2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
7 * Copyright(c) 2012 Intel Corporation. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
15 * Copyright(c) 2012 Intel Corporation. All rights reserved.
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions
21 * * Redistributions of source code must retain the above copyright
22 * notice, this list of conditions and the following disclaimer.
23 * * Redistributions in binary form must reproduce the above copy
24 * notice, this list of conditions and the following disclaimer in
25 * the documentation and/or other materials provided with the
27 * * Neither the name of Intel Corporation nor the names of its
28 * contributors may be used to endorse or promote products derived
29 * from this software without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
37 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
38 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
39 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
41 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * Intel PCIe NTB Linux driver
45 * Contact Information:
46 * Jon Mason <jon.mason@intel.com>
48 #include <linux/debugfs.h>
49 #include <linux/delay.h>
50 #include <linux/init.h>
51 #include <linux/interrupt.h>
52 #include <linux/module.h>
53 #include <linux/pci.h>
54 #include <linux/random.h>
55 #include <linux/slab.h>
59 #define NTB_NAME "Intel(R) PCI-E Non-Transparent Bridge Driver"
62 MODULE_DESCRIPTION(NTB_NAME
);
63 MODULE_VERSION(NTB_VER
);
64 MODULE_LICENSE("Dual BSD/GPL");
65 MODULE_AUTHOR("Intel Corporation");
67 static bool xeon_errata_workaround
= true;
68 module_param(xeon_errata_workaround
, bool, 0644);
69 MODULE_PARM_DESC(xeon_errata_workaround
, "Workaround for the Xeon Errata");
72 NTB_CONN_TRANSPARENT
= 0,
87 static struct dentry
*debugfs_dir
;
89 #define BWD_LINK_RECOVERY_TIME 500
91 /* Translate memory window 0,1 to BAR 2,4 */
92 #define MW_TO_BAR(mw) (mw * NTB_MAX_NUM_MW + 2)
94 static DEFINE_PCI_DEVICE_TABLE(ntb_pci_tbl
) = {
95 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
)},
96 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
)},
97 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
)},
98 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
)},
99 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
)},
100 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_JSF
)},
101 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_SNB
)},
102 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_IVT
)},
103 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_PS_HSX
)},
104 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_JSF
)},
105 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_SNB
)},
106 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_IVT
)},
107 {PCI_VDEVICE(INTEL
, PCI_DEVICE_ID_INTEL_NTB_SS_HSX
)},
110 MODULE_DEVICE_TABLE(pci
, ntb_pci_tbl
);
113 * ntb_register_event_callback() - register event callback
114 * @ndev: pointer to ntb_device instance
115 * @func: callback function to register
117 * This function registers a callback for any HW driver events such as link
118 * up/down, power management notices and etc.
120 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
122 int ntb_register_event_callback(struct ntb_device
*ndev
,
123 void (*func
)(void *handle
, enum ntb_hw_event event
))
128 ndev
->event_cb
= func
;
134 * ntb_unregister_event_callback() - unregisters the event callback
135 * @ndev: pointer to ntb_device instance
137 * This function unregisters the existing callback from transport
139 void ntb_unregister_event_callback(struct ntb_device
*ndev
)
141 ndev
->event_cb
= NULL
;
144 static void ntb_irq_work(unsigned long data
)
146 struct ntb_db_cb
*db_cb
= (struct ntb_db_cb
*)data
;
149 rc
= db_cb
->callback(db_cb
->data
, db_cb
->db_num
);
151 tasklet_schedule(&db_cb
->irq_work
);
153 struct ntb_device
*ndev
= db_cb
->ndev
;
156 mask
= readw(ndev
->reg_ofs
.ldb_mask
);
157 clear_bit(db_cb
->db_num
* ndev
->bits_per_vector
, &mask
);
158 writew(mask
, ndev
->reg_ofs
.ldb_mask
);
163 * ntb_register_db_callback() - register a callback for doorbell interrupt
164 * @ndev: pointer to ntb_device instance
165 * @idx: doorbell index to register callback, zero based
166 * @data: pointer to be returned to caller with every callback
167 * @func: callback function to register
169 * This function registers a callback function for the doorbell interrupt
170 * on the primary side. The function will unmask the doorbell as well to
173 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
175 int ntb_register_db_callback(struct ntb_device
*ndev
, unsigned int idx
,
176 void *data
, int (*func
)(void *data
, int db_num
))
180 if (idx
>= ndev
->max_cbs
|| ndev
->db_cb
[idx
].callback
) {
181 dev_warn(&ndev
->pdev
->dev
, "Invalid Index.\n");
185 ndev
->db_cb
[idx
].callback
= func
;
186 ndev
->db_cb
[idx
].data
= data
;
187 ndev
->db_cb
[idx
].ndev
= ndev
;
189 tasklet_init(&ndev
->db_cb
[idx
].irq_work
, ntb_irq_work
,
190 (unsigned long) &ndev
->db_cb
[idx
]);
192 /* unmask interrupt */
193 mask
= readw(ndev
->reg_ofs
.ldb_mask
);
194 clear_bit(idx
* ndev
->bits_per_vector
, &mask
);
195 writew(mask
, ndev
->reg_ofs
.ldb_mask
);
201 * ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
202 * @ndev: pointer to ntb_device instance
203 * @idx: doorbell index to register callback, zero based
205 * This function unregisters a callback function for the doorbell interrupt
206 * on the primary side. The function will also mask the said doorbell.
208 void ntb_unregister_db_callback(struct ntb_device
*ndev
, unsigned int idx
)
212 if (idx
>= ndev
->max_cbs
|| !ndev
->db_cb
[idx
].callback
)
215 mask
= readw(ndev
->reg_ofs
.ldb_mask
);
216 set_bit(idx
* ndev
->bits_per_vector
, &mask
);
217 writew(mask
, ndev
->reg_ofs
.ldb_mask
);
219 tasklet_disable(&ndev
->db_cb
[idx
].irq_work
);
221 ndev
->db_cb
[idx
].callback
= NULL
;
225 * ntb_find_transport() - find the transport pointer
226 * @transport: pointer to pci device
228 * Given the pci device pointer, return the transport pointer passed in when
229 * the transport attached when it was inited.
231 * RETURNS: pointer to transport.
233 void *ntb_find_transport(struct pci_dev
*pdev
)
235 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
236 return ndev
->ntb_transport
;
240 * ntb_register_transport() - Register NTB transport with NTB HW driver
241 * @transport: transport identifier
243 * This function allows a transport to reserve the hardware driver for
246 * RETURNS: pointer to ntb_device, NULL on error.
