2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_MUTEX(regulator_list_mutex
);
53 static LIST_HEAD(regulator_list
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static void _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
112 static const char *rdev_get_name(struct regulator_dev
*rdev
)
114 if (rdev
->constraints
&& rdev
->constraints
->name
)
115 return rdev
->constraints
->name
;
116 else if (rdev
->desc
->name
)
117 return rdev
->desc
->name
;
122 static bool have_full_constraints(void)
124 return has_full_constraints
|| of_have_populated_dt();
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 ret
= _regulator_do_set_voltage(rdev
,
848 rdev
->constraints
->min_uV
,
849 rdev
->constraints
->max_uV
);
851 rdev_err(rdev
, "failed to apply %duV constraint\n",
852 rdev
->constraints
->min_uV
);
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
860 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
861 int count
= rdev
->desc
->n_voltages
;
863 int min_uV
= INT_MAX
;
864 int max_uV
= INT_MIN
;
865 int cmin
= constraints
->min_uV
;
866 int cmax
= constraints
->max_uV
;
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count
== 1 && !cmin
) {
873 constraints
->min_uV
= cmin
;
874 constraints
->max_uV
= cmax
;
877 /* voltage constraints are optional */
878 if ((cmin
== 0) && (cmax
== 0))
881 /* else require explicit machine-level constraints */
882 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
883 rdev_err(rdev
, "invalid voltage constraints\n");
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i
= 0; i
< count
; i
++) {
891 value
= ops
->list_voltage(rdev
, i
);
895 /* maybe adjust [min_uV..max_uV] */
896 if (value
>= cmin
&& value
< min_uV
)
898 if (value
<= cmax
&& value
> max_uV
)
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV
< min_uV
) {
905 "unsupportable voltage constraints %u-%uuV\n",
910 /* use regulator's subset of machine constraints */
911 if (constraints
->min_uV
< min_uV
) {
912 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
913 constraints
->min_uV
, min_uV
);
914 constraints
->min_uV
= min_uV
;
916 if (constraints
->max_uV
> max_uV
) {
917 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
918 constraints
->max_uV
, max_uV
);
919 constraints
->max_uV
= max_uV
;
926 static int machine_constraints_current(struct regulator_dev
*rdev
,
927 struct regulation_constraints
*constraints
)
929 struct regulator_ops
*ops
= rdev
->desc
->ops
;
932 if (!constraints
->min_uA
&& !constraints
->max_uA
)
935 if (constraints
->min_uA
> constraints
->max_uA
) {
936 rdev_err(rdev
, "Invalid current constraints\n");
940 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
941 rdev_warn(rdev
, "Operation of current configuration missing\n");
945 /* Set regulator current in constraints range */
946 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
947 constraints
->max_uA
);
949 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 static int set_machine_constraints(struct regulator_dev
*rdev
,
968 const struct regulation_constraints
*constraints
)
971 struct regulator_ops
*ops
= rdev
->desc
->ops
;
974 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
977 rdev
->constraints
= kzalloc(sizeof(*constraints
),
979 if (!rdev
->constraints
)
982 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
986 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
990 /* do we need to setup our suspend state */
991 if (rdev
->constraints
->initial_state
) {
992 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
994 rdev_err(rdev
, "failed to set suspend state\n");
999 if (rdev
->constraints
->initial_mode
) {
1000 if (!ops
->set_mode
) {
1001 rdev_err(rdev
, "no set_mode operation\n");
1006 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1008 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1013 /* If the constraints say the regulator should be on at this point
1014 * and we have control then make sure it is enabled.
1016 if ((rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) &&
1018 ret
= ops
->enable(rdev
);
1020 rdev_err(rdev
, "failed to enable\n");
1025 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1026 && ops
->set_ramp_delay
) {
1027 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1029 rdev_err(rdev
, "failed to set ramp_delay\n");
1034 print_constraints(rdev
);
1037 kfree(rdev
->constraints
);
1038 rdev
->constraints
= NULL
;
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1051 static int set_supply(struct regulator_dev
*rdev
,
1052 struct regulator_dev
*supply_rdev
)
1056 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1058 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1059 if (rdev
->supply
== NULL
) {
1063 supply_rdev
->open_count
++;
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev: regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply: symbolic name for supply
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices. Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1079 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1080 const char *consumer_dev_name
,
1083 struct regulator_map
*node
;
1089 if (consumer_dev_name
!= NULL
)
1094 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1095 if (node
->dev_name
&& consumer_dev_name
) {
1096 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1098 } else if (node
->dev_name
|| consumer_dev_name
) {
1102 if (strcmp(node
->supply
, supply
) != 0)
1105 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 dev_name(&node
->regulator
->dev
),
1108 node
->regulator
->desc
->name
,
1110 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1114 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1118 node
->regulator
= rdev
;
1119 node
->supply
= supply
;
1122 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1123 if (node
->dev_name
== NULL
) {
1129 list_add(&node
->list
, ®ulator_map_list
);
1133 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1135 struct regulator_map
*node
, *n
;
1137 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1138 if (rdev
== node
->regulator
) {
1139 list_del(&node
->list
);
1140 kfree(node
->dev_name
);
1146 #define REG_STR_SIZE 64
1148 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1150 const char *supply_name
)
1152 struct regulator
*regulator
;
1153 char buf
[REG_STR_SIZE
];
1156 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1157 if (regulator
== NULL
)
1160 mutex_lock(&rdev
->mutex
);
1161 regulator
->rdev
= rdev
;
1162 list_add(®ulator
->list
, &rdev
->consumer_list
);
1165 regulator
->dev
= dev
;
1167 /* Add a link to the device sysfs entry */
1168 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1169 dev
->kobj
.name
, supply_name
);
1170 if (size
>= REG_STR_SIZE
)
1173 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1174 if (regulator
->supply_name
== NULL
)
1177 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1180 rdev_warn(rdev
, "could not add device link %s err %d\n",
1181 dev
->kobj
.name
, err
);
1185 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1186 if (regulator
->supply_name
== NULL
)
1190 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1192 if (!regulator
->debugfs
) {
1193 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1195 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1196 ®ulator
->uA_load
);
1197 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1198 ®ulator
->min_uV
);
1199 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1200 ®ulator
->max_uV
);
1204 * Check now if the regulator is an always on regulator - if
1205 * it is then we don't need to do nearly so much work for
1206 * enable/disable calls.
1208 if (!_regulator_can_change_status(rdev
) &&
1209 _regulator_is_enabled(rdev
))
1210 regulator
->always_on
= true;
1212 mutex_unlock(&rdev
->mutex
);
1215 list_del(®ulator
->list
);
1217 mutex_unlock(&rdev
->mutex
);
1221 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1223 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1224 return rdev
->constraints
->enable_time
;
1225 if (!rdev
->desc
->ops
->enable_time
)
1226 return rdev
->desc
->enable_time
;
1227 return rdev
->desc
->ops
->enable_time(rdev
);
1230 static struct regulator_supply_alias
*regulator_find_supply_alias(
1231 struct device
*dev
, const char *supply
)
1233 struct regulator_supply_alias
*map
;
1235 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1236 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1242 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1244 struct regulator_supply_alias
*map
;
1246 map
= regulator_find_supply_alias(*dev
, *supply
);
1248 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1249 *supply
, map
->alias_supply
,
1250 dev_name(map
->alias_dev
));
1251 *dev
= map
->alias_dev
;
1252 *supply
= map
->alias_supply
;
1256 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1260 struct regulator_dev
*r
;
1261 struct device_node
*node
;
1262 struct regulator_map
*map
;
1263 const char *devname
= NULL
;
1265 regulator_supply_alias(&dev
, &supply
);
1267 /* first do a dt based lookup */
1268 if (dev
&& dev
->of_node
) {
1269 node
= of_get_regulator(dev
, supply
);
1271 list_for_each_entry(r
, ®ulator_list
, list
)
1272 if (r
->dev
.parent
&&
1273 node
== r
->dev
.of_node
)
1275 *ret
= -EPROBE_DEFER
;
1279 * If we couldn't even get the node then it's
1280 * not just that the device didn't register
1281 * yet, there's no node and we'll never
1288 /* if not found, try doing it non-dt way */
1290 devname
= dev_name(dev
);
1292 list_for_each_entry(r
, ®ulator_list
, list
)
1293 if (strcmp(rdev_get_name(r
), supply
) == 0)
1296 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1297 /* If the mapping has a device set up it must match */
1298 if (map
->dev_name
&&
1299 (!devname
|| strcmp(map
->dev_name
, devname
)))
1302 if (strcmp(map
->supply
, supply
) == 0)
1303 return map
->regulator
;
1310 /* Internal regulator request function */
1311 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1312 bool exclusive
, bool allow_dummy
)
1314 struct regulator_dev
*rdev
;
1315 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1316 const char *devname
= NULL
;
1320 pr_err("get() with no identifier\n");
1321 return ERR_PTR(-EINVAL
);
1325 devname
= dev_name(dev
);
1327 if (have_full_constraints())
1330 ret
= -EPROBE_DEFER
;
1332 mutex_lock(®ulator_list_mutex
);
1334 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1338 regulator
= ERR_PTR(ret
);
1341 * If we have return value from dev_lookup fail, we do not expect to
1342 * succeed, so, quit with appropriate error value
1344 if (ret
&& ret
!= -ENODEV
)
1348 devname
= "deviceless";
1351 * Assume that a regulator is physically present and enabled
1352 * even if it isn't hooked up and just provide a dummy.
