1 /******************************************************************************
3 * Copyright(c) 2009-2012 Realtek Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
26 * Larry Finger <Larry.Finger@lwfinger.net>
28 *****************************************************************************/
45 void rtl92se_get_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
47 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
48 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
49 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
53 *((u32
*) (val
)) = rtlpci
->receive_config
;
56 case HW_VAR_RF_STATE
: {
57 *((enum rf_pwrstate
*)(val
)) = ppsc
->rfpwr_state
;
60 case HW_VAR_FW_PSMODE_STATUS
: {
61 *((bool *) (val
)) = ppsc
->fw_current_inpsmode
;
64 case HW_VAR_CORRECT_TSF
: {
66 u32
*ptsf_low
= (u32
*)&tsf
;
67 u32
*ptsf_high
= ((u32
*)&tsf
) + 1;
69 *ptsf_high
= rtl_read_dword(rtlpriv
, (TSFR
+ 4));
70 *ptsf_low
= rtl_read_dword(rtlpriv
, TSFR
);
72 *((u64
*) (val
)) = tsf
;
77 *((bool *)(val
)) = rtlpriv
->dm
.current_mrc_switch
;
81 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
82 "switch case not processed\n");
88 void rtl92se_set_hw_reg(struct ieee80211_hw
*hw
, u8 variable
, u8
*val
)
90 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
91 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
92 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
93 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
94 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
95 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
98 case HW_VAR_ETHER_ADDR
:{
99 rtl_write_dword(rtlpriv
, IDR0
, ((u32
*)(val
))[0]);
100 rtl_write_word(rtlpriv
, IDR4
, ((u16
*)(val
+ 4))[0]);
103 case HW_VAR_BASIC_RATE
:{
104 u16 rate_cfg
= ((u16
*) val
)[0];
107 if (rtlhal
->version
== VERSION_8192S_ACUT
)
108 rate_cfg
= rate_cfg
& 0x150;
110 rate_cfg
= rate_cfg
& 0x15f;
114 rtl_write_byte(rtlpriv
, RRSR
, rate_cfg
& 0xff);
115 rtl_write_byte(rtlpriv
, RRSR
+ 1,
116 (rate_cfg
>> 8) & 0xff);
118 while (rate_cfg
> 0x1) {
119 rate_cfg
= (rate_cfg
>> 1);
122 rtl_write_byte(rtlpriv
, INIRTSMCS_SEL
, rate_index
);
127 rtl_write_dword(rtlpriv
, BSSIDR
, ((u32
*)(val
))[0]);
128 rtl_write_word(rtlpriv
, BSSIDR
+ 4,
129 ((u16
*)(val
+ 4))[0]);
133 rtl_write_byte(rtlpriv
, SIFS_OFDM
, val
[0]);
134 rtl_write_byte(rtlpriv
, SIFS_OFDM
+ 1, val
[1]);
137 case HW_VAR_SLOT_TIME
:{
140 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
141 "HW_VAR_SLOT_TIME %x\n", val
[0]);
143 rtl_write_byte(rtlpriv
, SLOT_TIME
, val
[0]);
145 for (e_aci
= 0; e_aci
< AC_MAX
; e_aci
++) {
146 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
152 case HW_VAR_ACK_PREAMBLE
:{
154 u8 short_preamble
= (bool) (*val
);
155 reg_tmp
= (mac
->cur_40_prime_sc
) << 5;
159 rtl_write_byte(rtlpriv
, RRSR
+ 2, reg_tmp
);
162 case HW_VAR_AMPDU_MIN_SPACE
:{
163 u8 min_spacing_to_set
;
166 min_spacing_to_set
= *val
;
167 if (min_spacing_to_set
<= 7) {
168 if (rtlpriv
->sec
.pairwise_enc_algorithm
==
174 if (min_spacing_to_set
< sec_min_space
)
175 min_spacing_to_set
= sec_min_space
;
176 if (min_spacing_to_set
> 5)
177 min_spacing_to_set
= 5;
180 ((mac
->min_space_cfg
& 0xf8) |
183 *val
= min_spacing_to_set
;
185 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
186 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
189 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
194 case HW_VAR_SHORTGI_DENSITY
:{
197 density_to_set
= *val
;
198 mac
->min_space_cfg
= rtlpriv
->rtlhal
.minspace_cfg
;
199 mac
->min_space_cfg
|= (density_to_set
<< 3);
201 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
202 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
205 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
,
210 case HW_VAR_AMPDU_FACTOR
:{
213 u8 factorlevel
[18] = {
214 2, 4, 4, 7, 7, 13, 13,
220 if (factor_toset
<= 3) {
221 factor_toset
= (1 << (factor_toset
+ 2));
222 if (factor_toset
> 0xf)
225 for (index
= 0; index
< 17; index
++) {
226 if (factorlevel
[index
] > factor_toset
)
231 for (index
= 0; index
< 8; index
++) {
232 regtoset
= ((factorlevel
[index
* 2]) |
235 rtl_write_byte(rtlpriv
,
236 AGGLEN_LMT_L
+ index
,
240 regtoset
= ((factorlevel
[16]) |
241 (factorlevel
[17] << 4));
242 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, regtoset
);
244 RT_TRACE(rtlpriv
, COMP_MLME
, DBG_LOUD
,
245 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
250 case HW_VAR_AC_PARAM
:{
252 rtl92s_dm_init_edca_turbo(hw
);
254 if (rtlpci
->acm_method
!= eAcmWay2_SW
)
255 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
260 case HW_VAR_ACM_CTRL
:{
262 union aci_aifsn
*p_aci_aifsn
= (union aci_aifsn
*)(&(
264 u8 acm
= p_aci_aifsn
->f
.acm
;
265 u8 acm_ctrl
= rtl_read_byte(rtlpriv
, AcmHwCtrl
);
267 acm_ctrl
= acm_ctrl
| ((rtlpci
->acm_method
== 2) ?
273 acm_ctrl
|= AcmHw_BeqEn
;
276 acm_ctrl
|= AcmHw_ViqEn
;
279 acm_ctrl
|= AcmHw_VoqEn
;
282 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
283 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
290 acm_ctrl
&= (~AcmHw_BeqEn
);
293 acm_ctrl
&= (~AcmHw_ViqEn
);
296 acm_ctrl
&= (~AcmHw_BeqEn
);
299 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
300 "switch case not processed\n");
305 RT_TRACE(rtlpriv
, COMP_QOS
, DBG_TRACE
,
306 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl
);
307 rtl_write_byte(rtlpriv
, AcmHwCtrl
, acm_ctrl
);
311 rtl_write_dword(rtlpriv
, RCR
, ((u32
*) (val
))[0]);
312 rtlpci
->receive_config
= ((u32
*) (val
))[0];
315 case HW_VAR_RETRY_LIMIT
:{
316 u8 retry_limit
= val
[0];
318 rtl_write_word(rtlpriv
, RETRY_LIMIT
,
319 retry_limit
<< RETRY_LIMIT_SHORT_SHIFT
|
320 retry_limit
<< RETRY_LIMIT_LONG_SHIFT
);
323 case HW_VAR_DUAL_TSF_RST
: {
326 case HW_VAR_EFUSE_BYTES
: {
327 rtlefuse
->efuse_usedbytes
= *((u16
*) val
);
330 case HW_VAR_EFUSE_USAGE
: {
331 rtlefuse
->efuse_usedpercentage
= *val
;
334 case HW_VAR_IO_CMD
: {
337 case HW_VAR_WPA_CONFIG
: {
338 rtl_write_byte(rtlpriv
, REG_SECR
, *val
);
341 case HW_VAR_SET_RPWM
:{
344 case HW_VAR_H2C_FW_PWRMODE
:{
347 case HW_VAR_FW_PSMODE_STATUS
: {
348 ppsc
->fw_current_inpsmode
= *((bool *) val
);
351 case HW_VAR_H2C_FW_JOINBSSRPT
:{
357 case HW_VAR_CORRECT_TSF
:{
361 bool bmrc_toset
= *((bool *)val
);
365 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
367 u1bdata
= (u8
)rtl_get_bbreg(hw
,
368 ROFDM1_TRXPATHENABLE
,
370 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
372 ((u1bdata
& 0xf0) | 0x03));
373 u1bdata
= (u8
)rtl_get_bbreg(hw
,
374 ROFDM0_TRXPATHENABLE
,
376 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
380 /* Update current settings. */
381 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
383 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
385 u1bdata
= (u8
)rtl_get_bbreg(hw
,
386 ROFDM1_TRXPATHENABLE
,
388 rtl_set_bbreg(hw
, ROFDM1_TRXPATHENABLE
,
390 ((u1bdata
& 0xf0) | 0x01));
391 u1bdata
= (u8
)rtl_get_bbreg(hw
,
392 ROFDM0_TRXPATHENABLE
,
394 rtl_set_bbreg(hw
, ROFDM0_TRXPATHENABLE
,
395 MASKBYTE1
, (u1bdata
& 0xfb));
397 /* Update current settings. */
398 rtlpriv
->dm
.current_mrc_switch
= bmrc_toset
;
403 case HW_VAR_FW_LPS_ACTION
: {
404 bool enter_fwlps
= *((bool *)val
);
405 u8 rpwm_val
, fw_pwrmode
;
406 bool fw_current_inps
;
409 rpwm_val
= 0x02; /* RF off */
410 fw_current_inps
= true;
411 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
412 HW_VAR_FW_PSMODE_STATUS
,
413 (u8
*)(&fw_current_inps
));
414 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
415 HW_VAR_H2C_FW_PWRMODE
,
416 (u8
*)(&ppsc
->fwctrl_psmode
));
418 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
422 rpwm_val
= 0x0C; /* RF on */
423 fw_pwrmode
= FW_PS_ACTIVE_MODE
;
424 fw_current_inps
= false;
425 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SET_RPWM
,
427 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
428 HW_VAR_H2C_FW_PWRMODE
,
429 (u8
*)(&fw_pwrmode
));
431 rtlpriv
->cfg
->ops
->set_hw_reg(hw
,
432 HW_VAR_FW_PSMODE_STATUS
,
433 (u8
*)(&fw_current_inps
));
437 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
438 "switch case not processed\n");
444 void rtl92se_enable_hw_security_config(struct ieee80211_hw
*hw
)
446 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
447 u8 sec_reg_value
= 0x0;
449 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
450 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
451 rtlpriv
->sec
.pairwise_enc_algorithm
,
452 rtlpriv
->sec
.group_enc_algorithm
);
454 if (rtlpriv
->cfg
->mod_params
->sw_crypto
|| rtlpriv
->sec
.use_sw_sec
) {
455 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
456 "not open hw encryption\n");
460 sec_reg_value
= SCR_TXENCENABLE
| SCR_RXENCENABLE
;
462 if (rtlpriv
->sec
.use_defaultkey
) {
463 sec_reg_value
|= SCR_TXUSEDK
;
464 sec_reg_value
|= SCR_RXUSEDK
;
467 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_LOUD
, "The SECR-value %x\n",
470 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_WPA_CONFIG
, &sec_reg_value
);
474 static u8
_rtl92se_halset_sysclk(struct ieee80211_hw
*hw
, u8 data
)
476 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
478 bool bresult
= false;
481 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
483 /* Wait the MAC synchronized. */
486 /* Check if it is set ready. */
487 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
488 bresult
= ((tmpvalue
& BIT(7)) == (data
& BIT(7)));
490 if ((data
& (BIT(6) | BIT(7))) == false) {
497 tmpvalue
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
498 if ((tmpvalue
& BIT(6)))
501 pr_err("wait for BIT(6) return value %x\n", tmpvalue
);
517 void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw
*hw
)
519 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
522 /* The following config GPIO function */
523 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
524 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
