PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / pci / pci.c
blob1febe90831b442303b7414faec770d4850ca53ed
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
33 EXPORT_SYMBOL_GPL(pci_power_names);
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
41 unsigned int pci_pm_d3_delay;
43 static void pci_pme_list_scan(struct work_struct *work);
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
58 unsigned int delay = dev->d3_delay;
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
63 msleep(delay);
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
97 unsigned int pcibios_max_latency = 255;
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
111 struct list_head *tmp;
112 unsigned char max, n;
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
120 return max;
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 * Make sure the BAR is actually a memory resource, not an IO resource
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
140 #define PCI_FIND_CAP_TTL 48
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
145 u8 id;
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
160 return 0;
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
166 int ttl = PCI_FIND_CAP_TTL;
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
181 u16 status;
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
197 return 0;
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
219 int pci_find_capability(struct pci_dev *dev, int cap)
221 int pos;
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
227 return pos;
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 int pos;
246 u8 hdr_type;
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
254 return pos;
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
280 if (start)
281 pos = start;
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
290 if (header == 0)
291 return 0;
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
305 return 0;
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
325 return pci_find_next_ext_capability(dev, 0, cap);
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
346 if ((cap & mask) == ht_cap)
347 return pos;
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
354 return 0;
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
388 int pos;
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
394 return pos;
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
430 return best;
434 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
435 * @dev: the PCI device to operate on
436 * @pos: config space offset of status word
437 * @mask: mask of bit(s) to care about in status word
439 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
441 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
443 int i;
445 /* Wait for Transaction Pending bit clean */
446 for (i = 0; i < 4; i++) {
447 u16 status;
448 if (i)
449 msleep((1 << (i - 1)) * 100);
451 pci_read_config_word(dev, pos, &status);
452 if (!(status & mask))
453 return 1;
456 return 0;
460 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
461 * @dev: PCI device to have its BARs restored
463 * Restore the BAR values for a given device, so as to make it
464 * accessible by its driver.
466 static void
467 pci_restore_bars(struct pci_dev *dev)
469 int i;
471 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
472 pci_update_resource(dev, i);
475 static struct pci_platform_pm_ops *pci_platform_pm;
477 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
479 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
480 || !ops->sleep_wake)
481 return -EINVAL;
482 pci_platform_pm = ops;
483 return 0;
486 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
488 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
491 static inline int platform_pci_set_power_state(struct pci_dev *dev,
492 pci_power_t t)
494 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
497 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
499 return pci_platform_pm ?
500 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
505 return pci_platform_pm ?
506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
511 return pci_platform_pm ?
512 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
517 * given PCI device
518 * @dev: PCI device to handle.
519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
521 * RETURN VALUE:
522 * -EINVAL if the requested state is invalid.
523 * -EIO if device does not support PCI PM or its PM capabilities register has a
524 * wrong version, or device doesn't support the requested state.
525 * 0 if device already is in the requested state.
526 * 0 if device's power state has been successfully changed.
528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
530 u16 pmcsr;
531 bool need_restore = false;
533 /* Check if we're already there */
534 if (dev->current_state == state)
535 return 0;
537 if (!dev->pm_cap)
538 return -EIO;
540 if (state < PCI_D0 || state > PCI_D3hot)
541 return -EINVAL;
543 /* Validate current state:
544 * Can enter D0 from any state, but if we can only go deeper
545 * to sleep if we're already in a low power state
547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
548 && dev->current_state > state) {
549 dev_err(&dev->dev, "invalid power transition "
550 "(from state %d to %d)\n", dev->current_state, state);
551 return -EINVAL;
554 /* check if this device supports the desired state */
555 if ((state == PCI_D1 && !dev->d1_support)
556 || (state == PCI_D2 && !dev->d2_support))
557 return -EIO;
559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
561 /* If we're (effectively) in D3, force entire word to 0.
562 * This doesn't affect PME_Status, disables PME_En, and
563 * sets PowerState to 0.
565 switch (dev->current_state) {
566 case PCI_D0:
567 case PCI_D1:
568 case PCI_D2:
569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
570 pmcsr |= state;
571 break;
572 case PCI_D3hot:
573 case PCI_D3cold:
574 case PCI_UNKNOWN: /* Boot-up */
575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
577 need_restore = true;
578 /* Fall-through: force to D0 */
579 default:
580 pmcsr = 0;
581 break;
584 /* enter specified state */
585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
587 /* Mandatory power management transition delays */
588 /* see PCI PM 1.1 5.6.1 table 18 */
589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
590 pci_dev_d3_sleep(dev);
591 else if (state == PCI_D2 || dev->current_state == PCI_D2)
592 udelay(PCI_PM_D2_DELAY);
594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
596 if (dev->current_state != state && printk_ratelimit())
597 dev_info(&dev->dev, "Refused to change power state, "
598 "currently in D%d\n", dev->current_state);
601 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
602 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
603 * from D3hot to D0 _may_ perform an internal reset, thereby
604 * going to "D0 Uninitialized" rather than "D0 Initialized".
605 * For example, at least some versions of the 3c905B and the
606 * 3c556B exhibit this behaviour.
608 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
609 * devices in a D3hot state at boot. Consequently, we need to
610 * restore at least the BARs so that the device will be
611 * accessible to its driver.
613 if (need_restore)
614 pci_restore_bars(dev);
616 if (dev->bus->self)
617 pcie_aspm_pm_state_change(dev->bus->self);
619 return 0;
623 * pci_update_current_state - Read PCI power state of given device from its
624 * PCI PM registers and cache it
625 * @dev: PCI device to handle.
626 * @state: State to cache in case the device doesn't have the PM capability
628 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
630 if (dev->pm_cap) {
631 u16 pmcsr;
634 * Configuration space is not accessible for device in
635 * D3cold, so just keep or set D3cold for safety
637 if (dev->current_state == PCI_D3cold)
638 return;
639 if (state == PCI_D3cold) {
640 dev->current_state = PCI_D3cold;
641 return;
643 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
644 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
645 } else {
646 dev->current_state = state;
651 * pci_power_up - Put the given device into D0 forcibly
652 * @dev: PCI device to power up
654 void pci_power_up(struct pci_dev *dev)
656 if (platform_pci_power_manageable(dev))
657 platform_pci_set_power_state(dev, PCI_D0);
659 pci_raw_set_power_state(dev, PCI_D0);
660 pci_update_current_state(dev, PCI_D0);
664 * pci_platform_power_transition - Use platform to change device power state
665 * @dev: PCI device to handle.
666 * @state: State to put the device into.
668 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
670 int error;
672 if (platform_pci_power_manageable(dev)) {
673 error = platform_pci_set_power_state(dev, state);
674 if (!error)
675 pci_update_current_state(dev, state);
676 } else
677 error = -ENODEV;
679 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
680 dev->current_state = PCI_D0;
682 return error;
686 * pci_wakeup - Wake up a PCI device
687 * @pci_dev: Device to handle.
688 * @ign: ignored parameter
690 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
692 pci_wakeup_event(pci_dev);
693 pm_request_resume(&pci_dev->dev);
694 return 0;
698 * pci_wakeup_bus - Walk given bus and wake up devices on it
699 * @bus: Top bus of the subtree to walk.
701 static void pci_wakeup_bus(struct pci_bus *bus)
703 if (bus)
704 pci_walk_bus(bus, pci_wakeup, NULL);
708 * __pci_start_power_transition - Start power transition of a PCI device
709 * @dev: PCI device to handle.
710 * @state: State to put the device into.
712 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
714 if (state == PCI_D0) {
715 pci_platform_power_transition(dev, PCI_D0);
717 * Mandatory power management transition delays, see
718 * PCI Express Base Specification Revision 2.0 Section
719 * 6.6.1: Conventional Reset. Do not delay for
720 * devices powered on/off by corresponding bridge,
721 * because have already delayed for the bridge.
723 if (dev->runtime_d3cold) {
724 msleep(dev->d3cold_delay);
726 * When powering on a bridge from D3cold, the
727 * whole hierarchy may be powered on into
728 * D0uninitialized state, resume them to give
729 * them a chance to suspend again
731 pci_wakeup_bus(dev->subordinate);
737 * __pci_dev_set_current_state - Set current state of a PCI device
738 * @dev: Device to handle
739 * @data: pointer to state to be set
741 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
743 pci_power_t state = *(pci_power_t *)data;
745 dev->current_state = state;
746 return 0;
750 * __pci_bus_set_current_state - Walk given bus and set current state of devices
751 * @bus: Top bus of the subtree to walk.
752 * @state: state to be set
754 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
756 if (bus)
757 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
761 * __pci_complete_power_transition - Complete power transition of a PCI device
762 * @dev: PCI device to handle.
763 * @state: State to put the device into.
765 * This function should not be called directly by device drivers.
767 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
769 int ret;
771 if (state <= PCI_D0)
772 return -EINVAL;
773 ret = pci_platform_power_transition(dev, state);
774 /* Power off the bridge may power off the whole hierarchy */
775 if (!ret && state == PCI_D3cold)
776 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
777 return ret;
779 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
782 * pci_set_power_state - Set the power state of a PCI device
783 * @dev: PCI device to handle.
784 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
786 * Transition a device to a new power state, using the platform firmware and/or
787 * the device's PCI PM registers.
789 * RETURN VALUE:
790 * -EINVAL if the requested state is invalid.
791 * -EIO if device does not support PCI PM or its PM capabilities register has a
792 * wrong version, or device doesn't support the requested state.
793 * 0 if device already is in the requested state.
794 * 0 if device's power state has been successfully changed.
796 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
798 int error;
800 /* bound the state we're entering */
801 if (state > PCI_D3cold)
802 state = PCI_D3cold;
803 else if (state < PCI_D0)
804 state = PCI_D0;
805 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
807 * If the device or the parent bridge do not support PCI PM,
808 * ignore the request if we're doing anything other than putting
809 * it into D0 (which would only happen on boot).
811 return 0;
813 /* Check if we're already there */
814 if (dev->current_state == state)
815 return 0;
817 __pci_start_power_transition(dev, state);
819 /* This device is quirked not to be put into D3, so
820 don't put it in D3 */
821 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
822 return 0;
825 * To put device in D3cold, we put device into D3hot in native
826 * way, then put device into D3cold with platform ops
828 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
829 PCI_D3hot : state);
831 if (!__pci_complete_power_transition(dev, state))
832 error = 0;
834 * When aspm_policy is "powersave" this call ensures
835 * that ASPM is configured.
837 if (!error && dev->bus->self)
838 pcie_aspm_powersave_config_link(dev->bus->self);
840 return error;
844 * pci_choose_state - Choose the power state of a PCI device
845 * @dev: PCI device to be suspended
846 * @state: target sleep state for the whole system. This is the value
847 * that is passed to suspend() function.
849 * Returns PCI power state suitable for given device and given system
850 * message.
