spacing_to_set;
263 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
264 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
265 mac->min_space_cfg);
266 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
267 mac->min_space_cfg);
269 break;
271 case HW_VAR_SHORTGI_DENSITY: {
272 u8 density_to_set;
274 density_to_set = *val;
275 mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
276 mac->min_space_cfg |= (density_to_set << 3);
277 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
278 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
279 mac->min_space_cfg);
280 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
281 mac->min_space_cfg);
282 break;
284 case HW_VAR_AMPDU_FACTOR: {
285 u8 factor_toset;
286 u32 regtoSet;
287 u8 *ptmp_byte = NULL;
288 u8 index;
290 if (rtlhal->macphymode == DUALMAC_DUALPHY)
291 regtoSet = 0xb9726641;
292 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
293 regtoSet = 0x66626641;
294 else
295 regtoSet = 0xb972a841;
296 factor_toset = *val;
297 if (factor_toset <= 3) {
298 factor_toset = (1 << (factor_toset + 2));
299 if (factor_toset > 0xf)
300 factor_toset = 0xf;
301 for (index = 0; index < 4; index++) {
302 ptmp_byte = (u8 *) (&regtoSet) + index;
303 if ((*ptmp_byte & 0xf0) >
304 (factor_toset << 4))
305 *ptmp_byte = (*ptmp_byte & 0x0f)
306 | (factor_toset << 4);
307 if ((*ptmp_byte & 0x0f) > factor_toset)
308 *ptmp_byte = (*ptmp_byte & 0xf0)
309 | (factor_toset);
311 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
312 RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
313 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
314 factor_toset);
316 break;
318 case HW_VAR_AC_PARAM: {
319 u8 e_aci = *val;
320 rtl92d_dm_init_edca_turbo(hw);
321 if (rtlpci->acm_method != eAcmWay2_SW)
322 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
323 &e_aci);
324 break;
326 case HW_VAR_ACM_CTRL: {
327 u8 e_aci = *val;
328 union aci_aifsn *p_aci_aifsn =
329 (union aci_aifsn *)(&(mac->ac[0].aifs));
330 u8 acm = p_aci_aifsn->f.acm;
331 u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
333 acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
334 if (acm) {
335 switch (e_aci) {
336 case AC0_BE:
337 acm_ctrl |= ACMHW_BEQEN;
338 break;
339 case AC2_VI:
340 acm_ctrl |= ACMHW_VIQEN;
341 break;
342 case AC3_VO:
343 acm_ctrl |= ACMHW_VOQEN;
344 break;
345 default:
346 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
347 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
348 acm);
349 break;
351 } else {
352 switch (e_aci) {
353 case AC0_BE:
354 acm_ctrl &= (~ACMHW_BEQEN);
355 break;
356 case AC2_VI:
357 acm_ctrl &= (~ACMHW_VIQEN);
358 break;
359 case AC3_VO:
360 acm_ctrl &= (~ACMHW_VOQEN);
361 break;
362 default:
363 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
364 "switch case not processed\n");
365 break;
368 RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
369 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
370 acm_ctrl);
371 rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
372 break;
374 case HW_VAR_RCR:
375 rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
376 rtlpci->receive_config = ((u32 *) (val))[0];
377 break;
378 case HW_VAR_RETRY_LIMIT: {
379 u8 retry_limit = val[0];
381 rtl_write_word(rtlpriv, REG_RL,
382 retry_limit << RETRY_LIMIT_SHORT_SHIFT |
383 retry_limit << RETRY_LIMIT_LONG_SHIFT);
384 break;
386 case HW_VAR_DUAL_TSF_RST:
387 rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
388 break;
389 case HW_VAR_EFUSE_BYTES:
390 rtlefuse->efuse_usedbytes = *((u16 *) val);
391 break;
392 case HW_VAR_EFUSE_USAGE:
393 rtlefuse->efuse_usedpercentage = *val;
394 break;
395 case HW_VAR_IO_CMD:
396 rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
397 break;
398 case HW_VAR_WPA_CONFIG:
399 rtl_write_byte(rtlpriv, REG_SECCFG, *val);
400 break;
401 case HW_VAR_SET_RPWM:
402 rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
403 break;
404 case HW_VAR_H2C_FW_PWRMODE:
405 break;
406 case HW_VAR_FW_PSMODE_STATUS:
407 ppsc->fw_current_inpsmode = *((bool *) val);
408 break;
409 case HW_VAR_H2C_FW_JOINBSSRPT: {
410 u8 mstatus = (*val);
411 u8 tmp_regcr, tmp_reg422;
412 bool recover = false;
414 if (mstatus == RT_MEDIA_CONNECT) {
415 rtlpriv->cfg->ops->set_hw_reg(hw,
416 HW_VAR_AID, NULL);
417 tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
418 rtl_write_byte(rtlpriv, REG_CR + 1,
419 (tmp_regcr | BIT(0)));
420 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
421 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
422 tmp_reg422 = rtl_read_byte(rtlpriv,
423 REG_FWHW_TXQ_CTRL + 2);
424 if (tmp_reg422 & BIT(6))
425 recover = true;
426 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
427 tmp_reg422 & (~BIT(6)));
428 rtl92d_set_fw_rsvdpagepkt(hw, 0);
429 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
430 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
431 if (recover)
432 rtl_write_byte(rtlpriv,
433 REG_FWHW_TXQ_CTRL + 2,
434 tmp_reg422);
435 rtl_write_byte(rtlpriv, REG_CR + 1,
436 (tmp_regcr & ~(BIT(0))));
438 rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
439 break;
441 case HW_VAR_AID: {
442 u16 u2btmp;
443 u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
444 u2btmp &= 0xC000;
445 rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
446 mac->assoc_id));
447 break;
449 case HW_VAR_CORRECT_TSF: {
450 u8 btype_ibss = val[0];
452 if (btype_ibss)
453 _rtl92de_stop_tx_beacon(hw);
454 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
455 rtl_write_dword(rtlpriv, REG_TSFTR,
456 (u32) (mac->tsf & 0xffffffff));
457 rtl_write_dword(rtlpriv, REG_TSFTR + 4,
458 (u32) ((mac->tsf >> 32) & 0xffffffff));
459 _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
460 if (btype_ibss)
461 _rtl92de_resume_tx_beacon(hw);
463 break;
465 case HW_VAR_INT_MIGRATION: {
466 bool int_migration = *(bool *) (val);
468 if (int_migration) {
469 /* Set interrupt migration timer and
470 * corresponding Tx/Rx counter.
471 * timer 25ns*0xfa0=100us for 0xf packets.
472 * 0x306:Rx, 0x307:Tx */
473 rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
474 rtlpriv->dm.interrupt_migration = int_migration;
475 } else {
476 /* Reset all interrupt migration settings. */
477 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
478 rtlpriv->dm.interrupt_migration = int_migration;
480 break;
482 case HW_VAR_INT_AC: {
483 bool disable_ac_int = *((bool *) val);
485 /* Disable four ACs interrupts. */
486 if (disable_ac_int) {
487 /* Disable VO, VI, BE and BK four AC interrupts
488 * to gain more efficient CPU utilization.
489 * When extremely highly Rx OK occurs,
490 * we will disable Tx interrupts.