248 struct ntb_device
*ntb_register_transport(struct pci_dev
*pdev
, void *transport
)
250 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
252 if (ndev
->ntb_transport
)
255 ndev
->ntb_transport
= transport
;
260 * ntb_unregister_transport() - Unregister the transport with the NTB HW driver
261 * @ndev - ntb_device of the transport to be freed
263 * This function unregisters the transport from the HW driver and performs any
264 * necessary cleanups.
266 void ntb_unregister_transport(struct ntb_device
*ndev
)
270 if (!ndev
->ntb_transport
)
273 for (i
= 0; i
< ndev
->max_cbs
; i
++)
274 ntb_unregister_db_callback(ndev
, i
);
276 ntb_unregister_event_callback(ndev
);
277 ndev
->ntb_transport
= NULL
;
281 * ntb_write_local_spad() - write to the secondary scratchpad register
282 * @ndev: pointer to ntb_device instance
283 * @idx: index to the scratchpad register, 0 based
284 * @val: the data value to put into the register
286 * This function allows writing of a 32bit value to the indexed scratchpad
287 * register. This writes over the data mirrored to the local scratchpad register
288 * by the remote system.
290 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
292 int ntb_write_local_spad(struct ntb_device
*ndev
, unsigned int idx
, u32 val
)
294 if (idx
>= ndev
->limits
.max_spads
)
297 dev_dbg(&ndev
->pdev
->dev
, "Writing %x to local scratch pad index %d\n",
299 writel(val
, ndev
->reg_ofs
.spad_read
+ idx
* 4);
305 * ntb_read_local_spad() - read from the primary scratchpad register
306 * @ndev: pointer to ntb_device instance
307 * @idx: index to scratchpad register, 0 based
308 * @val: pointer to 32bit integer for storing the register value
310 * This function allows reading of the 32bit scratchpad register on
311 * the primary (internal) side. This allows the local system to read data
312 * written and mirrored to the scratchpad register by the remote system.
314 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
316 int ntb_read_local_spad(struct ntb_device
*ndev
, unsigned int idx
, u32
*val
)
318 if (idx
>= ndev
->limits
.max_spads
)
321 *val
= readl(ndev
->reg_ofs
.spad_write
+ idx
* 4);
322 dev_dbg(&ndev
->pdev
->dev
,
323 "Reading %x from local scratch pad index %d\n", *val
, idx
);
329 * ntb_write_remote_spad() - write to the secondary scratchpad register
330 * @ndev: pointer to ntb_device instance
331 * @idx: index to the scratchpad register, 0 based
332 * @val: the data value to put into the register
334 * This function allows writing of a 32bit value to the indexed scratchpad
335 * register. The register resides on the secondary (external) side. This allows
336 * the local system to write data to be mirrored to the remote systems
337 * scratchpad register.
339 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
341 int ntb_write_remote_spad(struct ntb_device
*ndev
, unsigned int idx
, u32 val
)
343 if (idx
>= ndev
->limits
.max_spads
)
346 dev_dbg(&ndev
->pdev
->dev
, "Writing %x to remote scratch pad index %d\n",
348 writel(val
, ndev
->reg_ofs
.spad_write
+ idx
* 4);
354 * ntb_read_remote_spad() - read from the primary scratchpad register
355 * @ndev: pointer to ntb_device instance
356 * @idx: index to scratchpad register, 0 based
357 * @val: pointer to 32bit integer for storing the register value
359 * This function allows reading of the 32bit scratchpad register on
360 * the primary (internal) side. This alloows the local system to read the data
361 * it wrote to be mirrored on the remote system.
363 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
365 int ntb_read_remote_spad(struct ntb_device
*ndev
, unsigned int idx
, u32
*val
)
367 if (idx
>= ndev
->limits
.max_spads
)
370 *val
= readl(ndev
->reg_ofs
.spad_read
+ idx
* 4);
371 dev_dbg(&ndev
->pdev
->dev
,
372 "Reading %x from remote scratch pad index %d\n", *val
, idx
);
378 * ntb_get_mw_base() - get addr for the NTB memory window
379 * @ndev: pointer to ntb_device instance
380 * @mw: memory window number
382 * This function provides the base address of the memory window specified.
384 * RETURNS: address, or NULL on error.
386 resource_size_t
ntb_get_mw_base(struct ntb_device
*ndev
, unsigned int mw
)
388 if (mw
>= ntb_max_mw(ndev
))
391 return pci_resource_start(ndev
->pdev
, MW_TO_BAR(mw
));
395 * ntb_get_mw_vbase() - get virtual addr for the NTB memory window
396 * @ndev: pointer to ntb_device instance
397 * @mw: memory window number
399 * This function provides the base virtual address of the memory window
402 * RETURNS: pointer to virtual address, or NULL on error.
404 void __iomem
*ntb_get_mw_vbase(struct ntb_device
*ndev
, unsigned int mw
)
406 if (mw
>= ntb_max_mw(ndev
))
409 return ndev
->mw
[mw
].vbase
;
413 * ntb_get_mw_size() - return size of NTB memory window
414 * @ndev: pointer to ntb_device instance
415 * @mw: memory window number
417 * This function provides the physical size of the memory window specified
419 * RETURNS: the size of the memory window or zero on error
421 u64
ntb_get_mw_size(struct ntb_device
*ndev
, unsigned int mw
)
423 if (mw
>= ntb_max_mw(ndev
))
426 return ndev
->mw
[mw
].bar_sz
;
430 * ntb_set_mw_addr - set the memory window address
431 * @ndev: pointer to ntb_device instance
432 * @mw: memory window number
433 * @addr: base address for data
435 * This function sets the base physical address of the memory window. This
436 * memory address is where data from the remote system will be transfered into
437 * or out of depending on how the transport is configured.