1354 if (have_full_constraints() && allow_dummy
) {
1355 pr_warn("%s supply %s not found, using dummy regulator\n",
1358 rdev
= dummy_regulator_rdev
;
1360 /* Don't log an error when called from regulator_get_optional() */
1361 } else if (!have_full_constraints() || exclusive
) {
1362 dev_err(dev
, "dummy supplies not allowed\n");
1365 mutex_unlock(®ulator_list_mutex
);
1369 if (rdev
->exclusive
) {
1370 regulator
= ERR_PTR(-EPERM
);
1374 if (exclusive
&& rdev
->open_count
) {
1375 regulator
= ERR_PTR(-EBUSY
);
1379 if (!try_module_get(rdev
->owner
))
1382 regulator
= create_regulator(rdev
, dev
, id
);
1383 if (regulator
== NULL
) {
1384 regulator
= ERR_PTR(-ENOMEM
);
1385 module_put(rdev
->owner
);
1391 rdev
->exclusive
= 1;
1393 ret
= _regulator_is_enabled(rdev
);
1395 rdev
->use_count
= 1;
1397 rdev
->use_count
= 0;
1401 mutex_unlock(®ulator_list_mutex
);
1407 * regulator_get - lookup and obtain a reference to a regulator.
1408 * @dev: device for regulator "consumer"
1409 * @id: Supply name or regulator ID.
1411 * Returns a struct regulator corresponding to the regulator producer,
1412 * or IS_ERR() condition containing errno.
1414 * Use of supply names configured via regulator_set_device_supply() is
1415 * strongly encouraged. It is recommended that the supply name used
1416 * should match the name used for the supply and/or the relevant
1417 * device pins in the datasheet.
1419 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1421 return _regulator_get(dev
, id
, false, true);
1423 EXPORT_SYMBOL_GPL(regulator_get
);
1426 * regulator_get_exclusive - obtain exclusive access to a regulator.
1427 * @dev: device for regulator "consumer"
1428 * @id: Supply name or regulator ID.
1430 * Returns a struct regulator corresponding to the regulator producer,
1431 * or IS_ERR() condition containing errno. Other consumers will be
1432 * unable to obtain this reference is held and the use count for the
1433 * regulator will be initialised to reflect the current state of the
1436 * This is intended for use by consumers which cannot tolerate shared
1437 * use of the regulator such as those which need to force the
1438 * regulator off for correct operation of the hardware they are
1441 * Use of supply names configured via regulator_set_device_supply() is
1442 * strongly encouraged. It is recommended that the supply name used
1443 * should match the name used for the supply and/or the relevant
1444 * device pins in the datasheet.
1446 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1448 return _regulator_get(dev
, id
, true, false);
1450 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1453 * regulator_get_optional - obtain optional access to a regulator.
1454 * @dev: device for regulator "consumer"
1455 * @id: Supply name or regulator ID.
1457 * Returns a struct regulator corresponding to the regulator producer,
1458 * or IS_ERR() condition containing errno. Other consumers will be
1459 * unable to obtain this reference is held and the use count for the
1460 * regulator will be initialised to reflect the current state of the
1463 * This is intended for use by consumers for devices which can have
1464 * some supplies unconnected in normal use, such as some MMC devices.
1465 * It can allow the regulator core to provide stub supplies for other
1466 * supplies requested using normal regulator_get() calls without
1467 * disrupting the operation of drivers that can handle absent
1470 * Use of supply names configured via regulator_set_device_supply() is
1471 * strongly encouraged. It is recommended that the supply name used
1472 * should match the name used for the supply and/or the relevant
1473 * device pins in the datasheet.
1475 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1477 return _regulator_get(dev
, id
, false, false);
1479 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1481 /* Locks held by regulator_put() */
1482 static void _regulator_put(struct regulator
*regulator
)
1484 struct regulator_dev
*rdev
;
1486 if (regulator
== NULL
|| IS_ERR(regulator
))
1489 rdev
= regulator
->rdev
;
1491 debugfs_remove_recursive(regulator
->debugfs
);
1493 /* remove any sysfs entries */
1495 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1496 kfree(regulator
->supply_name
);
1497 list_del(®ulator
->list
);
1501 rdev
->exclusive
= 0;
1503 module_put(rdev
->owner
);
1507 * regulator_put - "free" the regulator source
1508 * @regulator: regulator source
1510 * Note: drivers must ensure that all regulator_enable calls made on this
1511 * regulator source are balanced by regulator_disable calls prior to calling
1514 void regulator_put(struct regulator
*regulator
)
1516 mutex_lock(®ulator_list_mutex
);
1517 _regulator_put(regulator
);
1518 mutex_unlock(®ulator_list_mutex
);
1520 EXPORT_SYMBOL_GPL(regulator_put
);
1523 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 * @dev: device that will be given as the regulator "consumer"
1526 * @id: Supply name or regulator ID
1527 * @alias_dev: device that should be used to lookup the supply
1528 * @alias_id: Supply name or regulator ID that should be used to lookup the
1531 * All lookups for id on dev will instead be conducted for alias_id on
1534 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1535 struct device
*alias_dev
,
1536 const char *alias_id
)
1538 struct regulator_supply_alias
*map
;
1540 map
= regulator_find_supply_alias(dev
, id
);
1544 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1549 map
->src_supply
= id
;
1550 map
->alias_dev
= alias_dev
;
1551 map
->alias_supply
= alias_id
;
1553 list_add(&map
->list
, ®ulator_supply_alias_list
);
1555 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1556 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1560 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1563 * regulator_unregister_supply_alias - Remove device alias
1565 * @dev: device that will be given as the regulator "consumer"
1566 * @id: Supply name or regulator ID
1568 * Remove a lookup alias if one exists for id on dev.
1570 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1572 struct regulator_supply_alias
*map
;
1574 map
= regulator_find_supply_alias(dev
, id
);
1576 list_del(&map
->list
);
1580 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1583 * regulator_bulk_register_supply_alias - register multiple aliases
1585 * @dev: device that will be given as the regulator "consumer"
1586 * @id: List of supply names or regulator IDs
1587 * @alias_dev: device that should be used to lookup the supply
1588 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * @num_id: Number of aliases to register
1592 * @return 0 on success, an errno on failure.
1594 * This helper function allows drivers to register several supply
1595 * aliases in one operation. If any of the aliases cannot be
1596 * registered any aliases that were registered will be removed
1597 * before returning to the caller.
1599 int regulator_bulk_register_supply_alias(struct device
*dev
, const char **id
,
1600 struct device
*alias_dev
,
1601 const char **alias_id
,
1607 for (i
= 0; i
< num_id
; ++i
) {
1608 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1618 "Failed to create supply alias %s,%s -> %s,%s\n",
1619 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1622 regulator_unregister_supply_alias(dev
, id
[i
]);
1626 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1629 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 * @dev: device that will be given as the regulator "consumer"
1632 * @id: List of supply names or regulator IDs
1633 * @num_id: Number of aliases to unregister
1635 * This helper function allows drivers to unregister several supply
1636 * aliases in one operation.