526 /* config GPIO3 to input */
527 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
528 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
532 static u8
_rtl92se_rf_onoff_detect(struct ieee80211_hw
*hw
)
534 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
538 /* The following config GPIO function */
539 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, (GPIOMUX_EN
| GPIOSEL_GPIO
));
540 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IO_SEL
);
542 /* config GPIO3 to input */
543 u1tmp
&= HAL_8192S_HW_GPIO_OFF_MASK
;
544 rtl_write_byte(rtlpriv
, GPIO_IO_SEL
, u1tmp
);
546 /* On some of the platform, driver cannot read correct
547 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
551 u1tmp
= rtl_read_byte(rtlpriv
, GPIO_IN_SE
);
552 retval
= (u1tmp
& HAL_8192S_HW_GPIO_OFF_BIT
) ? ERFON
: ERFOFF
;
557 static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw
*hw
)
559 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
560 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
561 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
568 if (rtlpci
->first_init
) {
569 /* Reset PCIE Digital */
570 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
572 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
574 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
| BIT(0));
577 /* Switch to SW IO control */
578 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
579 if (tmpu1b
& BIT(7)) {
580 tmpu1b
&= ~(BIT(6) | BIT(7));
582 /* Set failed, return to prevent hang. */
583 if (!_rtl92se_halset_sysclk(hw
, tmpu1b
))
587 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
589 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
592 /* Clear FW RPWM for FW control LPS.*/
593 rtl_write_byte(rtlpriv
, RPWM
, 0x0);
595 /* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
596 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
598 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
599 /* wait for BIT 10/11/15 to pull high automatically!! */
602 rtl_write_byte(rtlpriv
, CMDR
, 0);
603 rtl_write_byte(rtlpriv
, TCR
, 0);
605 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
606 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
608 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
610 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
612 /* Enable AFE clock source */
613 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
614 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
617 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
618 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
620 /* Enable AFE Macro Block's Bandgap */
621 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
622 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
625 /* Enable AFE Mbias */
626 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
627 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
630 /* Enable LDOA15 block */
631 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
632 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
634 /* Set Digital Vdd to Retention isolation Path. */
635 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_ISO_CTRL
);
636 rtl_write_word(rtlpriv
, REG_SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
638 /* For warm reboot NIC disappera bug. */
639 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
640 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
642 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x68);
644 /* Enable AFE PLL Macro Block */
645 /* We need to delay 100u before enabling PLL. */
647 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
648 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
650 /* for divider reset */
652 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) |
655 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
658 /* Enable MAC 80MHZ clock */
659 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
660 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
663 /* Release isolation AFE PLL & MD */
664 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, 0xA6);
666 /* Enable MAC clock */
667 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
668 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
670 /* Enable Core digital and enable IOREG R/W */
671 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
672 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
674 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
675 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
& ~(BIT(7)));
678 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
680 /* Switch the control path. */
681 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
682 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
684 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
685 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
686 if (!_rtl92se_halset_sysclk(hw
, tmpu1b
))
687 return; /* Set failed, return to prevent hang. */
689 rtl_write_word(rtlpriv
, CMDR
, 0x07FC);
691 /* MH We must enable the section of code to prevent load IMEM fail. */
692 /* Load MAC register from WMAc temporarily We simulate macreg. */
693 /* txt HW will provide MAC txt later */
694 rtl_write_byte(rtlpriv
, 0x6, 0x30);
695 rtl_write_byte(rtlpriv
, 0x49, 0xf0);
697 rtl_write_byte(rtlpriv
, 0x4b, 0x81);
699 rtl_write_byte(rtlpriv
, 0xb5, 0x21);
701 rtl_write_byte(rtlpriv
, 0xdc, 0xff);
702 rtl_write_byte(rtlpriv
, 0xdd, 0xff);
703 rtl_write_byte(rtlpriv
, 0xde, 0xff);
704 rtl_write_byte(rtlpriv
, 0xdf, 0xff);
706 rtl_write_byte(rtlpriv
, 0x11a, 0x00);
707 rtl_write_byte(rtlpriv
, 0x11b, 0x00);
709 for (i
= 0; i
< 32; i
++)
710 rtl_write_byte(rtlpriv
, INIMCS_SEL
+ i
, 0x1b);
712 rtl_write_byte(rtlpriv
, 0x236, 0xff);
714 rtl_write_byte(rtlpriv
, 0x503, 0x22);
716 if (ppsc
->support_aspm
&& !ppsc
->support_backdoor
)
717 rtl_write_byte(rtlpriv
, 0x560, 0x40);
719 rtl_write_byte(rtlpriv
, 0x560, 0x00);
721 rtl_write_byte(rtlpriv
, DBG_PORT
, 0x91);
723 /* Set RX Desc Address */
724 rtl_write_dword(rtlpriv
, RDQDA
, rtlpci
->rx_ring
[RX_MPDU_QUEUE
].dma
);
725 rtl_write_dword(rtlpriv
, RCDA
, rtlpci
->rx_ring
[RX_CMD_QUEUE
].dma
);
727 /* Set TX Desc Address */
728 rtl_write_dword(rtlpriv
, TBKDA
, rtlpci
->tx_ring
[BK_QUEUE
].dma
);
729 rtl_write_dword(rtlpriv
, TBEDA
, rtlpci
->tx_ring
[BE_QUEUE
].dma
);
730 rtl_write_dword(rtlpriv
, TVIDA
, rtlpci
->tx_ring
[VI_QUEUE
].dma
);
731 rtl_write_dword(rtlpriv
, TVODA
, rtlpci
->tx_ring
[VO_QUEUE
].dma
);
732 rtl_write_dword(rtlpriv
, TBDA
, rtlpci
->tx_ring
[BEACON_QUEUE
].dma
);
733 rtl_write_dword(rtlpriv
, TCDA
, rtlpci
->tx_ring
[TXCMD_QUEUE
].dma
);
734 rtl_write_dword(rtlpriv
, TMDA
, rtlpci
->tx_ring
[MGNT_QUEUE
].dma
);
735 rtl_write_dword(rtlpriv
, THPDA
, rtlpci
->tx_ring
[HIGH_QUEUE
].dma
);
736 rtl_write_dword(rtlpriv
, HDA
, rtlpci
->tx_ring
[HCCA_QUEUE
].dma
);
738 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
740 /* To make sure that TxDMA can ready to download FW. */
741 /* We should reset TxDMA if IMEM RPT was not ready. */
743 tmpu1b
= rtl_read_byte(rtlpriv
, TCR
);
744 if ((tmpu1b
& TXDMA_INIT_VALUE
) == TXDMA_INIT_VALUE
)
748 } while (pollingcnt
--);
750 if (pollingcnt
<= 0) {
751 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
752 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
754 tmpu1b
= rtl_read_byte(rtlpriv
, CMDR
);
755 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
& (~TXDMA_EN
));
758 rtl_write_byte(rtlpriv
, CMDR
, tmpu1b
| TXDMA_EN
);
761 /* After MACIO reset,we must refresh LED state. */
762 if ((ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
) ||
763 (ppsc
->rfoff_reason
== 0)) {
764 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
765 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
766 enum rf_pwrstate rfpwr_state_toset
;
767 rfpwr_state_toset
= _rtl92se_rf_onoff_detect(hw
);
769 if (rfpwr_state_toset
== ERFON
)
770 rtl92se_sw_led_on(hw
, pLed0
);
774 static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw
*hw
)
776 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
777 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
778 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
779 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
783 /* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
785 /* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
786 /* Turn on 0x40 Command register */
787 rtl_write_word(rtlpriv
, CMDR
, (BBRSTN
| BB_GLB_RSTN
|
788 SCHEDULE_EN
| MACRXEN
| MACTXEN
| DDMA_EN
| FW2HW_EN
|
789 RXDMA_EN
| TXDMA_EN
| HCI_RXDMA_EN
| HCI_TXDMA_EN
));
791 /* Set TCR TX DMA pre 2 FULL enable bit */
792 rtl_write_dword(rtlpriv
, TCR
, rtl_read_dword(rtlpriv
, TCR
) |
796 rtl_write_dword(rtlpriv
, RCR
, rtlpci
->receive_config
);
798 /* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
800 /* 4. Timing Control Register (Offset: 0x0080 - 0x009F) */
801 /* Set CCK/OFDM SIFS */
802 /* CCK SIFS shall always be 10us. */
803 rtl_write_word(rtlpriv
, SIFS_CCK
, 0x0a0a);
804 rtl_write_word(rtlpriv
, SIFS_OFDM
, 0x1010);
807 rtl_write_byte(rtlpriv
, ACK_TIMEOUT
, 0x40);
810 rtl_write_word(rtlpriv
, BCN_INTERVAL
, 100);
811 rtl_write_word(rtlpriv
, ATIMWND
, 2);
813 /* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
814 /* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
815 /* Firmware allocate now, associate with FW internal setting.!!! */
817 /* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
818 /* 5.3 Set driver info, we only accept PHY status now. */
819 /* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO */
820 rtl_write_byte(rtlpriv
, RXDMA
, rtl_read_byte(rtlpriv
, RXDMA
) | BIT(6));
822 /* 6. Adaptive Control Register (Offset: 0x0160 - 0x01CF) */
823 /* Set RRSR to all legacy rate and HT rate
824 * CCK rate is supported by default.