439 void ntb_set_mw_addr(struct ntb_device
*ndev
, unsigned int mw
, u64 addr
)
441 if (mw
>= ntb_max_mw(ndev
))
444 dev_dbg(&ndev
->pdev
->dev
, "Writing addr %Lx to BAR %d\n", addr
,
447 ndev
->mw
[mw
].phys_addr
= addr
;
449 switch (MW_TO_BAR(mw
)) {
451 writeq(addr
, ndev
->reg_ofs
.bar2_xlat
);
454 writeq(addr
, ndev
->reg_ofs
.bar4_xlat
);
460 * ntb_ring_doorbell() - Set the doorbell on the secondary/external side
461 * @ndev: pointer to ntb_device instance
462 * @db: doorbell to ring
464 * This function allows triggering of a doorbell on the secondary/external
465 * side that will initiate an interrupt on the remote host
467 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
469 void ntb_ring_doorbell(struct ntb_device
*ndev
, unsigned int db
)
471 dev_dbg(&ndev
->pdev
->dev
, "%s: ringing doorbell %d\n", __func__
, db
);
473 if (ndev
->hw_type
== BWD_HW
)
474 writeq((u64
) 1 << db
, ndev
->reg_ofs
.rdb
);
476 writew(((1 << ndev
->bits_per_vector
) - 1) <<
477 (db
* ndev
->bits_per_vector
), ndev
->reg_ofs
.rdb
);
480 static void bwd_recover_link(struct ntb_device
*ndev
)
484 /* Driver resets the NTB ModPhy lanes - magic! */
485 writeb(0xe0, ndev
->reg_base
+ BWD_MODPHY_PCSREG6
);
486 writeb(0x40, ndev
->reg_base
+ BWD_MODPHY_PCSREG4
);
487 writeb(0x60, ndev
->reg_base
+ BWD_MODPHY_PCSREG4
);
488 writeb(0x60, ndev
->reg_base
+ BWD_MODPHY_PCSREG6
);
490 /* Driver waits 100ms to allow the NTB ModPhy to settle */
493 /* Clear AER Errors, write to clear */
494 status
= readl(ndev
->reg_base
+ BWD_ERRCORSTS_OFFSET
);
495 dev_dbg(&ndev
->pdev
->dev
, "ERRCORSTS = %x\n", status
);
496 status
&= PCI_ERR_COR_REP_ROLL
;
497 writel(status
, ndev
->reg_base
+ BWD_ERRCORSTS_OFFSET
);
499 /* Clear unexpected electrical idle event in LTSSM, write to clear */
500 status
= readl(ndev
->reg_base
+ BWD_LTSSMERRSTS0_OFFSET
);
501 dev_dbg(&ndev
->pdev
->dev
, "LTSSMERRSTS0 = %x\n", status
);
502 status
|= BWD_LTSSMERRSTS0_UNEXPECTEDEI
;
503 writel(status
, ndev
->reg_base
+ BWD_LTSSMERRSTS0_OFFSET
);
505 /* Clear DeSkew Buffer error, write to clear */
506 status
= readl(ndev
->reg_base
+ BWD_DESKEWSTS_OFFSET
);
507 dev_dbg(&ndev
->pdev
->dev
, "DESKEWSTS = %x\n", status
);
508 status
|= BWD_DESKEWSTS_DBERR
;
509 writel(status
, ndev
->reg_base
+ BWD_DESKEWSTS_OFFSET
);
511 status
= readl(ndev
->reg_base
+ BWD_IBSTERRRCRVSTS0_OFFSET
);
512 dev_dbg(&ndev
->pdev
->dev
, "IBSTERRRCRVSTS0 = %x\n", status
);
513 status
&= BWD_IBIST_ERR_OFLOW
;
514 writel(status
, ndev
->reg_base
+ BWD_IBSTERRRCRVSTS0_OFFSET
);
516 /* Releases the NTB state machine to allow the link to retrain */
517 status
= readl(ndev
->reg_base
+ BWD_LTSSMSTATEJMP_OFFSET
);
518 dev_dbg(&ndev
->pdev
->dev
, "LTSSMSTATEJMP = %x\n", status
);
519 status
&= ~BWD_LTSSMSTATEJMP_FORCEDETECT
;
520 writel(status
, ndev
->reg_base
+ BWD_LTSSMSTATEJMP_OFFSET
);
523 static void ntb_link_event(struct ntb_device
*ndev
, int link_state
)
527 if (ndev
->link_status
== link_state
)
530 if (link_state
== NTB_LINK_UP
) {
533 dev_info(&ndev
->pdev
->dev
, "Link Up\n");
534 ndev
->link_status
= NTB_LINK_UP
;
535 event
= NTB_EVENT_HW_LINK_UP
;
537 if (ndev
->hw_type
== BWD_HW
||
538 ndev
->conn_type
== NTB_CONN_TRANSPARENT
)
539 status
= readw(ndev
->reg_ofs
.lnk_stat
);
541 int rc
= pci_read_config_word(ndev
->pdev
,
542 SNB_LINK_STATUS_OFFSET
,
548 ndev
->link_width
= (status
& NTB_LINK_WIDTH_MASK
) >> 4;
549 ndev
->link_speed
= (status
& NTB_LINK_SPEED_MASK
);
550 dev_info(&ndev
->pdev
->dev
, "Link Width %d, Link Speed %d\n",
551 ndev
->link_width
, ndev
->link_speed
);
553 dev_info(&ndev
->pdev
->dev
, "Link Down\n");
554 ndev
->link_status
= NTB_LINK_DOWN
;
555 event
= NTB_EVENT_HW_LINK_DOWN
;
556 /* Don't modify link width/speed, we need it in link recovery */
559 /* notify the upper layer if we have an event change */
561 ndev
->event_cb(ndev
->ntb_transport
, event
);
564 static int ntb_link_status(struct ntb_device
*ndev
)
568 if (ndev
->hw_type
== BWD_HW
) {
571 ntb_cntl
= readl(ndev
->reg_ofs
.lnk_cntl
);
572 if (ntb_cntl
& BWD_CNTL_LINK_DOWN
)
573 link_state
= NTB_LINK_DOWN
;
575 link_state
= NTB_LINK_UP
;
580 rc
= pci_read_config_word(ndev
->pdev
, SNB_LINK_STATUS_OFFSET
,
585 if (status
& NTB_LINK_STATUS_ACTIVE
)
586 link_state
= NTB_LINK_UP
;
588 link_state
= NTB_LINK_DOWN
;
591 ntb_link_event(ndev
, link_state
);
596 static void bwd_link_recovery(struct work_struct
*work
)
598 struct ntb_device
*ndev
= container_of(work
, struct ntb_device
,
602 bwd_recover_link(ndev
);
603 /* There is a potential race between the 2 NTB devices recovering at the
604 * same time. If the times are the same, the link will not recover and
605 * the driver will be stuck in this loop forever. Add a random interval
606 * to the recovery time to prevent this race.