1638 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1644 for (i
= 0; i
< num_id
; ++i
)
1645 regulator_unregister_supply_alias(dev
, id
[i
]);
1647 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1650 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1651 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1652 const struct regulator_config
*config
)
1654 struct regulator_enable_gpio
*pin
;
1657 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1658 if (pin
->gpio
== config
->ena_gpio
) {
1659 rdev_dbg(rdev
, "GPIO %d is already used\n",
1661 goto update_ena_gpio_to_rdev
;
1665 ret
= gpio_request_one(config
->ena_gpio
,
1666 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1667 rdev_get_name(rdev
));
1671 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1673 gpio_free(config
->ena_gpio
);
1677 pin
->gpio
= config
->ena_gpio
;
1678 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1679 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1681 update_ena_gpio_to_rdev
:
1682 pin
->request_count
++;
1683 rdev
->ena_pin
= pin
;
1687 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1689 struct regulator_enable_gpio
*pin
, *n
;
1694 /* Free the GPIO only in case of no use */
1695 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1696 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1697 if (pin
->request_count
<= 1) {
1698 pin
->request_count
= 0;
1699 gpio_free(pin
->gpio
);
1700 list_del(&pin
->list
);
1703 pin
->request_count
--;
1710 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1711 * @rdev: regulator_dev structure
1712 * @enable: enable GPIO at initial use?
1714 * GPIO is enabled in case of initial use. (enable_count is 0)
1715 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1719 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1725 /* Enable GPIO at initial use */
1726 if (pin
->enable_count
== 0)
1727 gpio_set_value_cansleep(pin
->gpio
,
1728 !pin
->ena_gpio_invert
);
1730 pin
->enable_count
++;
1732 if (pin
->enable_count
> 1) {
1733 pin
->enable_count
--;
1737 /* Disable GPIO if not used */
1738 if (pin
->enable_count
<= 1) {
1739 gpio_set_value_cansleep(pin
->gpio
,
1740 pin
->ena_gpio_invert
);
1741 pin
->enable_count
= 0;
1748 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1752 /* Query before enabling in case configuration dependent. */
1753 ret
= _regulator_get_enable_time(rdev
);
1757 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1761 trace_regulator_enable(rdev_get_name(rdev
));
1763 if (rdev
->ena_pin
) {
1764 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1767 rdev
->ena_gpio_state
= 1;
1768 } else if (rdev
->desc
->ops
->enable
) {
1769 ret
= rdev
->desc
->ops
->enable(rdev
);
1776 /* Allow the regulator to ramp; it would be useful to extend
1777 * this for bulk operations so that the regulators can ramp
1779 trace_regulator_enable_delay(rdev_get_name(rdev
));
1782 * Delay for the requested amount of time as per the guidelines in:
1784 * Documentation/timers/timers-howto.txt
1786 * The assumption here is that regulators will never be enabled in
1787 * atomic context and therefore sleeping functions can be used.
1790 unsigned int ms
= delay
/ 1000;
1791 unsigned int us
= delay
% 1000;
1795 * For small enough values, handle super-millisecond
1796 * delays in the usleep_range() call below.
1805 * Give the scheduler some room to coalesce with any other
1806 * wakeup sources. For delays shorter than 10 us, don't even
1807 * bother setting up high-resolution timers and just busy-
1811 usleep_range(us
, us
+ 100);
1816 trace_regulator_enable_complete(rdev_get_name(rdev
));
1821 /* locks held by regulator_enable() */
1822 static int _regulator_enable(struct regulator_dev
*rdev
)
1826 /* check voltage and requested load before enabling */
1827 if (rdev
->constraints
&&
1828 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1829 drms_uA_update(rdev
);
1831 if (rdev
->use_count
== 0) {
1832 /* The regulator may on if it's not switchable or left on */
1833 ret
= _regulator_is_enabled(rdev
);
1834 if (ret
== -EINVAL
|| ret
== 0) {
1835 if (!_regulator_can_change_status(rdev
))
1838 ret
= _regulator_do_enable(rdev
);
1842 } else if (ret
< 0) {
1843 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1846 /* Fallthrough on positive return values - already enabled */
1855 * regulator_enable - enable regulator output
1856 * @regulator: regulator source
1858 * Request that the regulator be enabled with the regulator output at
1859 * the predefined voltage or current value. Calls to regulator_enable()
1860 * must be balanced with calls to regulator_disable().
1862 * NOTE: the output value can be set by other drivers, boot loader or may be
1863 * hardwired in the regulator.
1865 int regulator_enable(struct regulator
*regulator
)
1867 struct regulator_dev
*rdev
= regulator
->rdev
;
1870 if (regulator
->always_on
)
1874 ret
= regulator_enable(rdev
->supply
);
1879 mutex_lock(&rdev
->mutex
);
1880 ret
= _regulator_enable(rdev
);
1881 mutex_unlock(&rdev
->mutex
);
1883 if (ret
!= 0 && rdev
->supply
)
1884 regulator_disable(rdev
->supply
);
1888 EXPORT_SYMBOL_GPL(regulator_enable
);
1890 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1894 trace_regulator_disable(rdev_get_name(rdev
));
1896 if (rdev
->ena_pin
) {
1897 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1900 rdev
->ena_gpio_state
= 0;
1902 } else if (rdev
->desc
->ops
->disable
) {
1903 ret
= rdev
->desc
->ops
->disable(rdev
);
1908 trace_regulator_disable_complete(rdev_get_name(rdev
));
1910 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1915 /* locks held by regulator_disable() */
1916 static int _regulator_disable(struct regulator_dev
*rdev
)
1920 if (WARN(rdev
->use_count
<= 0,
1921 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1924 /* are we the last user and permitted to disable ? */
1925 if (rdev
->use_count
== 1 &&
1926 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1928 /* we are last user */
1929 if (_regulator_can_change_status(rdev
)) {
1930 ret
= _regulator_do_disable(rdev
);
1932 rdev_err(rdev
, "failed to disable\n");
1937 rdev
->use_count
= 0;
1938 } else if (rdev
->use_count
> 1) {
1940 if (rdev
->constraints
&&
1941 (rdev
->constraints
->valid_ops_mask
&
1942 REGULATOR_CHANGE_DRMS
))
1943 drms_uA_update(rdev
);
1952 * regulator_disable - disable regulator output
1953 * @regulator: regulator source
1955 * Disable the regulator output voltage or current. Calls to
1956 * regulator_enable() must be balanced with calls to
1957 * regulator_disable().
1959 * NOTE: this will only disable the regulator output if no other consumer
1960 * devices have it enabled, the regulator device supports disabling and
1961 * machine constraints permit this operation.
1963 int regulator_disable(struct regulator
*regulator
)
1965 struct regulator_dev
*rdev
= regulator
->rdev
;
1968 if (regulator
->always_on
)
1971 mutex_lock(&rdev
->mutex
);
1972 ret
= _regulator_disable(rdev
);
1973 mutex_unlock(&rdev
->mutex
);
1975 if (ret
== 0 && rdev
->supply
)
1976 regulator_disable(rdev
->supply
);
1980 EXPORT_SYMBOL_GPL(regulator_disable
);
1982 /* locks held by regulator_force_disable() */
1983 static int _regulator_force_disable(struct regulator_dev
*rdev
)
1988 if (rdev
->desc
->ops
->disable
) {
1989 /* ah well, who wants to live forever... */
1990 ret
= rdev
->desc
->ops
->disable(rdev
);
1992 rdev_err(rdev
, "failed to force disable\n");
1995 /* notify other consumers that power has been forced off */
1996 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
1997 REGULATOR_EVENT_DISABLE
, NULL
);
2004 * regulator_force_disable - force disable regulator output
2005 * @regulator: regulator source
2007 * Forcibly disable the regulator output voltage or current.
