PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / scsi / csiostor / csio_hw.c
blob0eaec474895788a6437e12c9907e053c9f74b048
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
50 int csio_force_master;
51 int csio_dbg_level = 0xFEFF;
52 unsigned int csio_port_mask = 0xf;
54 /* Default FW event queue entries. */
55 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
57 /* Default MSI param level */
58 int csio_msi = 2;
60 /* FCoE function instances */
61 static int dev_num;
63 /* FCoE Adapter types & its description */
64 static const struct csio_adap_desc csio_t4_fcoe_adapters[] = {
65 {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
66 {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
67 {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
68 {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
69 {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
70 {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
71 {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
72 {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
73 {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
74 {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
75 {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
76 {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
77 {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
78 {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
79 {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
80 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
81 {"HUAWEI T480 10G", "Chelsio HUAWEI T480 10G [FCoE]"},
82 {"HUAWEI T440 10G", "Chelsio HUAWEI T440 10G [FCoE]"},
83 {"HUAWEI STG 10G", "Chelsio HUAWEI STG 10G [FCoE]"},
84 {"ACROMAG XAUI 10G", "Chelsio ACROMAG XAUI 10G [FCoE]"},
85 {"ACROMAG SFP+ 10G", "Chelsio ACROMAG SFP+ 10G [FCoE]"},
86 {"QUANTA SFP+ 10G", "Chelsio QUANTA SFP+ 10G [FCoE]"},
87 {"HUAWEI 10Gbase-T", "Chelsio HUAWEI 10Gbase-T [FCoE]"},
88 {"HUAWEI T4TOE 10G", "Chelsio HUAWEI T4TOE 10G [FCoE]"}
91 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
92 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
93 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
94 {"T522-CR 10G/1G", "Chelsio T452-CR 10G/1G [FCoE]"},
95 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
96 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
97 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
98 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
99 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
100 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
101 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
102 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
103 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
104 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
105 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
106 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
107 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
108 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
109 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
110 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
111 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}
114 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
115 static void csio_hw_mbm_cleanup(struct csio_hw *);
117 /* State machine forward declarations */
118 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
119 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
120 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
121 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
122 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
123 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
124 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
125 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
126 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
128 static void csio_hw_initialize(struct csio_hw *hw);
129 static void csio_evtq_stop(struct csio_hw *hw);
130 static void csio_evtq_start(struct csio_hw *hw);
132 int csio_is_hw_ready(struct csio_hw *hw)
134 return csio_match_state(hw, csio_hws_ready);
137 int csio_is_hw_removing(struct csio_hw *hw)
139 return csio_match_state(hw, csio_hws_removing);
144 * csio_hw_wait_op_done_val - wait until an operation is completed
145 * @hw: the HW module
146 * @reg: the register to check for completion
147 * @mask: a single-bit field within @reg that indicates completion
148 * @polarity: the value of the field when the operation is completed
149 * @attempts: number of check iterations
150 * @delay: delay in usecs between iterations
151 * @valp: where to store the value of the register at completion time
153 * Wait until an operation is completed by checking a bit in a register
154 * up to @attempts times. If @valp is not NULL the value of the register
155 * at the time it indicated completion is stored there. Returns 0 if the
156 * operation completes and -EAGAIN otherwise.
159 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
160 int polarity, int attempts, int delay, uint32_t *valp)
162 uint32_t val;
163 while (1) {
164 val = csio_rd_reg32(hw, reg);
166 if (!!(val & mask) == polarity) {
167 if (valp)
168 *valp = val;
169 return 0;
172 if (--attempts == 0)
173 return -EAGAIN;
174 if (delay)
175 udelay(delay);
180 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
181 * @hw: the adapter
182 * @addr: the indirect TP register address
183 * @mask: specifies the field within the register to modify
184 * @val: new value for the field
186 * Sets a field of an indirect TP register to the given value.
188 void
189 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
190 unsigned int mask, unsigned int val)
192 csio_wr_reg32(hw, addr, TP_PIO_ADDR);
193 val |= csio_rd_reg32(hw, TP_PIO_DATA) & ~mask;
194 csio_wr_reg32(hw, val, TP_PIO_DATA);
197 void
198 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
199 uint32_t value)
201 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
203 csio_wr_reg32(hw, val | value, reg);
204 /* Flush */
205 csio_rd_reg32(hw, reg);
209 static int
210 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
212 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
213 addr, len, buf, 0);
217 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
219 #define EEPROM_MAX_RD_POLL 40
220 #define EEPROM_MAX_WR_POLL 6
221 #define EEPROM_STAT_ADDR 0x7bfc
222 #define VPD_BASE 0x400
223 #define VPD_BASE_OLD 0
224 #define VPD_LEN 1024
225 #define VPD_INFO_FLD_HDR_SIZE 3
228 * csio_hw_seeprom_read - read a serial EEPROM location
229 * @hw: hw to read
230 * @addr: EEPROM virtual address
231 * @data: where to store the read data
233 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
234 * VPD capability. Note that this function must be called with a virtual
235 * address.
237 static int
238 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
240 uint16_t val = 0;
241 int attempts = EEPROM_MAX_RD_POLL;
242 uint32_t base = hw->params.pci.vpd_cap_addr;
244 if (addr >= EEPROMVSIZE || (addr & 3))
245 return -EINVAL;
247 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
249 do {
250 udelay(10);
251 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
252 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
254 if (!(val & PCI_VPD_ADDR_F)) {
255 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
256 return -EINVAL;
259 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
260 *data = le32_to_cpu(*data);
262 return 0;
266 * Partial EEPROM Vital Product Data structure. Includes only the ID and
267 * VPD-R sections.
269 struct t4_vpd_hdr {
270 u8 id_tag;
271 u8 id_len[2];
272 u8 id_data[ID_LEN];
273 u8 vpdr_tag;
274 u8 vpdr_len[2];
278 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
279 * the VPD
280 * @v: Pointer to buffered vpd data structure
281 * @kw: The keyword to search for
283 * Returns the value of the information field keyword or
284 * -EINVAL otherwise.
286 static int
287 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
289 int32_t i;
290 int32_t offset , len;
291 const uint8_t *buf = &v->id_tag;
292 const uint8_t *vpdr_len = &v->vpdr_tag;
293 offset = sizeof(struct t4_vpd_hdr);
294 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
296 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
297 return -EINVAL;
299 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
300 if (memcmp(buf + i , kw, 2) == 0) {
301 i += VPD_INFO_FLD_HDR_SIZE;
302 return i;
305 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
308 return -EINVAL;
311 static int
312 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
314 *pos = pci_find_capability(pdev, cap);
315 if (*pos)
316 return 0;
318 return -1;
322 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
323 * @hw: HW module
324 * @p: where to store the parameters
326 * Reads card parameters stored in VPD EEPROM.
328 static int
329 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
331 int i, ret, ec, sn, addr;
332 uint8_t *vpd, csum;
333 const struct t4_vpd_hdr *v;
334 /* To get around compilation warning from strstrip */
335 char *s;
337 if (csio_is_valid_vpd(hw))
338 return 0;
340 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
341 &hw->params.pci.vpd_cap_addr);
342 if (ret)
343 return -EINVAL;
345 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
346 if (vpd == NULL)
347 return -ENOMEM;
350 * Card information normally starts at VPD_BASE but early cards had
351 * it at 0.
353 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
354 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
356 for (i = 0; i < VPD_LEN; i += 4) {
357 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
358 if (ret) {
359 kfree(vpd);
360 return ret;
364 /* Reset the VPD flag! */
365 hw->flags &= (~CSIO_HWF_VPD_VALID);
367 v = (const struct t4_vpd_hdr *)vpd;
369 #define FIND_VPD_KW(var, name) do { \
370 var = csio_hw_get_vpd_keyword_val(v, name); \
371 if (var < 0) { \
372 csio_err(hw, "missing VPD keyword " name "\n"); \
373 kfree(vpd); \
374 return -EINVAL; \
376 } while (0)
378 FIND_VPD_KW(i, "RV");
379 for (csum = 0; i >= 0; i--)
380 csum += vpd[i];
382 if (csum) {
383 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
384 kfree(vpd);
385 return -EINVAL;
387 FIND_VPD_KW(ec, "EC");
388 FIND_VPD_KW(sn, "SN");
389 #undef FIND_VPD_KW
391 memcpy(p->id, v->id_data, ID_LEN);
392 s = strstrip(p->id);
393 memcpy(p->ec, vpd + ec, EC_LEN);
394 s = strstrip(p->ec);
395 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
396 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
397 s = strstrip(p->sn);
399 csio_valid_vpd_copied(hw);
401 kfree(vpd);
402 return 0;
406 * csio_hw_sf1_read - read data from the serial flash
407 * @hw: the HW module
408 * @byte_cnt: number of bytes to read
409 * @cont: whether another operation will be chained
410 * @lock: whether to lock SF for PL access only
411 * @valp: where to store the read data
413 * Reads up to 4 bytes of data from the serial flash. The location of
414 * the read needs to be specified prior to calling this by issuing the
415 * appropriate commands to the serial flash.
417 static int
418 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
419 int32_t lock, uint32_t *valp)
421 int ret;
423 if (!byte_cnt || byte_cnt > 4)
424 return -EINVAL;
425 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
426 return -EBUSY;
428 cont = cont ? SF_CONT : 0;
429 lock = lock ? SF_LOCK : 0;
431 csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
432 ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
433 10, NULL);
434 if (!ret)
435 *valp = csio_rd_reg32(hw, SF_DATA);
436 return ret;
440 * csio_hw_sf1_write - write data to the serial flash
441 * @hw: the HW module
442 * @byte_cnt: number of bytes to write
443 * @cont: whether another operation will be chained
444 * @lock: whether to lock SF for PL access only
445 * @val: value to write
447 * Writes up to 4 bytes of data to the serial flash. The location of
448 * the write needs to be specified prior to calling this by issuing the
449 * appropriate commands to the serial flash.
451 static int
452 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
453 int32_t lock, uint32_t val)
455 if (!byte_cnt || byte_cnt > 4)
456 return -EINVAL;
457 if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
458 return -EBUSY;
460 cont = cont ? SF_CONT : 0;
461 lock = lock ? SF_LOCK : 0;
463 csio_wr_reg32(hw, val, SF_DATA);
464 csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
466 return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
467 10, NULL);
471 * csio_hw_flash_wait_op - wait for a flash operation to complete
472 * @hw: the HW module
473 * @attempts: max number of polls of the status register
474 * @delay: delay between polls in ms
476 * Wait for a flash operation to complete by polling the status register.
478 static int
479 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
481 int ret;
482 uint32_t status;
484 while (1) {
485 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
486 if (ret != 0)
487 return ret;
489 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
490 if (ret != 0)
491 return ret;
493 if (!(status & 1))
494 return 0;
495 if (--attempts == 0)
496 return -EAGAIN;
497 if (delay)
498 msleep(delay);
503 * csio_hw_read_flash - read words from serial flash
504 * @hw: the HW module
505 * @addr: the start address for the read
506 * @nwords: how many 32-bit words to read
507 * @data: where to store the read data
508 * @byte_oriented: whether to store data as bytes or as words
510 * Read the specified number of 32-bit words from the serial flash.