608 msleep(BWD_LINK_RECOVERY_TIME
+ prandom_u32() % BWD_LINK_RECOVERY_TIME
);
610 status32
= readl(ndev
->reg_base
+ BWD_LTSSMSTATEJMP_OFFSET
);
611 if (status32
& BWD_LTSSMSTATEJMP_FORCEDETECT
)
614 status32
= readl(ndev
->reg_base
+ BWD_IBSTERRRCRVSTS0_OFFSET
);
615 if (status32
& BWD_IBIST_ERR_OFLOW
)
618 status32
= readl(ndev
->reg_ofs
.lnk_cntl
);
619 if (!(status32
& BWD_CNTL_LINK_DOWN
)) {
620 unsigned char speed
, width
;
623 status16
= readw(ndev
->reg_ofs
.lnk_stat
);
624 width
= (status16
& NTB_LINK_WIDTH_MASK
) >> 4;
625 speed
= (status16
& NTB_LINK_SPEED_MASK
);
626 if (ndev
->link_width
!= width
|| ndev
->link_speed
!= speed
)
630 schedule_delayed_work(&ndev
->hb_timer
, NTB_HB_TIMEOUT
);
634 schedule_delayed_work(&ndev
->lr_timer
, NTB_HB_TIMEOUT
);
637 /* BWD doesn't have link status interrupt, poll on that platform */
638 static void bwd_link_poll(struct work_struct
*work
)
640 struct ntb_device
*ndev
= container_of(work
, struct ntb_device
,
642 unsigned long ts
= jiffies
;
644 /* If we haven't gotten an interrupt in a while, check the BWD link
647 if (ts
> ndev
->last_ts
+ NTB_HB_TIMEOUT
) {
648 int rc
= ntb_link_status(ndev
);
650 dev_err(&ndev
->pdev
->dev
,
651 "Error determining link status\n");
653 /* Check to see if a link error is the cause of the link down */
654 if (ndev
->link_status
== NTB_LINK_DOWN
) {
655 u32 status32
= readl(ndev
->reg_base
+
656 BWD_LTSSMSTATEJMP_OFFSET
);
657 if (status32
& BWD_LTSSMSTATEJMP_FORCEDETECT
) {
658 schedule_delayed_work(&ndev
->lr_timer
, 0);
664 schedule_delayed_work(&ndev
->hb_timer
, NTB_HB_TIMEOUT
);
667 static int ntb_xeon_setup(struct ntb_device
*ndev
)
672 ndev
->hw_type
= SNB_HW
;
674 rc
= pci_read_config_byte(ndev
->pdev
, NTB_PPD_OFFSET
, &val
);
678 if (val
& SNB_PPD_DEV_TYPE
)
679 ndev
->dev_type
= NTB_DEV_USD
;
681 ndev
->dev_type
= NTB_DEV_DSD
;
683 switch (val
& SNB_PPD_CONN_TYPE
) {
685 dev_info(&ndev
->pdev
->dev
, "Conn Type = B2B\n");
686 ndev
->conn_type
= NTB_CONN_B2B
;
687 ndev
->reg_ofs
.ldb
= ndev
->reg_base
+ SNB_PDOORBELL_OFFSET
;
688 ndev
->reg_ofs
.ldb_mask
= ndev
->reg_base
+ SNB_PDBMSK_OFFSET
;
689 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ SNB_SPAD_OFFSET
;
690 ndev
->reg_ofs
.bar2_xlat
= ndev
->reg_base
+ SNB_SBAR2XLAT_OFFSET
;
691 ndev
->reg_ofs
.bar4_xlat
= ndev
->reg_base
+ SNB_SBAR4XLAT_OFFSET
;
692 ndev
->limits
.max_spads
= SNB_MAX_B2B_SPADS
;
694 /* There is a Xeon hardware errata related to writes to
695 * SDOORBELL or B2BDOORBELL in conjunction with inbound access
696 * to NTB MMIO Space, which may hang the system. To workaround
697 * this use the second memory window to access the interrupt and
698 * scratch pad registers on the remote system.
700 if (xeon_errata_workaround
) {
701 if (!ndev
->mw
[1].bar_sz
)
704 ndev
->limits
.max_mw
= SNB_ERRATA_MAX_MW
;
705 ndev
->limits
.max_db_bits
= SNB_MAX_DB_BITS
;
706 ndev
->reg_ofs
.spad_write
= ndev
->mw
[1].vbase
+
708 ndev
->reg_ofs
.rdb
= ndev
->mw
[1].vbase
+
709 SNB_PDOORBELL_OFFSET
;
711 /* Set the Limit register to 4k, the minimum size, to
712 * prevent an illegal access
714 writeq(ndev
->mw
[1].bar_sz
+ 0x1000, ndev
->reg_base
+
715 SNB_PBAR4LMT_OFFSET
);
716 /* HW errata on the Limit registers. They can only be
717 * written when the base register is 4GB aligned and
718 * < 32bit. This should already be the case based on the
719 * driver defaults, but write the Limit registers first
723 ndev
->limits
.max_mw
= SNB_MAX_MW
;
725 /* HW Errata on bit 14 of b2bdoorbell register. Writes
726 * will not be mirrored to the remote system. Shrink
727 * the number of bits by one, since bit 14 is the last
730 ndev
->limits
.max_db_bits
= SNB_MAX_DB_BITS
- 1;
731 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+
733 ndev
->reg_ofs
.rdb
= ndev
->reg_base
+
734 SNB_B2B_DOORBELL_OFFSET
;
736 /* Disable the Limit register, just incase it is set to
739 writeq(0, ndev
->reg_base
+ SNB_PBAR4LMT_OFFSET
);
740 /* HW errata on the Limit registers. They can only be
741 * written when the base register is 4GB aligned and
742 * < 32bit. This should already be the case based on the
743 * driver defaults, but write the Limit registers first
748 /* The Xeon errata workaround requires setting SBAR Base
749 * addresses to known values, so that the PBAR XLAT can be
750 * pointed at SBAR0 of the remote system.