2008 * NOTE: this *will* disable the regulator output even if other consumer
2009 * devices have it enabled. This should be used for situations when device
2010 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2012 int regulator_force_disable(struct regulator
*regulator
)
2014 struct regulator_dev
*rdev
= regulator
->rdev
;
2017 mutex_lock(&rdev
->mutex
);
2018 regulator
->uA_load
= 0;
2019 ret
= _regulator_force_disable(regulator
->rdev
);
2020 mutex_unlock(&rdev
->mutex
);
2023 while (rdev
->open_count
--)
2024 regulator_disable(rdev
->supply
);
2028 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2030 static void regulator_disable_work(struct work_struct
*work
)
2032 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2036 mutex_lock(&rdev
->mutex
);
2038 BUG_ON(!rdev
->deferred_disables
);
2040 count
= rdev
->deferred_disables
;
2041 rdev
->deferred_disables
= 0;
2043 for (i
= 0; i
< count
; i
++) {
2044 ret
= _regulator_disable(rdev
);
2046 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2049 mutex_unlock(&rdev
->mutex
);
2052 for (i
= 0; i
< count
; i
++) {
2053 ret
= regulator_disable(rdev
->supply
);
2056 "Supply disable failed: %d\n", ret
);
2063 * regulator_disable_deferred - disable regulator output with delay
2064 * @regulator: regulator source
2065 * @ms: miliseconds until the regulator is disabled
2067 * Execute regulator_disable() on the regulator after a delay. This
2068 * is intended for use with devices that require some time to quiesce.
2070 * NOTE: this will only disable the regulator output if no other consumer
2071 * devices have it enabled, the regulator device supports disabling and
2072 * machine constraints permit this operation.
2074 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2076 struct regulator_dev
*rdev
= regulator
->rdev
;
2079 if (regulator
->always_on
)
2083 return regulator_disable(regulator
);
2085 mutex_lock(&rdev
->mutex
);
2086 rdev
->deferred_disables
++;
2087 mutex_unlock(&rdev
->mutex
);
2089 ret
= queue_delayed_work(system_power_efficient_wq
,
2090 &rdev
->disable_work
,
2091 msecs_to_jiffies(ms
));
2097 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2099 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2101 /* A GPIO control always takes precedence */
2103 return rdev
->ena_gpio_state
;
2105 /* If we don't know then assume that the regulator is always on */
2106 if (!rdev
->desc
->ops
->is_enabled
)
2109 return rdev
->desc
->ops
->is_enabled(rdev
);
2113 * regulator_is_enabled - is the regulator output enabled
2114 * @regulator: regulator source
2116 * Returns positive if the regulator driver backing the source/client
2117 * has requested that the device be enabled, zero if it hasn't, else a
2118 * negative errno code.
2120 * Note that the device backing this regulator handle can have multiple
2121 * users, so it might be enabled even if regulator_enable() was never
2122 * called for this particular source.
2124 int regulator_is_enabled(struct regulator
*regulator
)
2128 if (regulator
->always_on
)
2131 mutex_lock(®ulator
->rdev
->mutex
);
2132 ret
= _regulator_is_enabled(regulator
->rdev
);
2133 mutex_unlock(®ulator
->rdev
->mutex
);
2137 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2140 * regulator_can_change_voltage - check if regulator can change voltage
2141 * @regulator: regulator source
2143 * Returns positive if the regulator driver backing the source/client
2144 * can change its voltage, false otherwise. Usefull for detecting fixed
2145 * or dummy regulators and disabling voltage change logic in the client
2148 int regulator_can_change_voltage(struct regulator
*regulator
)
2150 struct regulator_dev
*rdev
= regulator
->rdev
;
2152 if (rdev
->constraints
&&
2153 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2154 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2157 if (rdev
->desc
->continuous_voltage_range
&&
2158 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2159 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2165 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2168 * regulator_count_voltages - count regulator_list_voltage() selectors
2169 * @regulator: regulator source
2171 * Returns number of selectors, or negative errno. Selectors are
2172 * numbered starting at zero, and typically correspond to bitfields
2173 * in hardware registers.
2175 int regulator_count_voltages(struct regulator
*regulator
)
2177 struct regulator_dev
*rdev
= regulator
->rdev
;
2179 return rdev
->desc
->n_voltages
? : -EINVAL
;
2181 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2184 * regulator_list_voltage - enumerate supported voltages
2185 * @regulator: regulator source
2186 * @selector: identify voltage to list
2187 * Context: can sleep
2189 * Returns a voltage that can be passed to @regulator_set_voltage(),
2190 * zero if this selector code can't be used on this system, or a
2193 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2195 struct regulator_dev
*rdev
= regulator
->rdev
;
2196 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2199 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2200 return rdev
->desc
->fixed_uV
;
2202 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2205 mutex_lock(&rdev
->mutex
);
2206 ret
= ops
->list_voltage(rdev
, selector
);
2207 mutex_unlock(&rdev
->mutex
);
2210 if (ret
< rdev
->constraints
->min_uV
)
2212 else if (ret
> rdev
->constraints
->max_uV
)
2218 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2221 * regulator_get_linear_step - return the voltage step size between VSEL values
2222 * @regulator: regulator source
2224 * Returns the voltage step size between VSEL values for linear
2225 * regulators, or return 0 if the regulator isn't a linear regulator.
2227 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2229 struct regulator_dev
*rdev
= regulator
->rdev
;
2231 return rdev
->desc
->uV_step
;
2233 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2236 * regulator_is_supported_voltage - check if a voltage range can be supported
2238 * @regulator: Regulator to check.
2239 * @min_uV: Minimum required voltage in uV.
2240 * @max_uV: Maximum required voltage in uV.
2242 * Returns a boolean or a negative error code.
2244 int regulator_is_supported_voltage(struct regulator
*regulator
,
2245 int min_uV
, int max_uV
)
2247 struct regulator_dev
*rdev
= regulator
->rdev
;
2248 int i
, voltages
, ret
;
2250 /* If we can't change voltage check the current voltage */
2251 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2252 ret
= regulator_get_voltage(regulator
);
2254 return min_uV
<= ret
&& ret
<= max_uV
;
2259 /* Any voltage within constrains range is fine? */
2260 if (rdev
->desc
->continuous_voltage_range
)
2261 return min_uV
>= rdev
->constraints
->min_uV
&&
2262 max_uV
<= rdev
->constraints
->max_uV
;
2264 ret
= regulator_count_voltages(regulator
);
2269 for (i
= 0; i
< voltages
; i
++) {
2270 ret
= regulator_list_voltage(regulator
, i
);
2272 if (ret
>= min_uV
&& ret
<= max_uV
)
2278 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2280 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2281 int min_uV
, int max_uV
)
2286 unsigned int selector
;
2287 int old_selector
= -1;
2289 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2291 min_uV
+= rdev
->constraints
->uV_offset
;
2292 max_uV
+= rdev
->constraints
->uV_offset
;
2295 * If we can't obtain the old selector there is not enough
2296 * info to call set_voltage_time_sel().
2298 if (_regulator_is_enabled(rdev
) &&
2299 rdev
->desc
->ops
->set_voltage_time_sel
&&
2300 rdev
->desc
->ops
->get_voltage_sel
) {
2301 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2302 if (old_selector
< 0)
2303 return old_selector
;
2306 if (rdev
->desc
->ops
->set_voltage
) {
2307 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2311 if (rdev
->desc
->ops
->list_voltage
)
2312 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2315 best_val
= _regulator_get_voltage(rdev
);
2318 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2319 if (rdev
->desc
->ops
->map_voltage
) {
2320 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2323 if (rdev
->desc
->ops
->list_voltage
==
2324 regulator_list_voltage_linear
)
2325 ret
= regulator_map_voltage_linear(rdev
,
2328 ret
= regulator_map_voltage_iterate(rdev
,
2333 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2334 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2336 if (old_selector
== selector
)
2339 ret
= rdev
->desc
->ops
->set_voltage_sel(
2349 /* Call set_voltage_time_sel if successfully obtained old_selector */
2350 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2351 && old_selector
!= selector
) {
2353 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2354 old_selector
, selector
);
2356 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2361 /* Insert any necessary delays */
2362 if (delay
>= 1000) {
2363 mdelay(delay
/ 1000);
2364 udelay(delay
% 1000);
2370 if (ret
== 0 && best_val
>= 0) {
2371 unsigned long data
= best_val
;
2373 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2377 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2383 * regulator_set_voltage - set regulator output voltage
2384 * @regulator: regulator source
2385 * @min_uV: Minimum required voltage in uV
2386 * @max_uV: Maximum acceptable voltage in uV
2388 * Sets a voltage regulator to the desired output voltage. This can be set
2389 * during any regulator state. IOW, regulator can be disabled or enabled.
2391 * If the regulator is enabled then the voltage will change to the new value
2392 * immediately otherwise if the regulator is disabled the regulator will
2393 * output at the new voltage when enabled.