825 * CCK rate will be filtered out only when associated
826 * AP does not support it.
827 * Only enable ACK rate to OFDM 24M
828 * Disable RRSR for CCK rate in A-Cut */
830 if (rtlhal
->version
== VERSION_8192S_ACUT
)
831 rtl_write_byte(rtlpriv
, RRSR
, 0xf0);
832 else if (rtlhal
->version
== VERSION_8192S_BCUT
)
833 rtl_write_byte(rtlpriv
, RRSR
, 0xff);
834 rtl_write_byte(rtlpriv
, RRSR
+ 1, 0x01);
835 rtl_write_byte(rtlpriv
, RRSR
+ 2, 0x00);
837 /* A-Cut IC do not support CCK rate. We forbid ARFR to */
838 /* fallback to CCK rate */
839 for (i
= 0; i
< 8; i
++) {
840 /*Disable RRSR for CCK rate in A-Cut */
841 if (rtlhal
->version
== VERSION_8192S_ACUT
)
842 rtl_write_dword(rtlpriv
, ARFR0
+ i
* 4, 0x1f0ff0f0);
845 /* Different rate use different AMPDU size */
846 /* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
847 rtl_write_byte(rtlpriv
, AGGLEN_LMT_H
, 0x0f);
848 /* MCS0/1/2/3 use max AMPDU size 4*2=8K */
849 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
, 0x7442);
850 /* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
851 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 2, 0xddd7);
852 /* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
853 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 4, 0xd772);
854 /* MCS12/13/14/15 use max AMPDU size 15*2=30K */
855 rtl_write_word(rtlpriv
, AGGLEN_LMT_L
+ 6, 0xfffd);
857 /* Set Data / Response auto rate fallack retry count */
858 rtl_write_dword(rtlpriv
, DARFRC
, 0x04010000);
859 rtl_write_dword(rtlpriv
, DARFRC
+ 4, 0x09070605);
860 rtl_write_dword(rtlpriv
, RARFRC
, 0x04010000);
861 rtl_write_dword(rtlpriv
, RARFRC
+ 4, 0x09070605);
863 /* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
864 /* Set all rate to support SG */
865 rtl_write_word(rtlpriv
, SG_RATE
, 0xFFFF);
867 /* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
868 /* Set NAV protection length */
869 rtl_write_word(rtlpriv
, NAV_PROT_LEN
, 0x0080);
870 /* CF-END Threshold */
871 rtl_write_byte(rtlpriv
, CFEND_TH
, 0xFF);
872 /* Set AMPDU minimum space */
873 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, 0x07);
874 /* Set TXOP stall control for several queue/HI/BCN/MGT/ */
875 rtl_write_byte(rtlpriv
, TXOP_STALL_CTRL
, 0x00);
877 /* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
878 /* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
879 /* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
880 /* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
881 /* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
883 /* 14. Set driver info, we only accept PHY status now. */
884 rtl_write_byte(rtlpriv
, RXDRVINFO_SZ
, 4);
886 /* 15. For EEPROM R/W Workaround */
887 /* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
888 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
);
889 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
, tmpu2b
| BIT(13));
890 tmpu2b
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
);
891 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, tmpu2b
& (~BIT(8)));
894 /* We may R/W EFUSE in EEPROM mode */
895 if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
898 tempval
= rtl_read_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1);
900 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, tempval
);
902 /* Change Program timing */
903 rtl_write_byte(rtlpriv
, REG_EFUSE_CTRL
+ 3, 0x72);
904 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "EFUSE CONFIG OK\n");
907 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "OK\n");
911 static void _rtl92se_hw_configure(struct ieee80211_hw
*hw
)
913 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
914 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
915 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
916 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
918 u8 reg_bw_opmode
= 0;
922 reg_bw_opmode
= BW_OPMODE_20MHZ
;
923 reg_rrsr
= RATE_ALL_CCK
| RATE_ALL_OFDM_AG
;
925 regtmp
= rtl_read_byte(rtlpriv
, INIRTSMCS_SEL
);
926 reg_rrsr
= ((reg_rrsr
& 0x000fffff) << 8) | regtmp
;
927 rtl_write_dword(rtlpriv
, INIRTSMCS_SEL
, reg_rrsr
);
928 rtl_write_byte(rtlpriv
, BW_OPMODE
, reg_bw_opmode
);
930 /* Set Retry Limit here */
931 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RETRY_LIMIT
,
932 (u8
*)(&rtlpci
->shortretry_limit
));
934 rtl_write_byte(rtlpriv
, MLT
, 0x8f);
936 /* For Min Spacing configuration. */
937 switch (rtlphy
->rf_type
) {
940 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_1T
<< 3);
944 rtlhal
->minspace_cfg
= (MAX_MSS_DENSITY_2T
<< 3);
947 rtl_write_byte(rtlpriv
, AMPDU_MIN_SPACE
, rtlhal
->minspace_cfg
);
950 int rtl92se_hw_init(struct ieee80211_hw
*hw
)
952 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
953 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
954 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
955 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
956 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
959 bool rtstatus
= true;
963 int wdcapra_add
[] = {
964 EDCAPARA_BE
, EDCAPARA_BK
,
965 EDCAPARA_VI
, EDCAPARA_VO
};
968 rtlpci
->being_init_adapter
= true;
970 rtlpriv
->intf_ops
->disable_aspm(hw
);
972 /* 1. MAC Initialize */
973 /* Before FW download, we have to set some MAC register */
974 _rtl92se_macconfig_before_fwdownload(hw
);
976 rtlhal
->version
= (enum version_8192s
)((rtl_read_dword(rtlpriv
,
977 PMC_FSM
) >> 16) & 0xF);
979 rtl8192se_gpiobit3_cfg_inputmode(hw
);
981 /* 2. download firmware */
982 rtstatus
= rtl92s_download_fw(hw
);
984 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
985 "Failed to download FW. Init HW without FW now... "
986 "Please copy FW into /lib/firmware/rtlwifi\n");
990 /* After FW download, we have to reset MAC register */
991 _rtl92se_macconfig_after_fwdownload(hw
);
993 /*Retrieve default FW Cmd IO map. */
994 rtlhal
->fwcmd_iomap
= rtl_read_word(rtlpriv
, LBUS_MON_ADDR
);
995 rtlhal
->fwcmd_ioparam
= rtl_read_dword(rtlpriv
, LBUS_ADDR_MASK
);
997 /* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
998 if (!rtl92s_phy_mac_config(hw
)) {
999 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, "MAC Config failed\n");
1003 /* because last function modify RCR, so we update
1004 * rcr var here, or TP will unstable for receive_config
1005 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1006 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1008 rtlpci
->receive_config
= rtl_read_dword(rtlpriv
, RCR
);
1009 rtlpci
->receive_config
&= ~(RCR_ACRC32
| RCR_AICV
);
1010 rtl_write_dword(rtlpriv
, RCR
, rtlpci
->receive_config
);
1012 /* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1013 /* We must set flag avoid BB/RF config period later!! */
1014 rtl_write_dword(rtlpriv
, CMDR
, 0x37FC);
1016 /* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1017 if (!rtl92s_phy_bb_config(hw
)) {
1018 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_EMERG
, "BB Config failed\n");
1022 /* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1023 /* Before initalizing RF. We can not use FW to do RF-R/W. */
1025 rtlphy
->rf_mode
= RF_OP_BY_SW_3WIRE
;
1027 /* Before RF-R/W we must execute the IO from Scott's suggestion. */
1028 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, 0xDB);
1029 if (rtlhal
->version
== VERSION_8192S_ACUT
)
1030 rtl_write_byte(rtlpriv
, SPS1_CTRL
+ 3, 0x07);
1032 rtl_write_byte(rtlpriv
, RF_CTRL
, 0x07);
1034 if (!rtl92s_phy_rf_config(hw
)) {
1035 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "RF Config failed\n");
1039 /* After read predefined TXT, we must set BB/MAC/RF
1040 * register as our requirement */
1042 rtlphy
->rfreg_chnlval
[0] = rtl92s_phy_query_rf_reg(hw
,
1046 rtlphy
->rfreg_chnlval
[1] = rtl92s_phy_query_rf_reg(hw
,
1051 /*---- Set CCK and OFDM Block "ON"----*/
1052 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BCCKEN
, 0x1);
1053 rtl_set_bbreg(hw
, RFPGA0_RFMOD
, BOFDMEN
, 0x1);
1055 /*3 Set Hardware(Do nothing now) */
1056 _rtl92se_hw_configure(hw
);
1058 /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1059 /* TX power index for different rate set. */
1060 /* Get original hw reg values */
1061 rtl92s_phy_get_hw_reg_originalvalue(hw
);
1062 /* Write correct tx power index */
1063 rtl92s_phy_set_txpower(hw
, rtlphy
->current_channel
);
1065 /* We must set MAC address after firmware download. */
1066 for (i
= 0; i
< 6; i
++)
1067 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1069 /* EEPROM R/W workaround */
1070 tmp_u1b
= rtl_read_byte(rtlpriv
, MAC_PINMUX_CFG
);
1071 rtl_write_byte(rtlpriv
, MAC_PINMUX_CFG
, tmp_u1b
& (~BIT(3)));
1073 rtl_write_byte(rtlpriv
, 0x4d, 0x0);
1075 if (hal_get_firmwareversion(rtlpriv
) >= 0x49) {
1076 tmp_byte
= rtl_read_byte(rtlpriv
, FW_RSVD_PG_CRTL
) & (~BIT(4));
1077 tmp_byte
= tmp_byte
| BIT(5);
1078 rtl_write_byte(rtlpriv
, FW_RSVD_PG_CRTL
, tmp_byte
);
1079 rtl_write_dword(rtlpriv
, TXDESC_MSK
, 0xFFFFCFFF);
1082 /* We enable high power and RA related mechanism after NIC
1084 if (hal_get_firmwareversion(rtlpriv
) >= 0x35) {
1085 /* Fw v.53 and later. */
1086 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_INIT
);
1087 } else if (hal_get_firmwareversion(rtlpriv
) == 0x34) {
1089 rtl_write_dword(rtlpriv
, WFM5
, FW_RA_INIT
);
1090 rtl92s_phy_chk_fwcmd_iodone(hw
);
1092 /* Compatible earlier FW version. */
1093 rtl_write_dword(rtlpriv
, WFM5
, FW_RA_RESET
);
1094 rtl92s_phy_chk_fwcmd_iodone(hw
);
1095 rtl_write_dword(rtlpriv
, WFM5
, FW_RA_ACTIVE
);
1096 rtl92s_phy_chk_fwcmd_iodone(hw
);
1097 rtl_write_dword(rtlpriv
, WFM5
, FW_RA_REFRESH
);
1098 rtl92s_phy_chk_fwcmd_iodone(hw
);
1101 /* Add to prevent ASPM bug. */
1102 /* Always enable hst and NIC clock request. */
1103 rtl92s_phy_switch_ephy_parameter(hw
);
1106 * 1. Clear all H/W keys.