853 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
855 pci_power_t ret;
857 if (!dev->pm_cap)
858 return PCI_D0;
860 ret = platform_pci_choose_state(dev);
861 if (ret != PCI_POWER_ERROR)
862 return ret;
864 switch (state.event) {
865 case PM_EVENT_ON:
866 return PCI_D0;
867 case PM_EVENT_FREEZE:
868 case PM_EVENT_PRETHAW:
869 /* REVISIT both freeze and pre-thaw "should" use D0 */
870 case PM_EVENT_SUSPEND:
871 case PM_EVENT_HIBERNATE:
872 return PCI_D3hot;
873 default:
874 dev_info(&dev->dev, "unrecognized suspend event %d\n",
875 state.event);
876 BUG();
878 return PCI_D0;
881 EXPORT_SYMBOL(pci_choose_state);
883 #define PCI_EXP_SAVE_REGS 7
886 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
887 u16 cap, bool extended)
889 struct pci_cap_saved_state *tmp;
891 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
892 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
893 return tmp;
895 return NULL;
898 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
900 return _pci_find_saved_cap(dev, cap, false);
903 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
905 return _pci_find_saved_cap(dev, cap, true);
908 static int pci_save_pcie_state(struct pci_dev *dev)
910 int i = 0;
911 struct pci_cap_saved_state *save_state;
912 u16 *cap;
914 if (!pci_is_pcie(dev))
915 return 0;
917 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
918 if (!save_state) {
919 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
920 return -ENOMEM;
923 cap = (u16 *)&save_state->cap.data[0];
924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
925 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
926 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
927 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
932 return 0;
935 static void pci_restore_pcie_state(struct pci_dev *dev)
937 int i = 0;
938 struct pci_cap_saved_state *save_state;
939 u16 *cap;
941 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
942 if (!save_state)
943 return;
945 cap = (u16 *)&save_state->cap.data[0];
946 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
947 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
948 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
949 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
956 static int pci_save_pcix_state(struct pci_dev *dev)
958 int pos;
959 struct pci_cap_saved_state *save_state;
961 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
962 if (pos <= 0)
963 return 0;
965 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
966 if (!save_state) {
967 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
968 return -ENOMEM;
971 pci_read_config_word(dev, pos + PCI_X_CMD,
972 (u16 *)save_state->cap.data);
974 return 0;
977 static void pci_restore_pcix_state(struct pci_dev *dev)
979 int i = 0, pos;
980 struct pci_cap_saved_state *save_state;
981 u16 *cap;
983 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
984 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
985 if (!save_state || pos <= 0)
986 return;
987 cap = (u16 *)&save_state->cap.data[0];
989 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
994 * pci_save_state - save the PCI configuration space of a device before suspending
995 * @dev: - PCI device that we're dealing with
998 pci_save_state(struct pci_dev *dev)
1000 int i;
1001 /* XXX: 100% dword access ok here? */
1002 for (i = 0; i < 16; i++)
1003 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1004 dev->state_saved = true;
1005 if ((i = pci_save_pcie_state(dev)) != 0)
1006 return i;
1007 if ((i = pci_save_pcix_state(dev)) != 0)
1008 return i;
1009 if ((i = pci_save_vc_state(dev)) != 0)
1010 return i;
1011 return 0;
1014 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1015 u32 saved_val, int retry)
1017 u32 val;
1019 pci_read_config_dword(pdev, offset, &val);
1020 if (val == saved_val)
1021 return;
1023 for (;;) {
1024 dev_dbg(&pdev->dev, "restoring config space at offset "
1025 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1026 pci_write_config_dword(pdev, offset, saved_val);
1027 if (retry-- <= 0)
1028 return;
1030 pci_read_config_dword(pdev, offset, &val);
1031 if (val == saved_val)
1032 return;
1034 mdelay(1);
1038 static void pci_restore_config_space_range(struct pci_dev *pdev,
1039 int start, int end, int retry)
1041 int index;
1043 for (index = end; index >= start; index--)
1044 pci_restore_config_dword(pdev, 4 * index,
1045 pdev->saved_config_space[index],
1046 retry);
1049 static void pci_restore_config_space(struct pci_dev *pdev)
1051 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1052 pci_restore_config_space_range(pdev, 10, 15, 0);
1053 /* Restore BARs before the command register. */
1054 pci_restore_config_space_range(pdev, 4, 9, 10);
1055 pci_restore_config_space_range(pdev, 0, 3, 0);
1056 } else {
1057 pci_restore_config_space_range(pdev, 0, 15, 0);
1062 * pci_restore_state - Restore the saved state of a PCI device
1063 * @dev: - PCI device that we're dealing with
1065 void pci_restore_state(struct pci_dev *dev)
1067 if (!dev->state_saved)
1068 return;
1070 /* PCI Express register must be restored first */
1071 pci_restore_pcie_state(dev);
1072 pci_restore_ats_state(dev);
1073 pci_restore_vc_state(dev);
1075 pci_restore_config_space(dev);
1077 pci_restore_pcix_state(dev);
1078 pci_restore_msi_state(dev);
1079 pci_restore_iov_state(dev);
1081 dev->state_saved = false;
1084 struct pci_saved_state {
1085 u32 config_space[16];
1086 struct pci_cap_saved_data cap[0];
1090 * pci_store_saved_state - Allocate and return an opaque struct containing
1091 * the device saved state.
1092 * @dev: PCI device that we're dealing with
1094 * Return NULL if no state or error.
1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1098 struct pci_saved_state *state;
1099 struct pci_cap_saved_state *tmp;
1100 struct pci_cap_saved_data *cap;
1101 size_t size;
1103 if (!dev->state_saved)
1104 return NULL;
1106 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1108 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1109 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1111 state = kzalloc(size, GFP_KERNEL);
1112 if (!state)
1113 return NULL;
1115 memcpy(state->config_space, dev->saved_config_space,
1116 sizeof(state->config_space));
1118 cap = state->cap;
1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1120 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1121 memcpy(cap, &tmp->cap, len);
1122 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1124 /* Empty cap_save terminates list */
1126 return state;
1128 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1131 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1132 * @dev: PCI device that we're dealing with
1133 * @state: Saved state returned from pci_store_saved_state()
1135 static int pci_load_saved_state(struct pci_dev *dev,
1136 struct pci_saved_state *state)
1138 struct pci_cap_saved_data *cap;
1140 dev->state_saved = false;
1142 if (!state)
1143 return 0;
1145 memcpy(dev->saved_config_space, state->config_space,
1146 sizeof(state->config_space));
1148 cap = state->cap;
1149 while (cap->size) {
1150 struct pci_cap_saved_state *tmp;
1152 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1153 if (!tmp || tmp->cap.size != cap->size)
1154 return -EINVAL;
1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1157 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1158 sizeof(struct pci_cap_saved_data) + cap->size);
1161 dev->state_saved = true;
1162 return 0;
1166 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1167 * and free the memory allocated for it.
1168 * @dev: PCI device that we're dealing with
1169 * @state: Pointer to saved state returned from pci_store_saved_state()
1171 int pci_load_and_free_saved_state(struct pci_dev *dev,
1172 struct pci_saved_state **state)
1174 int ret = pci_load_saved_state(dev, *state);
1175 kfree(*state);
1176 *state = NULL;
1177 return ret;
1179 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1181 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1183 int err;
1185 err = pci_set_power_state(dev, PCI_D0);
1186 if (err < 0 && err != -EIO)
1187 return err;
1188 err = pcibios_enable_device(dev, bars);
1189 if (err < 0)
1190 return err;
1191 pci_fixup_device(pci_fixup_enable, dev);
1193 return 0;
1197 * pci_reenable_device - Resume abandoned device
1198 * @dev: PCI device to be resumed
1200 * Note this function is a backend of pci_default_resume and is not supposed
1201 * to be called by normal code, write proper resume handler and use it instead.
1203 int pci_reenable_device(struct pci_dev *dev)
1205 if (pci_is_enabled(dev))
1206 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1207 return 0;
1210 static void pci_enable_bridge(struct pci_dev *dev)
1212 struct pci_dev *bridge;
1213 int retval;
1215 bridge = pci_upstream_bridge(dev);
1216 if (bridge)
1217 pci_enable_bridge(bridge);
1219 if (pci_is_enabled(dev)) {
1220 if (!dev->is_busmaster)
1221 pci_set_master(dev);
1222 return;
1225 retval = pci_enable_device(dev);
1226 if (retval)
1227 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1228 retval);
1229 pci_set_master(dev);
1232 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1234 struct pci_dev *bridge;
1235 int err;
1236 int i, bars = 0;
1239 * Power state could be unknown at this point, either due to a fresh
1240 * boot or a device removal call. So get the current power state
1241 * so that things like MSI message writing will behave as expected
1242 * (e.g. if the device really is in D0 at enable time).
1244 if (dev->pm_cap) {
1245 u16 pmcsr;
1246 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1247 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1250 if (atomic_inc_return(&dev->enable_cnt) > 1)
1251 return 0; /* already enabled */
1253 bridge = pci_upstream_bridge(dev);
1254 if (bridge)
1255 pci_enable_bridge(bridge);
1257 /* only skip sriov related */
1258 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1259 if (dev->resource[i].flags & flags)
1260 bars |= (1 << i);
1261 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1262 if (dev->resource[i].flags & flags)
1263 bars |= (1 << i);
1265 err = do_pci_enable_device(dev, bars);
1266 if (err < 0)
1267 atomic_dec(&dev->enable_cnt);
1268 return err;
1272 * pci_enable_device_io - Initialize a device for use with IO space
1273 * @dev: PCI device to be initialized
1275 * Initialize device before it's used by a driver. Ask low-level code
1276 * to enable I/O resources. Wake up the device if it was suspended.
1277 * Beware, this function can fail.
1279 int pci_enable_device_io(struct pci_dev *dev)
1281 return pci_enable_device_flags(dev, IORESOURCE_IO);
1285 * pci_enable_device_mem - Initialize a device for use with Memory space
1286 * @dev: PCI device to be initialized
1288 * Initialize device before it's used by a driver. Ask low-level code
1289 * to enable Memory resources. Wake up the device if it was suspended.
1290 * Beware, this function can fail.
1292 int pci_enable_device_mem(struct pci_dev *dev)
1294 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1298 * pci_enable_device - Initialize device before it's used by a driver.
1299 * @dev: PCI device to be initialized
1301 * Initialize device before it's used by a driver. Ask low-level code
1302 * to enable I/O and memory. Wake up the device if it was suspended.
1303 * Beware, this function can fail.
1305 * Note we don't actually enable the device many times if we call
1306 * this function repeatedly (we just increment the count).
1308 int pci_enable_device(struct pci_dev *dev)
1310 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1314 * Managed PCI resources. This manages device on/off, intx/msi/msix
1315 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1316 * there's no need to track it separately. pci_devres is initialized
1317 * when a device is enabled using managed PCI device enable interface.
1319 struct pci_devres {
1320 unsigned int enabled:1;
1321 unsigned int pinned:1;
1322 unsigned int orig_intx:1;
1323 unsigned int restore_intx:1;
1324 u32 region_mask;
1327 static void pcim_release(struct device *gendev, void *res)
1329 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1330 struct pci_devres *this = res;
1331 int i;
1333 if (dev->msi_enabled)
1334 pci_disable_msi(dev);
1335 if (dev->msix_enabled)
1336 pci_disable_msix(dev);
1338 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1339 if (this->region_mask & (1 << i))
1340 pci_release_region(dev, i);
1342 if (this->restore_intx)
1343 pci_intx(dev, this->orig_intx);
1345 if (this->enabled && !this->pinned)
1346 pci_disable_device(dev);
1349 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1351 struct pci_devres *dr, *new_dr;
1353 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1354 if (dr)
1355 return dr;
1357 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1358 if (!new_dr)
1359 return NULL;
1360 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1363 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1365 if (pci_is_managed(pdev))
1366 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1367 return NULL;
1371 * pcim_enable_device - Managed pci_enable_device()
1372 * @pdev: PCI device to be initialized
1374 * Managed pci_enable_device().
1376 int pcim_enable_device(struct pci_dev *pdev)
1378 struct pci_devres *dr;
1379 int rc;
1381 dr = get_pci_dr(pdev);
1382 if (unlikely(!dr))
1383 return -ENOMEM;
1384 if (dr->enabled)
1385 return 0;
1387 rc = pci_enable_device(pdev);
1388 if (!rc) {
1389 pdev->is_managed = 1;
1390 dr->enabled = 1;
1392 return rc;
1396 * pcim_pin_device - Pin managed PCI device
1397 * @pdev: PCI device to pin
1399 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1400 * driver detach. @pdev must have been enabled with
1401 * pcim_enable_device().
1403 void pcim_pin_device(struct pci_dev *pdev)
1405 struct pci_devres *dr;
1407 dr = find_pci_dr(pdev);
1408 WARN_ON(!dr || !dr->enabled);
1409 if (dr)
1410 dr->pinned = 1;
1414 * pcibios_add_device - provide arch specific hooks when adding device dev
1415 * @dev: the PCI device being added
1417 * Permits the platform to provide architecture specific functionality when
1418 * devices are added. This is the default implementation. Architecture
1419 * implementations can override this.
1421 int __weak pcibios_add_device (struct pci_dev *dev)
1423 return 0;
1427 * pcibios_release_device - provide arch specific hooks when releasing device dev
1428 * @dev: the PCI device being released
1430 * Permits the platform to provide architecture specific functionality when
1431 * devices are released. This is the default implementation. Architecture
1432 * implementations can override this.
1434 void __weak pcibios_release_device(struct pci_dev *dev) {}
1437 * pcibios_disable_device - disable arch specific PCI resources for device dev
1438 * @dev: the PCI device to disable
1440 * Disables architecture specific PCI resources for the device. This
1441 * is the default implementation. Architecture implementations can
1442 * override this.
1444 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1446 static void do_pci_disable_device(struct pci_dev *dev)
1448 u16 pci_command;
1450 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1451 if (pci_command & PCI_COMMAND_MASTER) {
1452 pci_command &= ~PCI_COMMAND_MASTER;
1453 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1456 pcibios_disable_device(dev);
1460 * pci_disable_enabled_device - Disable device without updating enable_cnt
1461 * @dev: PCI device to disable
1463 * NOTE: This function is a backend of PCI power management routines and is
1464 * not supposed to be called drivers.