2395 * NOTE: If the regulator is shared between several devices then the lowest
2396 * request voltage that meets the system constraints will be used.
2397 * Regulator system constraints must be set for this regulator before
2398 * calling this function otherwise this call will fail.
2400 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2402 struct regulator_dev
*rdev
= regulator
->rdev
;
2404 int old_min_uV
, old_max_uV
;
2406 mutex_lock(&rdev
->mutex
);
2408 /* If we're setting the same range as last time the change
2409 * should be a noop (some cpufreq implementations use the same
2410 * voltage for multiple frequencies, for example).
2412 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2416 if (!rdev
->desc
->ops
->set_voltage
&&
2417 !rdev
->desc
->ops
->set_voltage_sel
) {
2422 /* constraints check */
2423 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2427 /* restore original values in case of error */
2428 old_min_uV
= regulator
->min_uV
;
2429 old_max_uV
= regulator
->max_uV
;
2430 regulator
->min_uV
= min_uV
;
2431 regulator
->max_uV
= max_uV
;
2433 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2437 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2442 mutex_unlock(&rdev
->mutex
);
2445 regulator
->min_uV
= old_min_uV
;
2446 regulator
->max_uV
= old_max_uV
;
2447 mutex_unlock(&rdev
->mutex
);
2450 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2453 * regulator_set_voltage_time - get raise/fall time
2454 * @regulator: regulator source
2455 * @old_uV: starting voltage in microvolts
2456 * @new_uV: target voltage in microvolts
2458 * Provided with the starting and ending voltage, this function attempts to
2459 * calculate the time in microseconds required to rise or fall to this new
2462 int regulator_set_voltage_time(struct regulator
*regulator
,
2463 int old_uV
, int new_uV
)
2465 struct regulator_dev
*rdev
= regulator
->rdev
;
2466 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2472 /* Currently requires operations to do this */
2473 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2474 || !rdev
->desc
->n_voltages
)
2477 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2478 /* We only look for exact voltage matches here */
2479 voltage
= regulator_list_voltage(regulator
, i
);
2484 if (voltage
== old_uV
)
2486 if (voltage
== new_uV
)
2490 if (old_sel
< 0 || new_sel
< 0)
2493 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2495 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2498 * regulator_set_voltage_time_sel - get raise/fall time
2499 * @rdev: regulator source device
2500 * @old_selector: selector for starting voltage
2501 * @new_selector: selector for target voltage
2503 * Provided with the starting and target voltage selectors, this function
2504 * returns time in microseconds required to rise or fall to this new voltage
2506 * Drivers providing ramp_delay in regulation_constraints can use this as their
2507 * set_voltage_time_sel() operation.
2509 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2510 unsigned int old_selector
,
2511 unsigned int new_selector
)
2513 unsigned int ramp_delay
= 0;
2514 int old_volt
, new_volt
;
2516 if (rdev
->constraints
->ramp_delay
)
2517 ramp_delay
= rdev
->constraints
->ramp_delay
;
2518 else if (rdev
->desc
->ramp_delay
)
2519 ramp_delay
= rdev
->desc
->ramp_delay
;
2521 if (ramp_delay
== 0) {
2522 rdev_warn(rdev
, "ramp_delay not set\n");
2527 if (!rdev
->desc
->ops
->list_voltage
)
2530 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2531 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2533 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2535 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2538 * regulator_sync_voltage - re-apply last regulator output voltage
2539 * @regulator: regulator source
2541 * Re-apply the last configured voltage. This is intended to be used
2542 * where some external control source the consumer is cooperating with
2543 * has caused the configured voltage to change.
2545 int regulator_sync_voltage(struct regulator
*regulator
)
2547 struct regulator_dev
*rdev
= regulator
->rdev
;
2548 int ret
, min_uV
, max_uV
;
2550 mutex_lock(&rdev
->mutex
);
2552 if (!rdev
->desc
->ops
->set_voltage
&&
2553 !rdev
->desc
->ops
->set_voltage_sel
) {
2558 /* This is only going to work if we've had a voltage configured. */
2559 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2564 min_uV
= regulator
->min_uV
;
2565 max_uV
= regulator
->max_uV
;
2567 /* This should be a paranoia check... */
2568 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2572 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2576 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2579 mutex_unlock(&rdev
->mutex
);
2582 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2584 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2588 if (rdev
->desc
->ops
->get_voltage_sel
) {
2589 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2592 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2593 } else if (rdev
->desc
->ops
->get_voltage
) {
2594 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2595 } else if (rdev
->desc
->ops
->list_voltage
) {
2596 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2597 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
2598 ret
= rdev
->desc
->fixed_uV
;
2605 return ret
- rdev
->constraints
->uV_offset
;
2609 * regulator_get_voltage - get regulator output voltage
2610 * @regulator: regulator source
2612 * This returns the current regulator voltage in uV.
2614 * NOTE: If the regulator is disabled it will return the voltage value. This
2615 * function should not be used to determine regulator state.
2617 int regulator_get_voltage(struct regulator
*regulator
)
2621 mutex_lock(®ulator
->rdev
->mutex
);
2623 ret
= _regulator_get_voltage(regulator
->rdev
);
2625 mutex_unlock(®ulator
->rdev
->mutex
);
2629 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2632 * regulator_set_current_limit - set regulator output current limit
2633 * @regulator: regulator source
2634 * @min_uA: Minimum supported current in uA
2635 * @max_uA: Maximum supported current in uA
2637 * Sets current sink to the desired output current. This can be set during
2638 * any regulator state. IOW, regulator can be disabled or enabled.
2640 * If the regulator is enabled then the current will change to the new value
2641 * immediately otherwise if the regulator is disabled the regulator will
2642 * output at the new current when enabled.
2644 * NOTE: Regulator system constraints must be set for this regulator before
2645 * calling this function otherwise this call will fail.
2647 int regulator_set_current_limit(struct regulator
*regulator
,
2648 int min_uA
, int max_uA
)
2650 struct regulator_dev
*rdev
= regulator
->rdev
;
2653 mutex_lock(&rdev
->mutex
);
2656 if (!rdev
->desc
->ops
->set_current_limit
) {
2661 /* constraints check */
2662 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2666 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2668 mutex_unlock(&rdev
->mutex
);
2671 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2673 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2677 mutex_lock(&rdev
->mutex
);
2680 if (!rdev
->desc
->ops
->get_current_limit
) {
2685 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2687 mutex_unlock(&rdev
->mutex
);
2692 * regulator_get_current_limit - get regulator output current
2693 * @regulator: regulator source
2695 * This returns the current supplied by the specified current sink in uA.
2697 * NOTE: If the regulator is disabled it will return the current value. This
2698 * function should not be used to determine regulator state.
2700 int regulator_get_current_limit(struct regulator
*regulator
)
2702 return _regulator_get_current_limit(regulator
->rdev
);
2704 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2707 * regulator_set_mode - set regulator operating mode
2708 * @regulator: regulator source
2709 * @mode: operating mode - one of the REGULATOR_MODE constants
2711 * Set regulator operating mode to increase regulator efficiency or improve
2712 * regulation performance.
2714 * NOTE: Regulator system constraints must be set for this regulator before
2715 * calling this function otherwise this call will fail.
2717 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2719 struct regulator_dev
*rdev
= regulator
->rdev
;
2721 int regulator_curr_mode
;
2723 mutex_lock(&rdev
->mutex
);
2726 if (!rdev
->desc
->ops
->set_mode
) {
2731 /* return if the same mode is requested */
2732 if (rdev
->desc
->ops
->get_mode
) {
2733 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2734 if (regulator_curr_mode
== mode
) {
2740 /* constraints check */
2741 ret
= regulator_mode_constrain(rdev
, &mode
);
2745 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2747 mutex_unlock(&rdev
->mutex
);
2750 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2752 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2756 mutex_lock(&rdev
->mutex
);
2759 if (!rdev
->desc
->ops
->get_mode
) {
2764 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2766 mutex_unlock(&rdev
->mutex
);
2771 * regulator_get_mode - get regulator operating mode
2772 * @regulator: regulator source
2774 * Get the current regulator operating mode.