752 if (ndev
->dev_type
== NTB_DEV_USD
) {
753 writeq(SNB_MBAR23_DSD_ADDR
, ndev
->reg_base
+
754 SNB_PBAR2XLAT_OFFSET
);
755 if (xeon_errata_workaround
)
756 writeq(SNB_MBAR01_DSD_ADDR
, ndev
->reg_base
+
757 SNB_PBAR4XLAT_OFFSET
);
759 writeq(SNB_MBAR45_DSD_ADDR
, ndev
->reg_base
+
760 SNB_PBAR4XLAT_OFFSET
);
761 /* B2B_XLAT_OFFSET is a 64bit register, but can
762 * only take 32bit writes
764 writel(SNB_MBAR01_DSD_ADDR
& 0xffffffff,
765 ndev
->reg_base
+ SNB_B2B_XLAT_OFFSETL
);
766 writel(SNB_MBAR01_DSD_ADDR
>> 32,
767 ndev
->reg_base
+ SNB_B2B_XLAT_OFFSETU
);
770 writeq(SNB_MBAR01_USD_ADDR
, ndev
->reg_base
+
771 SNB_SBAR0BASE_OFFSET
);
772 writeq(SNB_MBAR23_USD_ADDR
, ndev
->reg_base
+
773 SNB_SBAR2BASE_OFFSET
);
774 writeq(SNB_MBAR45_USD_ADDR
, ndev
->reg_base
+
775 SNB_SBAR4BASE_OFFSET
);
777 writeq(SNB_MBAR23_USD_ADDR
, ndev
->reg_base
+
778 SNB_PBAR2XLAT_OFFSET
);
779 if (xeon_errata_workaround
)
780 writeq(SNB_MBAR01_USD_ADDR
, ndev
->reg_base
+
781 SNB_PBAR4XLAT_OFFSET
);
783 writeq(SNB_MBAR45_USD_ADDR
, ndev
->reg_base
+
784 SNB_PBAR4XLAT_OFFSET
);
785 /* B2B_XLAT_OFFSET is a 64bit register, but can
786 * only take 32bit writes
788 writel(SNB_MBAR01_DSD_ADDR
& 0xffffffff,
789 ndev
->reg_base
+ SNB_B2B_XLAT_OFFSETL
);
790 writel(SNB_MBAR01_USD_ADDR
>> 32,
791 ndev
->reg_base
+ SNB_B2B_XLAT_OFFSETU
);
793 writeq(SNB_MBAR01_DSD_ADDR
, ndev
->reg_base
+
794 SNB_SBAR0BASE_OFFSET
);
795 writeq(SNB_MBAR23_DSD_ADDR
, ndev
->reg_base
+
796 SNB_SBAR2BASE_OFFSET
);
797 writeq(SNB_MBAR45_DSD_ADDR
, ndev
->reg_base
+
798 SNB_SBAR4BASE_OFFSET
);
802 dev_info(&ndev
->pdev
->dev
, "Conn Type = RP\n");
803 ndev
->conn_type
= NTB_CONN_RP
;
805 if (xeon_errata_workaround
) {
806 dev_err(&ndev
->pdev
->dev
,
807 "NTB-RP disabled due to hardware errata. To disregard this warning and potentially lock-up the system, add the parameter 'xeon_errata_workaround=0'.\n");
811 /* Scratch pads need to have exclusive access from the primary
812 * or secondary side. Halve the num spads so that each side can
813 * have an equal amount.
815 ndev
->limits
.max_spads
= SNB_MAX_COMPAT_SPADS
/ 2;
816 ndev
->limits
.max_db_bits
= SNB_MAX_DB_BITS
;
817 /* Note: The SDOORBELL is the cause of the errata. You REALLY
818 * don't want to touch it.
820 ndev
->reg_ofs
.rdb
= ndev
->reg_base
+ SNB_SDOORBELL_OFFSET
;
821 ndev
->reg_ofs
.ldb
= ndev
->reg_base
+ SNB_PDOORBELL_OFFSET
;
822 ndev
->reg_ofs
.ldb_mask
= ndev
->reg_base
+ SNB_PDBMSK_OFFSET
;
823 /* Offset the start of the spads to correspond to whether it is
824 * primary or secondary
826 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ SNB_SPAD_OFFSET
+
827 ndev
->limits
.max_spads
* 4;
828 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ SNB_SPAD_OFFSET
;
829 ndev
->reg_ofs
.bar2_xlat
= ndev
->reg_base
+ SNB_SBAR2XLAT_OFFSET
;
830 ndev
->reg_ofs
.bar4_xlat
= ndev
->reg_base
+ SNB_SBAR4XLAT_OFFSET
;
831 ndev
->limits
.max_mw
= SNB_MAX_MW
;
833 case NTB_CONN_TRANSPARENT
:
834 dev_info(&ndev
->pdev
->dev
, "Conn Type = TRANSPARENT\n");
835 ndev
->conn_type
= NTB_CONN_TRANSPARENT
;
836 /* Scratch pads need to have exclusive access from the primary
837 * or secondary side. Halve the num spads so that each side can
838 * have an equal amount.
840 ndev
->limits
.max_spads
= SNB_MAX_COMPAT_SPADS
/ 2;
841 ndev
->limits
.max_db_bits
= SNB_MAX_DB_BITS
;
842 ndev
->reg_ofs
.rdb
= ndev
->reg_base
+ SNB_PDOORBELL_OFFSET
;
843 ndev
->reg_ofs
.ldb
= ndev
->reg_base
+ SNB_SDOORBELL_OFFSET
;
844 ndev
->reg_ofs
.ldb_mask
= ndev
->reg_base
+ SNB_SDBMSK_OFFSET
;
845 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ SNB_SPAD_OFFSET
;
846 /* Offset the start of the spads to correspond to whether it is
847 * primary or secondary
849 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ SNB_SPAD_OFFSET
+
850 ndev
->limits
.max_spads
* 4;
851 ndev
->reg_ofs
.bar2_xlat
= ndev
->reg_base
+ SNB_PBAR2XLAT_OFFSET
;
852 ndev
->reg_ofs
.bar4_xlat
= ndev
->reg_base
+ SNB_PBAR4XLAT_OFFSET
;
854 ndev
->limits
.max_mw
= SNB_MAX_MW
;
857 /* Most likely caused by the remote NTB-RP device not being
860 dev_err(&ndev
->pdev
->dev
, "Unknown PPD %x\n", val
);
864 ndev
->reg_ofs
.lnk_cntl
= ndev
->reg_base
+ SNB_NTBCNTL_OFFSET
;
865 ndev
->reg_ofs
.lnk_stat
= ndev
->reg_base
+ SNB_SLINK_STATUS_OFFSET
;
866 ndev
->reg_ofs
.spci_cmd
= ndev
->reg_base
+ SNB_PCICMD_OFFSET
;
868 ndev
->limits
.msix_cnt
= SNB_MSIX_CNT
;
869 ndev
->bits_per_vector
= SNB_DB_BITS_PER_VEC
;
874 static int ntb_bwd_setup(struct ntb_device
*ndev
)
879 ndev
->hw_type
= BWD_HW
;
881 rc
= pci_read_config_dword(ndev
->pdev
, NTB_PPD_OFFSET
, &val
);
885 switch ((val
& BWD_PPD_CONN_TYPE
) >> 8) {
887 ndev
->conn_type
= NTB_CONN_B2B
;
891 dev_err(&ndev
->pdev
->dev
, "Unsupported NTB configuration\n");
895 if (val
& BWD_PPD_DEV_TYPE
)
896 ndev
->dev_type
= NTB_DEV_DSD
;
898 ndev
->dev_type
= NTB_DEV_USD
;
900 /* Initiate PCI-E link training */
901 rc
= pci_write_config_dword(ndev
->pdev
, NTB_PPD_OFFSET
,
902 val
| BWD_PPD_INIT_LINK
);
906 ndev
->reg_ofs
.ldb
= ndev
->reg_base
+ BWD_PDOORBELL_OFFSET
;
907 ndev
->reg_ofs
.ldb_mask
= ndev
->reg_base
+ BWD_PDBMSK_OFFSET
;
908 ndev
->reg_ofs
.rdb
= ndev
->reg_base
+ BWD_B2B_DOORBELL_OFFSET
;
909 ndev
->reg_ofs
.bar2_xlat
= ndev
->reg_base