511 * If @byte_oriented is set the read data is stored as a byte array
512 * (i.e., big-endian), otherwise as 32-bit words in the platform's
513 * natural endianess.
515 static int
516 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
517 uint32_t *data, int32_t byte_oriented)
519 int ret;
521 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
522 return -EINVAL;
524 addr = swab32(addr) | SF_RD_DATA_FAST;
526 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
527 if (ret != 0)
528 return ret;
530 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
531 if (ret != 0)
532 return ret;
534 for ( ; nwords; nwords--, data++) {
535 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
536 if (nwords == 1)
537 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
538 if (ret)
539 return ret;
540 if (byte_oriented)
541 *data = htonl(*data);
543 return 0;
547 * csio_hw_write_flash - write up to a page of data to the serial flash
548 * @hw: the hw
549 * @addr: the start address to write
550 * @n: length of data to write in bytes
551 * @data: the data to write
553 * Writes up to a page of data (256 bytes) to the serial flash starting
554 * at the given address. All the data must be written to the same page.
556 static int
557 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
558 uint32_t n, const uint8_t *data)
560 int ret = -EINVAL;
561 uint32_t buf[64];
562 uint32_t i, c, left, val, offset = addr & 0xff;
564 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
565 return -EINVAL;
567 val = swab32(addr) | SF_PROG_PAGE;
569 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
570 if (ret != 0)
571 goto unlock;
573 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
574 if (ret != 0)
575 goto unlock;
577 for (left = n; left; left -= c) {
578 c = min(left, 4U);
579 for (val = 0, i = 0; i < c; ++i)
580 val = (val << 8) + *data++;
582 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
583 if (ret)
584 goto unlock;
586 ret = csio_hw_flash_wait_op(hw, 8, 1);
587 if (ret)
588 goto unlock;
590 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
592 /* Read the page to verify the write succeeded */
593 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
594 if (ret)
595 return ret;
597 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
598 csio_err(hw,
599 "failed to correctly write the flash page at %#x\n",
600 addr);
601 return -EINVAL;
604 return 0;
606 unlock:
607 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
608 return ret;
612 * csio_hw_flash_erase_sectors - erase a range of flash sectors
613 * @hw: the HW module
614 * @start: the first sector to erase
615 * @end: the last sector to erase
617 * Erases the sectors in the given inclusive range.
619 static int
620 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
622 int ret = 0;
624 while (start <= end) {
626 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
627 if (ret != 0)
628 goto out;
630 ret = csio_hw_sf1_write(hw, 4, 0, 1,
631 SF_ERASE_SECTOR | (start << 8));
632 if (ret != 0)
633 goto out;
635 ret = csio_hw_flash_wait_op(hw, 14, 500);
636 if (ret != 0)
637 goto out;
639 start++;
641 out:
642 if (ret)
643 csio_err(hw, "erase of flash sector %d failed, error %d\n",
644 start, ret);
645 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
646 return 0;
649 static void
650 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
652 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
653 FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
654 FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
655 FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
656 FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
660 * csio_hw_get_fw_version - read the firmware version
661 * @hw: HW module
662 * @vers: where to place the version
664 * Reads the FW version from flash.
666 static int
667 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
669 return csio_hw_read_flash(hw, FW_IMG_START +
670 offsetof(struct fw_hdr, fw_ver), 1,
671 vers, 0);
675 * csio_hw_get_tp_version - read the TP microcode version
676 * @hw: HW module
677 * @vers: where to place the version
679 * Reads the TP microcode version from flash.
681 static int
682 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
684 return csio_hw_read_flash(hw, FLASH_FW_START +
685 offsetof(struct fw_hdr, tp_microcode_ver), 1,
686 vers, 0);
690 * csio_hw_check_fw_version - check if the FW is compatible with
691 * this driver
692 * @hw: HW module
694 * Checks if an adapter's FW is compatible with the driver. Returns 0
695 * if there's exact match, a negative error if the version could not be
696 * read or there's a major/minor version mismatch/minor.
698 static int
699 csio_hw_check_fw_version(struct csio_hw *hw)
701 int ret, major, minor, micro;
703 ret = csio_hw_get_fw_version(hw, &hw->fwrev);
704 if (!ret)
705 ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
706 if (ret)
707 return ret;
709 major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
710 minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
711 micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
713 if (major != FW_VERSION_MAJOR(hw)) { /* major mismatch - fail */
714 csio_err(hw, "card FW has major version %u, driver wants %u\n",
715 major, FW_VERSION_MAJOR(hw));
716 return -EINVAL;
719 if (minor == FW_VERSION_MINOR(hw) && micro == FW_VERSION_MICRO(hw))
720 return 0; /* perfect match */
722 /* Minor/micro version mismatch */
723 return -EINVAL;
727 * csio_hw_fw_dload - download firmware.
728 * @hw: HW module
729 * @fw_data: firmware image to write.
730 * @size: image size
732 * Write the supplied firmware image to the card's serial flash.
734 static int
735 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
737 uint32_t csum;
738 int32_t addr;
739 int ret;
740 uint32_t i;
741 uint8_t first_page[SF_PAGE_SIZE];
742 const __be32 *p = (const __be32 *)fw_data;
743 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
744 uint32_t sf_sec_size;
746 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
747 csio_err(hw, "Serial Flash data invalid\n");
748 return -EINVAL;
751 if (!size) {
752 csio_err(hw, "FW image has no data\n");
753 return -EINVAL;
756 if (size & 511) {
757 csio_err(hw, "FW image size not multiple of 512 bytes\n");
758 return -EINVAL;
761 if (ntohs(hdr->len512) * 512 != size) {
762 csio_err(hw, "FW image size differs from size in FW header\n");
763 return -EINVAL;
766 if (size > FW_MAX_SIZE) {
767 csio_err(hw, "FW image too large, max is %u bytes\n",
768 FW_MAX_SIZE);
769 return -EINVAL;
772 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
773 csum += ntohl(p[i]);
775 if (csum != 0xffffffff) {
776 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
777 return -EINVAL;
780 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
781 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
783 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
784 FW_START_SEC, FW_START_SEC + i - 1);
786 ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
787 FW_START_SEC + i - 1);
788 if (ret) {
789 csio_err(hw, "Flash Erase failed\n");
790 goto out;
794 * We write the correct version at the end so the driver can see a bad
795 * version if the FW write fails. Start by writing a copy of the
796 * first page with a bad version.
798 memcpy(first_page, fw_data, SF_PAGE_SIZE);
799 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
800 ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
801 if (ret)
802 goto out;
804 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
805 FW_IMG_START, FW_IMG_START + size);
807 addr = FW_IMG_START;
808 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
809 addr += SF_PAGE_SIZE;
810 fw_data += SF_PAGE_SIZE;
811 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
812 if (ret)
813 goto out;
816 ret = csio_hw_write_flash(hw,
817 FW_IMG_START +
818 offsetof(struct fw_hdr, fw_ver),
819 sizeof(hdr->fw_ver),
820 (const uint8_t *)&hdr->fw_ver);
822 out:
823 if (ret)
824 csio_err(hw, "firmware download failed, error %d\n", ret);
825 return ret;
828 static int
829 csio_hw_get_flash_params(struct csio_hw *hw)
831 int ret;
832 uint32_t info = 0;
834 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
835 if (!ret)
836 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
837 csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */
838 if (ret != 0)
839 return ret;
841 if ((info & 0xff) != 0x20) /* not a Numonix flash */
842 return -EINVAL;
843 info >>= 16; /* log2 of size */
844 if (info >= 0x14 && info < 0x18)
845 hw->params.sf_nsec = 1 << (info - 16);
846 else if (info == 0x18)
847 hw->params.sf_nsec = 64;
848 else
849 return -EINVAL;
850 hw->params.sf_size = 1 << info;
852 return 0;
855 /*****************************************************************************/
856 /* HW State machine assists */
857 /*****************************************************************************/
859 static int
860 csio_hw_dev_ready(struct csio_hw *hw)
862 uint32_t reg;
863 int cnt = 6;
865 while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
866 (--cnt != 0))
867 mdelay(100);
869 if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
870 (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
871 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
872 return -EIO;
875 hw->pfn = SOURCEPF_GET(reg);
877 return 0;
881 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
882 * @hw: HW module
883 * @state: Device state
885 * FW_HELLO_CMD has to be polled for completion.
887 static int
888 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
890 struct csio_mb *mbp;
891 int rv = 0;
892 enum csio_dev_master master;
893 enum fw_retval retval;
894 uint8_t mpfn;
895 char state_str[16];
896 int retries = FW_CMD_HELLO_RETRIES;
898 memset(state_str, 0, sizeof(state_str));
900 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
901 if (!mbp) {
902 rv = -ENOMEM;
903 CSIO_INC_STATS(hw, n_err_nomem);
904 goto out;
907 master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
909 retry:
910 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
911 hw->pfn, master, NULL);
913 rv = csio_mb_issue(hw, mbp);
914 if (rv) {
915 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
916 goto out_free_mb;
919 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
920 if (retval != FW_SUCCESS) {
921 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
922 rv = -EINVAL;
923 goto out_free_mb;
926 /* Firmware has designated us to be master */
927 if (hw->pfn == mpfn) {
928 hw->flags |= CSIO_HWF_MASTER;
929 } else if (*state == CSIO_DEV_STATE_UNINIT) {
931 * If we're not the Master PF then we need to wait around for
932 * the Master PF Driver to finish setting up the adapter.
934 * Note that we also do this wait if we're a non-Master-capable
935 * PF and there is no current Master PF; a Master PF may show up
936 * momentarily and we wouldn't want to fail pointlessly. (This
937 * can happen when an OS loads lots of different drivers rapidly
938 * at the same time). In this case, the Master PF returned by
939 * the firmware will be PCIE_FW_MASTER_MASK so the test below
940 * will work ...
943 int waiting = FW_CMD_HELLO_TIMEOUT;
946 * Wait for the firmware to either indicate an error or
947 * initialized state. If we see either of these we bail out
948 * and report the issue to the caller. If we exhaust the
949 * "hello timeout" and we haven't exhausted our retries, try
950 * again. Otherwise bail with a timeout error.
952 for (;;) {
953 uint32_t pcie_fw;
955 spin_unlock_irq(&hw->lock);
956 msleep(50);
957 spin_lock_irq(&hw->lock);
958 waiting -= 50;
961 * If neither Error nor Initialialized are indicated
962 * by the firmware keep waiting till we exaust our
963 * timeout ... and then retry if we haven't exhausted
964 * our retries ...
966 pcie_fw = csio_rd_reg32(hw, PCIE_FW);
967 if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
968 if (waiting <= 0) {
969 if (retries-- > 0)
970 goto retry;
972 rv = -ETIMEDOUT;
973 break;
975 continue;
979 * We either have an Error or Initialized condition
980 * report errors preferentially.
982 if (state) {
983 if (pcie_fw & PCIE_FW_ERR) {
984 *state = CSIO_DEV_STATE_ERR;
985 rv = -ETIMEDOUT;
986 } else if (pcie_fw & PCIE_FW_INIT)
987 *state = CSIO_DEV_STATE_INIT;
991 * If we arrived before a Master PF was selected and
992 * there's not a valid Master PF, grab its identity
993 * for our caller.