492 rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
493 RT_AC_INT_MASKS);
494 rtlpriv->dm.disable_tx_int = disable_ac_int;
495 /* Enable four ACs interrupts. */
496 } else {
497 rtlpriv->cfg->ops->update_interrupt_mask(hw,
498 RT_AC_INT_MASKS, 0);
499 rtlpriv->dm.disable_tx_int = disable_ac_int;
501 break;
503 default:
504 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
505 "switch case not processed\n");
506 break;
510 static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
512 struct rtl_priv *rtlpriv = rtl_priv(hw);
513 bool status = true;
514 long count = 0;
515 u32 value = _LLT_INIT_ADDR(address) |
516 _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
518 rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
519 do {
520 value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
521 if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
522 break;
523 if (count > POLLING_LLT_THRESHOLD) {
524 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
525 "Failed to polling write LLT done at address %d!\n",
526 address);
527 status = false;
528 break;
530 } while (++count);
531 return status;
534 static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
536 struct rtl_priv *rtlpriv = rtl_priv(hw);
537 unsigned short i;
538 u8 txpktbuf_bndy;
539 u8 maxPage;
540 bool status;
541 u32 value32; /* High+low page number */
542 u8 value8; /* normal page number */
544 if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
545 maxPage = 255;
546 txpktbuf_bndy = 246;
547 value8 = 0;
548 value32 = 0x80bf0d29;
549 } else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
550 maxPage = 127;
551 txpktbuf_bndy = 123;
552 value8 = 0;
553 value32 = 0x80750005;
556 /* Set reserved page for each queue */
557 /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
558 /* load RQPN */
559 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
560 rtl_write_dword(rtlpriv, REG_RQPN, value32);
562 /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
563 /* TXRKTBUG_PG_BNDY */
564 rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
565 (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
566 txpktbuf_bndy));
568 /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
569 /* Beacon Head for TXDMA */
570 rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
572 /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
573 /* BCNQ_PGBNDY */
574 rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
575 rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
577 /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
578 /* WMAC_LBK_BF_HD */
579 rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
581 /* Set Tx/Rx page size (Tx must be 128 Bytes, */
582 /* Rx can be 64,128,256,512,1024 bytes) */
583 /* 16. PBP [7:0] = 0x11 */
584 /* TRX page size */
585 rtl_write_byte(rtlpriv, REG_PBP, 0x11);
587 /* 17. DRV_INFO_SZ = 0x04 */
588 rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
590 /* 18. LLT_table_init(Adapter); */
591 for (i = 0; i < (txpktbuf_bndy - 1); i++) {
592 status = _rtl92de_llt_write(hw, i, i + 1);
593 if (true != status)
594 return status;
597 /* end of list */
598 status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
599 if (true != status)
600 return status;
602 /* Make the other pages as ring buffer */
603 /* This ring buffer is used as beacon buffer if we */
604 /* config this MAC as two MAC transfer. */
605 /* Otherwise used as local loopback buffer. */
606 for (i = txpktbuf_bndy; i < maxPage; i++) {
607 status = _rtl92de_llt_write(hw, i, (i + 1));
608 if (true != status)
609 return status;
612 /* Let last entry point to the start entry of ring buffer */
613 status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
614 if (true != status)
615 return status;
617 return true;
620 static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
622 struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
623 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
624 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
625 struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
627 if (rtlpci->up_first_time)
628 return;
629 if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
630 rtl92de_sw_led_on(hw, pLed0);
631 else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
632 rtl92de_sw_led_on(hw, pLed0);
633 else
634 rtl92de_sw_led_off(hw, pLed0);
637 static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
639 struct rtl_priv *rtlpriv = rtl_priv(hw);
640 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
641 unsigned char bytetmp;
642 unsigned short wordtmp;
643 u16 retry;
645 rtl92d_phy_set_poweron(hw);
646 /* Add for resume sequence of power domain according
647 * to power document V11. Chapter V.11.... */
648 /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
649 /* unlock ISO/CLK/Power control register */
650 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
651 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
653 /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
654 /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
655 /* 3. delay (1ms) this is not necessary when initially power on */
657 /* C. Resume Sequence */
658 /* a. SPS0_CTRL 0x11[7:0] = 0x2b */
659 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
661 /* b. AFE_XTAL_CTRL [7:0] = 0x0F */
662 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
664 /* c. DRV runs power on init flow */
666 /* auto enable WLAN */
667 /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
668 /* Power On Reset for MAC Block */
669 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
670 udelay(2);
671 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
672 udelay(2);
674 /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
675 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
676 udelay(50);
677 retry = 0;
678 while ((bytetmp & BIT(0)) && retry < 1000) {
679 retry++;
680 bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
681 udelay(50);
684 /* Enable Radio off, GPIO, and LED function */
685 /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
686 rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
688 /* release RF digital isolation */
689 /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
690 /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
691 rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
692 udelay(2);
694 /* make sure that BB reset OK. */
695 /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
697 /* Disable REG_CR before enable it to assure reset */
698 rtl_write_word(rtlpriv, REG_CR, 0x0);
700 /* Release MAC IO register reset */
701 rtl_write_word(rtlpriv, REG_CR, 0x2ff);
703 /* clear stopping tx/rx dma */
704 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
706 /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
708 /* System init */
709 /* 18. LLT_table_init(Adapter); */
710 if (!_rtl92de_llt_table_init(hw))
711 return false;
713 /* Clear interrupt and enable interrupt */
714 /* 19. HISR 0x124[31:0] = 0xffffffff; */
715 /* HISRE 0x12C[7:0] = 0xFF */
716 rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
717 rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
719 /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
720 /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
721 /* The IMR should be enabled later after all init sequence
722 * is finished. */
724 /* 22. PCIE configuration space configuration */
725 /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
726 /* and PCIe gated clock function is enabled. */
727 /* PCIE configuration space will be written after
728 * all init sequence.(Or by BIOS) */
730 rtl92d_phy_config_maccoexist_rfpage(hw);
732 /* THe below section is not related to power document Vxx . */
733 /* This is only useful for driver and OS setting. */
734 /* -------------------Software Relative Setting---------------------- */
735 wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
736 wordtmp &= 0xf;
737 wordtmp |= 0xF771;
738 rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
740 /* Reported Tx status from HW for rate adaptive. */
741 /* This should be realtive to power on step 14. But in document V11 */
742 /* still not contain the description.!!! */
743 rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
745 /* Set Tx/Rx page size (Tx must be 128 Bytes,
746 * Rx can be 64,128,256,512,1024 bytes) */
747 /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
749 /* Set RCR register */
750 rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
751 /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
753 /* Set TCR register */
754 rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
756 /* disable earlymode */