1107 * 2. Enable H/W encryption/decryption. */
1108 rtl_cam_reset_all_entry(hw
);
1109 secr_value
|= SCR_TXENCENABLE
;
1110 secr_value
|= SCR_RXENCENABLE
;
1111 secr_value
|= SCR_NOSKMC
;
1112 rtl_write_byte(rtlpriv
, REG_SECR
, secr_value
);
1114 for (i
= 0; i
< 4; i
++)
1115 rtl_write_dword(rtlpriv
, wdcapra_add
[i
], 0x5e4322);
1117 if (rtlphy
->rf_type
== RF_1T2R
) {
1118 bool mrc2set
= true;
1119 /* Turn on B-Path */
1120 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_MRC
, (u8
*)&mrc2set
);
1123 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_ON
);
1125 rtlpci
->being_init_adapter
= false;
1130 void rtl92se_set_mac_addr(struct rtl_io
*io
, const u8
*addr
)
1132 /* This is a stub. */
1135 void rtl92se_set_check_bssid(struct ieee80211_hw
*hw
, bool check_bssid
)
1137 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1138 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1139 u32 reg_rcr
= rtlpci
->receive_config
;
1141 if (rtlpriv
->psc
.rfpwr_state
!= ERFON
)
1145 reg_rcr
|= (RCR_CBSSID
);
1146 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1147 } else if (!check_bssid
) {
1148 reg_rcr
&= (~RCR_CBSSID
);
1149 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_RCR
, (u8
*)(®_rcr
));
1154 static int _rtl92se_set_media_status(struct ieee80211_hw
*hw
,
1155 enum nl80211_iftype type
)
1157 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1158 u8 bt_msr
= rtl_read_byte(rtlpriv
, MSR
);
1160 bt_msr
&= ~MSR_LINK_MASK
;
1163 case NL80211_IFTYPE_UNSPECIFIED
:
1164 bt_msr
|= (MSR_LINK_NONE
<< MSR_LINK_SHIFT
);
1165 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1166 "Set Network type to NO LINK!\n");
1168 case NL80211_IFTYPE_ADHOC
:
1169 bt_msr
|= (MSR_LINK_ADHOC
<< MSR_LINK_SHIFT
);
1170 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1171 "Set Network type to Ad Hoc!\n");
1173 case NL80211_IFTYPE_STATION
:
1174 bt_msr
|= (MSR_LINK_MANAGED
<< MSR_LINK_SHIFT
);
1175 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1176 "Set Network type to STA!\n");
1178 case NL80211_IFTYPE_AP
:
1179 bt_msr
|= (MSR_LINK_MASTER
<< MSR_LINK_SHIFT
);
1180 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_TRACE
,
1181 "Set Network type to AP!\n");
1184 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1185 "Network type %d not supported!\n", type
);
1191 rtl_write_byte(rtlpriv
, (MSR
), bt_msr
);
1193 temp
= rtl_read_dword(rtlpriv
, TCR
);
1194 rtl_write_dword(rtlpriv
, TCR
, temp
& (~BIT(8)));
1195 rtl_write_dword(rtlpriv
, TCR
, temp
| BIT(8));
1201 /* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1202 int rtl92se_set_network_type(struct ieee80211_hw
*hw
, enum nl80211_iftype type
)
1204 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1206 if (_rtl92se_set_media_status(hw
, type
))
1209 if (rtlpriv
->mac80211
.link_state
== MAC80211_LINKED
) {
1210 if (type
!= NL80211_IFTYPE_AP
)
1211 rtl92se_set_check_bssid(hw
, true);
1213 rtl92se_set_check_bssid(hw
, false);
1219 /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1220 void rtl92se_set_qos(struct ieee80211_hw
*hw
, int aci
)
1222 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1223 rtl92s_dm_init_edca_turbo(hw
);
1227 rtl_write_dword(rtlpriv
, EDCAPARA_BK
, 0xa44f);
1230 /* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1233 rtl_write_dword(rtlpriv
, EDCAPARA_VI
, 0x5e4322);
1236 rtl_write_dword(rtlpriv
, EDCAPARA_VO
, 0x2f3222);
1239 RT_ASSERT(false, "invalid aci: %d !\n", aci
);
1244 void rtl92se_enable_interrupt(struct ieee80211_hw
*hw
)
1246 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1247 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1249 rtl_write_dword(rtlpriv
, INTA_MASK
, rtlpci
->irq_mask
[0]);
1250 /* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1251 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, rtlpci
->irq_mask
[1] & 0x3F);
1254 void rtl92se_disable_interrupt(struct ieee80211_hw
*hw
)
1256 struct rtl_priv
*rtlpriv
;
1257 struct rtl_pci
*rtlpci
;
1259 rtlpriv
= rtl_priv(hw
);
1260 /* if firmware not available, no interrupts */
1261 if (!rtlpriv
|| !rtlpriv
->max_fw_size
)
1263 rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1264 rtl_write_dword(rtlpriv
, INTA_MASK
, 0);
1265 rtl_write_dword(rtlpriv
, INTA_MASK
+ 4, 0);
1267 synchronize_irq(rtlpci
->pdev
->irq
);
1270 static u8
_rtl92s_set_sysclk(struct ieee80211_hw
*hw
, u8 data
)
1272 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1274 bool result
= false;
1277 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, data
);
1279 /* Wait the MAC synchronized. */
1282 /* Check if it is set ready. */
1283 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1284 result
= ((tmp
& BIT(7)) == (data
& BIT(7)));
1286 if ((data
& (BIT(6) | BIT(7))) == false) {
1292 tmp
= rtl_read_byte(rtlpriv
, SYS_CLKR
+ 1);
1297 pr_err("wait for BIT(6) return value %x\n", tmp
);
1313 static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw
*hw
)
1315 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1316 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1317 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1320 if (rtlhal
->driver_going2unload
)
1321 rtl_write_byte(rtlpriv
, 0x560, 0x0);
1323 /* Power save for BB/RF */
1324 u1btmp
= rtl_read_byte(rtlpriv
, LDOV12D_CTRL
);
1326 rtl_write_byte(rtlpriv
, LDOV12D_CTRL
, u1btmp
);
1327 rtl_write_byte(rtlpriv
, SPS1_CTRL
, 0x0);
1328 rtl_write_byte(rtlpriv
, TXPAUSE
, 0xFF);
1329 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1331 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1332 rtl_write_byte(rtlpriv
, PHY_CCA
, 0x0);
1334 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1336 rtl_write_word(rtlpriv
, CMDR
, 0x77FC);
1338 rtl_write_word(rtlpriv
, CMDR
, 0x57FC);
1339 rtl_write_word(rtlpriv
, CMDR
, 0x0000);
1341 if (rtlhal
->driver_going2unload
) {
1342 u1btmp
= rtl_read_byte(rtlpriv
, (REG_SYS_FUNC_EN
+ 1));
1343 u1btmp
&= ~(BIT(0));
1344 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, u1btmp
);
1347 u1btmp
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1349 /* Add description. After switch control path. register
1350 * after page1 will be invisible. We can not do any IO
1351 * for register>0x40. After resume&MACIO reset, we need
1352 * to remember previous reg content. */
1353 if (u1btmp
& BIT(7)) {
1354 u1btmp
&= ~(BIT(6) | BIT(7));
1355 if (!_rtl92s_set_sysclk(hw
, u1btmp
)) {
1356 pr_err("Switch ctrl path fail\n");
1361 /* Power save for MAC */
1362 if (ppsc
->rfoff_reason
== RF_CHANGE_BY_IPS
&&
1363 !rtlhal
->driver_going2unload
) {
1364 /* enable LED function */
1365 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1366 /* SW/HW radio off or halt adapter!! For example S3/S4 */
1368 /* LED function disable. Power range is about 8mA now. */
1369 /* if write 0xF1 disconnet_pci power
1370 * ifconfig wlan0 down power are both high 35:70 */
1371 /* if write oxF9 disconnet_pci power
1372 * ifconfig wlan0 down power are both low 12:45*/
1373 rtl_write_byte(rtlpriv
, 0x03, 0xF9);
1376 rtl_write_byte(rtlpriv
, SYS_CLKR
+ 1, 0x70);
1377 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, 0x68);
1378 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x00);
1379 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1380 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, 0x0E);
1381 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
1385 static void _rtl92se_gen_refreshledstate(struct ieee80211_hw
*hw
)
1387 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1388 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1389 struct rtl_pci_priv
*pcipriv
= rtl_pcipriv(hw
);
1390 struct rtl_led
*pLed0
= &(pcipriv
->ledctl
.sw_led0
);
1392 if (rtlpci
->up_first_time
== 1)
1395 if (rtlpriv
->psc
.rfoff_reason
== RF_CHANGE_BY_IPS
)
1396 rtl92se_sw_led_on(hw
, pLed0
);
1398 rtl92se_sw_led_off(hw
, pLed0
);
1402 static void _rtl92se_power_domain_init(struct ieee80211_hw
*hw
)
1404 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1408 rtlpriv
->psc
.pwrdomain_protect
= true;
1410 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1411 if (tmpu1b
& BIT(7)) {
1412 tmpu1b
&= ~(BIT(6) | BIT(7));
1413 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1414 rtlpriv
->psc
.pwrdomain_protect
= false;
1419 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, 0x0);
1420 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, 0x34);
1422 /* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1423 tmpu1b
= rtl_read_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1);
1425 /* If IPS we need to turn LED on. So we not
1426 * not disable BIT 3/7 of reg3. */
1427 if (rtlpriv
->psc
.rfoff_reason
& (RF_CHANGE_BY_IPS
| RF_CHANGE_BY_HW
))
1432 rtl_write_byte(rtlpriv
, REG_SYS_FUNC_EN
+ 1, tmpu1b
);