995 if (mpfn == PCIE_FW_MASTER_MASK &&
996 (pcie_fw & PCIE_FW_MASTER_VLD))
997 mpfn = PCIE_FW_MASTER_GET(pcie_fw);
998 break;
1000 hw->flags &= ~CSIO_HWF_MASTER;
1003 switch (*state) {
1004 case CSIO_DEV_STATE_UNINIT:
1005 strcpy(state_str, "Initializing");
1006 break;
1007 case CSIO_DEV_STATE_INIT:
1008 strcpy(state_str, "Initialized");
1009 break;
1010 case CSIO_DEV_STATE_ERR:
1011 strcpy(state_str, "Error");
1012 break;
1013 default:
1014 strcpy(state_str, "Unknown");
1015 break;
1018 if (hw->pfn == mpfn)
1019 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1020 hw->pfn, state_str);
1021 else
1022 csio_info(hw,
1023 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1024 hw->pfn, mpfn, state_str);
1026 out_free_mb:
1027 mempool_free(mbp, hw->mb_mempool);
1028 out:
1029 return rv;
1033 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1034 * @hw: HW module
1037 static int
1038 csio_do_bye(struct csio_hw *hw)
1040 struct csio_mb *mbp;
1041 enum fw_retval retval;
1043 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1044 if (!mbp) {
1045 CSIO_INC_STATS(hw, n_err_nomem);
1046 return -ENOMEM;
1049 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1051 if (csio_mb_issue(hw, mbp)) {
1052 csio_err(hw, "Issue of BYE command failed\n");
1053 mempool_free(mbp, hw->mb_mempool);
1054 return -EINVAL;
1057 retval = csio_mb_fw_retval(mbp);
1058 if (retval != FW_SUCCESS) {
1059 mempool_free(mbp, hw->mb_mempool);
1060 return -EINVAL;
1063 mempool_free(mbp, hw->mb_mempool);
1065 return 0;
1069 * csio_do_reset- Perform the device reset.
1070 * @hw: HW module
1071 * @fw_rst: FW reset
1073 * If fw_rst is set, issues FW reset mbox cmd otherwise
1074 * does PIO reset.
1075 * Performs reset of the function.
1077 static int
1078 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1080 struct csio_mb *mbp;
1081 enum fw_retval retval;
1083 if (!fw_rst) {
1084 /* PIO reset */
1085 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1086 mdelay(2000);
1087 return 0;
1090 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1091 if (!mbp) {
1092 CSIO_INC_STATS(hw, n_err_nomem);
1093 return -ENOMEM;
1096 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1097 PIORSTMODE | PIORST, 0, NULL);
1099 if (csio_mb_issue(hw, mbp)) {
1100 csio_err(hw, "Issue of RESET command failed.n");
1101 mempool_free(mbp, hw->mb_mempool);
1102 return -EINVAL;
1105 retval = csio_mb_fw_retval(mbp);
1106 if (retval != FW_SUCCESS) {
1107 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1108 mempool_free(mbp, hw->mb_mempool);
1109 return -EINVAL;
1112 mempool_free(mbp, hw->mb_mempool);
1114 return 0;
1117 static int
1118 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1120 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1121 uint16_t caps;
1123 caps = ntohs(rsp->fcoecaps);
1125 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1126 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1127 return -EINVAL;
1130 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1131 csio_err(hw, "No FCoE Control Offload capability\n");
1132 return -EINVAL;
1135 return 0;
1139 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1140 * @hw: the HW module
1141 * @mbox: mailbox to use for the FW RESET command (if desired)
1142 * @force: force uP into RESET even if FW RESET command fails
1144 * Issues a RESET command to firmware (if desired) with a HALT indication
1145 * and then puts the microprocessor into RESET state. The RESET command
1146 * will only be issued if a legitimate mailbox is provided (mbox <=
1147 * PCIE_FW_MASTER_MASK).
1149 * This is generally used in order for the host to safely manipulate the
1150 * adapter without fear of conflicting with whatever the firmware might
1151 * be doing. The only way out of this state is to RESTART the firmware
1152 * ...
1154 static int
1155 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1157 enum fw_retval retval = 0;
1160 * If a legitimate mailbox is provided, issue a RESET command
1161 * with a HALT indication.
1163 if (mbox <= PCIE_FW_MASTER_MASK) {
1164 struct csio_mb *mbp;
1166 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1167 if (!mbp) {
1168 CSIO_INC_STATS(hw, n_err_nomem);
1169 return -ENOMEM;
1172 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1173 PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1174 NULL);
1176 if (csio_mb_issue(hw, mbp)) {
1177 csio_err(hw, "Issue of RESET command failed!\n");
1178 mempool_free(mbp, hw->mb_mempool);
1179 return -EINVAL;
1182 retval = csio_mb_fw_retval(mbp);
1183 mempool_free(mbp, hw->mb_mempool);
1187 * Normally we won't complete the operation if the firmware RESET
1188 * command fails but if our caller insists we'll go ahead and put the
1189 * uP into RESET. This can be useful if the firmware is hung or even
1190 * missing ... We'll have to take the risk of putting the uP into
1191 * RESET without the cooperation of firmware in that case.
1193 * We also force the firmware's HALT flag to be on in case we bypassed
1194 * the firmware RESET command above or we're dealing with old firmware
1195 * which doesn't have the HALT capability. This will serve as a flag
1196 * for the incoming firmware to know that it's coming out of a HALT
1197 * rather than a RESET ... if it's new enough to understand that ...
1199 if (retval == 0 || force) {
1200 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1201 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1205 * And we always return the result of the firmware RESET command
1206 * even when we force the uP into RESET ...
1208 return retval ? -EINVAL : 0;
1212 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1213 * @hw: the HW module
1214 * @reset: if we want to do a RESET to restart things
1216 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1217 * return the previous PF Master remains as the new PF Master and there
1218 * is no need to issue a new HELLO command, etc.
1220 * We do this in two ways:
1222 * 1. If we're dealing with newer firmware we'll simply want to take
1223 * the chip's microprocessor out of RESET. This will cause the
1224 * firmware to start up from its start vector. And then we'll loop
1225 * until the firmware indicates it's started again (PCIE_FW.HALT
1226 * reset to 0) or we timeout.
1228 * 2. If we're dealing with older firmware then we'll need to RESET
1229 * the chip since older firmware won't recognize the PCIE_FW.HALT
1230 * flag and automatically RESET itself on startup.
1232 static int
1233 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1235 if (reset) {
1237 * Since we're directing the RESET instead of the firmware
1238 * doing it automatically, we need to clear the PCIE_FW.HALT
1239 * bit.
1241 csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1244 * If we've been given a valid mailbox, first try to get the
1245 * firmware to do the RESET. If that works, great and we can
1246 * return success. Otherwise, if we haven't been given a
1247 * valid mailbox or the RESET command failed, fall back to
1248 * hitting the chip with a hammer.
1250 if (mbox <= PCIE_FW_MASTER_MASK) {
1251 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1252 msleep(100);
1253 if (csio_do_reset(hw, true) == 0)
1254 return 0;
1257 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1258 msleep(2000);
1259 } else {
1260 int ms;
1262 csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1263 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1264 if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1265 return 0;
1266 msleep(100);
1267 ms += 100;
1269 return -ETIMEDOUT;
1271 return 0;
1275 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1276 * @hw: the HW module
1277 * @mbox: mailbox to use for the FW RESET command (if desired)
1278 * @fw_data: the firmware image to write
1279 * @size: image size
1280 * @force: force upgrade even if firmware doesn't cooperate
1282 * Perform all of the steps necessary for upgrading an adapter's
1283 * firmware image. Normally this requires the cooperation of the
1284 * existing firmware in order to halt all existing activities
1285 * but if an invalid mailbox token is passed in we skip that step
1286 * (though we'll still put the adapter microprocessor into RESET in
1287 * that case).
1289 * On successful return the new firmware will have been loaded and
1290 * the adapter will have been fully RESET losing all previous setup
1291 * state. On unsuccessful return the adapter may be completely hosed ...
1292 * positive errno indicates that the adapter is ~probably~ intact, a
1293 * negative errno indicates that things are looking bad ...
1295 static int
1296 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1297 const u8 *fw_data, uint32_t size, int32_t force)
1299 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1300 int reset, ret;
1302 ret = csio_hw_fw_halt(hw, mbox, force);
1303 if (ret != 0 && !force)
1304 return ret;
1306 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1307 if (ret != 0)
1308 return ret;
1311 * Older versions of the firmware don't understand the new
1312 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1313 * restart. So for newly loaded older firmware we'll have to do the
1314 * RESET for it so it starts up on a clean slate. We can tell if
1315 * the newly loaded firmware will handle this right by checking
1316 * its header flags to see if it advertises the capability.
1318 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1319 return csio_hw_fw_restart(hw, mbox, reset);
1324 * csio_hw_fw_config_file - setup an adapter via a Configuration File
1325 * @hw: the HW module
1326 * @mbox: mailbox to use for the FW command
1327 * @mtype: the memory type where the Configuration File is located
1328 * @maddr: the memory address where the Configuration File is located
1329 * @finiver: return value for CF [fini] version
1330 * @finicsum: return value for CF [fini] checksum
1331 * @cfcsum: return value for CF computed checksum
1333 * Issue a command to get the firmware to process the Configuration
1334 * File located at the specified mtype/maddress. If the Configuration
1335 * File is processed successfully and return value pointers are
1336 * provided, the Configuration File "[fini] section version and
1337 * checksum values will be returned along with the computed checksum.
1338 * It's up to the caller to decide how it wants to respond to the
1339 * checksums not matching but it recommended that a prominant warning
1340 * be emitted in order to help people rapidly identify changed or
1341 * corrupted Configuration Files.
1343 * Also note that it's possible to modify things like "niccaps",
1344 * "toecaps",etc. between processing the Configuration File and telling
1345 * the firmware to use the new configuration. Callers which want to
1346 * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1347 * Configuration Files if they want to do this.
1349 static int
1350 csio_hw_fw_config_file(struct csio_hw *hw,
1351 unsigned int mtype, unsigned int maddr,
1352 uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1354 struct csio_mb *mbp;
1355 struct fw_caps_config_cmd *caps_cmd;
1356 int rv = -EINVAL;
1357 enum fw_retval ret;
1359 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1360 if (!mbp) {
1361 CSIO_INC_STATS(hw, n_err_nomem);
1362 return -ENOMEM;
1365 * Tell the firmware to process the indicated Configuration File.
1366 * If there are no errors and the caller has provided return value
1367 * pointers for the [fini] section version, checksum and computed
1368 * checksum, pass those back to the caller.