757 rtl_write_byte(rtlpriv, 0x4d0, 0x0);
759 /* Set TX/RX descriptor physical address(from OS API). */
760 rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
761 rtlpci->tx_ring[BEACON_QUEUE].dma);
762 rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
763 rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
764 rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
765 rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
766 rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
767 rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
768 /* Set RX Desc Address */
769 rtl_write_dword(rtlpriv, REG_RX_DESA,
770 rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
772 /* if we want to support 64 bit DMA, we should set it here,
773 * but now we do not support 64 bit DMA*/
775 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
777 /* Reset interrupt migration setting when initialization */
778 rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
780 /* Reconsider when to do this operation after asking HWSD. */
781 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
782 rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
783 do {
784 retry++;
785 bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
786 } while ((retry < 200) && !(bytetmp & BIT(7)));
788 /* After MACIO reset,we must refresh LED state. */
789 _rtl92de_gen_refresh_led_state(hw);
791 /* Reset H2C protection register */
792 rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
794 return true;
797 static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
799 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
800 struct rtl_priv *rtlpriv = rtl_priv(hw);
801 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
802 u8 reg_bw_opmode = BW_OPMODE_20MHZ;
803 u32 reg_rrsr;
805 reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
806 rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
807 rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
808 rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
809 rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
810 rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
811 rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
812 rtl_write_word(rtlpriv, REG_RL, 0x0707);
813 rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
814 rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
815 rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
816 rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
817 rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
818 rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
819 /* Aggregation threshold */
820 if (rtlhal->macphymode == DUALMAC_DUALPHY)
821 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
822 else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
823 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
824 else
825 rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
826 rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
827 rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
828 rtlpci->reg_bcn_ctrl_val = 0x1f;
829 rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
830 rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
831 rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
832 rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
833 rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
834 /* For throughput */
835 rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
836 /* ACKTO for IOT issue. */
837 rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
838 /* Set Spec SIFS (used in NAV) */
839 rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
840 rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
841 /* Set SIFS for CCK */
842 rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
843 /* Set SIFS for OFDM */
844 rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
845 /* Set Multicast Address. */
846 rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
847 rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
848 switch (rtlpriv->phy.rf_type) {
849 case RF_1T2R:
850 case RF_1T1R:
851 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
852 break;
853 case RF_2T2R:
854 case RF_2T2R_GREEN:
855 rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
856 break;
860 static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
862 struct rtl_priv *rtlpriv = rtl_priv(hw);
863 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
865 rtl_write_byte(rtlpriv, 0x34b, 0x93);
866 rtl_write_word(rtlpriv, 0x350, 0x870c);
867 rtl_write_byte(rtlpriv, 0x352, 0x1);
868 if (ppsc->support_backdoor)
869 rtl_write_byte(rtlpriv, 0x349, 0x1b);
870 else
871 rtl_write_byte(rtlpriv, 0x349, 0x03);
872 rtl_write_word(rtlpriv, 0x350, 0x2718);
873 rtl_write_byte(rtlpriv, 0x352, 0x1);
876 void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
878 struct rtl_priv *rtlpriv = rtl_priv(hw);
879 u8 sec_reg_value;
881 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
882 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
883 rtlpriv->sec.pairwise_enc_algorithm,
884 rtlpriv->sec.group_enc_algorithm);
885 if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
886 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
887 "not open hw encryption\n");
888 return;
890 sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
891 if (rtlpriv->sec.use_defaultkey) {
892 sec_reg_value |= SCR_TXUSEDK;
893 sec_reg_value |= SCR_RXUSEDK;
895 sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
896 rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
897 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
898 "The SECR-value %x\n", sec_reg_value);
899 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
902 int rtl92de_hw_init(struct ieee80211_hw *hw)
904 struct rtl_priv *rtlpriv = rtl_priv(hw);
905 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
906 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
907 struct rtl_phy *rtlphy = &(rtlpriv->phy);
908 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
909 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
910 bool rtstatus = true;
911 u8 tmp_u1b;
912 int i;
913 int err;
914 unsigned long flags;
916 rtlpci->being_init_adapter = true;
917 rtlpci->init_ready = false;
918 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
919 /* we should do iqk after disable/enable */
920 rtl92d_phy_reset_iqk_result(hw);
921 /* rtlpriv->intf_ops->disable_aspm(hw); */
922 rtstatus = _rtl92de_init_mac(hw);
923 if (!rtstatus) {
924 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
925 err = 1;
926 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
927 return err;
929 err = rtl92d_download_fw(hw);
930 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
931 if (err) {
932 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
933 "Failed to download FW. Init HW without FW..\n");
934 return 1;
936 rtlhal->last_hmeboxnum = 0;
937 rtlpriv->psc.fw_current_inpsmode = false;
939 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
940 tmp_u1b = tmp_u1b | 0x30;
941 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
943 if (rtlhal->earlymode_enable) {
944 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
945 "EarlyMode Enabled!!!\n");
947 tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
948 tmp_u1b = tmp_u1b | 0x1f;
949 rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
951 rtl_write_byte(rtlpriv, 0x4d3, 0x80);
953 tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
954 tmp_u1b = tmp_u1b | 0x40;
955 rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
958 if (mac->rdg_en) {
959 rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
960 rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
961 rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
964 rtl92d_phy_mac_config(hw);
965 /* because last function modify RCR, so we update
966 * rcr var here, or TP will unstable for receive_config
967 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
968 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
969 rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
970 rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
972 rtl92d_phy_bb_config(hw);
974 rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
975 /* set before initialize RF */
976 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
978 /* config RF */
979 rtl92d_phy_rf_config(hw);
981 /* After read predefined TXT, we must set BB/MAC/RF
982 * register as our requirement */
983 /* After load BB,RF params,we need do more for 92D. */
984 rtl92d_update_bbrf_configuration(hw);
985 /* set default value after initialize RF, */
986 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