1466 void pci_disable_enabled_device(struct pci_dev *dev)
1468 if (pci_is_enabled(dev))
1469 do_pci_disable_device(dev);
1473 * pci_disable_device - Disable PCI device after use
1474 * @dev: PCI device to be disabled
1476 * Signal to the system that the PCI device is not in use by the system
1477 * anymore. This only involves disabling PCI bus-mastering, if active.
1479 * Note we don't actually disable the device until all callers of
1480 * pci_enable_device() have called pci_disable_device().
1482 void
1483 pci_disable_device(struct pci_dev *dev)
1485 struct pci_devres *dr;
1487 dr = find_pci_dr(dev);
1488 if (dr)
1489 dr->enabled = 0;
1491 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1492 "disabling already-disabled device");
1494 if (atomic_dec_return(&dev->enable_cnt) != 0)
1495 return;
1497 do_pci_disable_device(dev);
1499 dev->is_busmaster = 0;
1503 * pcibios_set_pcie_reset_state - set reset state for device dev
1504 * @dev: the PCIe device reset
1505 * @state: Reset state to enter into
1508 * Sets the PCIe reset state for the device. This is the default
1509 * implementation. Architecture implementations can override this.
1511 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1512 enum pcie_reset_state state)
1514 return -EINVAL;
1518 * pci_set_pcie_reset_state - set reset state for device dev
1519 * @dev: the PCIe device reset
1520 * @state: Reset state to enter into
1523 * Sets the PCI reset state for the device.
1525 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1527 return pcibios_set_pcie_reset_state(dev, state);
1531 * pci_check_pme_status - Check if given device has generated PME.
1532 * @dev: Device to check.
1534 * Check the PME status of the device and if set, clear it and clear PME enable
1535 * (if set). Return 'true' if PME status and PME enable were both set or
1536 * 'false' otherwise.
1538 bool pci_check_pme_status(struct pci_dev *dev)
1540 int pmcsr_pos;
1541 u16 pmcsr;
1542 bool ret = false;
1544 if (!dev->pm_cap)
1545 return false;
1547 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1548 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1549 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1550 return false;
1552 /* Clear PME status. */
1553 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1554 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1555 /* Disable PME to avoid interrupt flood. */
1556 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1557 ret = true;
1560 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1562 return ret;
1566 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1567 * @dev: Device to handle.
1568 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1570 * Check if @dev has generated PME and queue a resume request for it in that
1571 * case.
1573 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1575 if (pme_poll_reset && dev->pme_poll)
1576 dev->pme_poll = false;
1578 if (pci_check_pme_status(dev)) {
1579 pci_wakeup_event(dev);
1580 pm_request_resume(&dev->dev);
1582 return 0;
1586 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1587 * @bus: Top bus of the subtree to walk.
1589 void pci_pme_wakeup_bus(struct pci_bus *bus)
1591 if (bus)
1592 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1597 * pci_pme_capable - check the capability of PCI device to generate PME#
1598 * @dev: PCI device to handle.
1599 * @state: PCI state from which device will issue PME#.
1601 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1603 if (!dev->pm_cap)
1604 return false;
1606 return !!(dev->pme_support & (1 << state));
1609 static void pci_pme_list_scan(struct work_struct *work)
1611 struct pci_pme_device *pme_dev, *n;
1613 mutex_lock(&pci_pme_list_mutex);
1614 if (!list_empty(&pci_pme_list)) {
1615 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1616 if (pme_dev->dev->pme_poll) {
1617 struct pci_dev *bridge;
1619 bridge = pme_dev->dev->bus->self;
1621 * If bridge is in low power state, the
1622 * configuration space of subordinate devices
1623 * may be not accessible
1625 if (bridge && bridge->current_state != PCI_D0)
1626 continue;
1627 pci_pme_wakeup(pme_dev->dev, NULL);
1628 } else {
1629 list_del(&pme_dev->list);
1630 kfree(pme_dev);
1633 if (!list_empty(&pci_pme_list))
1634 schedule_delayed_work(&pci_pme_work,
1635 msecs_to_jiffies(PME_TIMEOUT));
1637 mutex_unlock(&pci_pme_list_mutex);
1641 * pci_pme_active - enable or disable PCI device's PME# function
1642 * @dev: PCI device to handle.
1643 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1645 * The caller must verify that the device is capable of generating PME# before
1646 * calling this function with @enable equal to 'true'.
1648 void pci_pme_active(struct pci_dev *dev, bool enable)
1650 u16 pmcsr;
1652 if (!dev->pme_support)
1653 return;
1655 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1656 /* Clear PME_Status by writing 1 to it and enable PME# */
1657 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1658 if (!enable)
1659 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1661 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1664 * PCI (as opposed to PCIe) PME requires that the device have
1665 * its PME# line hooked up correctly. Not all hardware vendors
1666 * do this, so the PME never gets delivered and the device
1667 * remains asleep. The easiest way around this is to
1668 * periodically walk the list of suspended devices and check
1669 * whether any have their PME flag set. The assumption is that
1670 * we'll wake up often enough anyway that this won't be a huge
1671 * hit, and the power savings from the devices will still be a
1672 * win.
1674 * Although PCIe uses in-band PME message instead of PME# line
1675 * to report PME, PME does not work for some PCIe devices in
1676 * reality. For example, there are devices that set their PME
1677 * status bits, but don't really bother to send a PME message;
1678 * there are PCI Express Root Ports that don't bother to
1679 * trigger interrupts when they receive PME messages from the
1680 * devices below. So PME poll is used for PCIe devices too.
1683 if (dev->pme_poll) {
1684 struct pci_pme_device *pme_dev;
1685 if (enable) {
1686 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1687 GFP_KERNEL);
1688 if (!pme_dev) {
1689 dev_warn(&dev->dev, "can't enable PME#\n");
1690 return;
1692 pme_dev->dev = dev;
1693 mutex_lock(&pci_pme_list_mutex);
1694 list_add(&pme_dev->list, &pci_pme_list);
1695 if (list_is_singular(&pci_pme_list))
1696 schedule_delayed_work(&pci_pme_work,
1697 msecs_to_jiffies(PME_TIMEOUT));
1698 mutex_unlock(&pci_pme_list_mutex);
1699 } else {
1700 mutex_lock(&pci_pme_list_mutex);
1701 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1702 if (pme_dev->dev == dev) {
1703 list_del(&pme_dev->list);
1704 kfree(pme_dev);
1705 break;
1708 mutex_unlock(&pci_pme_list_mutex);
1712 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1716 * __pci_enable_wake - enable PCI device as wakeup event source
1717 * @dev: PCI device affected
1718 * @state: PCI state from which device will issue wakeup events
1719 * @runtime: True if the events are to be generated at run time
1720 * @enable: True to enable event generation; false to disable
1722 * This enables the device as a wakeup event source, or disables it.
1723 * When such events involves platform-specific hooks, those hooks are
1724 * called automatically by this routine.
1726 * Devices with legacy power management (no standard PCI PM capabilities)
1727 * always require such platform hooks.
1729 * RETURN VALUE:
1730 * 0 is returned on success
1731 * -EINVAL is returned if device is not supposed to wake up the system
1732 * Error code depending on the platform is returned if both the platform and
1733 * the native mechanism fail to enable the generation of wake-up events
1735 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1736 bool runtime, bool enable)
1738 int ret = 0;
1740 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1741 return -EINVAL;
1743 /* Don't do the same thing twice in a row for one device. */
1744 if (!!enable == !!dev->wakeup_prepared)
1745 return 0;
1748 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1749 * Anderson we should be doing PME# wake enable followed by ACPI wake
1750 * enable. To disable wake-up we call the platform first, for symmetry.
1753 if (enable) {
1754 int error;
1756 if (pci_pme_capable(dev, state))
1757 pci_pme_active(dev, true);
1758 else
1759 ret = 1;
1760 error = runtime ? platform_pci_run_wake(dev, true) :
1761 platform_pci_sleep_wake(dev, true);
1762 if (ret)
1763 ret = error;
1764 if (!ret)
1765 dev->wakeup_prepared = true;
1766 } else {
1767 if (runtime)
1768 platform_pci_run_wake(dev, false);
1769 else
1770 platform_pci_sleep_wake(dev, false);
1771 pci_pme_active(dev, false);
1772 dev->wakeup_prepared = false;
1775 return ret;
1777 EXPORT_SYMBOL(__pci_enable_wake);
1780 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1781 * @dev: PCI device to prepare
1782 * @enable: True to enable wake-up event generation; false to disable
1784 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1785 * and this function allows them to set that up cleanly - pci_enable_wake()
1786 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1787 * ordering constraints.
1789 * This function only returns error code if the device is not capable of
1790 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1791 * enable wake-up power for it.
1793 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1795 return pci_pme_capable(dev, PCI_D3cold) ?
1796 pci_enable_wake(dev, PCI_D3cold, enable) :
1797 pci_enable_wake(dev, PCI_D3hot, enable);
1801 * pci_target_state - find an appropriate low power state for a given PCI dev
1802 * @dev: PCI device
1804 * Use underlying platform code to find a supported low power state for @dev.
1805 * If the platform can't manage @dev, return the deepest state from which it
1806 * can generate wake events, based on any available PME info.
1808 static pci_power_t pci_target_state(struct pci_dev *dev)
1810 pci_power_t target_state = PCI_D3hot;
1812 if (platform_pci_power_manageable(dev)) {
1814 * Call the platform to choose the target state of the device
1815 * and enable wake-up from this state if supported.
1817 pci_power_t state = platform_pci_choose_state(dev);
1819 switch (state) {
1820 case PCI_POWER_ERROR:
1821 case PCI_UNKNOWN:
1822 break;
1823 case PCI_D1:
1824 case PCI_D2:
1825 if (pci_no_d1d2(dev))
1826 break;
1827 default:
1828 target_state = state;
1830 } else if (!dev->pm_cap) {
1831 target_state = PCI_D0;
1832 } else if (device_may_wakeup(&dev->dev)) {
1834 * Find the deepest state from which the device can generate
1835 * wake-up events, make it the target state and enable device
1836 * to generate PME#.
1838 if (dev->pme_support) {
1839 while (target_state
1840 && !(dev->pme_support & (1 << target_state)))
1841 target_state--;
1845 return target_state;
1849 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1850 * @dev: Device to handle.
1852 * Choose the power state appropriate for the device depending on whether
1853 * it can wake up the system and/or is power manageable by the platform
1854 * (PCI_D3hot is the default) and put the device into that state.
1856 int pci_prepare_to_sleep(struct pci_dev *dev)
1858 pci_power_t target_state = pci_target_state(dev);
1859 int error;
1861 if (target_state == PCI_POWER_ERROR)
1862 return -EIO;
1864 /* D3cold during system suspend/hibernate is not supported */
1865 if (target_state > PCI_D3hot)
1866 target_state = PCI_D3hot;
1868 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1870 error = pci_set_power_state(dev, target_state);
1872 if (error)
1873 pci_enable_wake(dev, target_state, false);
1875 return error;
1879 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1880 * @dev: Device to handle.
1882 * Disable device's system wake-up capability and put it into D0.
1884 int pci_back_from_sleep(struct pci_dev *dev)
1886 pci_enable_wake(dev, PCI_D0, false);
1887 return pci_set_power_state(dev, PCI_D0);
1891 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1892 * @dev: PCI device being suspended.
1894 * Prepare @dev to generate wake-up events at run time and put it into a low
1895 * power state.
1897 int pci_finish_runtime_suspend(struct pci_dev *dev)
1899 pci_power_t target_state = pci_target_state(dev);
1900 int error;
1902 if (target_state == PCI_POWER_ERROR)
1903 return -EIO;
1905 dev->runtime_d3cold = target_state == PCI_D3cold;
1907 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1909 error = pci_set_power_state(dev, target_state);
1911 if (error) {
1912 __pci_enable_wake(dev, target_state, true, false);
1913 dev->runtime_d3cold = false;
1916 return error;
1920 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1921 * @dev: Device to check.
1923 * Return true if the device itself is capable of generating wake-up events
1924 * (through the platform or using the native PCIe PME) or if the device supports
1925 * PME and one of its upstream bridges can generate wake-up events.