1370 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1371 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1372 caps_cmd->op_to_write =
1373 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1374 FW_CMD_REQUEST |
1375 FW_CMD_READ);
1376 caps_cmd->cfvalid_to_len16 =
1377 htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1378 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1379 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1380 FW_LEN16(*caps_cmd));
1382 if (csio_mb_issue(hw, mbp)) {
1383 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1384 goto out;
1387 ret = csio_mb_fw_retval(mbp);
1388 if (ret != FW_SUCCESS) {
1389 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1390 goto out;
1393 if (finiver)
1394 *finiver = ntohl(caps_cmd->finiver);
1395 if (finicsum)
1396 *finicsum = ntohl(caps_cmd->finicsum);
1397 if (cfcsum)
1398 *cfcsum = ntohl(caps_cmd->cfcsum);
1400 /* Validate device capabilities */
1401 if (csio_hw_validate_caps(hw, mbp)) {
1402 rv = -ENOENT;
1403 goto out;
1407 * And now tell the firmware to use the configuration we just loaded.
1409 caps_cmd->op_to_write =
1410 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1411 FW_CMD_REQUEST |
1412 FW_CMD_WRITE);
1413 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1415 if (csio_mb_issue(hw, mbp)) {
1416 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1417 goto out;
1420 ret = csio_mb_fw_retval(mbp);
1421 if (ret != FW_SUCCESS) {
1422 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1423 goto out;
1426 rv = 0;
1427 out:
1428 mempool_free(mbp, hw->mb_mempool);
1429 return rv;
1433 * csio_get_device_params - Get device parameters.
1434 * @hw: HW module
1437 static int
1438 csio_get_device_params(struct csio_hw *hw)
1440 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1441 struct csio_mb *mbp;
1442 enum fw_retval retval;
1443 u32 param[6];
1444 int i, j = 0;
1446 /* Initialize portids to -1 */
1447 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1448 hw->pport[i].portid = -1;
1450 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1451 if (!mbp) {
1452 CSIO_INC_STATS(hw, n_err_nomem);
1453 return -ENOMEM;
1456 /* Get port vec information. */
1457 param[0] = FW_PARAM_DEV(PORTVEC);
1459 /* Get Core clock. */
1460 param[1] = FW_PARAM_DEV(CCLK);
1462 /* Get EQ id start and end. */
1463 param[2] = FW_PARAM_PFVF(EQ_START);
1464 param[3] = FW_PARAM_PFVF(EQ_END);
1466 /* Get IQ id start and end. */
1467 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1468 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1470 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1471 ARRAY_SIZE(param), param, NULL, false, NULL);
1472 if (csio_mb_issue(hw, mbp)) {
1473 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1474 mempool_free(mbp, hw->mb_mempool);
1475 return -EINVAL;
1478 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1479 ARRAY_SIZE(param), param);
1480 if (retval != FW_SUCCESS) {
1481 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1482 retval);
1483 mempool_free(mbp, hw->mb_mempool);
1484 return -EINVAL;
1487 /* cache the information. */
1488 hw->port_vec = param[0];
1489 hw->vpd.cclk = param[1];
1490 wrm->fw_eq_start = param[2];
1491 wrm->fw_iq_start = param[4];
1493 /* Using FW configured max iqs & eqs */
1494 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1495 !csio_is_hw_master(hw)) {
1496 hw->cfg_niq = param[5] - param[4] + 1;
1497 hw->cfg_neq = param[3] - param[2] + 1;
1498 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1499 hw->cfg_niq, hw->cfg_neq);
1502 hw->port_vec &= csio_port_mask;
1504 hw->num_pports = hweight32(hw->port_vec);
1506 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1507 hw->port_vec, hw->num_pports);
1509 for (i = 0; i < hw->num_pports; i++) {
1510 while ((hw->port_vec & (1 << j)) == 0)
1511 j++;
1512 hw->pport[i].portid = j++;
1513 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1515 mempool_free(mbp, hw->mb_mempool);
1517 return 0;
1522 * csio_config_device_caps - Get and set device capabilities.
1523 * @hw: HW module
1526 static int
1527 csio_config_device_caps(struct csio_hw *hw)
1529 struct csio_mb *mbp;
1530 enum fw_retval retval;
1531 int rv = -EINVAL;
1533 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1534 if (!mbp) {
1535 CSIO_INC_STATS(hw, n_err_nomem);
1536 return -ENOMEM;
1539 /* Get device capabilities */
1540 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1542 if (csio_mb_issue(hw, mbp)) {
1543 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1544 goto out;
1547 retval = csio_mb_fw_retval(mbp);
1548 if (retval != FW_SUCCESS) {
1549 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1550 goto out;
1553 /* Validate device capabilities */
1554 if (csio_hw_validate_caps(hw, mbp))
1555 goto out;
1557 /* Don't config device capabilities if already configured */
1558 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1559 rv = 0;
1560 goto out;
1563 /* Write back desired device capabilities */
1564 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1565 false, true, NULL);
1567 if (csio_mb_issue(hw, mbp)) {
1568 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1569 goto out;
1572 retval = csio_mb_fw_retval(mbp);
1573 if (retval != FW_SUCCESS) {
1574 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1575 goto out;
1578 rv = 0;
1579 out:
1580 mempool_free(mbp, hw->mb_mempool);
1581 return rv;
1585 * csio_enable_ports - Bring up all available ports.
1586 * @hw: HW module.
1589 static int
1590 csio_enable_ports(struct csio_hw *hw)
1592 struct csio_mb *mbp;
1593 enum fw_retval retval;
1594 uint8_t portid;
1595 int i;
1597 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1598 if (!mbp) {
1599 CSIO_INC_STATS(hw, n_err_nomem);
1600 return -ENOMEM;
1603 for (i = 0; i < hw->num_pports; i++) {
1604 portid = hw->pport[i].portid;
1606 /* Read PORT information */
1607 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1608 false, 0, 0, NULL);
1610 if (csio_mb_issue(hw, mbp)) {
1611 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1612 portid);
1613 mempool_free(mbp, hw->mb_mempool);
1614 return -EINVAL;
1617 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1618 &hw->pport[i].pcap);
1619 if (retval != FW_SUCCESS) {
1620 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1621 portid, retval);
1622 mempool_free(mbp, hw->mb_mempool);
1623 return -EINVAL;
1626 /* Write back PORT information */
1627 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1628 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1630 if (csio_mb_issue(hw, mbp)) {
1631 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1632 portid);
1633 mempool_free(mbp, hw->mb_mempool);
1634 return -EINVAL;
1637 retval = csio_mb_fw_retval(mbp);
1638 if (retval != FW_SUCCESS) {
1639 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1640 portid, retval);
1641 mempool_free(mbp, hw->mb_mempool);
1642 return -EINVAL;
1645 } /* For all ports */
1647 mempool_free(mbp, hw->mb_mempool);
1649 return 0;
1653 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1654 * @hw: HW module
1655 * Issued with lock held.
1657 static int
1658 csio_get_fcoe_resinfo(struct csio_hw *hw)
1660 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1661 struct fw_fcoe_res_info_cmd *rsp;
1662 struct csio_mb *mbp;
1663 enum fw_retval retval;
1665 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1666 if (!mbp) {
1667 CSIO_INC_STATS(hw, n_err_nomem);
1668 return -ENOMEM;
1671 /* Get FCoE FW resource information */
1672 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1674 if (csio_mb_issue(hw, mbp)) {
1675 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1676 mempool_free(mbp, hw->mb_mempool);
1677 return -EINVAL;
1680 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1681 retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
1682 if (retval != FW_SUCCESS) {
1683 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1684 retval);
1685 mempool_free(mbp, hw->mb_mempool);
1686 return -EINVAL;
1689 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1690 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1691 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1692 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1693 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1694 res_info->max_ssns = ntohl(rsp->max_ssns);
1695 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1696 res_info->used_ssns = ntohl(rsp->used_ssns);
1697 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1698 res_info->max_vnps = ntohl(rsp->max_vnps);
1699 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1700 res_info->used_vnps = ntohl(rsp->used_vnps);
1702 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1703 res_info->max_xchgs);
1704 mempool_free(mbp, hw->mb_mempool);
1706 return 0;
1709 static int
1710 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1712 struct csio_mb *mbp;
1713 enum fw_retval retval;
1714 u32 _param[1];
1716 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1717 if (!mbp) {
1718 CSIO_INC_STATS(hw, n_err_nomem);
1719 return -ENOMEM;
1723 * Find out whether we're dealing with a version of
1724 * the firmware which has configuration file support.
1726 _param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1727 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
1729 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1730 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1731 if (csio_mb_issue(hw, mbp)) {
1732 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1733 mempool_free(mbp, hw->mb_mempool);
1734 return -EINVAL;
1737 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1738 ARRAY_SIZE(_param), _param);
1739 if (retval != FW_SUCCESS) {
1740 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1741 retval);
1742 mempool_free(mbp, hw->mb_mempool);
1743 return -EINVAL;
1746 mempool_free(mbp, hw->mb_mempool);
1747 *param = _param[0];
1749 return 0;
1752 static int
1753 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1755 int ret = 0;
1756 const struct firmware *cf;
1757 struct pci_dev *pci_dev = hw->pdev;
1758 struct device *dev = &pci_dev->dev;
1759 unsigned int mtype = 0, maddr = 0;
1760 uint32_t *cfg_data;
1761 int value_to_add = 0;
1763 if (request_firmware(&cf, CSIO_CF_FNAME(hw), dev) < 0) {
1764 csio_err(hw, "could not find config file %s, err: %d\n",
1765 CSIO_CF_FNAME(hw), ret);
1766 return -ENOENT;
1769 if (cf->size%4 != 0)
1770 value_to_add = 4 - (cf->size % 4);
1772 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1773 if (cfg_data == NULL) {
1774 ret = -ENOMEM;
1775 goto leave;
1778 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1779 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1780 ret = -EINVAL;
1781 goto leave;
1784 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1785 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1787 ret = csio_memory_write(hw, mtype, maddr,
1788 cf->size + value_to_add, cfg_data);
1790 if ((ret == 0) && (value_to_add != 0)) {
1791 union {
1792 u32 word;
1793 char buf[4];
1794 } last;
1795 size_t size = cf->size & ~0x3;
1796 int i;
1798 last.word = cfg_data[size >> 2];
1799 for (i = value_to_add; i < 4; i++)
1800 last.buf[i] = 0;
1801 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1803 if (ret == 0) {
1804 csio_info(hw, "config file upgraded to %s\n",
1805 CSIO_CF_FNAME(hw));
1806 snprintf(path, 64, "%s%s", "/lib/firmware/", CSIO_CF_FNAME(hw));
1809 leave:
1810 kfree(cfg_data);
1811 release_firmware(cf);
1812 return ret;
1816 * HW initialization: contact FW, obtain config, perform basic init.
1818 * If the firmware we're dealing with has Configuration File support, then
1819 * we use that to perform all configuration -- either using the configuration
1820 * file stored in flash on the adapter or using a filesystem-local file
1821 * if available.
1823 * If we don't have configuration file support in the firmware, then we'll
1824 * have to set things up the old fashioned way with hard-coded register
1825 * writes and firmware commands ...
1829 * Attempt to initialize the HW via a Firmware Configuration File.
1831 static int
1832 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1834 unsigned int mtype, maddr;
1835 int rv;
1836 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1837 int using_flash;
1838 char path[64];
1841 * Reset device if necessary
1843 if (reset) {
1844 rv = csio_do_reset(hw, true);
1845 if (rv != 0)
1846 goto bye;
1850 * If we have a configuration file in host ,
1851 * then use that. Otherwise, use the configuration file stored
1852 * in the HW flash ...