987 rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
988 RF_CHNLBW, BRFREGOFFSETMASK);
989 rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
990 RF_CHNLBW, BRFREGOFFSETMASK);
992 /*---- Set CCK and OFDM Block "ON"----*/
993 if (rtlhal->current_bandtype == BAND_ON_2_4G)
994 rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
995 rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
996 if (rtlhal->interfaceindex == 0) {
997 /* RFPGA0_ANALOGPARAMETER2: cck clock select,
998 * set to 20MHz by default */
999 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
1000 BIT(11), 3);
1001 } else {
1002 /* Mac1 */
1003 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
1004 BIT(10), 3);
1007 _rtl92de_hw_configure(hw);
1009 /* reset hw sec */
1010 rtl_cam_reset_all_entry(hw);
1011 rtl92de_enable_hw_security_config(hw);
1013 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1014 /* TX power index for different rate set. */
1015 rtl92d_phy_get_hw_reg_originalvalue(hw);
1016 rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
1018 ppsc->rfpwr_state = ERFON;
1020 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
1022 _rtl92de_enable_aspm_back_door(hw);
1023 /* rtlpriv->intf_ops->enable_aspm(hw); */
1025 rtl92d_dm_init(hw);
1026 rtlpci->being_init_adapter = false;
1028 if (ppsc->rfpwr_state == ERFON) {
1029 rtl92d_phy_lc_calibrate(hw);
1030 /* 5G and 2.4G must wait sometime to let RF LO ready */
1031 if (rtlhal->macphymode == DUALMAC_DUALPHY) {
1032 u32 tmp_rega;
1033 for (i = 0; i < 10000; i++) {
1034 udelay(MAX_STALL_TIME);
1036 tmp_rega = rtl_get_rfreg(hw,
1037 (enum radio_path)RF90_PATH_A,
1038 0x2a, BMASKDWORD);
1040 if (((tmp_rega & BIT(11)) == BIT(11)))
1041 break;
1043 /* check that loop was successful. If not, exit now */
1044 if (i == 10000) {
1045 rtlpci->init_ready = false;
1046 return 1;
1050 rtlpci->init_ready = true;
1051 return err;
1054 static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
1056 struct rtl_priv *rtlpriv = rtl_priv(hw);
1057 enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1058 u32 value32;
1060 value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
1061 if (!(value32 & 0x000f0000)) {
1062 version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1063 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1064 } else {
1065 version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1066 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1068 return version;
1071 static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
1072 enum nl80211_iftype type)
1074 struct rtl_priv *rtlpriv = rtl_priv(hw);
1075 u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1076 enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
1077 u8 bcnfunc_enable;
1079 bt_msr &= 0xfc;
1081 if (type == NL80211_IFTYPE_UNSPECIFIED ||
1082 type == NL80211_IFTYPE_STATION) {
1083 _rtl92de_stop_tx_beacon(hw);
1084 _rtl92de_enable_bcn_sub_func(hw);
1085 } else if (type == NL80211_IFTYPE_ADHOC ||
1086 type == NL80211_IFTYPE_AP) {
1087 _rtl92de_resume_tx_beacon(hw);
1088 _rtl92de_disable_bcn_sub_func(hw);
1089 } else {
1090 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1091 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
1092 type);
1094 bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
1095 switch (type) {
1096 case NL80211_IFTYPE_UNSPECIFIED:
1097 bt_msr |= MSR_NOLINK;
1098 ledaction = LED_CTL_LINK;
1099 bcnfunc_enable &= 0xF7;
1100 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1101 "Set Network type to NO LINK!\n");
1102 break;
1103 case NL80211_IFTYPE_ADHOC:
1104 bt_msr |= MSR_ADHOC;
1105 bcnfunc_enable |= 0x08;
1106 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1107 "Set Network type to Ad Hoc!\n");
1108 break;
1109 case NL80211_IFTYPE_STATION:
1110 bt_msr |= MSR_INFRA;
1111 ledaction = LED_CTL_LINK;
1112 bcnfunc_enable &= 0xF7;
1113 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1114 "Set Network type to STA!\n");
1115 break;
1116 case NL80211_IFTYPE_AP:
1117 bt_msr |= MSR_AP;
1118 bcnfunc_enable |= 0x08;
1119 RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1120 "Set Network type to AP!\n");
1121 break;
1122 default:
1123 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1124 "Network type %d not supported!\n", type);
1125 return 1;
1126 break;
1129 rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr);
1130 rtlpriv->cfg->ops->led_control(hw, ledaction);
1131 if ((bt_msr & 0xfc) == MSR_AP)
1132 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
1133 else
1134 rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
1135 return 0;
1138 void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1140 struct rtl_priv *rtlpriv = rtl_priv(hw);
1141 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1142 u32 reg_rcr = rtlpci->receive_config;
1144 if (rtlpriv->psc.rfpwr_state != ERFON)
1145 return;
1146 if (check_bssid) {
1147 reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
1148 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1149 _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1150 } else if (!check_bssid) {
1151 reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
1152 _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
1153 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1157 int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1159 struct rtl_priv *rtlpriv = rtl_priv(hw);
1161 if (_rtl92de_set_media_status(hw, type))
1162 return -EOPNOTSUPP;
1164 /* check bssid */
1165 if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1166 if (type != NL80211_IFTYPE_AP)
1167 rtl92de_set_check_bssid(hw, true);
1168 } else {
1169 rtl92de_set_check_bssid(hw, false);
1171 return 0;
1174 /* do iqk or reload iqk */
1175 /* windows just rtl92d_phy_reload_iqk_setting in set channel,
1176 * but it's very strict for time sequence so we add
1177 * rtl92d_phy_reload_iqk_setting here */
1178 void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
1180 struct rtl_priv *rtlpriv = rtl_priv(hw);
1181 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1182 u8 indexforchannel;
1183 u8 channel = rtlphy->current_channel;
1185 indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1186 if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1187 RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1188 "Do IQK for channel:%d\n", channel);
1189 rtl92d_phy_iq_calibrate(hw);
1193 /* don't set REG_EDCA_BE_PARAM here because
1194 * mac80211 will send pkt when scan */
1195 void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
1197 rtl92d_dm_init_edca_turbo(hw);
1200 void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
1202 struct rtl_priv *rtlpriv = rtl_priv(hw);
1203 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1205 rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
1206 rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
1209 void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
1211 struct rtl_priv *rtlpriv = rtl_priv(hw);
1212 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1214 rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
1215 rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
1216 synchronize_irq(rtlpci->pdev->irq);
1219 static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
1221 struct rtl_priv *rtlpriv = rtl_priv(hw);
1222 u8 u1b_tmp;
1223 unsigned long flags;
1225 rtlpriv->intf_ops->enable_aspm(hw);
1226 rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
1227 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
1228 rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
1230 /* 0x20:value 05-->04 */
1231 rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
1233 /* ==== Reset digital sequence ====== */
1234 rtl92d_firmware_selfreset(hw);
1236 /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
1237 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
1239 /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
1240 rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
1242 /* ==== Pull GPIO PIN to balance level and LED control ====== */
1244 /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
1245 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
1247 /* i. Value = GPIO_PIN_CTRL[7:0] */
1248 u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
1250 /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
1251 /* write external PIN level */
1252 rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
1253 0x00FF0000 | (u1b_tmp << 8));
1255 /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
1256 rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
1258 /* l. LEDCFG 0x4C[15:0] = 0x8080 */
1259 rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
1261 /* ==== Disable analog sequence === */