1927 bool pci_dev_run_wake(struct pci_dev *dev)
1929 struct pci_bus *bus = dev->bus;
1931 if (device_run_wake(&dev->dev))
1932 return true;
1934 if (!dev->pme_support)
1935 return false;
1937 while (bus->parent) {
1938 struct pci_dev *bridge = bus->self;
1940 if (device_run_wake(&bridge->dev))
1941 return true;
1943 bus = bus->parent;
1946 /* We have reached the root bus. */
1947 if (bus->bridge)
1948 return device_run_wake(bus->bridge);
1950 return false;
1952 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1954 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1956 struct device *dev = &pdev->dev;
1957 struct device *parent = dev->parent;
1959 if (parent)
1960 pm_runtime_get_sync(parent);
1961 pm_runtime_get_noresume(dev);
1963 * pdev->current_state is set to PCI_D3cold during suspending,
1964 * so wait until suspending completes
1966 pm_runtime_barrier(dev);
1968 * Only need to resume devices in D3cold, because config
1969 * registers are still accessible for devices suspended but
1970 * not in D3cold.
1972 if (pdev->current_state == PCI_D3cold)
1973 pm_runtime_resume(dev);
1976 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1978 struct device *dev = &pdev->dev;
1979 struct device *parent = dev->parent;
1981 pm_runtime_put(dev);
1982 if (parent)
1983 pm_runtime_put_sync(parent);
1987 * pci_pm_init - Initialize PM functions of given PCI device
1988 * @dev: PCI device to handle.
1990 void pci_pm_init(struct pci_dev *dev)
1992 int pm;
1993 u16 pmc;
1995 pm_runtime_forbid(&dev->dev);
1996 pm_runtime_set_active(&dev->dev);
1997 pm_runtime_enable(&dev->dev);
1998 device_enable_async_suspend(&dev->dev);
1999 dev->wakeup_prepared = false;
2001 dev->pm_cap = 0;
2002 dev->pme_support = 0;
2004 /* find PCI PM capability in list */
2005 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2006 if (!pm)
2007 return;
2008 /* Check device's ability to generate PME# */
2009 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2011 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2012 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2013 pmc & PCI_PM_CAP_VER_MASK);
2014 return;
2017 dev->pm_cap = pm;
2018 dev->d3_delay = PCI_PM_D3_WAIT;
2019 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2020 dev->d3cold_allowed = true;
2022 dev->d1_support = false;
2023 dev->d2_support = false;
2024 if (!pci_no_d1d2(dev)) {
2025 if (pmc & PCI_PM_CAP_D1)
2026 dev->d1_support = true;
2027 if (pmc & PCI_PM_CAP_D2)
2028 dev->d2_support = true;
2030 if (dev->d1_support || dev->d2_support)
2031 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2032 dev->d1_support ? " D1" : "",
2033 dev->d2_support ? " D2" : "");
2036 pmc &= PCI_PM_CAP_PME_MASK;
2037 if (pmc) {
2038 dev_printk(KERN_DEBUG, &dev->dev,
2039 "PME# supported from%s%s%s%s%s\n",
2040 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2041 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2042 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2043 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2044 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2045 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2046 dev->pme_poll = true;
2048 * Make device's PM flags reflect the wake-up capability, but
2049 * let the user space enable it to wake up the system as needed.
2051 device_set_wakeup_capable(&dev->dev, true);
2052 /* Disable the PME# generation functionality */
2053 pci_pme_active(dev, false);
2057 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2058 struct pci_cap_saved_state *new_cap)
2060 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2064 * _pci_add_cap_save_buffer - allocate buffer for saving given
2065 * capability registers
2066 * @dev: the PCI device
2067 * @cap: the capability to allocate the buffer for
2068 * @extended: Standard or Extended capability ID
2069 * @size: requested size of the buffer
2071 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2072 bool extended, unsigned int size)
2074 int pos;
2075 struct pci_cap_saved_state *save_state;
2077 if (extended)
2078 pos = pci_find_ext_capability(dev, cap);
2079 else
2080 pos = pci_find_capability(dev, cap);
2082 if (pos <= 0)
2083 return 0;
2085 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2086 if (!save_state)
2087 return -ENOMEM;
2089 save_state->cap.cap_nr = cap;
2090 save_state->cap.cap_extended = extended;
2091 save_state->cap.size = size;
2092 pci_add_saved_cap(dev, save_state);
2094 return 0;
2097 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2099 return _pci_add_cap_save_buffer(dev, cap, false, size);
2102 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2104 return _pci_add_cap_save_buffer(dev, cap, true, size);
2108 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2109 * @dev: the PCI device
2111 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2113 int error;
2115 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2116 PCI_EXP_SAVE_REGS * sizeof(u16));
2117 if (error)
2118 dev_err(&dev->dev,
2119 "unable to preallocate PCI Express save buffer\n");
2121 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2122 if (error)
2123 dev_err(&dev->dev,
2124 "unable to preallocate PCI-X save buffer\n");
2126 pci_allocate_vc_save_buffers(dev);
2129 void pci_free_cap_save_buffers(struct pci_dev *dev)
2131 struct pci_cap_saved_state *tmp;
2132 struct hlist_node *n;
2134 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2135 kfree(tmp);
2139 * pci_configure_ari - enable or disable ARI forwarding
2140 * @dev: the PCI device
2142 * If @dev and its upstream bridge both support ARI, enable ARI in the
2143 * bridge. Otherwise, disable ARI in the bridge.
2145 void pci_configure_ari(struct pci_dev *dev)
2147 u32 cap;
2148 struct pci_dev *bridge;
2150 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2151 return;
2153 bridge = dev->bus->self;
2154 if (!bridge)
2155 return;
2157 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2158 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2159 return;
2161 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2162 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2163 PCI_EXP_DEVCTL2_ARI);
2164 bridge->ari_enabled = 1;
2165 } else {
2166 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2167 PCI_EXP_DEVCTL2_ARI);
2168 bridge->ari_enabled = 0;
2172 static int pci_acs_enable;
2175 * pci_request_acs - ask for ACS to be enabled if supported
2177 void pci_request_acs(void)
2179 pci_acs_enable = 1;
2183 * pci_enable_acs - enable ACS if hardware support it
2184 * @dev: the PCI device
2186 void pci_enable_acs(struct pci_dev *dev)
2188 int pos;
2189 u16 cap;
2190 u16 ctrl;
2192 if (!pci_acs_enable)
2193 return;
2195 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2196 if (!pos)
2197 return;
2199 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2200 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2202 /* Source Validation */
2203 ctrl |= (cap & PCI_ACS_SV);
2205 /* P2P Request Redirect */
2206 ctrl |= (cap & PCI_ACS_RR);
2208 /* P2P Completion Redirect */
2209 ctrl |= (cap & PCI_ACS_CR);
2211 /* Upstream Forwarding */
2212 ctrl |= (cap & PCI_ACS_UF);
2214 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2217 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2219 int pos;
2220 u16 cap, ctrl;
2222 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2223 if (!pos)
2224 return false;
2227 * Except for egress control, capabilities are either required
2228 * or only required if controllable. Features missing from the
2229 * capability field can therefore be assumed as hard-wired enabled.
2231 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2232 acs_flags &= (cap | PCI_ACS_EC);
2234 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2235 return (ctrl & acs_flags) == acs_flags;
2239 * pci_acs_enabled - test ACS against required flags for a given device
2240 * @pdev: device to test
2241 * @acs_flags: required PCI ACS flags
2243 * Return true if the device supports the provided flags. Automatically
2244 * filters out flags that are not implemented on multifunction devices.
2246 * Note that this interface checks the effective ACS capabilities of the
2247 * device rather than the actual capabilities. For instance, most single
2248 * function endpoints are not required to support ACS because they have no
2249 * opportunity for peer-to-peer access. We therefore return 'true'
2250 * regardless of whether the device exposes an ACS capability. This makes
2251 * it much easier for callers of this function to ignore the actual type
2252 * or topology of the device when testing ACS support.
2254 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2256 int ret;
2258 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2259 if (ret >= 0)
2260 return ret > 0;
2263 * Conventional PCI and PCI-X devices never support ACS, either
2264 * effectively or actually. The shared bus topology implies that
2265 * any device on the bus can receive or snoop DMA.
2267 if (!pci_is_pcie(pdev))
2268 return false;
2270 switch (pci_pcie_type(pdev)) {
2272 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2273 * but since their primary interface is PCI/X, we conservatively
2274 * handle them as we would a non-PCIe device.
2276 case PCI_EXP_TYPE_PCIE_BRIDGE:
2278 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2279 * applicable... must never implement an ACS Extended Capability...".
2280 * This seems arbitrary, but we take a conservative interpretation
2281 * of this statement.
2283 case PCI_EXP_TYPE_PCI_BRIDGE:
2284 case PCI_EXP_TYPE_RC_EC:
2285 return false;
2287 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2288 * implement ACS in order to indicate their peer-to-peer capabilities,
2289 * regardless of whether they are single- or multi-function devices.
2291 case PCI_EXP_TYPE_DOWNSTREAM:
2292 case PCI_EXP_TYPE_ROOT_PORT:
2293 return pci_acs_flags_enabled(pdev, acs_flags);
2295 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2296 * implemented by the remaining PCIe types to indicate peer-to-peer
2297 * capabilities, but only when they are part of a multifunction
2298 * device. The footnote for section 6.12 indicates the specific
2299 * PCIe types included here.
2301 case PCI_EXP_TYPE_ENDPOINT:
2302 case PCI_EXP_TYPE_UPSTREAM:
2303 case PCI_EXP_TYPE_LEG_END:
2304 case PCI_EXP_TYPE_RC_END:
2305 if (!pdev->multifunction)
2306 break;
2308 return pci_acs_flags_enabled(pdev, acs_flags);
2312 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2313 * to single function devices with the exception of downstream ports.
2315 return true;
2319 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2320 * @start: starting downstream device
2321 * @end: ending upstream device or NULL to search to the root bus
2322 * @acs_flags: required flags
2324 * Walk up a device tree from start to end testing PCI ACS support. If
2325 * any step along the way does not support the required flags, return false.
2327 bool pci_acs_path_enabled(struct pci_dev *start,
2328 struct pci_dev *end, u16 acs_flags)
2330 struct pci_dev *pdev, *parent = start;
2332 do {
2333 pdev = parent;
2335 if (!pci_acs_enabled(pdev, acs_flags))
2336 return false;
2338 if (pci_is_root_bus(pdev->bus))
2339 return (end == NULL);
2341 parent = pdev->bus->self;
2342 } while (pdev != end);
2344 return true;
2348 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2349 * @dev: the PCI device
2350 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2352 * Perform INTx swizzling for a device behind one level of bridge. This is
2353 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2354 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2355 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2356 * the PCI Express Base Specification, Revision 2.1)
2358 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2360 int slot;
2362 if (pci_ari_enabled(dev->bus))
2363 slot = 0;
2364 else
2365 slot = PCI_SLOT(dev->devfn);
2367 return (((pin - 1) + slot) % 4) + 1;
2371 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2373 u8 pin;
2375 pin = dev->pin;
2376 if (!pin)
2377 return -1;
2379 while (!pci_is_root_bus(dev->bus)) {
2380 pin = pci_swizzle_interrupt_pin(dev, pin);
2381 dev = dev->bus->self;
2383 *bridge = dev;
2384 return pin;
2388 * pci_common_swizzle - swizzle INTx all the way to root bridge
2389 * @dev: the PCI device
2390 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2392 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2393 * bridges all the way up to a PCI root bus.
2395 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2397 u8 pin = *pinp;
2399 while (!pci_is_root_bus(dev->bus)) {
2400 pin = pci_swizzle_interrupt_pin(dev, pin);
2401 dev = dev->bus->self;
2403 *pinp = pin;
2404 return PCI_SLOT(dev->devfn);
2408 * pci_release_region - Release a PCI bar
2409 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2410 * @bar: BAR to release
2412 * Releases the PCI I/O and memory resources previously reserved by a
2413 * successful call to pci_request_region. Call this function only
2414 * after all use of the PCI regions has ceased.
2416 void pci_release_region(struct pci_dev *pdev, int bar)
2418 struct pci_devres *dr;
2420 if (pci_resource_len(pdev, bar) == 0)
2421 return;
2422 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2423 release_region(pci_resource_start(pdev, bar),
2424 pci_resource_len(pdev, bar));
2425 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2426 release_mem_region(pci_resource_start(pdev, bar),
2427 pci_resource_len(pdev, bar));
2429 dr = find_pci_dr(pdev);
2430 if (dr)
2431 dr->region_mask &= ~(1 << bar);
2435 * __pci_request_region - Reserved PCI I/O and memory resource
2436 * @pdev: PCI device whose resources are to be reserved
2437 * @bar: BAR to be reserved
2438 * @res_name: Name to be associated with resource.