1854 spin_unlock_irq(&hw->lock);
1855 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1856 spin_lock_irq(&hw->lock);
1857 if (rv != 0) {
1858 if (rv == -ENOENT) {
1860 * config file was not found. Use default
1861 * config file from flash.
1863 mtype = FW_MEMTYPE_CF_FLASH;
1864 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1865 using_flash = 1;
1866 } else {
1868 * we revert back to the hardwired config if
1869 * flashing failed.
1871 goto bye;
1873 } else {
1874 mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
1875 maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
1876 using_flash = 0;
1879 hw->cfg_store = (uint8_t)mtype;
1882 * Issue a Capability Configuration command to the firmware to get it
1883 * to parse the Configuration File.
1885 rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
1886 &finicsum, &cfcsum);
1887 if (rv != 0)
1888 goto bye;
1890 hw->cfg_finiver = finiver;
1891 hw->cfg_finicsum = finicsum;
1892 hw->cfg_cfcsum = cfcsum;
1893 hw->cfg_csum_status = true;
1895 if (finicsum != cfcsum) {
1896 csio_warn(hw,
1897 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1898 finicsum, cfcsum);
1900 hw->cfg_csum_status = false;
1904 * Note that we're operating with parameters
1905 * not supplied by the driver, rather than from hard-wired
1906 * initialization constants buried in the driver.
1908 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1910 /* device parameters */
1911 rv = csio_get_device_params(hw);
1912 if (rv != 0)
1913 goto bye;
1915 /* Configure SGE */
1916 csio_wr_sge_init(hw);
1919 * And finally tell the firmware to initialize itself using the
1920 * parameters from the Configuration File.
1922 /* Post event to notify completion of configuration */
1923 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1925 csio_info(hw,
1926 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
1927 (using_flash ? "in device FLASH" : path), finiver, cfcsum);
1929 return 0;
1932 * Something bad happened. Return the error ...
1934 bye:
1935 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1936 csio_dbg(hw, "Configuration file error %d\n", rv);
1937 return rv;
1941 * Attempt to initialize the adapter via hard-coded, driver supplied
1942 * parameters ...
1944 static int
1945 csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
1947 int rv;
1949 * Reset device if necessary
1951 if (reset) {
1952 rv = csio_do_reset(hw, true);
1953 if (rv != 0)
1954 goto out;
1957 /* Get and set device capabilities */
1958 rv = csio_config_device_caps(hw);
1959 if (rv != 0)
1960 goto out;
1962 /* device parameters */
1963 rv = csio_get_device_params(hw);
1964 if (rv != 0)
1965 goto out;
1967 /* Configure SGE */
1968 csio_wr_sge_init(hw);
1970 /* Post event to notify completion of configuration */
1971 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1973 out:
1974 return rv;
1978 * Returns -EINVAL if attempts to flash the firmware failed
1979 * else returns 0,
1980 * if flashing was not attempted because the card had the
1981 * latest firmware ECANCELED is returned
1983 static int
1984 csio_hw_flash_fw(struct csio_hw *hw)
1986 int ret = -ECANCELED;
1987 const struct firmware *fw;
1988 const struct fw_hdr *hdr;
1989 u32 fw_ver;
1990 struct pci_dev *pci_dev = hw->pdev;
1991 struct device *dev = &pci_dev->dev ;
1993 if (request_firmware(&fw, CSIO_FW_FNAME(hw), dev) < 0) {
1994 csio_err(hw, "could not find firmware image %s, err: %d\n",
1995 CSIO_FW_FNAME(hw), ret);
1996 return -EINVAL;
1999 hdr = (const struct fw_hdr *)fw->data;
2000 fw_ver = ntohl(hdr->fw_ver);
2001 if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR(hw))
2002 return -EINVAL; /* wrong major version, won't do */
2005 * If the flash FW is unusable or we found something newer, load it.
2007 if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR(hw) ||
2008 fw_ver > hw->fwrev) {
2009 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2010 /*force=*/false);
2011 if (!ret)
2012 csio_info(hw,
2013 "firmware upgraded to version %pI4 from %s\n",
2014 &hdr->fw_ver, CSIO_FW_FNAME(hw));
2015 else
2016 csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2017 } else
2018 ret = -EINVAL;
2020 release_firmware(fw);
2022 return ret;
2027 * csio_hw_configure - Configure HW
2028 * @hw - HW module
2031 static void
2032 csio_hw_configure(struct csio_hw *hw)
2034 int reset = 1;
2035 int rv;
2036 u32 param[1];
2038 rv = csio_hw_dev_ready(hw);
2039 if (rv != 0) {
2040 CSIO_INC_STATS(hw, n_err_fatal);
2041 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2042 goto out;
2045 /* HW version */
2046 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2048 /* Needed for FW download */
2049 rv = csio_hw_get_flash_params(hw);
2050 if (rv != 0) {
2051 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2052 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2053 goto out;
2056 /* Set PCIe completion timeout to 4 seconds */
2057 if (pci_is_pcie(hw->pdev))
2058 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2059 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2061 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2063 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2064 if (rv != 0)
2065 goto out;
2067 csio_hw_print_fw_version(hw, "Firmware revision");
2069 rv = csio_do_hello(hw, &hw->fw_state);
2070 if (rv != 0) {
2071 CSIO_INC_STATS(hw, n_err_fatal);
2072 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2073 goto out;
2076 /* Read vpd */
2077 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2078 if (rv != 0)
2079 goto out;
2081 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2082 rv = csio_hw_check_fw_version(hw);
2083 if (rv == -EINVAL) {
2085 /* Do firmware update */
2086 spin_unlock_irq(&hw->lock);
2087 rv = csio_hw_flash_fw(hw);
2088 spin_lock_irq(&hw->lock);
2090 if (rv == 0) {
2091 reset = 0;
2093 * Note that the chip was reset as part of the
2094 * firmware upgrade so we don't reset it again
2095 * below and grab the new firmware version.
2097 rv = csio_hw_check_fw_version(hw);
2101 * If the firmware doesn't support Configuration
2102 * Files, use the old Driver-based, hard-wired
2103 * initialization. Otherwise, try using the
2104 * Configuration File support and fall back to the
2105 * Driver-based initialization if there's no
2106 * Configuration File found.
2108 if (csio_hw_check_fwconfig(hw, param) == 0) {
2109 rv = csio_hw_use_fwconfig(hw, reset, param);
2110 if (rv == -ENOENT)
2111 goto out;
2112 if (rv != 0) {
2113 csio_info(hw,
2114 "No Configuration File present "
2115 "on adapter. Using hard-wired "
2116 "configuration parameters.\n");
2117 rv = csio_hw_no_fwconfig(hw, reset);
2119 } else {
2120 rv = csio_hw_no_fwconfig(hw, reset);
2123 if (rv != 0)
2124 goto out;
2126 } else {
2127 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2129 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2131 /* device parameters */
2132 rv = csio_get_device_params(hw);
2133 if (rv != 0)
2134 goto out;
2136 /* Get device capabilities */
2137 rv = csio_config_device_caps(hw);
2138 if (rv != 0)
2139 goto out;
2141 /* Configure SGE */
2142 csio_wr_sge_init(hw);
2144 /* Post event to notify completion of configuration */
2145 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2146 goto out;
2148 } /* if not master */
2150 out:
2151 return;
2155 * csio_hw_initialize - Initialize HW
2156 * @hw - HW module
2159 static void
2160 csio_hw_initialize(struct csio_hw *hw)
2162 struct csio_mb *mbp;
2163 enum fw_retval retval;
2164 int rv;
2165 int i;
2167 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2168 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2169 if (!mbp)
2170 goto out;
2172 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2174 if (csio_mb_issue(hw, mbp)) {
2175 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2176 goto free_and_out;
2179 retval = csio_mb_fw_retval(mbp);
2180 if (retval != FW_SUCCESS) {
2181 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2182 retval);
2183 goto free_and_out;
2186 mempool_free(mbp, hw->mb_mempool);
2189 rv = csio_get_fcoe_resinfo(hw);
2190 if (rv != 0) {
2191 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2192 goto out;
2195 spin_unlock_irq(&hw->lock);
2196 rv = csio_config_queues(hw);
2197 spin_lock_irq(&hw->lock);
2199 if (rv != 0) {
2200 csio_err(hw, "Config of queues failed!: %d\n", rv);
2201 goto out;
2204 for (i = 0; i < hw->num_pports; i++)
2205 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2207 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2208 rv = csio_enable_ports(hw);
2209 if (rv != 0) {
2210 csio_err(hw, "Failed to enable ports: %d\n", rv);
2211 goto out;
2215 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2216 return;
2218 free_and_out:
2219 mempool_free(mbp, hw->mb_mempool);
2220 out:
2221 return;
2224 #define PF_INTR_MASK (PFSW | PFCIM)
2227 * csio_hw_intr_enable - Enable HW interrupts
2228 * @hw: Pointer to HW module.
2230 * Enable interrupts in HW registers.
2232 static void
2233 csio_hw_intr_enable(struct csio_hw *hw)
2235 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2236 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2237 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2240 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2241 * by FW, so do nothing for INTX.
2243 if (hw->intr_mode == CSIO_IM_MSIX)
2244 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2245 AIVEC(AIVEC_MASK), vec);
2246 else if (hw->intr_mode == CSIO_IM_MSI)
2247 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2248 AIVEC(AIVEC_MASK), 0);
2250 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2252 /* Turn on MB interrupts - this will internally flush PIO as well */
2253 csio_mb_intr_enable(hw);
2255 /* These are common registers - only a master can modify them */
2256 if (csio_is_hw_master(hw)) {
2258 * Disable the Serial FLASH interrupt, if enabled!
2260 pl &= (~SF);
2261 csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2263 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2264 EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2265 ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2266 ERR_DATA_CPL_ON_HIGH_QID1 |
2267 ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2268 ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2269 ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2270 ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2271 SGE_INT_ENABLE3);
2272 csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2275 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2280 * csio_hw_intr_disable - Disable HW interrupts
2281 * @hw: Pointer to HW module.
2283 * Turn off Mailbox and PCI_PF_CFG interrupts.