1433 /* wait for BIT 10/11/15 to pull high automatically!! */
1436 rtl_write_byte(rtlpriv
, CMDR
, 0);
1437 rtl_write_byte(rtlpriv
, TCR
, 0);
1439 /* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1440 tmpu1b
= rtl_read_byte(rtlpriv
, 0x562);
1442 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1443 tmpu1b
&= ~(BIT(3));
1444 rtl_write_byte(rtlpriv
, 0x562, tmpu1b
);
1446 /* Enable AFE clock source */
1447 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
);
1448 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
, (tmpu1b
| 0x01));
1451 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1);
1452 rtl_write_byte(rtlpriv
, AFE_XTAL_CTRL
+ 1, (tmpu1b
& 0xfb));
1454 /* Enable AFE Macro Block's Bandgap */
1455 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1456 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| BIT(0)));
1459 /* Enable AFE Mbias */
1460 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_MISC
);
1461 rtl_write_byte(rtlpriv
, AFE_MISC
, (tmpu1b
| 0x02));
1464 /* Enable LDOA15 block */
1465 tmpu1b
= rtl_read_byte(rtlpriv
, LDOA15_CTRL
);
1466 rtl_write_byte(rtlpriv
, LDOA15_CTRL
, (tmpu1b
| BIT(0)));
1468 /* Set Digital Vdd to Retention isolation Path. */
1469 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_ISO_CTRL
);
1470 rtl_write_word(rtlpriv
, REG_SYS_ISO_CTRL
, (tmpu2b
| BIT(11)));
1473 /* For warm reboot NIC disappera bug. */
1474 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
1475 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(13)));
1477 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
+ 1, 0x68);
1479 /* Enable AFE PLL Macro Block */
1480 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
);
1481 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
, (tmpu1b
| BIT(0) | BIT(4)));
1482 /* Enable MAC 80MHZ clock */
1483 tmpu1b
= rtl_read_byte(rtlpriv
, AFE_PLL_CTRL
+ 1);
1484 rtl_write_byte(rtlpriv
, AFE_PLL_CTRL
+ 1, (tmpu1b
| BIT(0)));
1487 /* Release isolation AFE PLL & MD */
1488 rtl_write_byte(rtlpriv
, REG_SYS_ISO_CTRL
, 0xA6);
1490 /* Enable MAC clock */
1491 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1492 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
| BIT(12) | BIT(11)));
1494 /* Enable Core digital and enable IOREG R/W */
1495 tmpu2b
= rtl_read_word(rtlpriv
, REG_SYS_FUNC_EN
);
1496 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11)));
1498 rtl_write_word(rtlpriv
, REG_SYS_FUNC_EN
, (tmpu2b
| BIT(11) | BIT(15)));
1500 /* Switch the control path. */
1501 tmpu2b
= rtl_read_word(rtlpriv
, SYS_CLKR
);
1502 rtl_write_word(rtlpriv
, SYS_CLKR
, (tmpu2b
& (~BIT(2))));
1504 tmpu1b
= rtl_read_byte(rtlpriv
, (SYS_CLKR
+ 1));
1505 tmpu1b
= ((tmpu1b
| BIT(7)) & (~BIT(6)));
1506 if (!_rtl92s_set_sysclk(hw
, tmpu1b
)) {
1507 rtlpriv
->psc
.pwrdomain_protect
= false;
1511 rtl_write_word(rtlpriv
, CMDR
, 0x37FC);
1513 /* After MACIO reset,we must refresh LED state. */
1514 _rtl92se_gen_refreshledstate(hw
);
1516 rtlpriv
->psc
.pwrdomain_protect
= false;
1519 void rtl92se_card_disable(struct ieee80211_hw
*hw
)
1521 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1522 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1523 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1524 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
1525 enum nl80211_iftype opmode
;
1528 rtlpriv
->intf_ops
->enable_aspm(hw
);
1530 if (rtlpci
->driver_is_goingto_unload
||
1531 ppsc
->rfoff_reason
> RF_CHANGE_BY_PS
)
1532 rtlpriv
->cfg
->ops
->led_control(hw
, LED_CTL_POWER_OFF
);
1534 /* we should chnge GPIO to input mode
1535 * this will drop away current about 25mA*/
1536 rtl8192se_gpiobit3_cfg_inputmode(hw
);
1538 /* this is very important for ips power save */
1539 while (wait
-- >= 10 && rtlpriv
->psc
.pwrdomain_protect
) {
1540 if (rtlpriv
->psc
.pwrdomain_protect
)
1546 mac
->link_state
= MAC80211_NOLINK
;
1547 opmode
= NL80211_IFTYPE_UNSPECIFIED
;
1548 _rtl92se_set_media_status(hw
, opmode
);
1550 _rtl92s_phy_set_rfhalt(hw
);
1554 void rtl92se_interrupt_recognized(struct ieee80211_hw
*hw
, u32
*p_inta
,
1557 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1558 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1560 *p_inta
= rtl_read_dword(rtlpriv
, ISR
) & rtlpci
->irq_mask
[0];
1561 rtl_write_dword(rtlpriv
, ISR
, *p_inta
);
1563 *p_intb
= rtl_read_dword(rtlpriv
, ISR
+ 4) & rtlpci
->irq_mask
[1];
1564 rtl_write_dword(rtlpriv
, ISR
+ 4, *p_intb
);
1567 void rtl92se_set_beacon_related_registers(struct ieee80211_hw
*hw
)
1569 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1570 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1571 u16 bcntime_cfg
= 0;
1572 u16 bcn_cw
= 6, bcn_ifs
= 0xf;
1573 u16 atim_window
= 2;
1575 /* ATIM Window (in unit of TU). */
1576 rtl_write_word(rtlpriv
, ATIMWND
, atim_window
);
1578 /* Beacon interval (in unit of TU). */
1579 rtl_write_word(rtlpriv
, BCN_INTERVAL
, mac
->beacon_interval
);
1581 /* DrvErlyInt (in unit of TU). (Time to send
1582 * interrupt to notify driver to change
1583 * beacon content) */
1584 rtl_write_word(rtlpriv
, BCN_DRV_EARLY_INT
, 10 << 4);
1586 /* BcnDMATIM(in unit of us). Indicates the
1587 * time before TBTT to perform beacon queue DMA */
1588 rtl_write_word(rtlpriv
, BCN_DMATIME
, 256);
1590 /* Force beacon frame transmission even
1591 * after receiving beacon frame from
1592 * other ad hoc STA */
1593 rtl_write_byte(rtlpriv
, BCN_ERR_THRESH
, 100);
1595 /* Beacon Time Configuration */
1596 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
)
1597 bcntime_cfg
|= (bcn_cw
<< BCN_TCFG_CW_SHIFT
);
1599 /* TODO: bcn_ifs may required to be changed on ASIC */
1600 bcntime_cfg
|= bcn_ifs
<< BCN_TCFG_IFS
;
1602 /*for beacon changed */
1603 rtl92s_phy_set_beacon_hwreg(hw
, mac
->beacon_interval
);
1606 void rtl92se_set_beacon_interval(struct ieee80211_hw
*hw
)
1608 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1609 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
1610 u16 bcn_interval
= mac
->beacon_interval
;
1612 /* Beacon interval (in unit of TU). */
1613 rtl_write_word(rtlpriv
, BCN_INTERVAL
, bcn_interval
);
1614 /* 2008.10.24 added by tynli for beacon changed. */
1615 rtl92s_phy_set_beacon_hwreg(hw
, bcn_interval
);
1618 void rtl92se_update_interrupt_mask(struct ieee80211_hw
*hw
,
1619 u32 add_msr
, u32 rm_msr
)
1621 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1622 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
1624 RT_TRACE(rtlpriv
, COMP_INTR
, DBG_LOUD
, "add_msr:%x, rm_msr:%x\n",
1628 rtlpci
->irq_mask
[0] |= add_msr
;
1631 rtlpci
->irq_mask
[0] &= (~rm_msr
);
1633 rtl92se_disable_interrupt(hw
);
1634 rtl92se_enable_interrupt(hw
);
1637 static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw
*hw
)
1639 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1640 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
1643 rtlhal
->ic_class
= IC_INFERIORITY_A
;
1645 /* Only retrieving while using EFUSE. */
1646 if ((rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) &&
1647 !rtlefuse
->autoload_failflag
) {
1648 efuse_id
= efuse_read_1byte(hw
, EFUSE_IC_ID_OFFSET
);
1650 if (efuse_id
== 0xfe)
1651 rtlhal
->ic_class
= IC_INFERIORITY_B
;
1655 static void _rtl92se_read_adapter_info(struct ieee80211_hw
*hw
)
1657 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1658 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1659 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
1663 u8 hwinfo
[HWSET_MAX_SIZE_92S
];
1666 if (rtlefuse
->epromtype
== EEPROM_93C46
) {
1667 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
1668 "RTL819X Not boot from eeprom, check it !!\n");
1669 } else if (rtlefuse
->epromtype
== EEPROM_BOOT_EFUSE
) {
1670 rtl_efuse_shadow_map_update(hw
);
1672 memcpy((void *)hwinfo
, (void *)
1673 &rtlefuse
->efuse_map
[EFUSE_INIT_MAP
][0],
1674 HWSET_MAX_SIZE_92S
);
1677 RT_PRINT_DATA(rtlpriv
, COMP_INIT
, DBG_DMESG
, "MAP",
1678 hwinfo
, HWSET_MAX_SIZE_92S
);
1680 eeprom_id
= *((u16
*)&hwinfo
[0]);
1681 if (eeprom_id
!= RTL8190_EEPROM_ID
) {
1682 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_WARNING
,
1683 "EEPROM ID(%#x) is invalid!!\n", eeprom_id
);
1684 rtlefuse
->autoload_failflag
= true;
1686 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, "Autoload OK\n");
1687 rtlefuse
->autoload_failflag
= false;
1690 if (rtlefuse
->autoload_failflag
)
1693 _rtl8192se_get_IC_Inferiority(hw
);
1695 /* Read IC Version && Channel Plan */
1696 /* VID, DID SE 0xA-D */
1697 rtlefuse
->eeprom_vid
= *(u16
*)&hwinfo
[EEPROM_VID
];
1698 rtlefuse
->eeprom_did
= *(u16
*)&hwinfo
[EEPROM_DID
];
1699 rtlefuse
->eeprom_svid
= *(u16
*)&hwinfo
[EEPROM_SVID
];
1700 rtlefuse
->eeprom_smid
= *(u16
*)&hwinfo
[EEPROM_SMID
];
1701 rtlefuse
->eeprom_version
= *(u16
*)&hwinfo
[EEPROM_VERSION
];