2776 unsigned int regulator_get_mode(struct regulator
*regulator
)
2778 return _regulator_get_mode(regulator
->rdev
);
2780 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2783 * regulator_set_optimum_mode - set regulator optimum operating mode
2784 * @regulator: regulator source
2785 * @uA_load: load current
2787 * Notifies the regulator core of a new device load. This is then used by
2788 * DRMS (if enabled by constraints) to set the most efficient regulator
2789 * operating mode for the new regulator loading.
2791 * Consumer devices notify their supply regulator of the maximum power
2792 * they will require (can be taken from device datasheet in the power
2793 * consumption tables) when they change operational status and hence power
2794 * state. Examples of operational state changes that can affect power
2795 * consumption are :-
2797 * o Device is opened / closed.
2798 * o Device I/O is about to begin or has just finished.
2799 * o Device is idling in between work.
2801 * This information is also exported via sysfs to userspace.
2803 * DRMS will sum the total requested load on the regulator and change
2804 * to the most efficient operating mode if platform constraints allow.
2806 * Returns the new regulator mode or error.
2808 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2810 struct regulator_dev
*rdev
= regulator
->rdev
;
2811 struct regulator
*consumer
;
2812 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2816 input_uV
= regulator_get_voltage(rdev
->supply
);
2818 mutex_lock(&rdev
->mutex
);
2821 * first check to see if we can set modes at all, otherwise just
2822 * tell the consumer everything is OK.
2824 regulator
->uA_load
= uA_load
;
2825 ret
= regulator_check_drms(rdev
);
2831 if (!rdev
->desc
->ops
->get_optimum_mode
)
2835 * we can actually do this so any errors are indicators of
2836 * potential real failure.
2840 if (!rdev
->desc
->ops
->set_mode
)
2843 /* get output voltage */
2844 output_uV
= _regulator_get_voltage(rdev
);
2845 if (output_uV
<= 0) {
2846 rdev_err(rdev
, "invalid output voltage found\n");
2850 /* No supply? Use constraint voltage */
2852 input_uV
= rdev
->constraints
->input_uV
;
2853 if (input_uV
<= 0) {
2854 rdev_err(rdev
, "invalid input voltage found\n");
2858 /* calc total requested load for this regulator */
2859 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2860 total_uA_load
+= consumer
->uA_load
;
2862 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2863 input_uV
, output_uV
,
2865 ret
= regulator_mode_constrain(rdev
, &mode
);
2867 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2868 total_uA_load
, input_uV
, output_uV
);
2872 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2874 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2879 mutex_unlock(&rdev
->mutex
);
2882 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2885 * regulator_allow_bypass - allow the regulator to go into bypass mode
2887 * @regulator: Regulator to configure
2888 * @enable: enable or disable bypass mode
2890 * Allow the regulator to go into bypass mode if all other consumers
2891 * for the regulator also enable bypass mode and the machine
2892 * constraints allow this. Bypass mode means that the regulator is
2893 * simply passing the input directly to the output with no regulation.
2895 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2897 struct regulator_dev
*rdev
= regulator
->rdev
;
2900 if (!rdev
->desc
->ops
->set_bypass
)
2903 if (rdev
->constraints
&&
2904 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2907 mutex_lock(&rdev
->mutex
);
2909 if (enable
&& !regulator
->bypass
) {
2910 rdev
->bypass_count
++;
2912 if (rdev
->bypass_count
== rdev
->open_count
) {
2913 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2915 rdev
->bypass_count
--;
2918 } else if (!enable
&& regulator
->bypass
) {
2919 rdev
->bypass_count
--;
2921 if (rdev
->bypass_count
!= rdev
->open_count
) {
2922 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2924 rdev
->bypass_count
++;
2929 regulator
->bypass
= enable
;
2931 mutex_unlock(&rdev
->mutex
);
2935 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2938 * regulator_register_notifier - register regulator event notifier
2939 * @regulator: regulator source
2940 * @nb: notifier block
2942 * Register notifier block to receive regulator events.
2944 int regulator_register_notifier(struct regulator
*regulator
,
2945 struct notifier_block
*nb
)
2947 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2950 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2953 * regulator_unregister_notifier - unregister regulator event notifier
2954 * @regulator: regulator source
2955 * @nb: notifier block
2957 * Unregister regulator event notifier block.
2959 int regulator_unregister_notifier(struct regulator
*regulator
,
2960 struct notifier_block
*nb
)
2962 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2965 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2967 /* notify regulator consumers and downstream regulator consumers.
2968 * Note mutex must be held by caller.
2970 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2971 unsigned long event
, void *data
)
2973 /* call rdev chain first */
2974 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
2978 * regulator_bulk_get - get multiple regulator consumers
2980 * @dev: Device to supply
2981 * @num_consumers: Number of consumers to register
2982 * @consumers: Configuration of consumers; clients are stored here.
2984 * @return 0 on success, an errno on failure.
2986 * This helper function allows drivers to get several regulator
2987 * consumers in one operation. If any of the regulators cannot be
2988 * acquired then any regulators that were allocated will be freed
2989 * before returning to the caller.
2991 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
2992 struct regulator_bulk_data
*consumers
)
2997 for (i
= 0; i
< num_consumers
; i
++)
2998 consumers
[i
].consumer
= NULL
;
3000 for (i
= 0; i
< num_consumers
; i
++) {
3001 consumers
[i
].consumer
= regulator_get(dev
,
3002 consumers
[i
].supply
);
3003 if (IS_ERR(consumers
[i
].consumer
)) {
3004 ret
= PTR_ERR(consumers
[i
].consumer
);
3005 dev_err(dev
, "Failed to get supply '%s': %d\n",
3006 consumers
[i
].supply
, ret
);
3007 consumers
[i
].consumer
= NULL
;
3016 regulator_put(consumers
[i
].consumer
);
3020 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3022 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3024 struct regulator_bulk_data
*bulk
= data
;
3026 bulk
->ret
= regulator_enable(bulk
->consumer
);
3030 * regulator_bulk_enable - enable multiple regulator consumers
3032 * @num_consumers: Number of consumers
3033 * @consumers: Consumer data; clients are stored here.
3034 * @return 0 on success, an errno on failure
3036 * This convenience API allows consumers to enable multiple regulator
3037 * clients in a single API call. If any consumers cannot be enabled
3038 * then any others that were enabled will be disabled again prior to
3041 int regulator_bulk_enable(int num_consumers
,
3042 struct regulator_bulk_data
*consumers
)
3044 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3048 for (i
= 0; i
< num_consumers
; i
++) {
3049 if (consumers
[i
].consumer
->always_on
)
3050 consumers
[i
].ret
= 0;
3052 async_schedule_domain(regulator_bulk_enable_async
,
3053 &consumers
[i
], &async_domain
);
3056 async_synchronize_full_domain(&async_domain
);
3058 /* If any consumer failed we need to unwind any that succeeded */
3059 for (i
= 0; i
< num_consumers
; i
++) {
3060 if (consumers
[i
].ret
!= 0) {
3061 ret
= consumers
[i
].ret
;
3069 for (i
= 0; i
< num_consumers
; i
++) {
3070 if (consumers
[i
].ret
< 0)
3071 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3074 regulator_disable(consumers
[i
].consumer
);
3079 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3082 * regulator_bulk_disable - disable multiple regulator consumers
3084 * @num_consumers: Number of consumers
3085 * @consumers: Consumer data; clients are stored here.
3086 * @return 0 on success, an errno on failure
3088 * This convenience API allows consumers to disable multiple regulator
3089 * clients in a single API call. If any consumers cannot be disabled
3090 * then any others that were disabled will be enabled again prior to
3093 int regulator_bulk_disable(int num_consumers
,
3094 struct regulator_bulk_data
*consumers
)
3099 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3100 ret
= regulator_disable(consumers
[i
].consumer
);
3108 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3109 for (++i
; i
< num_consumers
; ++i
) {
3110 r
= regulator_enable(consumers
[i
].consumer
);
3112 pr_err("Failed to reename %s: %d\n",
3113 consumers
[i
].supply
, r
);
3118 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3121 * regulator_bulk_force_disable - force disable multiple regulator consumers
3123 * @num_consumers: Number of consumers
3124 * @consumers: Consumer data; clients are stored here.
3125 * @return 0 on success, an errno on failure
3127 * This convenience API allows consumers to forcibly disable multiple regulator
3128 * clients in a single API call.