2285 void
2286 csio_hw_intr_disable(struct csio_hw *hw)
2288 uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2290 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2291 return;
2293 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2295 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2296 if (csio_is_hw_master(hw))
2297 csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2299 /* Turn off MB interrupts */
2300 csio_mb_intr_disable(hw);
2304 void
2305 csio_hw_fatal_err(struct csio_hw *hw)
2307 csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2308 csio_hw_intr_disable(hw);
2310 /* Do not reset HW, we may need FW state for debugging */
2311 csio_fatal(hw, "HW Fatal error encountered!\n");
2314 /*****************************************************************************/
2315 /* START: HW SM */
2316 /*****************************************************************************/
2318 * csio_hws_uninit - Uninit state
2319 * @hw - HW module
2320 * @evt - Event
2323 static void
2324 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2326 hw->prev_evt = hw->cur_evt;
2327 hw->cur_evt = evt;
2328 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2330 switch (evt) {
2331 case CSIO_HWE_CFG:
2332 csio_set_state(&hw->sm, csio_hws_configuring);
2333 csio_hw_configure(hw);
2334 break;
2336 default:
2337 CSIO_INC_STATS(hw, n_evt_unexp);
2338 break;
2343 * csio_hws_configuring - Configuring state
2344 * @hw - HW module
2345 * @evt - Event
2348 static void
2349 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2351 hw->prev_evt = hw->cur_evt;
2352 hw->cur_evt = evt;
2353 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2355 switch (evt) {
2356 case CSIO_HWE_INIT:
2357 csio_set_state(&hw->sm, csio_hws_initializing);
2358 csio_hw_initialize(hw);
2359 break;
2361 case CSIO_HWE_INIT_DONE:
2362 csio_set_state(&hw->sm, csio_hws_ready);
2363 /* Fan out event to all lnode SMs */
2364 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2365 break;
2367 case CSIO_HWE_FATAL:
2368 csio_set_state(&hw->sm, csio_hws_uninit);
2369 break;
2371 case CSIO_HWE_PCI_REMOVE:
2372 csio_do_bye(hw);
2373 break;
2374 default:
2375 CSIO_INC_STATS(hw, n_evt_unexp);
2376 break;
2381 * csio_hws_initializing - Initialiazing state
2382 * @hw - HW module
2383 * @evt - Event
2386 static void
2387 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2389 hw->prev_evt = hw->cur_evt;
2390 hw->cur_evt = evt;
2391 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2393 switch (evt) {
2394 case CSIO_HWE_INIT_DONE:
2395 csio_set_state(&hw->sm, csio_hws_ready);
2397 /* Fan out event to all lnode SMs */
2398 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2400 /* Enable interrupts */
2401 csio_hw_intr_enable(hw);
2402 break;
2404 case CSIO_HWE_FATAL:
2405 csio_set_state(&hw->sm, csio_hws_uninit);
2406 break;
2408 case CSIO_HWE_PCI_REMOVE:
2409 csio_do_bye(hw);
2410 break;
2412 default:
2413 CSIO_INC_STATS(hw, n_evt_unexp);
2414 break;
2419 * csio_hws_ready - Ready state
2420 * @hw - HW module
2421 * @evt - Event
2424 static void
2425 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2427 /* Remember the event */
2428 hw->evtflag = evt;
2430 hw->prev_evt = hw->cur_evt;
2431 hw->cur_evt = evt;
2432 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2434 switch (evt) {
2435 case CSIO_HWE_HBA_RESET:
2436 case CSIO_HWE_FW_DLOAD:
2437 case CSIO_HWE_SUSPEND:
2438 case CSIO_HWE_PCI_REMOVE:
2439 case CSIO_HWE_PCIERR_DETECTED:
2440 csio_set_state(&hw->sm, csio_hws_quiescing);
2441 /* cleanup all outstanding cmds */
2442 if (evt == CSIO_HWE_HBA_RESET ||
2443 evt == CSIO_HWE_PCIERR_DETECTED)
2444 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2445 else
2446 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2448 csio_hw_intr_disable(hw);
2449 csio_hw_mbm_cleanup(hw);
2450 csio_evtq_stop(hw);
2451 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2452 csio_evtq_flush(hw);
2453 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2454 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2455 break;
2457 case CSIO_HWE_FATAL:
2458 csio_set_state(&hw->sm, csio_hws_uninit);
2459 break;
2461 default:
2462 CSIO_INC_STATS(hw, n_evt_unexp);
2463 break;
2468 * csio_hws_quiescing - Quiescing state
2469 * @hw - HW module
2470 * @evt - Event
2473 static void
2474 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2476 hw->prev_evt = hw->cur_evt;
2477 hw->cur_evt = evt;
2478 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2480 switch (evt) {
2481 case CSIO_HWE_QUIESCED:
2482 switch (hw->evtflag) {
2483 case CSIO_HWE_FW_DLOAD:
2484 csio_set_state(&hw->sm, csio_hws_resetting);
2485 /* Download firmware */
2486 /* Fall through */
2488 case CSIO_HWE_HBA_RESET:
2489 csio_set_state(&hw->sm, csio_hws_resetting);
2490 /* Start reset of the HBA */
2491 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2492 csio_wr_destroy_queues(hw, false);
2493 csio_do_reset(hw, false);
2494 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2495 break;
2497 case CSIO_HWE_PCI_REMOVE:
2498 csio_set_state(&hw->sm, csio_hws_removing);
2499 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2500 csio_wr_destroy_queues(hw, true);
2501 /* Now send the bye command */
2502 csio_do_bye(hw);
2503 break;
2505 case CSIO_HWE_SUSPEND:
2506 csio_set_state(&hw->sm, csio_hws_quiesced);
2507 break;
2509 case CSIO_HWE_PCIERR_DETECTED:
2510 csio_set_state(&hw->sm, csio_hws_pcierr);
2511 csio_wr_destroy_queues(hw, false);
2512 break;
2514 default:
2515 CSIO_INC_STATS(hw, n_evt_unexp);
2516 break;
2519 break;
2521 default:
2522 CSIO_INC_STATS(hw, n_evt_unexp);
2523 break;
2528 * csio_hws_quiesced - Quiesced state
2529 * @hw - HW module
2530 * @evt - Event
2533 static void
2534 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2536 hw->prev_evt = hw->cur_evt;
2537 hw->cur_evt = evt;
2538 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2540 switch (evt) {
2541 case CSIO_HWE_RESUME:
2542 csio_set_state(&hw->sm, csio_hws_configuring);
2543 csio_hw_configure(hw);
2544 break;
2546 default:
2547 CSIO_INC_STATS(hw, n_evt_unexp);
2548 break;
2553 * csio_hws_resetting - HW Resetting state
2554 * @hw - HW module
2555 * @evt - Event
2558 static void
2559 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2561 hw->prev_evt = hw->cur_evt;
2562 hw->cur_evt = evt;
2563 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2565 switch (evt) {
2566 case CSIO_HWE_HBA_RESET_DONE:
2567 csio_evtq_start(hw);
2568 csio_set_state(&hw->sm, csio_hws_configuring);
2569 csio_hw_configure(hw);
2570 break;
2572 default:
2573 CSIO_INC_STATS(hw, n_evt_unexp);
2574 break;
2579 * csio_hws_removing - PCI Hotplug removing state
2580 * @hw - HW module
2581 * @evt - Event
2584 static void
2585 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2587 hw->prev_evt = hw->cur_evt;
2588 hw->cur_evt = evt;
2589 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2591 switch (evt) {
2592 case CSIO_HWE_HBA_RESET:
2593 if (!csio_is_hw_master(hw))
2594 break;
2596 * The BYE should have alerady been issued, so we cant
2597 * use the mailbox interface. Hence we use the PL_RST
2598 * register directly.
2600 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2601 csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2602 mdelay(2000);
2603 break;
2605 /* Should never receive any new events */
2606 default:
2607 CSIO_INC_STATS(hw, n_evt_unexp);
2608 break;
2614 * csio_hws_pcierr - PCI Error state
2615 * @hw - HW module
2616 * @evt - Event
2619 static void
2620 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2622 hw->prev_evt = hw->cur_evt;
2623 hw->cur_evt = evt;
2624 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2626 switch (evt) {
2627 case CSIO_HWE_PCIERR_SLOT_RESET:
2628 csio_evtq_start(hw);
2629 csio_set_state(&hw->sm, csio_hws_configuring);
2630 csio_hw_configure(hw);
2631 break;
2633 default:
2634 CSIO_INC_STATS(hw, n_evt_unexp);
2635 break;
2639 /*****************************************************************************/
2640 /* END: HW SM */
2641 /*****************************************************************************/
2644 * csio_handle_intr_status - table driven interrupt handler
2645 * @hw: HW instance
2646 * @reg: the interrupt status register to process
2647 * @acts: table of interrupt actions
2649 * A table driven interrupt handler that applies a set of masks to an
2650 * interrupt status word and performs the corresponding actions if the
2651 * interrupts described by the mask have occured. The actions include
2652 * optionally emitting a warning or alert message. The table is terminated
2653 * by an entry specifying mask 0. Returns the number of fatal interrupt
2654 * conditions.
2657 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2658 const struct intr_info *acts)
2660 int fatal = 0;
2661 unsigned int mask = 0;
2662 unsigned int status = csio_rd_reg32(hw, reg);
2664 for ( ; acts->mask; ++acts) {
2665 if (!(status & acts->mask))
2666 continue;
2667 if (acts->fatal) {
2668 fatal++;
2669 csio_fatal(hw, "Fatal %s (0x%x)\n",
2670 acts->msg, status & acts->mask);
2671 } else if (acts->msg)
2672 csio_info(hw, "%s (0x%x)\n",
2673 acts->msg, status & acts->mask);
2674 mask |= acts->mask;
2676 status &= mask;
2677 if (status) /* clear processed interrupts */
2678 csio_wr_reg32(hw, status, reg);
2679 return fatal;
2683 * TP interrupt handler.
2685 static void csio_tp_intr_handler(struct csio_hw *hw)
2687 static struct intr_info tp_intr_info[] = {
2688 { 0x3fffffff, "TP parity error", -1, 1 },
2689 { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2690 { 0, NULL, 0, 0 }
2693 if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
2694 csio_hw_fatal_err(hw);
2698 * SGE interrupt handler.
2700 static void csio_sge_intr_handler(struct csio_hw *hw)
2702 uint64_t v;
2704 static struct intr_info sge_intr_info[] = {
2705 { ERR_CPL_EXCEED_IQE_SIZE,
2706 "SGE received CPL exceeding IQE size", -1, 1 },
2707 { ERR_INVALID_CIDX_INC,
2708 "SGE GTS CIDX increment too large", -1, 0 },
2709 { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2710 { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2711 { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
2712 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2713 { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2714 0 },
2715 { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2716 0 },
2717 { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2718 0 },
2719 { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2720 0 },
2721 { ERR_ING_CTXT_PRIO,
2722 "SGE too many priority ingress contexts", -1, 0 },
2723 { ERR_EGR_CTXT_PRIO,
2724 "SGE too many priority egress contexts", -1, 0 },
2725 { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2726 { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2727 { 0, NULL, 0, 0 }
2730 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
2731 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
2732 if (v) {
2733 csio_fatal(hw, "SGE parity error (%#llx)\n",
2734 (unsigned long long)v);
2735 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2736 SGE_INT_CAUSE1);
2737 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
2740 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
2742 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
2743 v != 0)
2744 csio_hw_fatal_err(hw);
2747 #define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
2748 OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
2749 #define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
2750 IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
2753 * CIM interrupt handler.
2755 static void csio_cim_intr_handler(struct csio_hw *hw)
2757 static struct intr_info cim_intr_info[] = {
2758 { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2759 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2760 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2761 { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2762 { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2763 { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2764 { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2765 { 0, NULL, 0, 0 }
2767 static struct intr_info cim_upintr_info[] = {
2768 { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2769 { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2770 { ILLWRINT, "CIM illegal write", -1, 1 },
2771 { ILLRDINT, "CIM illegal read", -1, 1 },
2772 { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2773 { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2774 { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2775 { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2776 { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2777 { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2778 { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2779 { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2780 { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2781 { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2782 { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2783 { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2784 { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2785 { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2786 { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2787 { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2788 { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2789 { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2790 { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2791 { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2792 { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2793 { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2794 { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2795 { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2796 { 0, NULL, 0, 0 }
2799 int fat;
2801 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
2802 cim_intr_info) +
2803 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
2804 cim_upintr_info);
2805 if (fat)
2806 csio_hw_fatal_err(hw);
2810 * ULP RX interrupt handler.