2439 * @exclusive: whether the region access is exclusive or not
2441 * Mark the PCI region associated with PCI device @pdev BR @bar as
2442 * being reserved by owner @res_name. Do not access any
2443 * address inside the PCI regions unless this call returns
2444 * successfully.
2446 * If @exclusive is set, then the region is marked so that userspace
2447 * is explicitly not allowed to map the resource via /dev/mem or
2448 * sysfs MMIO access.
2450 * Returns 0 on success, or %EBUSY on error. A warning
2451 * message is also printed on failure.
2453 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2454 int exclusive)
2456 struct pci_devres *dr;
2458 if (pci_resource_len(pdev, bar) == 0)
2459 return 0;
2461 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2462 if (!request_region(pci_resource_start(pdev, bar),
2463 pci_resource_len(pdev, bar), res_name))
2464 goto err_out;
2466 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2467 if (!__request_mem_region(pci_resource_start(pdev, bar),
2468 pci_resource_len(pdev, bar), res_name,
2469 exclusive))
2470 goto err_out;
2473 dr = find_pci_dr(pdev);
2474 if (dr)
2475 dr->region_mask |= 1 << bar;
2477 return 0;
2479 err_out:
2480 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2481 &pdev->resource[bar]);
2482 return -EBUSY;
2486 * pci_request_region - Reserve PCI I/O and memory resource
2487 * @pdev: PCI device whose resources are to be reserved
2488 * @bar: BAR to be reserved
2489 * @res_name: Name to be associated with resource
2491 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2492 * being reserved by owner @res_name. Do not access any
2493 * address inside the PCI regions unless this call returns
2494 * successfully.
2496 * Returns 0 on success, or %EBUSY on error. A warning
2497 * message is also printed on failure.
2499 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2501 return __pci_request_region(pdev, bar, res_name, 0);
2505 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2506 * @pdev: PCI device whose resources are to be reserved
2507 * @bar: BAR to be reserved
2508 * @res_name: Name to be associated with resource.
2510 * Mark the PCI region associated with PCI device @pdev BR @bar as
2511 * being reserved by owner @res_name. Do not access any
2512 * address inside the PCI regions unless this call returns
2513 * successfully.
2515 * Returns 0 on success, or %EBUSY on error. A warning
2516 * message is also printed on failure.
2518 * The key difference that _exclusive makes it that userspace is
2519 * explicitly not allowed to map the resource via /dev/mem or
2520 * sysfs.
2522 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2524 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2527 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2528 * @pdev: PCI device whose resources were previously reserved
2529 * @bars: Bitmask of BARs to be released
2531 * Release selected PCI I/O and memory resources previously reserved.
2532 * Call this function only after all use of the PCI regions has ceased.
2534 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2536 int i;
2538 for (i = 0; i < 6; i++)
2539 if (bars & (1 << i))
2540 pci_release_region(pdev, i);
2543 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2544 const char *res_name, int excl)
2546 int i;
2548 for (i = 0; i < 6; i++)
2549 if (bars & (1 << i))
2550 if (__pci_request_region(pdev, i, res_name, excl))
2551 goto err_out;
2552 return 0;
2554 err_out:
2555 while(--i >= 0)
2556 if (bars & (1 << i))
2557 pci_release_region(pdev, i);
2559 return -EBUSY;
2564 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2565 * @pdev: PCI device whose resources are to be reserved
2566 * @bars: Bitmask of BARs to be requested
2567 * @res_name: Name to be associated with resource
2569 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2570 const char *res_name)
2572 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2575 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2576 int bars, const char *res_name)
2578 return __pci_request_selected_regions(pdev, bars, res_name,
2579 IORESOURCE_EXCLUSIVE);
2583 * pci_release_regions - Release reserved PCI I/O and memory resources
2584 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2586 * Releases all PCI I/O and memory resources previously reserved by a
2587 * successful call to pci_request_regions. Call this function only
2588 * after all use of the PCI regions has ceased.
2591 void pci_release_regions(struct pci_dev *pdev)
2593 pci_release_selected_regions(pdev, (1 << 6) - 1);
2597 * pci_request_regions - Reserved PCI I/O and memory resources
2598 * @pdev: PCI device whose resources are to be reserved
2599 * @res_name: Name to be associated with resource.
2601 * Mark all PCI regions associated with PCI device @pdev as
2602 * being reserved by owner @res_name. Do not access any
2603 * address inside the PCI regions unless this call returns
2604 * successfully.
2606 * Returns 0 on success, or %EBUSY on error. A warning
2607 * message is also printed on failure.
2609 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2611 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2615 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2616 * @pdev: PCI device whose resources are to be reserved
2617 * @res_name: Name to be associated with resource.
2619 * Mark all PCI regions associated with PCI device @pdev as
2620 * being reserved by owner @res_name. Do not access any
2621 * address inside the PCI regions unless this call returns
2622 * successfully.
2624 * pci_request_regions_exclusive() will mark the region so that
2625 * /dev/mem and the sysfs MMIO access will not be allowed.
2627 * Returns 0 on success, or %EBUSY on error. A warning
2628 * message is also printed on failure.
2630 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2632 return pci_request_selected_regions_exclusive(pdev,
2633 ((1 << 6) - 1), res_name);
2636 static void __pci_set_master(struct pci_dev *dev, bool enable)
2638 u16 old_cmd, cmd;
2640 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2641 if (enable)
2642 cmd = old_cmd | PCI_COMMAND_MASTER;
2643 else
2644 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2645 if (cmd != old_cmd) {
2646 dev_dbg(&dev->dev, "%s bus mastering\n",
2647 enable ? "enabling" : "disabling");
2648 pci_write_config_word(dev, PCI_COMMAND, cmd);
2650 dev->is_busmaster = enable;
2654 * pcibios_setup - process "pci=" kernel boot arguments
2655 * @str: string used to pass in "pci=" kernel boot arguments
2657 * Process kernel boot arguments. This is the default implementation.
2658 * Architecture specific implementations can override this as necessary.
2660 char * __weak __init pcibios_setup(char *str)
2662 return str;
2666 * pcibios_set_master - enable PCI bus-mastering for device dev
2667 * @dev: the PCI device to enable
2669 * Enables PCI bus-mastering for the device. This is the default
2670 * implementation. Architecture specific implementations can override
2671 * this if necessary.
2673 void __weak pcibios_set_master(struct pci_dev *dev)
2675 u8 lat;
2677 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2678 if (pci_is_pcie(dev))
2679 return;
2681 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2682 if (lat < 16)
2683 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2684 else if (lat > pcibios_max_latency)
2685 lat = pcibios_max_latency;
2686 else
2687 return;
2689 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2693 * pci_set_master - enables bus-mastering for device dev
2694 * @dev: the PCI device to enable
2696 * Enables bus-mastering on the device and calls pcibios_set_master()
2697 * to do the needed arch specific settings.
2699 void pci_set_master(struct pci_dev *dev)
2701 __pci_set_master(dev, true);
2702 pcibios_set_master(dev);
2706 * pci_clear_master - disables bus-mastering for device dev
2707 * @dev: the PCI device to disable
2709 void pci_clear_master(struct pci_dev *dev)
2711 __pci_set_master(dev, false);
2715 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2716 * @dev: the PCI device for which MWI is to be enabled
2718 * Helper function for pci_set_mwi.
2719 * Originally copied from drivers/net/acenic.c.
2720 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2722 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2724 int pci_set_cacheline_size(struct pci_dev *dev)
2726 u8 cacheline_size;
2728 if (!pci_cache_line_size)
2729 return -EINVAL;
2731 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2732 equal to or multiple of the right value. */
2733 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2734 if (cacheline_size >= pci_cache_line_size &&
2735 (cacheline_size % pci_cache_line_size) == 0)
2736 return 0;
2738 /* Write the correct value. */
2739 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2740 /* Read it back. */
2741 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2742 if (cacheline_size == pci_cache_line_size)
2743 return 0;
2745 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2746 "supported\n", pci_cache_line_size << 2);
2748 return -EINVAL;
2750 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2752 #ifdef PCI_DISABLE_MWI
2753 int pci_set_mwi(struct pci_dev *dev)
2755 return 0;
2758 int pci_try_set_mwi(struct pci_dev *dev)
2760 return 0;
2763 void pci_clear_mwi(struct pci_dev *dev)
2767 #else
2770 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2771 * @dev: the PCI device for which MWI is enabled
2773 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2775 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2778 pci_set_mwi(struct pci_dev *dev)
2780 int rc;
2781 u16 cmd;
2783 rc = pci_set_cacheline_size(dev);
2784 if (rc)
2785 return rc;
2787 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2788 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2789 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2790 cmd |= PCI_COMMAND_INVALIDATE;
2791 pci_write_config_word(dev, PCI_COMMAND, cmd);
2794 return 0;
2798 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2799 * @dev: the PCI device for which MWI is enabled
2801 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2802 * Callers are not required to check the return value.
2804 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2806 int pci_try_set_mwi(struct pci_dev *dev)
2808 int rc = pci_set_mwi(dev);
2809 return rc;
2813 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2814 * @dev: the PCI device to disable
2816 * Disables PCI Memory-Write-Invalidate transaction on the device
2818 void
2819 pci_clear_mwi(struct pci_dev *dev)
2821 u16 cmd;
2823 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2824 if (cmd & PCI_COMMAND_INVALIDATE) {
2825 cmd &= ~PCI_COMMAND_INVALIDATE;
2826 pci_write_config_word(dev, PCI_COMMAND, cmd);
2829 #endif /* ! PCI_DISABLE_MWI */
2832 * pci_intx - enables/disables PCI INTx for device dev
2833 * @pdev: the PCI device to operate on
2834 * @enable: boolean: whether to enable or disable PCI INTx
2836 * Enables/disables PCI INTx for device dev
2838 void
2839 pci_intx(struct pci_dev *pdev, int enable)
2841 u16 pci_command, new;
2843 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2845 if (enable) {
2846 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2847 } else {
2848 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2851 if (new != pci_command) {
2852 struct pci_devres *dr;
2854 pci_write_config_word(pdev, PCI_COMMAND, new);
2856 dr = find_pci_dr(pdev);
2857 if (dr && !dr->restore_intx) {
2858 dr->restore_intx = 1;
2859 dr->orig_intx = !enable;
2865 * pci_intx_mask_supported - probe for INTx masking support
2866 * @dev: the PCI device to operate on
2868 * Check if the device dev support INTx masking via the config space
2869 * command word.
2871 bool pci_intx_mask_supported(struct pci_dev *dev)
2873 bool mask_supported = false;
2874 u16 orig, new;
2876 if (dev->broken_intx_masking)
2877 return false;
2879 pci_cfg_access_lock(dev);
2881 pci_read_config_word(dev, PCI_COMMAND, &orig);
2882 pci_write_config_word(dev, PCI_COMMAND,
2883 orig ^ PCI_COMMAND_INTX_DISABLE);
2884 pci_read_config_word(dev, PCI_COMMAND, &new);
2887 * There's no way to protect against hardware bugs or detect them
2888 * reliably, but as long as we know what the value should be, let's
2889 * go ahead and check it.
2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2892 dev_err(&dev->dev, "Command register changed from "
2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2895 mask_supported = true;
2896 pci_write_config_word(dev, PCI_COMMAND, orig);
2899 pci_cfg_access_unlock(dev);
2900 return mask_supported;
2902 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2904 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2906 struct pci_bus *bus = dev->bus;
2907 bool mask_updated = true;
2908 u32 cmd_status_dword;
2909 u16 origcmd, newcmd;
2910 unsigned long flags;
2911 bool irq_pending;
2914 * We do a single dword read to retrieve both command and status.
2915 * Document assumptions that make this possible.
2917 BUILD_BUG_ON(PCI_COMMAND % 4);
2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2920 raw_spin_lock_irqsave(&pci_lock, flags);
2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2927 * Check interrupt status register to see whether our device
2928 * triggered the interrupt (when masking) or the next IRQ is
2929 * already pending (when unmasking).