1703 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1704 "EEPROMId = 0x%4x\n", eeprom_id
);
1705 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1706 "EEPROM VID = 0x%4x\n", rtlefuse
->eeprom_vid
);
1707 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1708 "EEPROM DID = 0x%4x\n", rtlefuse
->eeprom_did
);
1709 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1710 "EEPROM SVID = 0x%4x\n", rtlefuse
->eeprom_svid
);
1711 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1712 "EEPROM SMID = 0x%4x\n", rtlefuse
->eeprom_smid
);
1714 for (i
= 0; i
< 6; i
+= 2) {
1715 usvalue
= *(u16
*)&hwinfo
[EEPROM_MAC_ADDR
+ i
];
1716 *((u16
*) (&rtlefuse
->dev_addr
[i
])) = usvalue
;
1719 for (i
= 0; i
< 6; i
++)
1720 rtl_write_byte(rtlpriv
, MACIDR0
+ i
, rtlefuse
->dev_addr
[i
]);
1722 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "%pM\n", rtlefuse
->dev_addr
);
1724 /* Get Tx Power Level by Channel */
1725 /* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1726 /* 92S suupport RF A & B */
1727 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1728 for (i
= 0; i
< 3; i
++) {
1729 /* Read CCK RF A & B Tx power */
1730 rtlefuse
->eeprom_chnlarea_txpwr_cck
[rf_path
][i
] =
1731 hwinfo
[EEPROM_TXPOWERBASE
+ rf_path
* 3 + i
];
1733 /* Read OFDM RF A & B Tx power for 1T */
1734 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
[rf_path
][i
] =
1735 hwinfo
[EEPROM_TXPOWERBASE
+ 6 + rf_path
* 3 + i
];
1737 /* Read OFDM RF A & B Tx power for 2T */
1738 rtlefuse
->eprom_chnl_txpwr_ht40_2sdf
[rf_path
][i
]
1739 = hwinfo
[EEPROM_TXPOWERBASE
+ 12 +
1744 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1745 for (i
= 0; i
< 3; i
++)
1746 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1747 "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1749 rtlefuse
->eeprom_chnlarea_txpwr_cck
1751 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1752 for (i
= 0; i
< 3; i
++)
1753 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1754 "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1756 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1758 for (rf_path
= 0; rf_path
< 2; rf_path
++)
1759 for (i
= 0; i
< 3; i
++)
1760 RTPRINT(rtlpriv
, FINIT
, INIT_EEPROM
,
1761 "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1763 rtlefuse
->eprom_chnl_txpwr_ht40_2sdf
1766 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1768 /* Assign dedicated channel tx power */
1769 for (i
= 0; i
< 14; i
++) {
1770 /* channel 1~3 use the same Tx Power Level. */
1780 /* Record A & B CCK /OFDM - 1T/2T Channel area
1782 rtlefuse
->txpwrlevel_cck
[rf_path
][i
] =
1783 rtlefuse
->eeprom_chnlarea_txpwr_cck
1785 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
] =
1786 rtlefuse
->eeprom_chnlarea_txpwr_ht40_1s
1788 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
] =
1789 rtlefuse
->eprom_chnl_txpwr_ht40_2sdf
1793 for (i
= 0; i
< 14; i
++) {
1794 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1795 "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1797 rtlefuse
->txpwrlevel_cck
[rf_path
][i
],
1798 rtlefuse
->txpwrlevel_ht40_1s
[rf_path
][i
],
1799 rtlefuse
->txpwrlevel_ht40_2s
[rf_path
][i
]);
1803 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1804 for (i
= 0; i
< 3; i
++) {
1805 /* Read Power diff limit. */
1806 rtlefuse
->eeprom_pwrgroup
[rf_path
][i
] =
1807 hwinfo
[EEPROM_TXPWRGROUP
+ rf_path
* 3 + i
];
1811 for (rf_path
= 0; rf_path
< 2; rf_path
++) {
1812 /* Fill Pwr group */
1813 for (i
= 0; i
< 14; i
++) {
1824 rtlefuse
->pwrgroup_ht20
[rf_path
][i
] =
1825 (rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1827 rtlefuse
->pwrgroup_ht40
[rf_path
][i
] =
1828 ((rtlefuse
->eeprom_pwrgroup
[rf_path
][index
] &
1831 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1832 "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1834 rtlefuse
->pwrgroup_ht20
[rf_path
][i
]);
1835 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1836 "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1838 rtlefuse
->pwrgroup_ht40
[rf_path
][i
]);
1842 for (i
= 0; i
< 14; i
++) {
1843 /* Read tx power difference between HT OFDM 20/40 MHZ */
1854 tempval
= hwinfo
[EEPROM_TX_PWR_HT20_DIFF
+ index
] & 0xff;
1855 rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
] = (tempval
& 0xF);
1856 rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
] =
1857 ((tempval
>> 4) & 0xF);
1859 /* Read OFDM<->HT tx power diff */
1870 tempval
= hwinfo
[EEPROM_TX_PWR_OFDM_DIFF
+ index
] & 0xff;
1871 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
] =
1873 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
] =
1874 ((tempval
>> 4) & 0xF);
1876 tempval
= hwinfo
[TX_PWR_SAFETY_CHK
];
1877 rtlefuse
->txpwr_safetyflag
= (tempval
& 0x01);
1880 rtlefuse
->eeprom_regulatory
= 0;
1881 if (rtlefuse
->eeprom_version
>= 2) {
1883 if (rtlefuse
->eeprom_version
>= 4)
1884 rtlefuse
->eeprom_regulatory
=
1885 (hwinfo
[EEPROM_REGULATORY
] & 0x7);
1887 rtlefuse
->eeprom_regulatory
=
1888 (hwinfo
[EEPROM_REGULATORY
] & 0x1);
1890 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1891 "eeprom_regulatory = 0x%x\n", rtlefuse
->eeprom_regulatory
);
1893 for (i
= 0; i
< 14; i
++)
1894 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1895 "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1896 i
, rtlefuse
->txpwr_ht20diff
[RF90_PATH_A
][i
]);
1897 for (i
= 0; i
< 14; i
++)
1898 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1899 "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1900 i
, rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][i
]);
1901 for (i
= 0; i
< 14; i
++)
1902 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1903 "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1904 i
, rtlefuse
->txpwr_ht20diff
[RF90_PATH_B
][i
]);
1905 for (i
= 0; i
< 14; i
++)
1906 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1907 "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1908 i
, rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_B
][i
]);
1910 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1911 "TxPwrSafetyFlag = %d\n", rtlefuse
->txpwr_safetyflag
);
1913 /* Read RF-indication and Tx Power gain
1914 * index diff of legacy to HT OFDM rate. */
1915 tempval
= hwinfo
[EEPROM_RFIND_POWERDIFF
] & 0xff;
1916 rtlefuse
->eeprom_txpowerdiff
= tempval
;
1917 rtlefuse
->legacy_httxpowerdiff
=
1918 rtlefuse
->txpwr_legacyhtdiff
[RF90_PATH_A
][0];
1920 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1921 "TxPowerDiff = %#x\n", rtlefuse
->eeprom_txpowerdiff
);
1923 /* Get TSSI value for each path. */
1924 usvalue
= *(u16
*)&hwinfo
[EEPROM_TSSI_A
];
1925 rtlefuse
->eeprom_tssi
[RF90_PATH_A
] = (u8
)((usvalue
& 0xff00) >> 8);
1926 usvalue
= hwinfo
[EEPROM_TSSI_B
];
1927 rtlefuse
->eeprom_tssi
[RF90_PATH_B
] = (u8
)(usvalue
& 0xff);
1929 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1930 rtlefuse
->eeprom_tssi
[RF90_PATH_A
],
1931 rtlefuse
->eeprom_tssi
[RF90_PATH_B
]);
1933 /* Read antenna tx power offset of B/C/D to A from EEPROM */
1934 /* and read ThermalMeter from EEPROM */
1935 tempval
= hwinfo
[EEPROM_THERMALMETER
];
1936 rtlefuse
->eeprom_thermalmeter
= tempval
;
1937 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1938 "thermalmeter = 0x%x\n", rtlefuse
->eeprom_thermalmeter
);
1940 /* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1941 rtlefuse
->thermalmeter
[0] = (rtlefuse
->eeprom_thermalmeter
& 0x1f);
1942 rtlefuse
->tssi_13dbm
= rtlefuse
->eeprom_thermalmeter
* 100;
1944 /* Read CrystalCap from EEPROM */
1945 tempval
= hwinfo
[EEPROM_CRYSTALCAP
] >> 4;
1946 rtlefuse
->eeprom_crystalcap
= tempval
;
1947 /* CrystalCap, BIT(12)~15 */
1948 rtlefuse
->crystalcap
= rtlefuse
->eeprom_crystalcap
;
1950 /* Read IC Version && Channel Plan */
1951 /* Version ID, Channel plan */
1952 rtlefuse
->eeprom_channelplan
= hwinfo
[EEPROM_CHANNELPLAN
];
1953 rtlefuse
->txpwr_fromeprom
= true;
1954 RTPRINT(rtlpriv
, FINIT
, INIT_TXPOWER
,
1955 "EEPROM ChannelPlan = 0x%4x\n", rtlefuse
->eeprom_channelplan
);
1957 /* Read Customer ID or Board Type!!! */
1958 tempval
= hwinfo
[EEPROM_BOARDTYPE
];
1959 /* Change RF type definition */
1961 rtlphy
->rf_type
= RF_2T2R
;
1962 else if (tempval
== 1)
1963 rtlphy
->rf_type
= RF_1T2R
;
1964 else if (tempval
== 2)
1965 rtlphy
->rf_type
= RF_1T2R
;
1966 else if (tempval
== 3)
1967 rtlphy
->rf_type
= RF_1T1R
;
1969 /* 1T2R but 1SS (1x1 receive combining) */
1970 rtlefuse
->b1x1_recvcombine
= false;
1971 if (rtlphy
->rf_type
== RF_1T2R
) {
1972 tempval
= rtl_read_byte(rtlpriv
, 0x07);
1973 if (!(tempval
& BIT(0))) {
1974 rtlefuse
->b1x1_recvcombine
= true;
1975 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
,
1976 "RF_TYPE=1T2R but only 1SS\n");
1979 rtlefuse
->b1ss_support
= rtlefuse
->b1x1_recvcombine
;
1980 rtlefuse
->eeprom_oemid