2812 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2814 static struct intr_info ulprx_intr_info[] = {
2815 { 0x1800000, "ULPRX context error", -1, 1 },
2816 { 0x7fffff, "ULPRX parity error", -1, 1 },
2817 { 0, NULL, 0, 0 }
2820 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
2821 csio_hw_fatal_err(hw);
2825 * ULP TX interrupt handler.
2827 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2829 static struct intr_info ulptx_intr_info[] = {
2830 { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2831 0 },
2832 { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2833 0 },
2834 { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2835 0 },
2836 { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2837 0 },
2838 { 0xfffffff, "ULPTX parity error", -1, 1 },
2839 { 0, NULL, 0, 0 }
2842 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
2843 csio_hw_fatal_err(hw);
2847 * PM TX interrupt handler.
2849 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2851 static struct intr_info pmtx_intr_info[] = {
2852 { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2853 { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2854 { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2855 { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2856 { 0xffffff0, "PMTX framing error", -1, 1 },
2857 { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2858 { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2859 1 },
2860 { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2861 { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2862 { 0, NULL, 0, 0 }
2865 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
2866 csio_hw_fatal_err(hw);
2870 * PM RX interrupt handler.
2872 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2874 static struct intr_info pmrx_intr_info[] = {
2875 { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2876 { 0x3ffff0, "PMRX framing error", -1, 1 },
2877 { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2878 { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2879 1 },
2880 { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2881 { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2882 { 0, NULL, 0, 0 }
2885 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
2886 csio_hw_fatal_err(hw);
2890 * CPL switch interrupt handler.
2892 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2894 static struct intr_info cplsw_intr_info[] = {
2895 { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2896 { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2897 { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2898 { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2899 { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2900 { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2901 { 0, NULL, 0, 0 }
2904 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
2905 csio_hw_fatal_err(hw);
2909 * LE interrupt handler.
2911 static void csio_le_intr_handler(struct csio_hw *hw)
2913 static struct intr_info le_intr_info[] = {
2914 { LIPMISS, "LE LIP miss", -1, 0 },
2915 { LIP0, "LE 0 LIP error", -1, 0 },
2916 { PARITYERR, "LE parity error", -1, 1 },
2917 { UNKNOWNCMD, "LE unknown command", -1, 1 },
2918 { REQQPARERR, "LE request queue parity error", -1, 1 },
2919 { 0, NULL, 0, 0 }
2922 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
2923 csio_hw_fatal_err(hw);
2927 * MPS interrupt handler.
2929 static void csio_mps_intr_handler(struct csio_hw *hw)
2931 static struct intr_info mps_rx_intr_info[] = {
2932 { 0xffffff, "MPS Rx parity error", -1, 1 },
2933 { 0, NULL, 0, 0 }
2935 static struct intr_info mps_tx_intr_info[] = {
2936 { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
2937 { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2938 { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
2939 { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
2940 { BUBBLE, "MPS Tx underflow", -1, 1 },
2941 { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2942 { FRMERR, "MPS Tx framing error", -1, 1 },
2943 { 0, NULL, 0, 0 }
2945 static struct intr_info mps_trc_intr_info[] = {
2946 { FILTMEM, "MPS TRC filter parity error", -1, 1 },
2947 { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
2948 { MISCPERR, "MPS TRC misc parity error", -1, 1 },
2949 { 0, NULL, 0, 0 }
2951 static struct intr_info mps_stat_sram_intr_info[] = {
2952 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2953 { 0, NULL, 0, 0 }
2955 static struct intr_info mps_stat_tx_intr_info[] = {
2956 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2957 { 0, NULL, 0, 0 }
2959 static struct intr_info mps_stat_rx_intr_info[] = {
2960 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2961 { 0, NULL, 0, 0 }
2963 static struct intr_info mps_cls_intr_info[] = {
2964 { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2965 { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2966 { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2967 { 0, NULL, 0, 0 }
2970 int fat;
2972 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
2973 mps_rx_intr_info) +
2974 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
2975 mps_tx_intr_info) +
2976 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
2977 mps_trc_intr_info) +
2978 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
2979 mps_stat_sram_intr_info) +
2980 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2981 mps_stat_tx_intr_info) +
2982 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2983 mps_stat_rx_intr_info) +
2984 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
2985 mps_cls_intr_info);
2987 csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
2988 csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */
2989 if (fat)
2990 csio_hw_fatal_err(hw);
2993 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
2996 * EDC/MC interrupt handler.
2998 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3000 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3002 unsigned int addr, cnt_addr, v;
3004 if (idx <= MEM_EDC1) {
3005 addr = EDC_REG(EDC_INT_CAUSE, idx);
3006 cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3007 } else {
3008 addr = MC_INT_CAUSE;
3009 cnt_addr = MC_ECC_STATUS;
3012 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3013 if (v & PERR_INT_CAUSE)
3014 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3015 if (v & ECC_CE_INT_CAUSE) {
3016 uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3018 csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3019 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3020 cnt, name[idx], cnt > 1 ? "s" : "");
3022 if (v & ECC_UE_INT_CAUSE)
3023 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3025 csio_wr_reg32(hw, v, addr);
3026 if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3027 csio_hw_fatal_err(hw);
3031 * MA interrupt handler.
3033 static void csio_ma_intr_handler(struct csio_hw *hw)
3035 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3037 if (status & MEM_PERR_INT_CAUSE)
3038 csio_fatal(hw, "MA parity error, parity status %#x\n",
3039 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3040 if (status & MEM_WRAP_INT_CAUSE) {
3041 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3042 csio_fatal(hw,
3043 "MA address wrap-around error by client %u to address %#x\n",
3044 MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3046 csio_wr_reg32(hw, status, MA_INT_CAUSE);
3047 csio_hw_fatal_err(hw);
3051 * SMB interrupt handler.
3053 static void csio_smb_intr_handler(struct csio_hw *hw)
3055 static struct intr_info smb_intr_info[] = {
3056 { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3057 { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3058 { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3059 { 0, NULL, 0, 0 }
3062 if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3063 csio_hw_fatal_err(hw);
3067 * NC-SI interrupt handler.
3069 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3071 static struct intr_info ncsi_intr_info[] = {
3072 { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3073 { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3074 { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3075 { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3076 { 0, NULL, 0, 0 }
3079 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3080 csio_hw_fatal_err(hw);
3084 * XGMAC interrupt handler.
3086 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3088 uint32_t v = csio_rd_reg32(hw, CSIO_MAC_INT_CAUSE_REG(hw, port));
3090 v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3091 if (!v)
3092 return;
3094 if (v & TXFIFO_PRTY_ERR)
3095 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3096 if (v & RXFIFO_PRTY_ERR)
3097 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3098 csio_wr_reg32(hw, v, CSIO_MAC_INT_CAUSE_REG(hw, port));
3099 csio_hw_fatal_err(hw);
3103 * PL interrupt handler.
3105 static void csio_pl_intr_handler(struct csio_hw *hw)
3107 static struct intr_info pl_intr_info[] = {
3108 { FATALPERR, "T4 fatal parity error", -1, 1 },
3109 { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3110 { 0, NULL, 0, 0 }
3113 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3114 csio_hw_fatal_err(hw);
3118 * csio_hw_slow_intr_handler - control path interrupt handler
3119 * @hw: HW module
3121 * Interrupt handler for non-data global interrupt events, e.g., errors.
3122 * The designation 'slow' is because it involves register reads, while
3123 * data interrupts typically don't involve any MMIOs.
3126 csio_hw_slow_intr_handler(struct csio_hw *hw)
3128 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3130 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3131 CSIO_INC_STATS(hw, n_plint_unexp);
3132 return 0;
3135 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3137 CSIO_INC_STATS(hw, n_plint_cnt);
3139 if (cause & CIM)
3140 csio_cim_intr_handler(hw);
3142 if (cause & MPS)
3143 csio_mps_intr_handler(hw);
3145 if (cause & NCSI)
3146 csio_ncsi_intr_handler(hw);
3148 if (cause & PL)
3149 csio_pl_intr_handler(hw);
3151 if (cause & SMB)
3152 csio_smb_intr_handler(hw);
3154 if (cause & XGMAC0)
3155 csio_xgmac_intr_handler(hw, 0);
3157 if (cause & XGMAC1)
3158 csio_xgmac_intr_handler(hw, 1);
3160 if (cause & XGMAC_KR0)
3161 csio_xgmac_intr_handler(hw, 2);
3163 if (cause & XGMAC_KR1)
3164 csio_xgmac_intr_handler(hw, 3);
3166 if (cause & PCIE)
3167 hw->chip_ops->chip_pcie_intr_handler(hw);
3169 if (cause & MC)
3170 csio_mem_intr_handler(hw, MEM_MC);
3172 if (cause & EDC0)
3173 csio_mem_intr_handler(hw, MEM_EDC0);
3175 if (cause & EDC1)
3176 csio_mem_intr_handler(hw, MEM_EDC1);
3178 if (cause & LE)
3179 csio_le_intr_handler(hw);
3181 if (cause & TP)
3182 csio_tp_intr_handler(hw);
3184 if (cause & MA)
3185 csio_ma_intr_handler(hw);
3187 if (cause & PM_TX)
3188 csio_pmtx_intr_handler(hw);
3190 if (cause & PM_RX)
3191 csio_pmrx_intr_handler(hw);
3193 if (cause & ULP_RX)
3194 csio_ulprx_intr_handler(hw);
3196 if (cause & CPL_SWITCH)
3197 csio_cplsw_intr_handler(hw);
3199 if (cause & SGE)
3200 csio_sge_intr_handler(hw);
3202 if (cause & ULP_TX)
3203 csio_ulptx_intr_handler(hw);
3205 /* Clear the interrupts just processed for which we are the master. */
3206 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3207 csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3209 return 1;
3212 /*****************************************************************************
3213 * HW <--> mailbox interfacing routines.
3214 ****************************************************************************/
3216 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3218 * @data: Private data pointer.
3220 * Called from worker thread context.