2931 if (mask != irq_pending) {
2932 mask_updated = false;
2933 goto done;
2936 origcmd = cmd_status_dword;
2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2938 if (mask)
2939 newcmd |= PCI_COMMAND_INTX_DISABLE;
2940 if (newcmd != origcmd)
2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2943 done:
2944 raw_spin_unlock_irqrestore(&pci_lock, flags);
2946 return mask_updated;
2950 * pci_check_and_mask_intx - mask INTx on pending interrupt
2951 * @dev: the PCI device to operate on
2953 * Check if the device dev has its INTx line asserted, mask it and
2954 * return true in that case. False is returned if not interrupt was
2955 * pending.
2957 bool pci_check_and_mask_intx(struct pci_dev *dev)
2959 return pci_check_and_set_intx_mask(dev, true);
2961 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2964 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
2965 * @dev: the PCI device to operate on
2967 * Check if the device dev has its INTx line asserted, unmask it if not
2968 * and return true. False is returned and the mask remains active if
2969 * there was still an interrupt pending.
2971 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2973 return pci_check_and_set_intx_mask(dev, false);
2975 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2978 * pci_msi_off - disables any MSI or MSI-X capabilities
2979 * @dev: the PCI device to operate on
2981 * If you want to use MSI, see pci_enable_msi() and friends.
2982 * This is a lower-level primitive that allows us to disable
2983 * MSI operation at the device level.
2985 void pci_msi_off(struct pci_dev *dev)
2987 int pos;
2988 u16 control;
2991 * This looks like it could go in msi.c, but we need it even when
2992 * CONFIG_PCI_MSI=n. For the same reason, we can't use
2993 * dev->msi_cap or dev->msix_cap here.
2995 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2996 if (pos) {
2997 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2998 control &= ~PCI_MSI_FLAGS_ENABLE;
2999 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3001 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3002 if (pos) {
3003 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3004 control &= ~PCI_MSIX_FLAGS_ENABLE;
3005 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3008 EXPORT_SYMBOL_GPL(pci_msi_off);
3010 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3012 return dma_set_max_seg_size(&dev->dev, size);
3014 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3016 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3018 return dma_set_seg_boundary(&dev->dev, mask);
3020 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3023 * pci_wait_for_pending_transaction - waits for pending transaction
3024 * @dev: the PCI device to operate on
3026 * Return 0 if transaction is pending 1 otherwise.
3028 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3030 if (!pci_is_pcie(dev))
3031 return 1;
3033 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3035 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3037 static int pcie_flr(struct pci_dev *dev, int probe)
3039 u32 cap;
3041 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3042 if (!(cap & PCI_EXP_DEVCAP_FLR))
3043 return -ENOTTY;
3045 if (probe)
3046 return 0;
3048 if (!pci_wait_for_pending_transaction(dev))
3049 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3051 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3053 msleep(100);
3055 return 0;
3058 static int pci_af_flr(struct pci_dev *dev, int probe)
3060 int pos;
3061 u8 cap;
3063 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3064 if (!pos)
3065 return -ENOTTY;
3067 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3068 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3069 return -ENOTTY;
3071 if (probe)
3072 return 0;
3074 /* Wait for Transaction Pending bit clean */
3075 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3076 goto clear;
3078 dev_err(&dev->dev, "transaction is not cleared; "
3079 "proceeding with reset anyway\n");
3081 clear:
3082 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3083 msleep(100);
3085 return 0;
3089 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3090 * @dev: Device to reset.
3091 * @probe: If set, only check if the device can be reset this way.
3093 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3094 * unset, it will be reinitialized internally when going from PCI_D3hot to
3095 * PCI_D0. If that's the case and the device is not in a low-power state
3096 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3098 * NOTE: This causes the caller to sleep for twice the device power transition
3099 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3100 * by default (i.e. unless the @dev's d3_delay field has a different value).
3101 * Moreover, only devices in D0 can be reset by this function.
3103 static int pci_pm_reset(struct pci_dev *dev, int probe)
3105 u16 csr;
3107 if (!dev->pm_cap)
3108 return -ENOTTY;
3110 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3111 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3112 return -ENOTTY;
3114 if (probe)
3115 return 0;
3117 if (dev->current_state != PCI_D0)
3118 return -EINVAL;
3120 csr &= ~PCI_PM_CTRL_STATE_MASK;
3121 csr |= PCI_D3hot;
3122 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3123 pci_dev_d3_sleep(dev);
3125 csr &= ~PCI_PM_CTRL_STATE_MASK;
3126 csr |= PCI_D0;
3127 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3128 pci_dev_d3_sleep(dev);
3130 return 0;
3134 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3135 * @dev: Bridge device
3137 * Use the bridge control register to assert reset on the secondary bus.
3138 * Devices on the secondary bus are left in power-on state.
3140 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3142 u16 ctrl;
3144 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3145 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3146 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3148 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3149 * this to 2ms to ensure that we meet the minimum requirement.
3151 msleep(2);
3153 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3154 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3157 * Trhfa for conventional PCI is 2^25 clock cycles.
3158 * Assuming a minimum 33MHz clock this results in a 1s
3159 * delay before we can consider subordinate devices to
3160 * be re-initialized. PCIe has some ways to shorten this,
3161 * but we don't make use of them yet.
3163 ssleep(1);
3165 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3167 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3169 struct pci_dev *pdev;
3171 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3172 return -ENOTTY;
3174 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3175 if (pdev != dev)
3176 return -ENOTTY;
3178 if (probe)
3179 return 0;
3181 pci_reset_bridge_secondary_bus(dev->bus->self);
3183 return 0;
3186 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3188 int rc = -ENOTTY;
3190 if (!hotplug || !try_module_get(hotplug->ops->owner))
3191 return rc;
3193 if (hotplug->ops->reset_slot)
3194 rc = hotplug->ops->reset_slot(hotplug, probe);
3196 module_put(hotplug->ops->owner);
3198 return rc;
3201 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3203 struct pci_dev *pdev;
3205 if (dev->subordinate || !dev->slot)
3206 return -ENOTTY;
3208 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3209 if (pdev != dev && pdev->slot == dev->slot)
3210 return -ENOTTY;
3212 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3215 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3217 int rc;
3219 might_sleep();
3221 rc = pci_dev_specific_reset(dev, probe);
3222 if (rc != -ENOTTY)
3223 goto done;
3225 rc = pcie_flr(dev, probe);
3226 if (rc != -ENOTTY)
3227 goto done;
3229 rc = pci_af_flr(dev, probe);
3230 if (rc != -ENOTTY)
3231 goto done;
3233 rc = pci_pm_reset(dev, probe);
3234 if (rc != -ENOTTY)
3235 goto done;
3237 rc = pci_dev_reset_slot_function(dev, probe);
3238 if (rc != -ENOTTY)
3239 goto done;
3241 rc = pci_parent_bus_reset(dev, probe);
3242 done:
3243 return rc;
3246 static void pci_dev_lock(struct pci_dev *dev)
3248 pci_cfg_access_lock(dev);
3249 /* block PM suspend, driver probe, etc. */
3250 device_lock(&dev->dev);
3253 /* Return 1 on successful lock, 0 on contention */
3254 static int pci_dev_trylock(struct pci_dev *dev)
3256 if (pci_cfg_access_trylock(dev)) {
3257 if (device_trylock(&dev->dev))
3258 return 1;
3259 pci_cfg_access_unlock(dev);
3262 return 0;
3265 static void pci_dev_unlock(struct pci_dev *dev)
3267 device_unlock(&dev->dev);
3268 pci_cfg_access_unlock(dev);
3271 static void pci_dev_save_and_disable(struct pci_dev *dev)
3274 * Wake-up device prior to save. PM registers default to D0 after
3275 * reset and a simple register restore doesn't reliably return
3276 * to a non-D0 state anyway.
3278 pci_set_power_state(dev, PCI_D0);
3280 pci_save_state(dev);
3282 * Disable the device by clearing the Command register, except for
3283 * INTx-disable which is set. This not only disables MMIO and I/O port
3284 * BARs, but also prevents the device from being Bus Master, preventing
3285 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3286 * compliant devices, INTx-disable prevents legacy interrupts.
3288 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3291 static void pci_dev_restore(struct pci_dev *dev)
3293 pci_restore_state(dev);
3296 static int pci_dev_reset(struct pci_dev *dev, int probe)
3298 int rc;
3300 if (!probe)
3301 pci_dev_lock(dev);
3303 rc = __pci_dev_reset(dev, probe);
3305 if (!probe)
3306 pci_dev_unlock(dev);
3308 return rc;
3311 * __pci_reset_function - reset a PCI device function
3312 * @dev: PCI device to reset
3314 * Some devices allow an individual function to be reset without affecting
3315 * other functions in the same device. The PCI device must be responsive
3316 * to PCI config space in order to use this function.
3318 * The device function is presumed to be unused when this function is called.
3319 * Resetting the device will make the contents of PCI configuration space
3320 * random, so any caller of this must be prepared to reinitialise the
3321 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3322 * etc.
3324 * Returns 0 if the device function was successfully reset or negative if the
3325 * device doesn't support resetting a single function.
3327 int __pci_reset_function(struct pci_dev *dev)
3329 return pci_dev_reset(dev, 0);
3331 EXPORT_SYMBOL_GPL(__pci_reset_function);
3334 * __pci_reset_function_locked - reset a PCI device function while holding
3335 * the @dev mutex lock.
3336 * @dev: PCI device to reset
3338 * Some devices allow an individual function to be reset without affecting
3339 * other functions in the same device. The PCI device must be responsive
3340 * to PCI config space in order to use this function.
3342 * The device function is presumed to be unused and the caller is holding
3343 * the device mutex lock when this function is called.
3344 * Resetting the device will make the contents of PCI configuration space
3345 * random, so any caller of this must be prepared to reinitialise the
3346 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3347 * etc.
3349 * Returns 0 if the device function was successfully reset or negative if the
3350 * device doesn't support resetting a single function.
3352 int __pci_reset_function_locked(struct pci_dev *dev)
3354 return __pci_dev_reset(dev, 0);
3356 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3359 * pci_probe_reset_function - check whether the device can be safely reset
3360 * @dev: PCI device to reset
3362 * Some devices allow an individual function to be reset without affecting
3363 * other functions in the same device. The PCI device must be responsive
3364 * to PCI config space in order to use this function.
3366 * Returns 0 if the device function can be reset or negative if the
3367 * device doesn't support resetting a single function.
3369 int pci_probe_reset_function(struct pci_dev *dev)
3371 return pci_dev_reset(dev, 1);
3375 * pci_reset_function - quiesce and reset a PCI device function
3376 * @dev: PCI device to reset
3378 * Some devices allow an individual function to be reset without affecting
3379 * other functions in the same device. The PCI device must be responsive
3380 * to PCI config space in order to use this function.
3382 * This function does not just reset the PCI portion of a device, but
3383 * clears all the state associated with the device. This function differs
3384 * from __pci_reset_function in that it saves and restores device state
3385 * over the reset.
3387 * Returns 0 if the device function was successfully reset or negative if the
3388 * device doesn't support resetting a single function.
3390 int pci_reset_function(struct pci_dev *dev)
3392 int rc;
3394 rc = pci_dev_reset(dev, 1);
3395 if (rc)
3396 return rc;
3398 pci_dev_save_and_disable(dev);
3400 rc = pci_dev_reset(dev, 0);
3402 pci_dev_restore(dev);
3404 return rc;
3406 EXPORT_SYMBOL_GPL(pci_reset_function);
3409 * pci_try_reset_function - quiesce and reset a PCI device function
3410 * @dev: PCI device to reset
3412 * Same as above, except return -EAGAIN if unable to lock device.