+ BWD_SBAR2XLAT_OFFSET
;
910 ndev
->reg_ofs
.bar4_xlat
= ndev
->reg_base
+ BWD_SBAR4XLAT_OFFSET
;
911 ndev
->reg_ofs
.lnk_cntl
= ndev
->reg_base
+ BWD_NTBCNTL_OFFSET
;
912 ndev
->reg_ofs
.lnk_stat
= ndev
->reg_base
+ BWD_LINK_STATUS_OFFSET
;
913 ndev
->reg_ofs
.spad_read
= ndev
->reg_base
+ BWD_SPAD_OFFSET
;
914 ndev
->reg_ofs
.spad_write
= ndev
->reg_base
+ BWD_B2B_SPAD_OFFSET
;
915 ndev
->reg_ofs
.spci_cmd
= ndev
->reg_base
+ BWD_PCICMD_OFFSET
;
916 ndev
->limits
.max_mw
= BWD_MAX_MW
;
917 ndev
->limits
.max_spads
= BWD_MAX_SPADS
;
918 ndev
->limits
.max_db_bits
= BWD_MAX_DB_BITS
;
919 ndev
->limits
.msix_cnt
= BWD_MSIX_CNT
;
920 ndev
->bits_per_vector
= BWD_DB_BITS_PER_VEC
;
922 /* Since bwd doesn't have a link interrupt, setup a poll timer */
923 INIT_DELAYED_WORK(&ndev
->hb_timer
, bwd_link_poll
);
924 INIT_DELAYED_WORK(&ndev
->lr_timer
, bwd_link_recovery
);
925 schedule_delayed_work(&ndev
->hb_timer
, NTB_HB_TIMEOUT
);
930 static int ntb_device_setup(struct ntb_device
*ndev
)
934 switch (ndev
->pdev
->device
) {
935 case PCI_DEVICE_ID_INTEL_NTB_SS_JSF
:
936 case PCI_DEVICE_ID_INTEL_NTB_SS_SNB
:
937 case PCI_DEVICE_ID_INTEL_NTB_SS_IVT
:
938 case PCI_DEVICE_ID_INTEL_NTB_SS_HSX
:
939 case PCI_DEVICE_ID_INTEL_NTB_PS_JSF
:
940 case PCI_DEVICE_ID_INTEL_NTB_PS_SNB
:
941 case PCI_DEVICE_ID_INTEL_NTB_PS_IVT
:
942 case PCI_DEVICE_ID_INTEL_NTB_PS_HSX
:
943 case PCI_DEVICE_ID_INTEL_NTB_B2B_JSF
:
944 case PCI_DEVICE_ID_INTEL_NTB_B2B_SNB
:
945 case PCI_DEVICE_ID_INTEL_NTB_B2B_IVT
:
946 case PCI_DEVICE_ID_INTEL_NTB_B2B_HSX
:
947 rc
= ntb_xeon_setup(ndev
);
949 case PCI_DEVICE_ID_INTEL_NTB_B2B_BWD
:
950 rc
= ntb_bwd_setup(ndev
);
959 dev_info(&ndev
->pdev
->dev
, "Device Type = %s\n",
960 ndev
->dev_type
== NTB_DEV_USD
? "USD/DSP" : "DSD/USP");
962 if (ndev
->conn_type
== NTB_CONN_B2B
)
963 /* Enable Bus Master and Memory Space on the secondary side */
964 writew(PCI_COMMAND_MEMORY
| PCI_COMMAND_MASTER
,
965 ndev
->reg_ofs
.spci_cmd
);
970 static void ntb_device_free(struct ntb_device
*ndev
)
972 if (ndev
->hw_type
== BWD_HW
) {
973 cancel_delayed_work_sync(&ndev
->hb_timer
);
974 cancel_delayed_work_sync(&ndev
->lr_timer
);
978 static irqreturn_t
bwd_callback_msix_irq(int irq
, void *data
)
980 struct ntb_db_cb
*db_cb
= data
;
981 struct ntb_device
*ndev
= db_cb
->ndev
;
984 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for DB %d\n", irq
,
987 mask
= readw(ndev
->reg_ofs
.ldb_mask
);
988 set_bit(db_cb
->db_num
* ndev
->bits_per_vector
, &mask
);
989 writew(mask
, ndev
->reg_ofs
.ldb_mask
);
991 tasklet_schedule(&db_cb
->irq_work
);
993 /* No need to check for the specific HB irq, any interrupt means
996 ndev
->last_ts
= jiffies
;
998 writeq((u64
) 1 << db_cb
->db_num
, ndev
->reg_ofs
.ldb
);
1003 static irqreturn_t
xeon_callback_msix_irq(int irq
, void *data
)
1005 struct ntb_db_cb
*db_cb
= data
;
1006 struct ntb_device
*ndev
= db_cb
->ndev
;
1009 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for DB %d\n", irq
,
1012 mask
= readw(ndev
->reg_ofs
.ldb_mask
);
1013 set_bit(db_cb
->db_num
* ndev
->bits_per_vector
, &mask
);
1014 writew(mask
, ndev
->reg_ofs
.ldb_mask
);
1016 tasklet_schedule(&db_cb
->irq_work
);
1018 /* On Sandybridge, there are 16 bits in the interrupt register
1019 * but only 4 vectors. So, 5 bits are assigned to the first 3
1020 * vectors, with the 4th having a single bit for link
1023 writew(((1 << ndev
->bits_per_vector
) - 1) <<
1024 (db_cb
->db_num
* ndev
->bits_per_vector
), ndev
->reg_ofs
.ldb
);
1029 /* Since we do not have a HW doorbell in BWD, this is only used in JF/JT */
1030 static irqreturn_t
xeon_event_msix_irq(int irq
, void *dev
)
1032 struct ntb_device
*ndev
= dev
;
1035 dev_dbg(&ndev
->pdev
->dev
, "MSI-X irq %d received for Events\n", irq
);
1037 rc
= ntb_link_status(ndev
);
1039 dev_err(&ndev
->pdev
->dev
, "Error determining link status\n");
1041 /* bit 15 is always the link bit */
1042 writew(1 << SNB_LINK_DB
, ndev
->reg_ofs
.ldb
);
1047 static irqreturn_t
ntb_interrupt(int irq
, void *dev
)
1049 struct ntb_device
*ndev
= dev
;
1052 if (ndev
->hw_type
== BWD_HW
) {
1053 u64 ldb
= readq(ndev
->reg_ofs
.ldb
);
1055 dev_dbg(&ndev
->pdev
->dev
, "irq %d - ldb = %Lx\n", irq
, ldb
);
1060 bwd_callback_msix_irq(irq
, &ndev
->db_cb
[i
]);
1063 u16 ldb
= readw(ndev
->reg_ofs
.ldb
);
1065 dev_dbg(&ndev
->pdev
->dev
, "irq %d - ldb = %x\n", irq
, ldb
);
1067 if (ldb
& SNB_DB_HW_LINK
) {
1068 xeon_event_msix_irq(irq
, dev
);
1069 ldb
&= ~SNB_DB_HW_LINK
;
1075 xeon_callback_msix_irq(irq
, &ndev
->db_cb
[i
]);
1082 static int ntb_setup_msix(struct ntb_device
*ndev
)
1084 struct pci_dev
*pdev
= ndev
->pdev
;
1085 struct msix_entry
*msix
;
1090 if (!pdev
->msix_cap
) {
1095 rc
= pci_read_config_word(pdev
, pdev
->msix_cap
+ PCI_MSIX_FLAGS
, &val
);
1099 msix_entries
= msix_table_size(val
);
1100 if (msix_entries
> ndev
->limits
.msix_cnt
) {
1105 ndev
->msix_entries
= kmalloc(sizeof(struct msix_entry
) * msix_entries
,
1107 if (!ndev
->msix_entries
) {
1112 for (i
= 0; i
< msix_entries
; i
++)
1113 ndev
->msix_entries
[i
].entry
= i
;
1115 rc
= pci_enable_msix(pdev
, ndev
->msix_entries
, msix_entries
);
1119 /* On SNB, the link interrupt is always tied to 4th vector. If
1120 * we can't get all 4, then we can't use MSI-X.