3129 * NOTE: This should be used for situations when device damage will
3130 * likely occur if the regulators are not disabled (e.g. over temp).
3131 * Although regulator_force_disable function call for some consumers can
3132 * return error numbers, the function is called for all consumers.
3134 int regulator_bulk_force_disable(int num_consumers
,
3135 struct regulator_bulk_data
*consumers
)
3140 for (i
= 0; i
< num_consumers
; i
++)
3142 regulator_force_disable(consumers
[i
].consumer
);
3144 for (i
= 0; i
< num_consumers
; i
++) {
3145 if (consumers
[i
].ret
!= 0) {
3146 ret
= consumers
[i
].ret
;
3155 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3158 * regulator_bulk_free - free multiple regulator consumers
3160 * @num_consumers: Number of consumers
3161 * @consumers: Consumer data; clients are stored here.
3163 * This convenience API allows consumers to free multiple regulator
3164 * clients in a single API call.
3166 void regulator_bulk_free(int num_consumers
,
3167 struct regulator_bulk_data
*consumers
)
3171 for (i
= 0; i
< num_consumers
; i
++) {
3172 regulator_put(consumers
[i
].consumer
);
3173 consumers
[i
].consumer
= NULL
;
3176 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3179 * regulator_notifier_call_chain - call regulator event notifier
3180 * @rdev: regulator source
3181 * @event: notifier block
3182 * @data: callback-specific data.
3184 * Called by regulator drivers to notify clients a regulator event has
3185 * occurred. We also notify regulator clients downstream.
3186 * Note lock must be held by caller.
3188 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3189 unsigned long event
, void *data
)
3191 _notifier_call_chain(rdev
, event
, data
);
3195 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3198 * regulator_mode_to_status - convert a regulator mode into a status
3200 * @mode: Mode to convert
3202 * Convert a regulator mode into a status.
3204 int regulator_mode_to_status(unsigned int mode
)
3207 case REGULATOR_MODE_FAST
:
3208 return REGULATOR_STATUS_FAST
;
3209 case REGULATOR_MODE_NORMAL
:
3210 return REGULATOR_STATUS_NORMAL
;
3211 case REGULATOR_MODE_IDLE
:
3212 return REGULATOR_STATUS_IDLE
;
3213 case REGULATOR_MODE_STANDBY
:
3214 return REGULATOR_STATUS_STANDBY
;
3216 return REGULATOR_STATUS_UNDEFINED
;
3219 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3222 * To avoid cluttering sysfs (and memory) with useless state, only
3223 * create attributes that can be meaningfully displayed.
3225 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3227 struct device
*dev
= &rdev
->dev
;
3228 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3231 /* some attributes need specific methods to be displayed */
3232 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3233 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3234 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3235 (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1))) {
3236 status
= device_create_file(dev
, &dev_attr_microvolts
);
3240 if (ops
->get_current_limit
) {
3241 status
= device_create_file(dev
, &dev_attr_microamps
);
3245 if (ops
->get_mode
) {
3246 status
= device_create_file(dev
, &dev_attr_opmode
);
3250 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3251 status
= device_create_file(dev
, &dev_attr_state
);
3255 if (ops
->get_status
) {
3256 status
= device_create_file(dev
, &dev_attr_status
);
3260 if (ops
->get_bypass
) {
3261 status
= device_create_file(dev
, &dev_attr_bypass
);
3266 /* some attributes are type-specific */
3267 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3268 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3273 /* all the other attributes exist to support constraints;
3274 * don't show them if there are no constraints, or if the
3275 * relevant supporting methods are missing.
3277 if (!rdev
->constraints
)
3280 /* constraints need specific supporting methods */
3281 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3282 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3285 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3289 if (ops
->set_current_limit
) {
3290 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3293 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3298 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3301 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3304 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3308 if (ops
->set_suspend_voltage
) {
3309 status
= device_create_file(dev
,
3310 &dev_attr_suspend_standby_microvolts
);
3313 status
= device_create_file(dev
,
3314 &dev_attr_suspend_mem_microvolts
);
3317 status
= device_create_file(dev
,
3318 &dev_attr_suspend_disk_microvolts
);
3323 if (ops
->set_suspend_mode
) {
3324 status
= device_create_file(dev
,
3325 &dev_attr_suspend_standby_mode
);
3328 status
= device_create_file(dev
,
3329 &dev_attr_suspend_mem_mode
);
3332 status
= device_create_file(dev
,
3333 &dev_attr_suspend_disk_mode
);
3341 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3343 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3344 if (!rdev
->debugfs
) {
3345 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3349 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3351 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3353 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3354 &rdev
->bypass_count
);
3358 * regulator_register - register regulator
3359 * @regulator_desc: regulator to register
3360 * @config: runtime configuration for regulator
3362 * Called by regulator drivers to register a regulator.
3363 * Returns a valid pointer to struct regulator_dev on success
3364 * or an ERR_PTR() on error.
3366 struct regulator_dev
*
3367 regulator_register(const struct regulator_desc
*regulator_desc
,
3368 const struct regulator_config
*config
)
3370 const struct regulation_constraints
*constraints
= NULL
;
3371 const struct regulator_init_data
*init_data
;
3372 static atomic_t regulator_no
= ATOMIC_INIT(0);
3373 struct regulator_dev
*rdev
;
3376 const char *supply
= NULL
;
3378 if (regulator_desc
== NULL
|| config
== NULL
)
3379 return ERR_PTR(-EINVAL
);
3384 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3385 return ERR_PTR(-EINVAL
);
3387 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3388 regulator_desc
->type
!= REGULATOR_CURRENT
)
3389 return ERR_PTR(-EINVAL
);
3391 /* Only one of each should be implemented */
3392 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3393 regulator_desc
->ops
->get_voltage_sel
);
3394 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3395 regulator_desc
->ops
->set_voltage_sel
);
3397 /* If we're using selectors we must implement list_voltage. */
3398 if (regulator_desc
->ops
->get_voltage_sel
&&
3399 !regulator_desc
->ops
->list_voltage
) {
3400 return ERR_PTR(-EINVAL
);
3402 if (regulator_desc
->ops
->set_voltage_sel
&&
3403 !regulator_desc
->ops
->list_voltage
) {
3404 return ERR_PTR(-EINVAL
);
3407 init_data
= config
->init_data
;
3409 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3411 return ERR_PTR(-ENOMEM
);
3413 mutex_lock(®ulator_list_mutex
);
3415 mutex_init(&rdev
->mutex
);
3416 rdev
->reg_data
= config
->driver_data
;
3417 rdev
->owner
= regulator_desc
->owner
;
3418 rdev
->desc
= regulator_desc
;
3420 rdev
->regmap
= config
->regmap
;
3421 else if (dev_get_regmap(dev
, NULL
))
3422 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3423 else if (dev
->parent
)
3424 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3425 INIT_LIST_HEAD(&rdev
->consumer_list
);
3426 INIT_LIST_HEAD(&rdev
->list
);
3427 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3428 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3430 /* preform any regulator specific init */
3431 if (init_data
&& init_data
->regulator_init
) {
3432 ret
= init_data
->regulator_init(rdev
->reg_data
);
3437 /* register with sysfs */
3438 rdev
->dev
.class = ®ulator_class
;
3439 rdev
->dev
.of_node
= config
->of_node
;
3440 rdev
->dev
.parent
= dev
;
3441 dev_set_name(&rdev
->dev
, "regulator.%d",
3442 atomic_inc_return(®ulator_no
) - 1);
3443 ret
= device_register(&rdev
->dev
);
3445 put_device(&rdev
->dev
);
3449 dev_set_drvdata(&rdev
->dev
, rdev
);
3451 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3452 ret
= regulator_ena_gpio_request(rdev
, config
);
3454 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3455 config
->ena_gpio
, ret
);
3459 if (config
->ena_gpio_flags
& GPIOF_OUT_INIT_HIGH
)
3460 rdev
->ena_gpio_state
= 1;
3462 if (config
->ena_gpio_invert
)
3463 rdev
->ena_gpio_state
= !rdev
->ena_gpio_state
;
3466 /* set regulator constraints */
3468 constraints
= &init_data
->constraints
;
3470 ret
= set_machine_constraints(rdev
, constraints
);
3474 /* add attributes supported by this regulator */
3475 ret
= add_regulator_attributes(rdev
);
3479 if (init_data
&& init_data
->supply_regulator
)
3480 supply
= init_data
->supply_regulator
;
3481 else if (regulator_desc
->supply_name
)
3482 supply
= regulator_desc
->supply_name
;
3485 struct regulator_dev
*r
;
3487 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3489 if (ret
== -ENODEV
) {
3491 * No supply was specified for this regulator and
3492 * there will never be one.