3414 int pci_try_reset_function(struct pci_dev *dev)
3416 int rc;
3418 rc = pci_dev_reset(dev, 1);
3419 if (rc)
3420 return rc;
3422 pci_dev_save_and_disable(dev);
3424 if (pci_dev_trylock(dev)) {
3425 rc = __pci_dev_reset(dev, 0);
3426 pci_dev_unlock(dev);
3427 } else
3428 rc = -EAGAIN;
3430 pci_dev_restore(dev);
3432 return rc;
3434 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3436 /* Lock devices from the top of the tree down */
3437 static void pci_bus_lock(struct pci_bus *bus)
3439 struct pci_dev *dev;
3441 list_for_each_entry(dev, &bus->devices, bus_list) {
3442 pci_dev_lock(dev);
3443 if (dev->subordinate)
3444 pci_bus_lock(dev->subordinate);
3448 /* Unlock devices from the bottom of the tree up */
3449 static void pci_bus_unlock(struct pci_bus *bus)
3451 struct pci_dev *dev;
3453 list_for_each_entry(dev, &bus->devices, bus_list) {
3454 if (dev->subordinate)
3455 pci_bus_unlock(dev->subordinate);
3456 pci_dev_unlock(dev);
3460 /* Return 1 on successful lock, 0 on contention */
3461 static int pci_bus_trylock(struct pci_bus *bus)
3463 struct pci_dev *dev;
3465 list_for_each_entry(dev, &bus->devices, bus_list) {
3466 if (!pci_dev_trylock(dev))
3467 goto unlock;
3468 if (dev->subordinate) {
3469 if (!pci_bus_trylock(dev->subordinate)) {
3470 pci_dev_unlock(dev);
3471 goto unlock;
3475 return 1;
3477 unlock:
3478 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3479 if (dev->subordinate)
3480 pci_bus_unlock(dev->subordinate);
3481 pci_dev_unlock(dev);
3483 return 0;
3486 /* Lock devices from the top of the tree down */
3487 static void pci_slot_lock(struct pci_slot *slot)
3489 struct pci_dev *dev;
3491 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3492 if (!dev->slot || dev->slot != slot)
3493 continue;
3494 pci_dev_lock(dev);
3495 if (dev->subordinate)
3496 pci_bus_lock(dev->subordinate);
3500 /* Unlock devices from the bottom of the tree up */
3501 static void pci_slot_unlock(struct pci_slot *slot)
3503 struct pci_dev *dev;
3505 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3506 if (!dev->slot || dev->slot != slot)
3507 continue;
3508 if (dev->subordinate)
3509 pci_bus_unlock(dev->subordinate);
3510 pci_dev_unlock(dev);
3514 /* Return 1 on successful lock, 0 on contention */
3515 static int pci_slot_trylock(struct pci_slot *slot)
3517 struct pci_dev *dev;
3519 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3520 if (!dev->slot || dev->slot != slot)
3521 continue;
3522 if (!pci_dev_trylock(dev))
3523 goto unlock;
3524 if (dev->subordinate) {
3525 if (!pci_bus_trylock(dev->subordinate)) {
3526 pci_dev_unlock(dev);
3527 goto unlock;
3531 return 1;
3533 unlock:
3534 list_for_each_entry_continue_reverse(dev,
3535 &slot->bus->devices, bus_list) {
3536 if (!dev->slot || dev->slot != slot)
3537 continue;
3538 if (dev->subordinate)
3539 pci_bus_unlock(dev->subordinate);
3540 pci_dev_unlock(dev);
3542 return 0;
3545 /* Save and disable devices from the top of the tree down */
3546 static void pci_bus_save_and_disable(struct pci_bus *bus)
3548 struct pci_dev *dev;
3550 list_for_each_entry(dev, &bus->devices, bus_list) {
3551 pci_dev_save_and_disable(dev);
3552 if (dev->subordinate)
3553 pci_bus_save_and_disable(dev->subordinate);
3558 * Restore devices from top of the tree down - parent bridges need to be
3559 * restored before we can get to subordinate devices.
3561 static void pci_bus_restore(struct pci_bus *bus)
3563 struct pci_dev *dev;
3565 list_for_each_entry(dev, &bus->devices, bus_list) {
3566 pci_dev_restore(dev);
3567 if (dev->subordinate)
3568 pci_bus_restore(dev->subordinate);
3572 /* Save and disable devices from the top of the tree down */
3573 static void pci_slot_save_and_disable(struct pci_slot *slot)
3575 struct pci_dev *dev;
3577 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3578 if (!dev->slot || dev->slot != slot)
3579 continue;
3580 pci_dev_save_and_disable(dev);
3581 if (dev->subordinate)
3582 pci_bus_save_and_disable(dev->subordinate);
3587 * Restore devices from top of the tree down - parent bridges need to be
3588 * restored before we can get to subordinate devices.
3590 static void pci_slot_restore(struct pci_slot *slot)
3592 struct pci_dev *dev;
3594 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3595 if (!dev->slot || dev->slot != slot)
3596 continue;
3597 pci_dev_restore(dev);
3598 if (dev->subordinate)
3599 pci_bus_restore(dev->subordinate);
3603 static int pci_slot_reset(struct pci_slot *slot, int probe)
3605 int rc;
3607 if (!slot)
3608 return -ENOTTY;
3610 if (!probe)
3611 pci_slot_lock(slot);
3613 might_sleep();
3615 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3617 if (!probe)
3618 pci_slot_unlock(slot);
3620 return rc;
3624 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3625 * @slot: PCI slot to probe
3627 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3629 int pci_probe_reset_slot(struct pci_slot *slot)
3631 return pci_slot_reset(slot, 1);
3633 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3636 * pci_reset_slot - reset a PCI slot
3637 * @slot: PCI slot to reset
3639 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3640 * independent of other slots. For instance, some slots may support slot power
3641 * control. In the case of a 1:1 bus to slot architecture, this function may
3642 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3643 * Generally a slot reset should be attempted before a bus reset. All of the
3644 * function of the slot and any subordinate buses behind the slot are reset
3645 * through this function. PCI config space of all devices in the slot and
3646 * behind the slot is saved before and restored after reset.
3648 * Return 0 on success, non-zero on error.
3650 int pci_reset_slot(struct pci_slot *slot)
3652 int rc;
3654 rc = pci_slot_reset(slot, 1);
3655 if (rc)
3656 return rc;
3658 pci_slot_save_and_disable(slot);
3660 rc = pci_slot_reset(slot, 0);
3662 pci_slot_restore(slot);
3664 return rc;
3666 EXPORT_SYMBOL_GPL(pci_reset_slot);
3669 * pci_try_reset_slot - Try to reset a PCI slot
3670 * @slot: PCI slot to reset
3672 * Same as above except return -EAGAIN if the slot cannot be locked
3674 int pci_try_reset_slot(struct pci_slot *slot)
3676 int rc;
3678 rc = pci_slot_reset(slot, 1);
3679 if (rc)
3680 return rc;
3682 pci_slot_save_and_disable(slot);
3684 if (pci_slot_trylock(slot)) {
3685 might_sleep();
3686 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3687 pci_slot_unlock(slot);
3688 } else
3689 rc = -EAGAIN;
3691 pci_slot_restore(slot);
3693 return rc;
3695 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3697 static int pci_bus_reset(struct pci_bus *bus, int probe)
3699 if (!bus->self)
3700 return -ENOTTY;
3702 if (probe)
3703 return 0;
3705 pci_bus_lock(bus);
3707 might_sleep();
3709 pci_reset_bridge_secondary_bus(bus->self);
3711 pci_bus_unlock(bus);
3713 return 0;
3717 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3718 * @bus: PCI bus to probe
3720 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3722 int pci_probe_reset_bus(struct pci_bus *bus)
3724 return pci_bus_reset(bus, 1);
3726 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3729 * pci_reset_bus - reset a PCI bus
3730 * @bus: top level PCI bus to reset
3732 * Do a bus reset on the given bus and any subordinate buses, saving
3733 * and restoring state of all devices.
3735 * Return 0 on success, non-zero on error.
3737 int pci_reset_bus(struct pci_bus *bus)
3739 int rc;
3741 rc = pci_bus_reset(bus, 1);
3742 if (rc)
3743 return rc;
3745 pci_bus_save_and_disable(bus);
3747 rc = pci_bus_reset(bus, 0);
3749 pci_bus_restore(bus);
3751 return rc;
3753 EXPORT_SYMBOL_GPL(pci_reset_bus);
3756 * pci_try_reset_bus - Try to reset a PCI bus
3757 * @bus: top level PCI bus to reset
3759 * Same as above except return -EAGAIN if the bus cannot be locked
3761 int pci_try_reset_bus(struct pci_bus *bus)
3763 int rc;
3765 rc = pci_bus_reset(bus, 1);
3766 if (rc)
3767 return rc;
3769 pci_bus_save_and_disable(bus);
3771 if (pci_bus_trylock(bus)) {
3772 might_sleep();
3773 pci_reset_bridge_secondary_bus(bus->self);
3774 pci_bus_unlock(bus);
3775 } else
3776 rc = -EAGAIN;
3778 pci_bus_restore(bus);
3780 return rc;
3782 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3785 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3786 * @dev: PCI device to query
3788 * Returns mmrbc: maximum designed memory read count in bytes
3789 * or appropriate error value.
3791 int pcix_get_max_mmrbc(struct pci_dev *dev)
3793 int cap;
3794 u32 stat;
3796 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3797 if (!cap)
3798 return -EINVAL;
3800 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3801 return -EINVAL;
3803 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3805 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3808 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3809 * @dev: PCI device to query
3811 * Returns mmrbc: maximum memory read count in bytes
3812 * or appropriate error value.
3814 int pcix_get_mmrbc(struct pci_dev *dev)
3816 int cap;
3817 u16 cmd;
3819 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3820 if (!cap)
3821 return -EINVAL;
3823 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3824 return -EINVAL;
3826 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3828 EXPORT_SYMBOL(pcix_get_mmrbc);
3831 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3832 * @dev: PCI device to query
3833 * @mmrbc: maximum memory read count in bytes
3834 * valid values are 512, 1024, 2048, 4096
3836 * If possible sets maximum memory read byte count, some bridges have erratas
3837 * that prevent this.
3839 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3841 int cap;
3842 u32 stat, v, o;
3843 u16 cmd;
3845 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3846 return -EINVAL;
3848 v = ffs(mmrbc) - 10;
3850 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3851 if (!cap)
3852 return -EINVAL;
3854 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3855 return -EINVAL;
3857 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3858 return -E2BIG;
3860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3861 return -EINVAL;
3863 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3864 if (o != v) {
3865 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3866 return -EIO;
3868 cmd &= ~PCI_X_CMD_MAX_READ;
3869 cmd |= v << 2;
3870 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3871 return -EIO;
3873 return 0;
3875 EXPORT_SYMBOL(pcix_set_mmrbc);
3878 * pcie_get_readrq - get PCI Express read request size
3879 * @dev: PCI device to query
3881 * Returns maximum memory read request in bytes
3882 * or appropriate error value.
3884 int pcie_get_readrq(struct pci_dev *dev)
3886 u16 ctl;
3888 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3890 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3892 EXPORT_SYMBOL(pcie_get_readrq);
3895 * pcie_set_readrq - set PCI Express maximum memory read request
3896 * @dev: PCI device to query
3897 * @rq: maximum memory read count in bytes
3898 * valid values are 128, 256, 512, 1024, 2048, 4096
3900 * If possible sets maximum memory read request in bytes
3902 int pcie_set_readrq(struct pci_dev *dev, int rq)
3904 u16 v;
3906 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3907 return -EINVAL;
3910 * If using the "performance" PCIe config, we clamp the
3911 * read rq size to the max packet size to prevent the
3912 * host bridge generating requests larger than we can
3913 * cope with
3915 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3916 int mps = pcie_get_mps(dev);
3918 if (mps < rq)
3919 rq = mps;
3922 v = (ffs(rq) - 8) << 12;
3924 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3925 PCI_EXP_DEVCTL_READRQ, v);
3927 EXPORT_SYMBOL(pcie_set_readrq);
3930 * pcie_get_mps - get PCI Express maximum payload size
3931 * @dev: PCI device to query
3933 * Returns maximum payload size in bytes
3935 int pcie_get_mps(struct pci_dev *dev)
3937 u16 ctl;
3939 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3941 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3943 EXPORT_SYMBOL(pcie_get_mps);
3946 * pcie_set_mps - set PCI Express maximum payload size
3947 * @dev: PCI device to query
3948 * @mps: maximum payload size in bytes
3949 * valid values are 128, 256, 512, 1024, 2048, 4096
3951 * If possible sets maximum payload size
3953 int pcie_set_mps(struct pci_dev *dev, int mps)
3955 u16 v;
3957 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3958 return -EINVAL;
3960 v = ffs(mps) - 8;
3961 if (v > dev->pcie_mpss)
3962 return -EINVAL;
3963 v <<= 5;
3965 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3966 PCI_EXP_DEVCTL_PAYLOAD, v);
3968 EXPORT_SYMBOL(pcie_set_mps);
3971 * pcie_get_minimum_link - determine minimum link settings of a PCI device
3972 * @dev: PCI device to query
3973 * @speed: storage for minimum speed
3974 * @width: storage for minimum width
3976 * This function will walk up the PCI device chain and determine the minimum
3977 * link width and speed of the device.