1263 /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
1264 rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
1266 /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
1267 rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
1269 /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
1270 rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
1272 /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
1273 rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
1275 /* ==== interface into suspend === */
1277 /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
1278 /* According to power document V11, we need to set this */
1279 /* value as 0x18. Otherwise, we may not L0s sometimes. */
1280 /* This indluences power consumption. Bases on SD1's test, */
1281 /* set as 0x00 do not affect power current. And if it */
1282 /* is set as 0x18, they had ever met auto load fail problem. */
1283 rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
1285 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1286 "In PowerOff,reg0x%x=%X\n",
1287 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1288 /* r. Note: for PCIe interface, PON will not turn */
1289 /* off m-bias and BandGap in PCIe suspend mode. */
1291 /* 0x17[7] 1b': power off in process 0b' : power off over */
1292 if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
1293 spin_lock_irqsave(&globalmutex_power, flags);
1294 u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
1295 u1b_tmp &= (~BIT(7));
1296 rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
1297 spin_unlock_irqrestore(&globalmutex_power, flags);
1300 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1303 void rtl92de_card_disable(struct ieee80211_hw *hw)
1305 struct rtl_priv *rtlpriv = rtl_priv(hw);
1306 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1307 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1308 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1309 enum nl80211_iftype opmode;
1311 mac->link_state = MAC80211_NOLINK;
1312 opmode = NL80211_IFTYPE_UNSPECIFIED;
1313 _rtl92de_set_media_status(hw, opmode);
1315 if (rtlpci->driver_is_goingto_unload ||
1316 ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1317 rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1318 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1319 /* Power sequence for each MAC. */
1320 /* a. stop tx DMA */
1321 /* b. close RF */
1322 /* c. clear rx buf */
1323 /* d. stop rx DMA */
1324 /* e. reset MAC */
1326 /* a. stop tx DMA */
1327 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
1328 udelay(50);
1330 /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
1332 /* c. ========RF OFF sequence========== */
1333 /* 0x88c[23:20] = 0xf. */
1334 rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1335 rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
1337 /* APSD_CTRL 0x600[7:0] = 0x40 */
1338 rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
1340 /* Close antenna 0,0xc04,0xd04 */
1341 rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0);
1342 rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
1344 /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
1345 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
1347 /* Mac0 can not do Global reset. Mac1 can do. */
1348 /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
1349 if (rtlpriv->rtlhal.interfaceindex == 1)
1350 rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
1351 udelay(50);
1353 /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
1354 /* dma hang issue when disable/enable device. */
1355 rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
1356 udelay(50);
1357 rtl_write_byte(rtlpriv, REG_CR, 0x0);
1358 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1359 if (rtl92d_phy_check_poweroff(hw))
1360 _rtl92de_poweroff_adapter(hw);
1361 return;
1364 void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
1365 u32 *p_inta, u32 *p_intb)
1367 struct rtl_priv *rtlpriv = rtl_priv(hw);
1368 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1370 *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1371 rtl_write_dword(rtlpriv, ISR, *p_inta);
1374 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
1375 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1379 void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
1381 struct rtl_priv *rtlpriv = rtl_priv(hw);
1382 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1383 u16 bcn_interval, atim_window;
1385 bcn_interval = mac->beacon_interval;
1386 atim_window = 2;
1387 /*rtl92de_disable_interrupt(hw); */
1388 rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
1389 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1390 rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
1391 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
1392 if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
1393 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
1394 else
1395 rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
1396 rtl_write_byte(rtlpriv, 0x606, 0x30);
1399 void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
1401 struct rtl_priv *rtlpriv = rtl_priv(hw);
1402 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1403 u16 bcn_interval = mac->beacon_interval;
1405 RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1406 "beacon_interval:%d\n", bcn_interval);
1407 /* rtl92de_disable_interrupt(hw); */
1408 rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
1409 /* rtl92de_enable_interrupt(hw); */
1412 void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
1413 u32 add_msr, u32 rm_msr)
1415 struct rtl_priv *rtlpriv = rtl_priv(hw);
1416 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1418 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1419 add_msr, rm_msr);
1420 if (add_msr)
1421 rtlpci->irq_mask[0] |= add_msr;
1422 if (rm_msr)
1423 rtlpci->irq_mask[0] &= (~rm_msr);
1424 rtl92de_disable_interrupt(hw);
1425 rtl92de_enable_interrupt(hw);
1428 static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
1429 u8 *rom_content, bool autoLoadfail)
1431 u32 rfpath, eeaddr, group, offset1, offset2;
1432 u8 i;
1434 memset(pwrinfo, 0, sizeof(struct txpower_info));
1435 if (autoLoadfail) {
1436 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1437 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1438 if (group < CHANNEL_GROUP_MAX_2G) {
1439 pwrinfo->cck_index[rfpath][group] =
1440 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1441 pwrinfo->ht40_1sindex[rfpath][group] =
1442 EEPROM_DEFAULT_TXPOWERLEVEL_2G;
1443 } else {
1444 pwrinfo->ht40_1sindex[rfpath][group] =
1445 EEPROM_DEFAULT_TXPOWERLEVEL_5G;
1447 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1448 EEPROM_DEFAULT_HT40_2SDIFF;
1449 pwrinfo->ht20indexdiff[rfpath][group] =
1450 EEPROM_DEFAULT_HT20_DIFF;
1451 pwrinfo->ofdmindexdiff[rfpath][group] =
1452 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1453 pwrinfo->ht40maxoffset[rfpath][group] =
1454 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1455 pwrinfo->ht20maxoffset[rfpath][group] =
1456 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1459 for (i = 0; i < 3; i++) {
1460 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1461 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1463 return;
1466 /* Maybe autoload OK,buf the tx power index value is not filled.
1467 * If we find it, we set it to default value. */
1468 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1469 for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
1470 eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
1471 + group;
1472 pwrinfo->cck_index[rfpath][group] =
1473 (rom_content[eeaddr] == 0xFF) ?
1474 (eeaddr > 0x7B ?
1475 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1476 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1477 rom_content[eeaddr];
1480 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1481 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1482 offset1 = group / 3;
1483 offset2 = group % 3;
1484 eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
1485 offset2 + offset1 * 21;
1486 pwrinfo->ht40_1sindex[rfpath][group] =
1487 (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
1488 EEPROM_DEFAULT_TXPOWERLEVEL_5G :
1489 EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
1490 rom_content[eeaddr];
1493 /* These just for 92D efuse offset. */
1494 for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
1495 for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
1496 int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
1498 offset1 = group / 3;
1499 offset2 = group % 3;
1501 if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