= *&hwinfo
[EEPROM_CUSTOMID
];
1982 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, "EEPROM Customer ID: 0x%2x",
1983 rtlefuse
->eeprom_oemid
);
1985 /* set channel paln to world wide 13 */
1986 rtlefuse
->channel_plan
= COUNTRY_CODE_WORLD_WIDE_13
;
1989 void rtl92se_read_eeprom_info(struct ieee80211_hw
*hw
)
1991 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
1992 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
1995 tmp_u1b
= rtl_read_byte(rtlpriv
, EPROM_CMD
);
1997 if (tmp_u1b
& BIT(4)) {
1998 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "Boot from EEPROM\n");
1999 rtlefuse
->epromtype
= EEPROM_93C46
;
2001 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_DMESG
, "Boot from EFUSE\n");
2002 rtlefuse
->epromtype
= EEPROM_BOOT_EFUSE
;
2005 if (tmp_u1b
& BIT(5)) {
2006 RT_TRACE(rtlpriv
, COMP_INIT
, DBG_LOUD
, "Autoload OK\n");
2007 rtlefuse
->autoload_failflag
= false;
2008 _rtl92se_read_adapter_info(hw
);
2010 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
, "Autoload ERR!!\n");
2011 rtlefuse
->autoload_failflag
= true;
2015 static void rtl92se_update_hal_rate_table(struct ieee80211_hw
*hw
,
2016 struct ieee80211_sta
*sta
)
2018 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2019 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
2020 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2021 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
2024 u8 nmode
= mac
->ht_enable
;
2025 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
2026 u16 shortgi_rate
= 0;
2027 u32 tmp_ratr_value
= 0;
2028 u8 curtxbw_40mhz
= mac
->bw_40
;
2029 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
2031 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
2033 enum wireless_mode wirelessmode
= mac
->mode
;
2035 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2036 ratr_value
= sta
->supp_rates
[1] << 4;
2038 ratr_value
= sta
->supp_rates
[0];
2039 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
)
2041 ratr_value
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2042 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2043 switch (wirelessmode
) {
2044 case WIRELESS_MODE_B
:
2045 ratr_value
&= 0x0000000D;
2047 case WIRELESS_MODE_G
:
2048 ratr_value
&= 0x00000FF5;
2050 case WIRELESS_MODE_N_24G
:
2051 case WIRELESS_MODE_N_5G
:
2053 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2054 ratr_value
&= 0x0007F005;
2058 if (get_rf_type(rtlphy
) == RF_1T2R
||
2059 get_rf_type(rtlphy
) == RF_1T1R
) {
2061 ratr_mask
= 0x000ff015;
2063 ratr_mask
= 0x000ff005;
2066 ratr_mask
= 0x0f0ff015;
2068 ratr_mask
= 0x0f0ff005;
2071 ratr_value
&= ratr_mask
;
2075 if (rtlphy
->rf_type
== RF_1T2R
)
2076 ratr_value
&= 0x000ff0ff;
2078 ratr_value
&= 0x0f0ff0ff;
2083 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2084 ratr_value
&= 0x0FFFFFFF;
2085 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2086 ratr_value
&= 0x0FFFFFF0;
2088 if (nmode
&& ((curtxbw_40mhz
&&
2089 curshortgi_40mhz
) || (!curtxbw_40mhz
&&
2090 curshortgi_20mhz
))) {
2092 ratr_value
|= 0x10000000;
2093 tmp_ratr_value
= (ratr_value
>> 12);
2095 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2096 if ((1 << shortgi_rate
) & tmp_ratr_value
)
2100 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2101 (shortgi_rate
<< 4) | (shortgi_rate
);
2103 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2106 rtl_write_dword(rtlpriv
, ARFR0
+ ratr_index
* 4, ratr_value
);
2107 if (ratr_value
& 0xfffff000)
2108 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_N
);
2110 rtl92s_phy_set_fw_cmd(hw
, FW_CMD_RA_REFRESH_BG
);
2112 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_DMESG
, "%x\n",
2113 rtl_read_dword(rtlpriv
, ARFR0
));
2116 static void rtl92se_update_hal_rate_mask(struct ieee80211_hw
*hw
,
2117 struct ieee80211_sta
*sta
,
2120 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2121 struct rtl_phy
*rtlphy
= &(rtlpriv
->phy
);
2122 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2123 struct rtl_hal
*rtlhal
= rtl_hal(rtl_priv(hw
));
2124 struct rtl_sta_info
*sta_entry
= NULL
;
2127 u8 curtxbw_40mhz
= (sta
->bandwidth
>= IEEE80211_STA_RX_BW_40
) ? 1 : 0;
2128 u8 curshortgi_40mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_40
) ?
2130 u8 curshortgi_20mhz
= (sta
->ht_cap
.cap
& IEEE80211_HT_CAP_SGI_20
) ?
2132 enum wireless_mode wirelessmode
= 0;
2133 bool shortgi
= false;
2135 u8 shortgi_rate
= 0;
2138 bool bmulticast
= false;
2140 u8 mimo_ps
= IEEE80211_SMPS_OFF
;
2142 sta_entry
= (struct rtl_sta_info
*) sta
->drv_priv
;
2143 wirelessmode
= sta_entry
->wireless_mode
;
2144 if (mac
->opmode
== NL80211_IFTYPE_STATION
)
2145 curtxbw_40mhz
= mac
->bw_40
;
2146 else if (mac
->opmode
== NL80211_IFTYPE_AP
||
2147 mac
->opmode
== NL80211_IFTYPE_ADHOC
)
2148 macid
= sta
->aid
+ 1;
2150 if (rtlhal
->current_bandtype
== BAND_ON_5G
)
2151 ratr_bitmap
= sta
->supp_rates
[1] << 4;
2153 ratr_bitmap
= sta
->supp_rates
[0];
2154 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
)
2155 ratr_bitmap
= 0xfff;
2156 ratr_bitmap
|= (sta
->ht_cap
.mcs
.rx_mask
[1] << 20 |
2157 sta
->ht_cap
.mcs
.rx_mask
[0] << 12);
2158 switch (wirelessmode
) {
2159 case WIRELESS_MODE_B
:
2160 band
|= WIRELESS_11B
;
2161 ratr_index
= RATR_INX_WIRELESS_B
;
2162 if (ratr_bitmap
& 0x0000000c)
2163 ratr_bitmap
&= 0x0000000d;
2165 ratr_bitmap
&= 0x0000000f;
2167 case WIRELESS_MODE_G
:
2168 band
|= (WIRELESS_11G
| WIRELESS_11B
);
2169 ratr_index
= RATR_INX_WIRELESS_GB
;
2171 if (rssi_level
== 1)
2172 ratr_bitmap
&= 0x00000f00;
2173 else if (rssi_level
== 2)
2174 ratr_bitmap
&= 0x00000ff0;
2176 ratr_bitmap
&= 0x00000ff5;
2178 case WIRELESS_MODE_A
:
2179 band
|= WIRELESS_11A
;
2180 ratr_index
= RATR_INX_WIRELESS_A
;
2181 ratr_bitmap
&= 0x00000ff0;
2183 case WIRELESS_MODE_N_24G
:
2184 case WIRELESS_MODE_N_5G
:
2185 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2186 ratr_index
= RATR_INX_WIRELESS_NGB
;
2188 if (mimo_ps
== IEEE80211_SMPS_STATIC
) {
2189 if (rssi_level
== 1)
2190 ratr_bitmap
&= 0x00070000;
2191 else if (rssi_level
== 2)
2192 ratr_bitmap
&= 0x0007f000;
2194 ratr_bitmap
&= 0x0007f005;
2196 if (rtlphy
->rf_type
== RF_1T2R
||
2197 rtlphy
->rf_type
== RF_1T1R
) {
2198 if (rssi_level
== 1) {
2199 ratr_bitmap
&= 0x000f0000;
2200 } else if (rssi_level
== 3) {
2201 ratr_bitmap
&= 0x000fc000;
2202 } else if (rssi_level
== 5) {
2203 ratr_bitmap
&= 0x000ff000;
2206 ratr_bitmap
&= 0x000ff015;
2208 ratr_bitmap
&= 0x000ff005;
2211 if (rssi_level
== 1) {
2212 ratr_bitmap
&= 0x0f8f0000;
2213 } else if (rssi_level
== 3) {
2214 ratr_bitmap
&= 0x0f8fc000;
2215 } else if (rssi_level
== 5) {
2216 ratr_bitmap
&= 0x0f8ff000;
2219 ratr_bitmap
&= 0x0f8ff015;
2221 ratr_bitmap
&= 0x0f8ff005;
2226 if ((curtxbw_40mhz
&& curshortgi_40mhz
) ||
2227 (!curtxbw_40mhz
&& curshortgi_20mhz
)) {
2230 else if (macid
== 1)
2235 band
|= (WIRELESS_11N
| WIRELESS_11G
| WIRELESS_11B
);
2236 ratr_index
= RATR_INX_WIRELESS_NGB
;
2238 if (rtlphy
->rf_type
== RF_1T2R
)
2239 ratr_bitmap
&= 0x000ff0ff;
2241 ratr_bitmap
&= 0x0f8ff0ff;
2244 sta_entry
->ratr_index
= ratr_index
;
2246 if (rtlpriv
->rtlhal
.version
>= VERSION_8192S_BCUT
)
2247 ratr_bitmap
&= 0x0FFFFFFF;
2248 else if (rtlpriv
->rtlhal
.version
== VERSION_8192S_ACUT
)
2249 ratr_bitmap
&= 0x0FFFFFF0;
2252 ratr_bitmap
|= 0x10000000;
2253 /* Get MAX MCS available. */
2254 ratr_value
= (ratr_bitmap
>> 12);
2255 for (shortgi_rate
= 15; shortgi_rate
> 0; shortgi_rate
--) {
2256 if ((1 << shortgi_rate
) & ratr_value
)
2260 shortgi_rate
= (shortgi_rate
<< 12) | (shortgi_rate
<< 8) |
2261 (shortgi_rate
<< 4) | (shortgi_rate
);
2262 rtl_write_byte(rtlpriv
, SG_RATE
, shortgi_rate
);
2265 mask
|= (bmulticast
? 1 : 0) << 9 | (macid
& 0x1f) << 4 | (band
& 0xf);
2267 RT_TRACE(rtlpriv
, COMP_RATR
, DBG_TRACE
, "mask = %x, bitmap = %x\n",
2269 rtl_write_dword(rtlpriv
, 0x2c4, ratr_bitmap
);
2270 rtl_write_dword(rtlpriv
, WFM5
, (FW_RA_UPDATE_MASK
| (mask
<< 8)));
2273 sta_entry
->ratr_index
= ratr_index
;
2276 void rtl92se_update_hal_rate_tbl(struct ieee80211_hw
*hw
,
2277 struct ieee80211_sta
*sta
, u8 rssi_level
)
2279 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2281 if (rtlpriv
->dm
.useramask
)
2282 rtl92se_update_hal_rate_mask(hw
, sta
, rssi_level
);
2284 rtl92se_update_hal_rate_table(hw
, sta
);
2287 void rtl92se_update_channel_access_setting(struct ieee80211_hw
*hw
)
2289 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2290 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2293 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SLOT_TIME
,
2295 sifs_timer
= 0x0e0e;
2296 rtlpriv
->cfg
->ops
->set_hw_reg(hw
, HW_VAR_SIFS
, (u8
*)&sifs_timer
);
2300 /* this ifunction is for RFKILL, it's different with windows,
2301 * because UI will disable wireless when GPIO Radio Off.