3979 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
3980 enum pcie_link_width *width)
3982 int ret;
3984 *speed = PCI_SPEED_UNKNOWN;
3985 *width = PCIE_LNK_WIDTH_UNKNOWN;
3987 while (dev) {
3988 u16 lnksta;
3989 enum pci_bus_speed next_speed;
3990 enum pcie_link_width next_width;
3992 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
3993 if (ret)
3994 return ret;
3996 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
3997 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
3998 PCI_EXP_LNKSTA_NLW_SHIFT;
4000 if (next_speed < *speed)
4001 *speed = next_speed;
4003 if (next_width < *width)
4004 *width = next_width;
4006 dev = dev->bus->self;
4009 return 0;
4011 EXPORT_SYMBOL(pcie_get_minimum_link);
4014 * pci_select_bars - Make BAR mask from the type of resource
4015 * @dev: the PCI device for which BAR mask is made
4016 * @flags: resource type mask to be selected
4018 * This helper routine makes bar mask from the type of resource.
4020 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4022 int i, bars = 0;
4023 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4024 if (pci_resource_flags(dev, i) & flags)
4025 bars |= (1 << i);
4026 return bars;
4030 * pci_resource_bar - get position of the BAR associated with a resource
4031 * @dev: the PCI device
4032 * @resno: the resource number
4033 * @type: the BAR type to be filled in
4035 * Returns BAR position in config space, or 0 if the BAR is invalid.
4037 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4039 int reg;
4041 if (resno < PCI_ROM_RESOURCE) {
4042 *type = pci_bar_unknown;
4043 return PCI_BASE_ADDRESS_0 + 4 * resno;
4044 } else if (resno == PCI_ROM_RESOURCE) {
4045 *type = pci_bar_mem32;
4046 return dev->rom_base_reg;
4047 } else if (resno < PCI_BRIDGE_RESOURCES) {
4048 /* device specific resource */
4049 reg = pci_iov_resource_bar(dev, resno, type);
4050 if (reg)
4051 return reg;
4054 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4055 return 0;
4058 /* Some architectures require additional programming to enable VGA */
4059 static arch_set_vga_state_t arch_set_vga_state;
4061 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4063 arch_set_vga_state = func; /* NULL disables */
4066 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4067 unsigned int command_bits, u32 flags)
4069 if (arch_set_vga_state)
4070 return arch_set_vga_state(dev, decode, command_bits,
4071 flags);
4072 return 0;
4076 * pci_set_vga_state - set VGA decode state on device and parents if requested
4077 * @dev: the PCI device
4078 * @decode: true = enable decoding, false = disable decoding
4079 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4080 * @flags: traverse ancestors and change bridges
4081 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4083 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4084 unsigned int command_bits, u32 flags)
4086 struct pci_bus *bus;
4087 struct pci_dev *bridge;
4088 u16 cmd;
4089 int rc;
4091 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4093 /* ARCH specific VGA enables */
4094 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4095 if (rc)
4096 return rc;
4098 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4099 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4100 if (decode == true)
4101 cmd |= command_bits;
4102 else
4103 cmd &= ~command_bits;
4104 pci_write_config_word(dev, PCI_COMMAND, cmd);
4107 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4108 return 0;
4110 bus = dev->bus;
4111 while (bus) {
4112 bridge = bus->self;
4113 if (bridge) {
4114 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4115 &cmd);
4116 if (decode == true)
4117 cmd |= PCI_BRIDGE_CTL_VGA;
4118 else
4119 cmd &= ~PCI_BRIDGE_CTL_VGA;
4120 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4121 cmd);
4123 bus = bus->parent;
4125 return 0;
4128 bool pci_device_is_present(struct pci_dev *pdev)
4130 u32 v;
4132 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4134 EXPORT_SYMBOL_GPL(pci_device_is_present);
4136 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4137 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4138 static DEFINE_SPINLOCK(resource_alignment_lock);
4141 * pci_specified_resource_alignment - get resource alignment specified by user.
4142 * @dev: the PCI device to get
4144 * RETURNS: Resource alignment if it is specified.
4145 * Zero if it is not specified.
4147 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4149 int seg, bus, slot, func, align_order, count;
4150 resource_size_t align = 0;
4151 char *p;
4153 spin_lock(&resource_alignment_lock);
4154 p = resource_alignment_param;
4155 while (*p) {
4156 count = 0;
4157 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4158 p[count] == '@') {
4159 p += count + 1;
4160 } else {
4161 align_order = -1;
4163 if (sscanf(p, "%x:%x:%x.%x%n",
4164 &seg, &bus, &slot, &func, &count) != 4) {
4165 seg = 0;
4166 if (sscanf(p, "%x:%x.%x%n",
4167 &bus, &slot, &func, &count) != 3) {
4168 /* Invalid format */
4169 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4171 break;
4174 p += count;
4175 if (seg == pci_domain_nr(dev->bus) &&
4176 bus == dev->bus->number &&
4177 slot == PCI_SLOT(dev->devfn) &&
4178 func == PCI_FUNC(dev->devfn)) {
4179 if (align_order == -1) {
4180 align = PAGE_SIZE;
4181 } else {
4182 align = 1 << align_order;
4184 /* Found */
4185 break;
4187 if (*p != ';' && *p != ',') {
4188 /* End of param or invalid format */
4189 break;
4191 p++;
4193 spin_unlock(&resource_alignment_lock);
4194 return align;
4198 * This function disables memory decoding and releases memory resources
4199 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4200 * It also rounds up size to specified alignment.
4201 * Later on, the kernel will assign page-aligned memory resource back
4202 * to the device.
4204 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4206 int i;
4207 struct resource *r;
4208 resource_size_t align, size;
4209 u16 command;
4211 /* check if specified PCI is target device to reassign */
4212 align = pci_specified_resource_alignment(dev);
4213 if (!align)
4214 return;
4216 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4217 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4218 dev_warn(&dev->dev,
4219 "Can't reassign resources to host bridge.\n");
4220 return;
4223 dev_info(&dev->dev,
4224 "Disabling memory decoding and releasing memory resources.\n");
4225 pci_read_config_word(dev, PCI_COMMAND, &command);
4226 command &= ~PCI_COMMAND_MEMORY;
4227 pci_write_config_word(dev, PCI_COMMAND, command);
4229 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4230 r = &dev->resource[i];
4231 if (!(r->flags & IORESOURCE_MEM))
4232 continue;
4233 size = resource_size(r);
4234 if (size < align) {
4235 size = align;
4236 dev_info(&dev->dev,
4237 "Rounding up size of resource #%d to %#llx.\n",
4238 i, (unsigned long long)size);
4240 r->end = size - 1;
4241 r->start = 0;
4243 /* Need to disable bridge's resource window,
4244 * to enable the kernel to reassign new resource
4245 * window later on.
4247 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4248 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4249 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4250 r = &dev->resource[i];
4251 if (!(r->flags & IORESOURCE_MEM))
4252 continue;
4253 r->end = resource_size(r) - 1;
4254 r->start = 0;
4256 pci_disable_bridge_window(dev);
4260 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4262 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4263 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4264 spin_lock(&resource_alignment_lock);
4265 strncpy(resource_alignment_param, buf, count);
4266 resource_alignment_param[count] = '\0';
4267 spin_unlock(&resource_alignment_lock);
4268 return count;
4271 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4273 size_t count;
4274 spin_lock(&resource_alignment_lock);
4275 count = snprintf(buf, size, "%s", resource_alignment_param);
4276 spin_unlock(&resource_alignment_lock);
4277 return count;
4280 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4282 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4285 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4286 const char *buf, size_t count)
4288 return pci_set_resource_alignment_param(buf, count);
4291 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4292 pci_resource_alignment_store);
4294 static int __init pci_resource_alignment_sysfs_init(void)
4296 return bus_create_file(&pci_bus_type,
4297 &bus_attr_resource_alignment);
4300 late_initcall(pci_resource_alignment_sysfs_init);
4302 static void pci_no_domains(void)
4304 #ifdef CONFIG_PCI_DOMAINS
4305 pci_domains_supported = 0;
4306 #endif
4310 * pci_ext_cfg_avail - can we access extended PCI config space?
4312 * Returns 1 if we can access PCI extended config space (offsets
4313 * greater than 0xff). This is the default implementation. Architecture
4314 * implementations can override this.
4316 int __weak pci_ext_cfg_avail(void)
4318 return 1;
4321 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4324 EXPORT_SYMBOL(pci_fixup_cardbus);
4326 static int __init pci_setup(char *str)
4328 while (str) {
4329 char *k = strchr(str, ',');
4330 if (k)
4331 *k++ = 0;
4332 if (*str && (str = pcibios_setup(str)) && *str) {
4333 if (!strcmp(str, "nomsi")) {
4334 pci_no_msi();
4335 } else if (!strcmp(str, "noaer")) {
4336 pci_no_aer();
4337 } else if (!strncmp(str, "realloc=", 8)) {
4338 pci_realloc_get_opt(str + 8);
4339 } else if (!strncmp(str, "realloc", 7)) {
4340 pci_realloc_get_opt("on");
4341 } else if (!strcmp(str, "nodomains")) {
4342 pci_no_domains();
4343 } else if (!strncmp(str, "noari", 5)) {
4344 pcie_ari_disabled = true;
4345 } else if (!strncmp(str, "cbiosize=", 9)) {
4346 pci_cardbus_io_size = memparse(str + 9, &str);
4347 } else if (!strncmp(str, "cbmemsize=", 10)) {
4348 pci_cardbus_mem_size = memparse(str + 10, &str);
4349 } else if (!strncmp(str, "resource_alignment=", 19)) {
4350 pci_set_resource_alignment_param(str + 19,
4351 strlen(str + 19));
4352 } else if (!strncmp(str, "ecrc=", 5)) {
4353 pcie_ecrc_get_policy(str + 5);
4354 } else if (!strncmp(str, "hpiosize=", 9)) {
4355 pci_hotplug_io_size = memparse(str + 9, &str);
4356 } else if (!strncmp(str, "hpmemsize=", 10)) {
4357 pci_hotplug_mem_size = memparse(str + 10, &str);
4358 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4359 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4360 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4361 pcie_bus_config = PCIE_BUS_SAFE;
4362 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4363 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4364 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4365 pcie_bus_config = PCIE_BUS_PEER2PEER;
4366 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4367 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4368 } else {
4369 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4370 str);
4373 str = k;
4375 return 0;
4377 early_param("pci", pci_setup);
4379 EXPORT_SYMBOL(pci_reenable_device);
4380 EXPORT_SYMBOL(pci_enable_device_io);
4381 EXPORT_SYMBOL(pci_enable_device_mem);
4382 EXPORT_SYMBOL(pci_enable_device);
4383 EXPORT_SYMBOL(pcim_enable_device);
4384 EXPORT_SYMBOL(pcim_pin_device);
4385 EXPORT_SYMBOL(pci_disable_device);
4386 EXPORT_SYMBOL(pci_find_capability);
4387 EXPORT_SYMBOL(pci_bus_find_capability);
4388 EXPORT_SYMBOL(pci_release_regions);
4389 EXPORT_SYMBOL(pci_request_regions);
4390 EXPORT_SYMBOL(pci_request_regions_exclusive);
4391 EXPORT_SYMBOL(pci_release_region);
4392 EXPORT_SYMBOL(pci_request_region);
4393 EXPORT_SYMBOL(pci_request_region_exclusive);
4394 EXPORT_SYMBOL(pci_release_selected_regions);
4395 EXPORT_SYMBOL(pci_request_selected_regions);
4396 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4397 EXPORT_SYMBOL(pci_set_master);
4398 EXPORT_SYMBOL(pci_clear_master);
4399 EXPORT_SYMBOL(pci_set_mwi);
4400 EXPORT_SYMBOL(pci_try_set_mwi);
4401 EXPORT_SYMBOL(pci_clear_mwi);
4402 EXPORT_SYMBOL_GPL(pci_intx);
4403 EXPORT_SYMBOL(pci_assign_resource);
4404 EXPORT_SYMBOL(pci_find_parent_resource);
4405 EXPORT_SYMBOL(pci_select_bars);
4407 EXPORT_SYMBOL(pci_set_power_state);
4408 EXPORT_SYMBOL(pci_save_state);
4409 EXPORT_SYMBOL(pci_restore_state);
4410 EXPORT_SYMBOL(pci_pme_capable);
4411 EXPORT_SYMBOL(pci_pme_active);
4412 EXPORT_SYMBOL(pci_wake_from_d3);
4413 EXPORT_SYMBOL(pci_prepare_to_sleep);
4414 EXPORT_SYMBOL(pci_back_from_sleep);
4415 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);