1122 if (ndev
->hw_type
!= BWD_HW
) {
1127 dev_warn(&pdev
->dev
,
1128 "Only %d MSI-X vectors. Limiting the number of queues to that number.\n",
1132 rc
= pci_enable_msix(pdev
, ndev
->msix_entries
, msix_entries
);
1137 for (i
= 0; i
< msix_entries
; i
++) {
1138 msix
= &ndev
->msix_entries
[i
];
1139 WARN_ON(!msix
->vector
);
1141 /* Use the last MSI-X vector for Link status */
1142 if (ndev
->hw_type
== BWD_HW
) {
1143 rc
= request_irq(msix
->vector
, bwd_callback_msix_irq
, 0,
1144 "ntb-callback-msix", &ndev
->db_cb
[i
]);
1148 if (i
== msix_entries
- 1) {
1149 rc
= request_irq(msix
->vector
,
1150 xeon_event_msix_irq
, 0,
1151 "ntb-event-msix", ndev
);
1155 rc
= request_irq(msix
->vector
,
1156 xeon_callback_msix_irq
, 0,
1157 "ntb-callback-msix",
1165 ndev
->num_msix
= msix_entries
;
1166 if (ndev
->hw_type
== BWD_HW
)
1167 ndev
->max_cbs
= msix_entries
;
1169 ndev
->max_cbs
= msix_entries
- 1;
1175 msix
= &ndev
->msix_entries
[i
];
1176 if (ndev
->hw_type
!= BWD_HW
&& i
== ndev
->num_msix
- 1)
1177 free_irq(msix
->vector
, ndev
);
1179 free_irq(msix
->vector
, &ndev
->db_cb
[i
]);
1181 pci_disable_msix(pdev
);
1183 kfree(ndev
->msix_entries
);
1184 dev_err(&pdev
->dev
, "Error allocating MSI-X interrupt\n");
1190 static int ntb_setup_msi(struct ntb_device
*ndev
)
1192 struct pci_dev
*pdev
= ndev
->pdev
;
1195 rc
= pci_enable_msi(pdev
);
1199 rc
= request_irq(pdev
->irq
, ntb_interrupt
, 0, "ntb-msi", ndev
);
1201 pci_disable_msi(pdev
);
1202 dev_err(&pdev
->dev
, "Error allocating MSI interrupt\n");
1209 static int ntb_setup_intx(struct ntb_device
*ndev
)
1211 struct pci_dev
*pdev
= ndev
->pdev
;
1216 /* Verify intx is enabled */
1219 rc
= request_irq(pdev
->irq
, ntb_interrupt
, IRQF_SHARED
, "ntb-intx",
1227 static int ntb_setup_interrupts(struct ntb_device
*ndev
)
1231 /* On BWD, disable all interrupts. On SNB, disable all but Link
1232 * Interrupt. The rest will be unmasked as callbacks are registered.
1234 if (ndev
->hw_type
== BWD_HW
)
1235 writeq(~0, ndev
->reg_ofs
.ldb_mask
);
1237 u16 var
= 1 << SNB_LINK_DB
;
1238 writew(~var
, ndev
->reg_ofs
.ldb_mask
);
1241 rc
= ntb_setup_msix(ndev
);
1245 ndev
->bits_per_vector
= 1;
1246 ndev
->max_cbs
= ndev
->limits
.max_db_bits
;
1248 rc
= ntb_setup_msi(ndev
);
1252 rc
= ntb_setup_intx(ndev
);
1254 dev_err(&ndev
->pdev
->dev
, "no usable interrupts\n");
1262 static void ntb_free_interrupts(struct ntb_device
*ndev
)
1264 struct pci_dev
*pdev
= ndev
->pdev
;
1266 /* mask interrupts */
1267 if (ndev
->hw_type
== BWD_HW
)
1268 writeq(~0, ndev
->reg_ofs
.ldb_mask
);
1270 writew(~0, ndev
->reg_ofs
.ldb_mask
);
1272 if (ndev
->num_msix
) {
1273 struct msix_entry
*msix
;
1276 for (i
= 0; i
< ndev
->num_msix
; i
++) {
1277 msix
= &ndev
->msix_entries
[i
];
1278 if (ndev
->hw_type
!= BWD_HW
&& i
== ndev
->num_msix
- 1)
1279 free_irq(msix
->vector
, ndev
);
1281 free_irq(msix
->vector
, &ndev
->db_cb
[i
]);
1283 pci_disable_msix(pdev
);
1285 free_irq(pdev
->irq
, ndev
);
1287 if (pci_dev_msi_enabled(pdev
))
1288 pci_disable_msi(pdev
);
1292 static int ntb_create_callbacks(struct ntb_device
*ndev
)
1296 /* Chicken-egg issue. We won't know how many callbacks are necessary
1297 * until we see how many MSI-X vectors we get, but these pointers need
1298 * to be passed into the MSI-X register function. So, we allocate the
1299 * max, knowing that they might not all be used, to work around this.