1502 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1503 (rom_content[base1 +
1504 offset2 + offset1 * 21] >> (rfpath * 4))
1505 & 0xF;
1506 else
1507 pwrinfo->ht40_2sindexdiff[rfpath][group] =
1508 EEPROM_DEFAULT_HT40_2SDIFF;
1509 if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
1510 + offset1 * 21] != 0xFF)
1511 pwrinfo->ht20indexdiff[rfpath][group] =
1512 (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
1513 + offset2 + offset1 * 21] >> (rfpath * 4))
1514 & 0xF;
1515 else
1516 pwrinfo->ht20indexdiff[rfpath][group] =
1517 EEPROM_DEFAULT_HT20_DIFF;
1518 if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
1519 + offset1 * 21] != 0xFF)
1520 pwrinfo->ofdmindexdiff[rfpath][group] =
1521 (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
1522 + offset2 + offset1 * 21] >> (rfpath * 4))
1523 & 0xF;
1524 else
1525 pwrinfo->ofdmindexdiff[rfpath][group] =
1526 EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
1527 if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
1528 + offset1 * 21] != 0xFF)
1529 pwrinfo->ht40maxoffset[rfpath][group] =
1530 (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
1531 + offset2 + offset1 * 21] >> (rfpath * 4))
1532 & 0xF;
1533 else
1534 pwrinfo->ht40maxoffset[rfpath][group] =
1535 EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
1536 if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
1537 + offset1 * 21] != 0xFF)
1538 pwrinfo->ht20maxoffset[rfpath][group] =
1539 (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
1540 offset2 + offset1 * 21] >> (rfpath * 4)) &
1541 0xF;
1542 else
1543 pwrinfo->ht20maxoffset[rfpath][group] =
1544 EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
1547 if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
1548 /* 5GL */
1549 pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
1550 pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
1551 /* 5GM */
1552 pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
1553 pwrinfo->tssi_b[1] =
1554 (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
1555 (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
1556 /* 5GH */
1557 pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
1558 0xF0) >> 4 |
1559 (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
1560 pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
1561 0xFC) >> 2;
1562 } else {
1563 for (i = 0; i < 3; i++) {
1564 pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
1565 pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
1570 static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
1571 bool autoload_fail, u8 *hwinfo)
1573 struct rtl_priv *rtlpriv = rtl_priv(hw);
1574 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1575 struct txpower_info pwrinfo;
1576 u8 tempval[2], i, pwr, diff;
1577 u32 ch, rfPath, group;
1579 _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
1580 if (!autoload_fail) {
1581 /* bit0~2 */
1582 rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
1583 rtlefuse->eeprom_thermalmeter =
1584 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
1585 rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
1586 tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
1587 tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
1588 rtlefuse->txpwr_fromeprom = true;
1589 if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
1590 IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1591 rtlefuse->internal_pa_5g[0] =
1592 !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1593 rtlefuse->internal_pa_5g[1] =
1594 !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
1595 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1596 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1597 rtlefuse->internal_pa_5g[0],
1598 rtlefuse->internal_pa_5g[1]);
1600 rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
1601 rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
1602 } else {
1603 rtlefuse->eeprom_regulatory = 0;
1604 rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
1605 rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
1606 tempval[0] = tempval[1] = 3;
1609 /* Use default value to fill parameters if
1610 * efuse is not filled on some place. */
1612 /* ThermalMeter from EEPROM */
1613 if (rtlefuse->eeprom_thermalmeter < 0x06 ||
1614 rtlefuse->eeprom_thermalmeter > 0x1c)
1615 rtlefuse->eeprom_thermalmeter = 0x12;
1616 rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
1618 /* check XTAL_K */
1619 if (rtlefuse->crystalcap == 0xFF)
1620 rtlefuse->crystalcap = 0;
1621 if (rtlefuse->eeprom_regulatory > 3)
1622 rtlefuse->eeprom_regulatory = 0;
1624 for (i = 0; i < 2; i++) {
1625 switch (tempval[i]) {
1626 case 0:
1627 tempval[i] = 5;
1628 break;
1629 case 1:
1630 tempval[i] = 4;
1631 break;
1632 case 2:
1633 tempval[i] = 3;
1634 break;
1635 case 3:
1636 default:
1637 tempval[i] = 0;
1638 break;
1642 rtlefuse->delta_iqk = tempval[0];
1643 if (tempval[1] > 0)
1644 rtlefuse->delta_lck = tempval[1] - 1;
1645 if (rtlefuse->eeprom_c9 == 0xFF)
1646 rtlefuse->eeprom_c9 = 0x00;
1647 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1648 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1649 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1650 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1651 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1652 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1653 RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1654 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
1655 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1657 for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
1658 for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
1659 group = rtl92d_get_chnlgroup_fromarray((u8) ch);
1660 if (ch < CHANNEL_MAX_NUMBER_2G)
1661 rtlefuse->txpwrlevel_cck[rfPath][ch] =
1662 pwrinfo.cck_index[rfPath][group];
1663 rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
1664 pwrinfo.ht40_1sindex[rfPath][group];
1665 rtlefuse->txpwr_ht20diff[rfPath][ch] =
1666 pwrinfo.ht20indexdiff[rfPath][group];
1667 rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
1668 pwrinfo.ofdmindexdiff[rfPath][group];
1669 rtlefuse->pwrgroup_ht20[rfPath][ch] =
1670 pwrinfo.ht20maxoffset[rfPath][group];
1671 rtlefuse->pwrgroup_ht40[rfPath][ch] =
1672 pwrinfo.ht40maxoffset[rfPath][group];
1673 pwr = pwrinfo.ht40_1sindex[rfPath][group];
1674 diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
1675 rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
1676 (pwr > diff) ? (pwr - diff) : 0;
1681 static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
1682 u8 *content)
1684 struct rtl_priv *rtlpriv = rtl_priv(hw);
1685 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1686 u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
1688 if (macphy_crvalue & BIT(3)) {
1689 rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
1690 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1691 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1692 } else {
1693 rtlhal->macphymode = DUALMAC_DUALPHY;
1694 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1695 "MacPhyMode DUALMAC_DUALPHY\n");
1699 static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
1700 u8 *content)
1702 _rtl92de_read_macphymode_from_prom(hw, content);
1703 rtl92d_phy_config_macphymode(hw);
1704 rtl92d_phy_config_macphymode_info(hw);
1707 static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
1709 struct rtl_priv *rtlpriv = rtl_priv(hw);
1710 enum version_8192d chipver = rtlpriv->rtlhal.version;
1711 u8 cutvalue[2];
1712 u16 chipvalue;
1714 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
1715 &cutvalue[1]);
1716 rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
1717 &cutvalue[0]);
1718 chipvalue = (cutvalue[1] << 8) | cutvalue[0];
1719 switch (chipvalue) {
1720 case 0xAA55:
1721 chipver |= CHIP_92D_C_CUT;
1722 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1723 break;
1724 case 0x9966:
1725 chipver |= CHIP_92D_D_CUT;
1726 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1727 break;
1728 case 0xCC33:
1729 chipver |= CHIP_92D_E_CUT;
1730 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
1731 break;
1732 default:
1733 chipver |= CHIP_92D_D_CUT;
1734 RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
1735 break;
1737 rtlpriv->rtlhal.version = chipver;
1740 static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
1742 struct rtl_priv *rtlpriv = rtl_priv(hw);
1743 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1744 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1745 u16 i, usvalue;
1746 u8 hwinfo[HWSET_MAX_SIZE];
1747 u16 eeprom_id;
1748 unsigned long flags;