3497 dev_err(dev
, "Failed to find supply %s\n", supply
);
3498 ret
= -EPROBE_DEFER
;
3502 ret
= set_supply(rdev
, r
);
3506 /* Enable supply if rail is enabled */
3507 if (_regulator_is_enabled(rdev
)) {
3508 ret
= regulator_enable(rdev
->supply
);
3515 /* add consumers devices */
3517 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3518 ret
= set_consumer_device_supply(rdev
,
3519 init_data
->consumer_supplies
[i
].dev_name
,
3520 init_data
->consumer_supplies
[i
].supply
);
3522 dev_err(dev
, "Failed to set supply %s\n",
3523 init_data
->consumer_supplies
[i
].supply
);
3524 goto unset_supplies
;
3529 list_add(&rdev
->list
, ®ulator_list
);
3531 rdev_init_debugfs(rdev
);
3533 mutex_unlock(®ulator_list_mutex
);
3537 unset_regulator_supplies(rdev
);
3541 _regulator_put(rdev
->supply
);
3542 regulator_ena_gpio_free(rdev
);
3543 kfree(rdev
->constraints
);
3545 device_unregister(&rdev
->dev
);
3546 /* device core frees rdev */
3547 rdev
= ERR_PTR(ret
);
3552 rdev
= ERR_PTR(ret
);
3555 EXPORT_SYMBOL_GPL(regulator_register
);
3558 * regulator_unregister - unregister regulator
3559 * @rdev: regulator to unregister
3561 * Called by regulator drivers to unregister a regulator.
3563 void regulator_unregister(struct regulator_dev
*rdev
)
3569 while (rdev
->use_count
--)
3570 regulator_disable(rdev
->supply
);
3571 regulator_put(rdev
->supply
);
3573 mutex_lock(®ulator_list_mutex
);
3574 debugfs_remove_recursive(rdev
->debugfs
);
3575 flush_work(&rdev
->disable_work
.work
);
3576 WARN_ON(rdev
->open_count
);
3577 unset_regulator_supplies(rdev
);
3578 list_del(&rdev
->list
);
3579 kfree(rdev
->constraints
);
3580 regulator_ena_gpio_free(rdev
);
3581 device_unregister(&rdev
->dev
);
3582 mutex_unlock(®ulator_list_mutex
);
3584 EXPORT_SYMBOL_GPL(regulator_unregister
);
3587 * regulator_suspend_prepare - prepare regulators for system wide suspend
3588 * @state: system suspend state
3590 * Configure each regulator with it's suspend operating parameters for state.
3591 * This will usually be called by machine suspend code prior to supending.
3593 int regulator_suspend_prepare(suspend_state_t state
)
3595 struct regulator_dev
*rdev
;
3598 /* ON is handled by regulator active state */
3599 if (state
== PM_SUSPEND_ON
)
3602 mutex_lock(®ulator_list_mutex
);
3603 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3605 mutex_lock(&rdev
->mutex
);
3606 ret
= suspend_prepare(rdev
, state
);
3607 mutex_unlock(&rdev
->mutex
);
3610 rdev_err(rdev
, "failed to prepare\n");
3615 mutex_unlock(®ulator_list_mutex
);
3618 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3621 * regulator_suspend_finish - resume regulators from system wide suspend
3623 * Turn on regulators that might be turned off by regulator_suspend_prepare
3624 * and that should be turned on according to the regulators properties.
3626 int regulator_suspend_finish(void)
3628 struct regulator_dev
*rdev
;
3631 mutex_lock(®ulator_list_mutex
);
3632 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3633 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3635 mutex_lock(&rdev
->mutex
);
3636 if ((rdev
->use_count
> 0 || rdev
->constraints
->always_on
) &&
3638 error
= ops
->enable(rdev
);
3642 if (!have_full_constraints())
3646 if (!_regulator_is_enabled(rdev
))
3649 error
= ops
->disable(rdev
);
3654 mutex_unlock(&rdev
->mutex
);
3656 mutex_unlock(®ulator_list_mutex
);
3659 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3662 * regulator_has_full_constraints - the system has fully specified constraints
3664 * Calling this function will cause the regulator API to disable all
3665 * regulators which have a zero use count and don't have an always_on
3666 * constraint in a late_initcall.
3668 * The intention is that this will become the default behaviour in a
3669 * future kernel release so users are encouraged to use this facility
3672 void regulator_has_full_constraints(void)
3674 has_full_constraints
= 1;
3676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3679 * rdev_get_drvdata - get rdev regulator driver data
3682 * Get rdev regulator driver private data. This call can be used in the
3683 * regulator driver context.
3685 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3687 return rdev
->reg_data
;
3689 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3692 * regulator_get_drvdata - get regulator driver data
3693 * @regulator: regulator
3695 * Get regulator driver private data. This call can be used in the consumer
3696 * driver context when non API regulator specific functions need to be called.
3698 void *regulator_get_drvdata(struct regulator
*regulator
)
3700 return regulator
->rdev
->reg_data
;
3702 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3705 * regulator_set_drvdata - set regulator driver data
3706 * @regulator: regulator
3709 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3711 regulator
->rdev
->reg_data
= data
;
3713 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3716 * regulator_get_id - get regulator ID
3719 int rdev_get_id(struct regulator_dev
*rdev
)
3721 return rdev
->desc
->id
;
3723 EXPORT_SYMBOL_GPL(rdev_get_id
);
3725 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3729 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3731 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3733 return reg_init_data
->driver_data
;
3735 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3737 #ifdef CONFIG_DEBUG_FS
3738 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3739 size_t count
, loff_t
*ppos
)
3741 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3742 ssize_t len
, ret
= 0;
3743 struct regulator_map
*map
;
3748 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3749 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3751 rdev_get_name(map
->regulator
), map
->dev_name
,
3755 if (ret
> PAGE_SIZE
) {
3761 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3769 static const struct file_operations supply_map_fops
= {
3770 #ifdef CONFIG_DEBUG_FS
3771 .read
= supply_map_read_file
,
3772 .llseek
= default_llseek
,
3776 static int __init
regulator_init(void)
3780 ret
= class_register(®ulator_class
);
3782 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3784 pr_warn("regulator: Failed to create debugfs directory\n");
3786 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3789 regulator_dummy_init();
3794 /* init early to allow our consumers to complete system booting */
3795 core_initcall(regulator_init
);
3797 static int __init
regulator_init_complete(void)
3799 struct regulator_dev
*rdev
;
3800 struct regulator_ops
*ops
;
3801 struct regulation_constraints
*c
;
3805 * Since DT doesn't provide an idiomatic mechanism for
3806 * enabling full constraints and since it's much more natural
3807 * with DT to provide them just assume that a DT enabled
3808 * system has full constraints.
3810 if (of_have_populated_dt())
3811 has_full_constraints
= true;
3813 mutex_lock(®ulator_list_mutex
);
3815 /* If we have a full configuration then disable any regulators
3816 * which are not in use or always_on. This will become the
3817 * default behaviour in the future.
3819 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3820 ops
= rdev
->desc
->ops
;
3821 c
= rdev
->constraints
;
3823 if (!ops
->disable
|| (c
&& c
->always_on
))
3826 mutex_lock(&rdev
->mutex
);
3828 if (rdev
->use_count
)
3831 /* If we can't read the status assume it's on. */
3832 if (ops
->is_enabled
)
3833 enabled
= ops
->is_enabled(rdev
);
3840 if (have_full_constraints()) {
3841 /* We log since this may kill the system if it
3843 rdev_info(rdev
, "disabling\n");
3844 ret
= ops
->disable(rdev
);
3846 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3848 /* The intention is that in future we will
3849 * assume that full constraints are provided
3850 * so warn even if we aren't going to do
3853 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3857 mutex_unlock(&rdev
->mutex
);
3860 mutex_unlock(®ulator_list_mutex
);
3864 late_initcall(regulator_init_complete
);