2302 * And here we not check or Disable/Enable ASPM like windows*/
2303 bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw
*hw
, u8
*valid
)
2305 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2306 struct rtl_ps_ctl
*ppsc
= rtl_psc(rtl_priv(hw
));
2307 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2308 enum rf_pwrstate rfpwr_toset
/*, cur_rfstate */;
2309 unsigned long flag
= 0;
2310 bool actuallyset
= false;
2311 bool turnonbypowerdomain
= false;
2313 /* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2314 if ((rtlpci
->up_first_time
== 1) || (rtlpci
->being_init_adapter
))
2317 if (ppsc
->swrf_processing
)
2320 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2321 if (ppsc
->rfchange_inprogress
) {
2322 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2325 ppsc
->rfchange_inprogress
= true;
2326 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2329 /* cur_rfstate = ppsc->rfpwr_state;*/
2331 /* because after _rtl92s_phy_set_rfhalt, all power
2332 * closed, so we must open some power for GPIO check,
2333 * or we will always check GPIO RFOFF here,
2334 * And we should close power after GPIO check */
2335 if (RT_IN_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
)) {
2336 _rtl92se_power_domain_init(hw
);
2337 turnonbypowerdomain
= true;
2340 rfpwr_toset
= _rtl92se_rf_onoff_detect(hw
);
2342 if ((ppsc
->hwradiooff
) && (rfpwr_toset
== ERFON
)) {
2343 RT_TRACE(rtlpriv
, COMP_RF
, DBG_DMESG
,
2344 "RFKILL-HW Radio ON, RF ON\n");
2346 rfpwr_toset
= ERFON
;
2347 ppsc
->hwradiooff
= false;
2349 } else if ((!ppsc
->hwradiooff
) && (rfpwr_toset
== ERFOFF
)) {
2350 RT_TRACE(rtlpriv
, COMP_RF
,
2351 DBG_DMESG
, "RFKILL-HW Radio OFF, RF OFF\n");
2353 rfpwr_toset
= ERFOFF
;
2354 ppsc
->hwradiooff
= true;
2359 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2360 ppsc
->rfchange_inprogress
= false;
2361 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2363 /* this not include ifconfig wlan0 down case */
2364 /* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2366 /* because power_domain_init may be happen when
2367 * _rtl92s_phy_set_rfhalt, this will open some powers
2368 * and cause current increasing about 40 mA for ips,
2369 * rfoff and ifconfig down, so we set
2370 * _rtl92s_phy_set_rfhalt again here */
2371 if (ppsc
->reg_rfps_level
& RT_RF_OFF_LEVL_HALT_NIC
&&
2372 turnonbypowerdomain
) {
2373 _rtl92s_phy_set_rfhalt(hw
);
2374 RT_SET_PS_LEVEL(ppsc
, RT_RF_OFF_LEVL_HALT_NIC
);
2377 spin_lock_irqsave(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2378 ppsc
->rfchange_inprogress
= false;
2379 spin_unlock_irqrestore(&rtlpriv
->locks
.rf_ps_lock
, flag
);
2383 return !ppsc
->hwradiooff
;
2387 /* Is_wepkey just used for WEP used as group & pairwise key
2388 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2389 void rtl92se_set_key(struct ieee80211_hw
*hw
, u32 key_index
, u8
*p_macaddr
,
2390 bool is_group
, u8 enc_algo
, bool is_wepkey
, bool clear_all
)
2392 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2393 struct rtl_mac
*mac
= rtl_mac(rtl_priv(hw
));
2394 struct rtl_efuse
*rtlefuse
= rtl_efuse(rtl_priv(hw
));
2395 u8
*macaddr
= p_macaddr
;
2398 bool is_pairwise
= false;
2400 static u8 cam_const_addr
[4][6] = {
2401 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2402 {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2403 {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2404 {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2406 static u8 cam_const_broad
[] = {
2407 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2413 u8 clear_number
= 5;
2415 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
, "clear_all\n");
2417 for (idx
= 0; idx
< clear_number
; idx
++) {
2418 rtl_cam_mark_invalid(hw
, cam_offset
+ idx
);
2419 rtl_cam_empty_entry(hw
, cam_offset
+ idx
);
2422 memset(rtlpriv
->sec
.key_buf
[idx
], 0,
2424 rtlpriv
->sec
.key_len
[idx
] = 0;
2430 case WEP40_ENCRYPTION
:
2431 enc_algo
= CAM_WEP40
;
2433 case WEP104_ENCRYPTION
:
2434 enc_algo
= CAM_WEP104
;
2436 case TKIP_ENCRYPTION
:
2437 enc_algo
= CAM_TKIP
;
2439 case AESCCMP_ENCRYPTION
:
2443 RT_TRACE(rtlpriv
, COMP_ERR
, DBG_EMERG
,
2444 "switch case not processed\n");
2445 enc_algo
= CAM_TKIP
;
2449 if (is_wepkey
|| rtlpriv
->sec
.use_defaultkey
) {
2450 macaddr
= cam_const_addr
[key_index
];
2451 entry_id
= key_index
;
2454 macaddr
= cam_const_broad
;
2455 entry_id
= key_index
;
2457 if (mac
->opmode
== NL80211_IFTYPE_AP
) {
2458 entry_id
= rtl_cam_get_free_entry(hw
,
2460 if (entry_id
>= TOTAL_CAM_ENTRY
) {
2462 COMP_SEC
, DBG_EMERG
,
2463 "Can not find free hw security cam entry\n");
2467 entry_id
= CAM_PAIRWISE_KEY_POSITION
;
2470 key_index
= PAIRWISE_KEYIDX
;
2475 if (rtlpriv
->sec
.key_len
[key_index
] == 0) {
2476 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2477 "delete one entry, entry_id is %d\n",
2479 if (mac
->opmode
== NL80211_IFTYPE_AP
)
2480 rtl_cam_del_entry(hw
, p_macaddr
);
2481 rtl_cam_delete_one_entry(hw
, p_macaddr
, entry_id
);
2483 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2486 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2487 "set Pairwise key\n");
2489 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2491 CAM_CONFIG_NO_USEDK
,
2492 rtlpriv
->sec
.key_buf
[key_index
]);
2494 RT_TRACE(rtlpriv
, COMP_SEC
, DBG_DMESG
,
2497 if (mac
->opmode
== NL80211_IFTYPE_ADHOC
) {
2498 rtl_cam_add_one_entry(hw
,
2501 CAM_PAIRWISE_KEY_POSITION
,
2502 enc_algo
, CAM_CONFIG_NO_USEDK
,
2503 rtlpriv
->sec
.key_buf
[entry_id
]);
2506 rtl_cam_add_one_entry(hw
, macaddr
, key_index
,
2508 CAM_CONFIG_NO_USEDK
,
2509 rtlpriv
->sec
.key_buf
[entry_id
]);
2516 void rtl92se_suspend(struct ieee80211_hw
*hw
)
2518 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2520 rtlpci
->up_first_time
= true;
2523 void rtl92se_resume(struct ieee80211_hw
*hw
)
2525 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2528 pci_read_config_dword(rtlpci
->pdev
, 0x40, &val
);
2529 if ((val
& 0x0000ff00) != 0)
2530 pci_write_config_dword(rtlpci
->pdev
, 0x40,
2534 /* Turn on AAP (RCR:bit 0) for promicuous mode. */
2535 void rtl92se_allow_all_destaddr(struct ieee80211_hw
*hw
,
2536 bool allow_all_da
, bool write_into_reg
)
2538 struct rtl_priv
*rtlpriv
= rtl_priv(hw
);
2539 struct rtl_pci
*rtlpci
= rtl_pcidev(rtl_pcipriv(hw
));
2541 if (allow_all_da
) /* Set BIT0 */
2542 rtlpci
->receive_config
|= RCR_AAP
;
2543 else /* Clear BIT0 */
2544 rtlpci
->receive_config
&= ~RCR_AAP
;
2547 rtl_write_dword(rtlpriv
, RCR
, rtlpci
->receive_config
);
2549 RT_TRACE(rtlpriv
, COMP_TURBO
| COMP_INIT
, DBG_LOUD
,
2550 "receive_config=0x%08X, write_into_reg=%d\n",
2551 rtlpci
->receive_config
, write_into_reg
);