1750 if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1751 spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
1752 rtl_efuse_shadow_map_update(hw);
1753 _rtl92de_efuse_update_chip_version(hw);
1754 spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
1755 memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
1756 [EFUSE_INIT_MAP][0],
1757 HWSET_MAX_SIZE);
1758 } else if (rtlefuse->epromtype == EEPROM_93C46) {
1759 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1760 "RTL819X Not boot from eeprom, check it !!\n");
1762 RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1763 hwinfo, HWSET_MAX_SIZE);
1765 eeprom_id = *((u16 *)&hwinfo[0]);
1766 if (eeprom_id != RTL8190_EEPROM_ID) {
1767 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1768 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1769 rtlefuse->autoload_failflag = true;
1770 } else {
1771 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1772 rtlefuse->autoload_failflag = false;
1774 if (rtlefuse->autoload_failflag) {
1775 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1776 "RTL819X Not boot from eeprom, check it !!\n");
1777 return;
1779 rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
1780 _rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
1782 /* VID, DID SE 0xA-D */
1783 rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1784 rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1785 rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1786 rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1787 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
1788 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1789 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1790 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1791 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1792 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1793 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1794 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1795 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1797 /* Read Permanent MAC address */
1798 if (rtlhal->interfaceindex == 0) {
1799 for (i = 0; i < 6; i += 2) {
1800 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
1801 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1803 } else {
1804 for (i = 0; i < 6; i += 2) {
1805 usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
1806 *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1809 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
1810 rtlefuse->dev_addr);
1811 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1812 _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
1814 /* Read Channel Plan */
1815 switch (rtlhal->bandset) {
1816 case BAND_ON_2_4G:
1817 rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
1818 break;
1819 case BAND_ON_5G:
1820 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1821 break;
1822 case BAND_ON_BOTH:
1823 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1824 break;
1825 default:
1826 rtlefuse->channel_plan = COUNTRY_CODE_FCC;
1827 break;
1829 rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1830 rtlefuse->txpwr_fromeprom = true;
1831 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1832 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1835 void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
1837 struct rtl_priv *rtlpriv = rtl_priv(hw);
1838 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1839 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1840 u8 tmp_u1b;
1842 rtlhal->version = _rtl92de_read_chip_version(hw);
1843 tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
1844 rtlefuse->autoload_status = tmp_u1b;
1845 if (tmp_u1b & BIT(4)) {
1846 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1847 rtlefuse->epromtype = EEPROM_93C46;
1848 } else {
1849 RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1850 rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
1852 if (tmp_u1b & BIT(5)) {
1853 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1855 rtlefuse->autoload_failflag = false;
1856 _rtl92de_read_adapter_info(hw);
1857 } else {
1858 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1860 return;
1863 static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
1864 struct ieee80211_sta *sta)
1866 struct rtl_priv *rtlpriv = rtl_priv(hw);
1867 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1868 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1869 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1870 u32 ratr_value;
1871 u8 ratr_index = 0;
1872 u8 nmode = mac->ht_enable;
1873 u8 mimo_ps = IEEE80211_SMPS_OFF;
1874 u16 shortgi_rate;
1875 u32 tmp_ratr_value;
1876 u8 curtxbw_40mhz = mac->bw_40;
1877 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1878 1 : 0;
1879 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1880 1 : 0;
1881 enum wireless_mode wirelessmode = mac->mode;
1883 if (rtlhal->current_bandtype == BAND_ON_5G)
1884 ratr_value = sta->supp_rates[1] << 4;
1885 else
1886 ratr_value = sta->supp_rates[0];
1887 ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1888 sta->ht_cap.mcs.rx_mask[0] << 12);
1889 switch (wirelessmode) {
1890 case WIRELESS_MODE_A:
1891 ratr_value &= 0x00000FF0;
1892 break;
1893 case WIRELESS_MODE_B:
1894 if (ratr_value & 0x0000000c)
1895 ratr_value &= 0x0000000d;
1896 else
1897 ratr_value &= 0x0000000f;
1898 break;
1899 case WIRELESS_MODE_G:
1900 ratr_value &= 0x00000FF5;
1901 break;
1902 case WIRELESS_MODE_N_24G:
1903 case WIRELESS_MODE_N_5G:
1904 nmode = 1;
1905 if (mimo_ps == IEEE80211_SMPS_STATIC) {
1906 ratr_value &= 0x0007F005;
1907 } else {
1908 u32 ratr_mask;
1910 if (get_rf_type(rtlphy) == RF_1T2R ||
1911 get_rf_type(rtlphy) == RF_1T1R) {
1912 ratr_mask = 0x000ff005;
1913 } else {
1914 ratr_mask = 0x0f0ff005;
1917 ratr_value &= ratr_mask;
1919 break;
1920 default:
1921 if (rtlphy->rf_type == RF_1T2R)
1922 ratr_value &= 0x000ff0ff;
1923 else
1924 ratr_value &= 0x0f0ff0ff;
1926 break;
1928 ratr_value &= 0x0FFFFFFF;
1929 if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
1930 (!curtxbw_40mhz && curshortgi_20mhz))) {
1931 ratr_value |= 0x10000000;
1932 tmp_ratr_value = (ratr_value >> 12);
1933 for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
1934 if ((1 << shortgi_rate) & tmp_ratr_value)
1935 break;
1937 shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
1938 (shortgi_rate << 4) | (shortgi_rate);
1940 rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1941 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
1942 rtl_read_dword(rtlpriv, REG_ARFR0));
1945 static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
1946 struct ieee80211_sta *sta, u8 rssi_level)
1948 struct rtl_priv *rtlpriv = rtl_priv(hw);
1949 struct rtl_phy *rtlphy = &(rtlpriv->phy);
1950 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1951 struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1952 struct rtl_sta_info *sta_entry = NULL;
1953 u32 ratr_bitmap;
1954 u8 ratr_index;
1955 u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1956 u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1957 1 : 0;
1958 u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1959 1 : 0;
1960 enum wireless_mode wirelessmode = 0;
1961 bool shortgi = false;
1962 u32 value[2];
1963 u8 macid = 0;
1964 u8 mimo_ps = IEEE80211_SMPS_OFF;
1966 sta_entry = (struct rtl_sta_info *) sta->drv_priv;
1967 mimo_ps = sta_entry->mimo_ps;
1968 wirelessmode = sta_entry->wireless_mode;
1969 if (mac->opmode == NL80211_IFTYPE_STATION)
1970 curtxbw_40mhz = mac->bw_40;
1971 else if (mac->opmode == NL80211_IFTYPE_AP ||
1972 mac->opmode == NL80211_IFTYPE_ADHOC)
1973 macid = sta->aid + 1;
1975 if (rtlhal->current_bandtype == BAND_ON_5G)
1976 ratr_bitmap = sta->supp_rates[1] << 4;
1977 else
1978 ratr_bitmap = sta->supp_rates[0];
1979 ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
1980 sta->ht_cap.mcs.rx_mask[0] << 12);
1981 switch (wirelessmode) {
1982 case WIRELESS_MODE_B:
1983 ratr_index = RATR_INX_WIRELESS_B;
1984 if (ratr_bitmap & 0x0000000c)
1985 ratr_bitmap &= 0x0000000d;
1986 else
1987 ratr_bitmap &= 0x0000000f;
1988 break;
1989 case WIRELESS_MODE_G:
1990 ratr_index = RATR_INX_WIRELESS_GB;
1992 if (rssi_level == 1)
1993 ratr_bitmap &= 0x00000f00;
1994 else if (rssi_level == 2)
1995 ratr_bitmap &= 0x00000ff0;
1996 else
1997 ratr_bitmap &= 0x00000ff5;
1998 break;
1999 case WIRELESS_MODE_A:
2000 ratr_index = RATR_INX_WIRELESS_G;
2001 ratr_bitmap &= 0x00000ff0;
2002 break;
2003 case WIRELESS_MODE_N_24G:
2004 case WIRELESS_MODE_N_5G:
2005 if (wirelessmode == WIRELESS_MODE_N_24G)
2006 ratr_index = RATR_INX_WIRELESS_NGB;
2007 else
2008 ratr_index = RATR_INX_WIRELESS_NG;
2009 if (mimo_ps == IEEE80211_SMPS_STATIC) {
2010 if (rssi_level == 1)