1301 ndev
->db_cb
= kcalloc(ndev
->limits
.max_db_bits
,
1302 sizeof(struct ntb_db_cb
),
1307 for (i
= 0; i
< ndev
->limits
.max_db_bits
; i
++) {
1308 ndev
->db_cb
[i
].db_num
= i
;
1309 ndev
->db_cb
[i
].ndev
= ndev
;
1315 static void ntb_free_callbacks(struct ntb_device
*ndev
)
1319 for (i
= 0; i
< ndev
->limits
.max_db_bits
; i
++)
1320 ntb_unregister_db_callback(ndev
, i
);
1325 static void ntb_setup_debugfs(struct ntb_device
*ndev
)
1327 if (!debugfs_initialized())
1331 debugfs_dir
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
1333 ndev
->debugfs_dir
= debugfs_create_dir(pci_name(ndev
->pdev
),
1337 static void ntb_free_debugfs(struct ntb_device
*ndev
)
1339 debugfs_remove_recursive(ndev
->debugfs_dir
);
1341 if (debugfs_dir
&& simple_empty(debugfs_dir
)) {
1342 debugfs_remove_recursive(debugfs_dir
);
1347 static void ntb_hw_link_up(struct ntb_device
*ndev
)
1349 if (ndev
->conn_type
== NTB_CONN_TRANSPARENT
)
1350 ntb_link_event(ndev
, NTB_LINK_UP
);
1354 /* Let's bring the NTB link up */
1355 ntb_cntl
= readl(ndev
->reg_ofs
.lnk_cntl
);
1356 ntb_cntl
&= ~(NTB_CNTL_LINK_DISABLE
| NTB_CNTL_CFG_LOCK
);
1357 ntb_cntl
|= NTB_CNTL_P2S_BAR23_SNOOP
| NTB_CNTL_S2P_BAR23_SNOOP
;
1358 ntb_cntl
|= NTB_CNTL_P2S_BAR45_SNOOP
| NTB_CNTL_S2P_BAR45_SNOOP
;
1359 writel(ntb_cntl
, ndev
->reg_ofs
.lnk_cntl
);
1363 static void ntb_hw_link_down(struct ntb_device
*ndev
)
1367 if (ndev
->conn_type
== NTB_CONN_TRANSPARENT
) {
1368 ntb_link_event(ndev
, NTB_LINK_DOWN
);
1372 /* Bring NTB link down */
1373 ntb_cntl
= readl(ndev
->reg_ofs
.lnk_cntl
);
1374 ntb_cntl
&= ~(NTB_CNTL_P2S_BAR23_SNOOP
| NTB_CNTL_S2P_BAR23_SNOOP
);
1375 ntb_cntl
&= ~(NTB_CNTL_P2S_BAR45_SNOOP
| NTB_CNTL_S2P_BAR45_SNOOP
);
1376 ntb_cntl
|= NTB_CNTL_LINK_DISABLE
| NTB_CNTL_CFG_LOCK
;
1377 writel(ntb_cntl
, ndev
->reg_ofs
.lnk_cntl
);
1380 static int ntb_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1382 struct ntb_device
*ndev
;
1385 ndev
= kzalloc(sizeof(struct ntb_device
), GFP_KERNEL
);
1390 ndev
->link_status
= NTB_LINK_DOWN
;
1391 pci_set_drvdata(pdev
, ndev
);
1392 ntb_setup_debugfs(ndev
);
1394 rc
= pci_enable_device(pdev
);
1398 pci_set_master(ndev
->pdev
);
1400 rc
= pci_request_selected_regions(pdev
, NTB_BAR_MASK
, KBUILD_MODNAME
);
1404 ndev
->reg_base
= pci_ioremap_bar(pdev
, NTB_BAR_MMIO
);
1405 if (!ndev
->reg_base
) {
1406 dev_warn(&pdev
->dev
, "Cannot remap BAR 0\n");
1411 for (i
= 0; i
< NTB_MAX_NUM_MW
; i
++) {
1412 ndev
->mw
[i
].bar_sz
= pci_resource_len(pdev
, MW_TO_BAR(i
));
1414 ioremap_wc(pci_resource_start(pdev
, MW_TO_BAR(i
)),
1415 ndev
->mw
[i
].bar_sz
);
1416 dev_info(&pdev
->dev
, "MW %d size %llu\n", i
,
1417 (unsigned long long) ndev
->mw
[i
].bar_sz
);
1418 if (!ndev
->mw
[i
].vbase
) {
1419 dev_warn(&pdev
->dev
, "Cannot remap BAR %d\n",
1426 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
1428 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
1432 dev_warn(&pdev
->dev
, "Cannot DMA highmem\n");
1435 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
1437 rc
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
1441 dev_warn(&pdev
->dev
, "Cannot DMA consistent highmem\n");
1444 rc
= ntb_device_setup(ndev
);
1448 rc
= ntb_create_callbacks(ndev
);
1452 rc
= ntb_setup_interrupts(ndev
);
1456 /* The scratchpad registers keep the values between rmmod/insmod,
1459 for (i
= 0; i
< ndev
->limits
.max_spads
; i
++) {
1460 ntb_write_local_spad(ndev
, i
, 0);
1461 ntb_write_remote_spad(ndev
, i
, 0);
1464 rc
= ntb_transport_init(pdev
);
1468 ntb_hw_link_up(ndev
);
1473 ntb_free_interrupts(ndev
);
1475 ntb_free_callbacks(ndev
);
1477 ntb_device_free(ndev
);
1479 for (i
--; i
>= 0; i
--)
1480 iounmap(ndev
->mw
[i
].vbase
);
1481 iounmap(ndev
->reg_base
);
1483 pci_release_selected_regions(pdev
, NTB_BAR_MASK
);
1485 pci_disable_device(pdev
);
1487 ntb_free_debugfs(ndev
);
1490 dev_err(&pdev
->dev
, "Error loading %s module\n", KBUILD_MODNAME
);
1494 static void ntb_pci_remove(struct pci_dev
*pdev
)
1496 struct ntb_device
*ndev
= pci_get_drvdata(pdev
);
1499 ntb_hw_link_down(ndev
);
1501 ntb_transport_free(ndev
->ntb_transport
);
1503 ntb_free_interrupts(ndev
);
1504 ntb_free_callbacks(ndev
);
1505 ntb_device_free(ndev
);
1507 for (i
= 0; i
< NTB_MAX_NUM_MW
; i
++)
1508 iounmap(ndev
->mw
[i
].vbase
);
1510 iounmap(ndev
->reg_base
);
1511 pci_release_selected_regions(pdev
, NTB_BAR_MASK
);
1512 pci_disable_device(pdev
);
1513 ntb_free_debugfs(ndev
);
1517 static struct pci_driver ntb_pci_driver
= {
1518 .name
= KBUILD_MODNAME
,
1519 .id_table
= ntb_pci_tbl
,
1520 .probe
= ntb_pci_probe
,
1521 .remove
= ntb_pci_remove
,
1523 module_pci_driver(ntb_pci_driver
);