2011 ratr_bitmap &= 0x00070000;
2012 else if (rssi_level == 2)
2013 ratr_bitmap &= 0x0007f000;
2014 else
2015 ratr_bitmap &= 0x0007f005;
2016 } else {
2017 if (rtlphy->rf_type == RF_1T2R ||
2018 rtlphy->rf_type == RF_1T1R) {
2019 if (curtxbw_40mhz) {
2020 if (rssi_level == 1)
2021 ratr_bitmap &= 0x000f0000;
2022 else if (rssi_level == 2)
2023 ratr_bitmap &= 0x000ff000;
2024 else
2025 ratr_bitmap &= 0x000ff015;
2026 } else {
2027 if (rssi_level == 1)
2028 ratr_bitmap &= 0x000f0000;
2029 else if (rssi_level == 2)
2030 ratr_bitmap &= 0x000ff000;
2031 else
2032 ratr_bitmap &= 0x000ff005;
2034 } else {
2035 if (curtxbw_40mhz) {
2036 if (rssi_level == 1)
2037 ratr_bitmap &= 0x0f0f0000;
2038 else if (rssi_level == 2)
2039 ratr_bitmap &= 0x0f0ff000;
2040 else
2041 ratr_bitmap &= 0x0f0ff015;
2042 } else {
2043 if (rssi_level == 1)
2044 ratr_bitmap &= 0x0f0f0000;
2045 else if (rssi_level == 2)
2046 ratr_bitmap &= 0x0f0ff000;
2047 else
2048 ratr_bitmap &= 0x0f0ff005;
2052 if ((curtxbw_40mhz && curshortgi_40mhz) ||
2053 (!curtxbw_40mhz && curshortgi_20mhz)) {
2055 if (macid == 0)
2056 shortgi = true;
2057 else if (macid == 1)
2058 shortgi = false;
2060 break;
2061 default:
2062 ratr_index = RATR_INX_WIRELESS_NGB;
2064 if (rtlphy->rf_type == RF_1T2R)
2065 ratr_bitmap &= 0x000ff0ff;
2066 else
2067 ratr_bitmap &= 0x0f0ff0ff;
2068 break;
2071 value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
2072 value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
2073 RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2074 "ratr_bitmap :%x value0:%x value1:%x\n",
2075 ratr_bitmap, value[0], value[1]);
2076 rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
2077 if (macid != 0)
2078 sta_entry->ratr_index = ratr_index;
2081 void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
2082 struct ieee80211_sta *sta, u8 rssi_level)
2084 struct rtl_priv *rtlpriv = rtl_priv(hw);
2086 if (rtlpriv->dm.useramask)
2087 rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
2088 else
2089 rtl92de_update_hal_rate_table(hw, sta);
2092 void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
2094 struct rtl_priv *rtlpriv = rtl_priv(hw);
2095 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2096 u16 sifs_timer;
2098 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2099 &mac->slot_time);
2100 if (!mac->ht_enable)
2101 sifs_timer = 0x0a0a;
2102 else
2103 sifs_timer = 0x1010;
2104 rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2107 bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2109 struct rtl_priv *rtlpriv = rtl_priv(hw);
2110 struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2111 struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2112 enum rf_pwrstate e_rfpowerstate_toset;
2113 u8 u1tmp;
2114 bool actuallyset = false;
2115 unsigned long flag;
2117 if (rtlpci->being_init_adapter)
2118 return false;
2119 if (ppsc->swrf_processing)
2120 return false;
2121 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2122 if (ppsc->rfchange_inprogress) {
2123 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2124 return false;
2125 } else {
2126 ppsc->rfchange_inprogress = true;
2127 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2129 rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
2130 REG_MAC_PINMUX_CFG) & ~(BIT(3)));
2131 u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
2132 e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2133 if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2134 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2135 "GPIOChangeRF - HW Radio ON, RF ON\n");
2136 e_rfpowerstate_toset = ERFON;
2137 ppsc->hwradiooff = false;
2138 actuallyset = true;
2139 } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2140 RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2141 "GPIOChangeRF - HW Radio OFF, RF OFF\n");
2142 e_rfpowerstate_toset = ERFOFF;
2143 ppsc->hwradiooff = true;
2144 actuallyset = true;
2146 if (actuallyset) {
2147 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2148 ppsc->rfchange_inprogress = false;
2149 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2150 } else {
2151 if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
2152 RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2153 spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2154 ppsc->rfchange_inprogress = false;
2155 spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2157 *valid = 1;
2158 return !ppsc->hwradiooff;
2161 void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
2162 u8 *p_macaddr, bool is_group, u8 enc_algo,
2163 bool is_wepkey, bool clear_all)
2165 struct rtl_priv *rtlpriv = rtl_priv(hw);
2166 struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2167 struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2168 u8 *macaddr = p_macaddr;
2169 u32 entry_id;
2170 bool is_pairwise = false;
2171 static u8 cam_const_addr[4][6] = {
2172 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2173 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2174 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2175 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2177 static u8 cam_const_broad[] = {
2178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2181 if (clear_all) {
2182 u8 idx;
2183 u8 cam_offset = 0;
2184 u8 clear_number = 5;
2185 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2186 for (idx = 0; idx < clear_number; idx++) {
2187 rtl_cam_mark_invalid(hw, cam_offset + idx);
2188 rtl_cam_empty_entry(hw, cam_offset + idx);
2190 if (idx < 5) {
2191 memset(rtlpriv->sec.key_buf[idx], 0,
2192 MAX_KEY_LEN);
2193 rtlpriv->sec.key_len[idx] = 0;
2196 } else {
2197 switch (enc_algo) {
2198 case WEP40_ENCRYPTION:
2199 enc_algo = CAM_WEP40;
2200 break;
2201 case WEP104_ENCRYPTION:
2202 enc_algo = CAM_WEP104;
2203 break;
2204 case TKIP_ENCRYPTION:
2205 enc_algo = CAM_TKIP;
2206 break;
2207 case AESCCMP_ENCRYPTION:
2208 enc_algo = CAM_AES;
2209 break;
2210 default:
2211 RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2212 "switch case not processed\n");
2213 enc_algo = CAM_TKIP;
2214 break;
2216 if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2217 macaddr = cam_const_addr[key_index];
2218 entry_id = key_index;
2219 } else {
2220 if (is_group) {
2221 macaddr = cam_const_broad;
2222 entry_id = key_index;
2223 } else {
2224 if (mac->opmode == NL80211_IFTYPE_AP) {
2225 entry_id = rtl_cam_get_free_entry(hw,
2226 p_macaddr);
2227 if (entry_id >= TOTAL_CAM_ENTRY) {
2228 RT_TRACE(rtlpriv, COMP_SEC,
2229 DBG_EMERG,
2230 "Can not find free hw security cam entry\n");
2231 return;
2233 } else {
2234 entry_id = CAM_PAIRWISE_KEY_POSITION;
2236 key_index = PAIRWISE_KEYIDX;
2237 is_pairwise = true;
2240 if (rtlpriv->sec.key_len[key_index] == 0) {
2241 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2242 "delete one entry, entry_id is %d\n",
2243 entry_id);
2244 if (mac->opmode == NL80211_IFTYPE_AP)
2245 rtl_cam_del_entry(hw, p_macaddr);
2246 rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2247 } else {
2248 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2249 "The insert KEY length is %d\n",
2250 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2251 RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2252 "The insert KEY is %x %x\n",
2253 rtlpriv->sec.key_buf[0][0],
2254 rtlpriv->sec.key_buf[0][1]);
2255 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2256 "add one entry\n");
2257 if (is_pairwise) {
2258 RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2259 "Pairwise Key content",
2260 rtlpriv->sec.pairwise_key,
2261 rtlpriv->
2262 sec.key_len[PAIRWISE_KEYIDX]);
2263 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2264 "set Pairwise key\n");
2265 rtl_cam_add_one_entry(hw, macaddr, key_index,
2266 entry_id, enc_algo,
2267 CAM_CONFIG_NO_USEDK,
2268 rtlpriv->
2269 sec.key_buf[key_index]);
2270 } else {
2271 RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2272 "set group key\n");
2273 if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2274 rtl_cam_add_one_entry(hw,
2275 rtlefuse->dev_addr,
2276 PAIRWISE_KEYIDX,
2277 CAM_PAIRWISE_KEY_POSITION,
2278 enc_algo, CAM_CONFIG_NO_USEDK,
2279 rtlpriv->sec.key_buf[entry_id]);
2281 rtl_cam_add_one_entry(hw, macaddr, key_index,
2282 entry_id, enc_algo,
2283 CAM_CONFIG_NO_USEDK,
2284 rtlpriv->sec.key_buf
2285 [entry_id]);
2291 void rtl92de_suspend(struct ieee80211_hw *hw)
2293 struct rtl_priv *rtlpriv = rtl_priv(hw);
2295 rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
2296 REG_MAC_PHY_CTRL_NORMAL);
2299 void rtl92de_resume(struct ieee80211_hw *hw)
2301 struct rtl_priv *rtlpriv = rtl_priv(hw);
2303 rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
2304 rtlpriv->rtlhal.macphyctl_reg);