3222 static void
3223 csio_mberr_worker(void *data)
3225 struct csio_hw *hw = (struct csio_hw *)data;
3226 struct csio_mbm *mbm = &hw->mbm;
3227 LIST_HEAD(cbfn_q);
3228 struct csio_mb *mbp_next;
3229 int rv;
3231 del_timer_sync(&mbm->timer);
3233 spin_lock_irq(&hw->lock);
3234 if (list_empty(&mbm->cbfn_q)) {
3235 spin_unlock_irq(&hw->lock);
3236 return;
3239 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3240 mbm->stats.n_cbfnq = 0;
3242 /* Try to start waiting mailboxes */
3243 if (!list_empty(&mbm->req_q)) {
3244 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3245 list_del_init(&mbp_next->list);
3247 rv = csio_mb_issue(hw, mbp_next);
3248 if (rv != 0)
3249 list_add_tail(&mbp_next->list, &mbm->req_q);
3250 else
3251 CSIO_DEC_STATS(mbm, n_activeq);
3253 spin_unlock_irq(&hw->lock);
3255 /* Now callback completions */
3256 csio_mb_completions(hw, &cbfn_q);
3260 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3262 * @data: private data pointer
3265 static void
3266 csio_hw_mb_timer(uintptr_t data)
3268 struct csio_hw *hw = (struct csio_hw *)data;
3269 struct csio_mb *mbp = NULL;
3271 spin_lock_irq(&hw->lock);
3272 mbp = csio_mb_tmo_handler(hw);
3273 spin_unlock_irq(&hw->lock);
3275 /* Call back the function for the timed-out Mailbox */
3276 if (mbp)
3277 mbp->mb_cbfn(hw, mbp);
3282 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3283 * @hw: HW module
3285 * Called with lock held, should exit with lock held.
3286 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3287 * into a local queue. Drops lock and calls the completions. Holds
3288 * lock and returns.
3290 static void
3291 csio_hw_mbm_cleanup(struct csio_hw *hw)
3293 LIST_HEAD(cbfn_q);
3295 csio_mb_cancel_all(hw, &cbfn_q);
3297 spin_unlock_irq(&hw->lock);
3298 csio_mb_completions(hw, &cbfn_q);
3299 spin_lock_irq(&hw->lock);
3302 /*****************************************************************************
3303 * Event handling
3304 ****************************************************************************/
3306 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3307 uint16_t len)
3309 struct csio_evt_msg *evt_entry = NULL;
3311 if (type >= CSIO_EVT_MAX)
3312 return -EINVAL;
3314 if (len > CSIO_EVT_MSG_SIZE)
3315 return -EINVAL;
3317 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3318 return -EINVAL;
3320 if (list_empty(&hw->evt_free_q)) {
3321 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3322 type, len);
3323 return -ENOMEM;
3326 evt_entry = list_first_entry(&hw->evt_free_q,
3327 struct csio_evt_msg, list);
3328 list_del_init(&evt_entry->list);
3330 /* copy event msg and queue the event */
3331 evt_entry->type = type;
3332 memcpy((void *)evt_entry->data, evt_msg, len);
3333 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3335 CSIO_DEC_STATS(hw, n_evt_freeq);
3336 CSIO_INC_STATS(hw, n_evt_activeq);
3338 return 0;
3341 static int
3342 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3343 uint16_t len, bool msg_sg)
3345 struct csio_evt_msg *evt_entry = NULL;
3346 struct csio_fl_dma_buf *fl_sg;
3347 uint32_t off = 0;
3348 unsigned long flags;
3349 int n, ret = 0;
3351 if (type >= CSIO_EVT_MAX)
3352 return -EINVAL;
3354 if (len > CSIO_EVT_MSG_SIZE)
3355 return -EINVAL;
3357 spin_lock_irqsave(&hw->lock, flags);
3358 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3359 ret = -EINVAL;
3360 goto out;
3363 if (list_empty(&hw->evt_free_q)) {
3364 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3365 type, len);
3366 ret = -ENOMEM;
3367 goto out;
3370 evt_entry = list_first_entry(&hw->evt_free_q,
3371 struct csio_evt_msg, list);
3372 list_del_init(&evt_entry->list);
3374 /* copy event msg and queue the event */
3375 evt_entry->type = type;
3377 /* If Payload in SG list*/
3378 if (msg_sg) {
3379 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3380 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3381 memcpy((void *)((uintptr_t)evt_entry->data + off),
3382 fl_sg->flbufs[n].vaddr,
3383 fl_sg->flbufs[n].len);
3384 off += fl_sg->flbufs[n].len;
3386 } else
3387 memcpy((void *)evt_entry->data, evt_msg, len);
3389 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3390 CSIO_DEC_STATS(hw, n_evt_freeq);
3391 CSIO_INC_STATS(hw, n_evt_activeq);
3392 out:
3393 spin_unlock_irqrestore(&hw->lock, flags);
3394 return ret;
3397 static void
3398 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3400 if (evt_entry) {
3401 spin_lock_irq(&hw->lock);
3402 list_del_init(&evt_entry->list);
3403 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3404 CSIO_DEC_STATS(hw, n_evt_activeq);
3405 CSIO_INC_STATS(hw, n_evt_freeq);
3406 spin_unlock_irq(&hw->lock);
3410 void
3411 csio_evtq_flush(struct csio_hw *hw)
3413 uint32_t count;
3414 count = 30;
3415 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3416 spin_unlock_irq(&hw->lock);
3417 msleep(2000);
3418 spin_lock_irq(&hw->lock);
3421 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3424 static void
3425 csio_evtq_stop(struct csio_hw *hw)
3427 hw->flags |= CSIO_HWF_FWEVT_STOP;
3430 static void
3431 csio_evtq_start(struct csio_hw *hw)
3433 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3436 static void
3437 csio_evtq_cleanup(struct csio_hw *hw)
3439 struct list_head *evt_entry, *next_entry;
3441 /* Release outstanding events from activeq to freeq*/
3442 if (!list_empty(&hw->evt_active_q))
3443 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3445 hw->stats.n_evt_activeq = 0;
3446 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3448 /* Freeup event entry */
3449 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3450 kfree(evt_entry);
3451 CSIO_DEC_STATS(hw, n_evt_freeq);
3454 hw->stats.n_evt_freeq = 0;
3458 static void
3459 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3460 struct csio_fl_dma_buf *flb, void *priv)
3462 __u8 op;
3463 void *msg = NULL;
3464 uint32_t msg_len = 0;
3465 bool msg_sg = 0;
3467 op = ((struct rss_header *) wr)->opcode;
3468 if (op == CPL_FW6_PLD) {
3469 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3470 if (!flb || !flb->totlen) {
3471 CSIO_INC_STATS(hw, n_cpl_unexp);
3472 return;
3475 msg = (void *) flb;
3476 msg_len = flb->totlen;
3477 msg_sg = 1;
3478 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3480 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3481 /* skip RSS header */
3482 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3483 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3484 sizeof(struct cpl_fw4_msg);
3485 } else {
3486 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3487 CSIO_INC_STATS(hw, n_cpl_unexp);
3488 return;
3492 * Enqueue event to EventQ. Events processing happens
3493 * in Event worker thread context
3495 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3496 (uint16_t)msg_len, msg_sg))
3497 CSIO_INC_STATS(hw, n_evt_drop);
3500 void
3501 csio_evtq_worker(struct work_struct *work)
3503 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3504 struct list_head *evt_entry, *next_entry;
3505 LIST_HEAD(evt_q);
3506 struct csio_evt_msg *evt_msg;
3507 struct cpl_fw6_msg *msg;
3508 struct csio_rnode *rn;
3509 int rv = 0;
3510 uint8_t evtq_stop = 0;
3512 csio_dbg(hw, "event worker thread active evts#%d\n",
3513 hw->stats.n_evt_activeq);
3515 spin_lock_irq(&hw->lock);
3516 while (!list_empty(&hw->evt_active_q)) {
3517 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3518 spin_unlock_irq(&hw->lock);
3520 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3521 evt_msg = (struct csio_evt_msg *) evt_entry;
3523 /* Drop events if queue is STOPPED */
3524 spin_lock_irq(&hw->lock);
3525 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3526 evtq_stop = 1;
3527 spin_unlock_irq(&hw->lock);
3528 if (evtq_stop) {
3529 CSIO_INC_STATS(hw, n_evt_drop);
3530 goto free_evt;
3533 switch (evt_msg->type) {
3534 case CSIO_EVT_FW:
3535 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3537 if ((msg->opcode == CPL_FW6_MSG ||
3538 msg->opcode == CPL_FW4_MSG) &&
3539 !msg->type) {
3540 rv = csio_mb_fwevt_handler(hw,
3541 msg->data);
3542 if (!rv)
3543 break;
3544 /* Handle any remaining fw events */
3545 csio_fcoe_fwevt_handler(hw,
3546 msg->opcode, msg->data);
3547 } else if (msg->opcode == CPL_FW6_PLD) {
3549 csio_fcoe_fwevt_handler(hw,
3550 msg->opcode, msg->data);
3551 } else {
3552 csio_warn(hw,
3553 "Unhandled FW msg op %x type %x\n",
3554 msg->opcode, msg->type);
3555 CSIO_INC_STATS(hw, n_evt_drop);
3557 break;
3559 case CSIO_EVT_MBX:
3560 csio_mberr_worker(hw);
3561 break;
3563 case CSIO_EVT_DEV_LOSS:
3564 memcpy(&rn, evt_msg->data, sizeof(rn));
3565 csio_rnode_devloss_handler(rn);
3566 break;
3568 default:
3569 csio_warn(hw, "Unhandled event %x on evtq\n",
3570 evt_msg->type);
3571 CSIO_INC_STATS(hw, n_evt_unexp);
3572 break;
3574 free_evt:
3575 csio_free_evt(hw, evt_msg);
3578 spin_lock_irq(&hw->lock);
3580 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3581 spin_unlock_irq(&hw->lock);
3585 csio_fwevtq_handler(struct csio_hw *hw)
3587 int rv;
3589 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3590 CSIO_INC_STATS(hw, n_int_stray);
3591 return -EINVAL;
3594 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3595 csio_process_fwevtq_entry, NULL);
3596 return rv;
3599 /****************************************************************************
3600 * Entry points
3601 ****************************************************************************/
3603 /* Management module */
3605 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3606 * mgmt - mgmt module
3607 * @io_req - io request
3609 * Return - 0:if given IO Req exists in active Q.
3610 * -EINVAL :if lookup fails.
3613 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3615 struct list_head *tmp;
3617 /* Lookup ioreq in the ACTIVEQ */
3618 list_for_each(tmp, &mgmtm->active_q) {
3619 if (io_req == (struct csio_ioreq *)tmp)
3620 return 0;
3622 return -EINVAL;
3625 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3628 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3629 * @data - Event data.
3631 * Return - none.
3633 static void
3634 csio_mgmt_tmo_handler(uintptr_t data)
3636 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3637 struct list_head *tmp;
3638 struct csio_ioreq *io_req;
3640 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3642 spin_lock_irq(&mgmtm->hw->lock);
3644 list_for_each(tmp, &mgmtm->active_q) {
3645 io_req = (struct csio_ioreq *) tmp;
3646 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3648 if (!io_req->tmo) {
3649 /* Dequeue the request from retry Q. */
3650 tmp = csio_list_prev(tmp);
3651 list_del_init(&io_req->sm.sm_list);
3652 if (io_req->io_cbfn) {
3653 /* io_req will be freed by completion handler */
3654 io_req->wr_status = -ETIMEDOUT;
3655 io_req->io_cbfn(mgmtm->hw, io_req);
3656 } else {
3657 CSIO_DB_ASSERT(0);
3662 /* If retry queue is not empty, re-arm timer */
3663 if (!list_empty(&mgmtm->active_q))
3664 mod_timer(&mgmtm->mgmt_timer,
3665 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3666 spin_unlock_irq(&mgmtm->hw->lock);
3669 static void
3670 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3672 struct csio_hw *hw = mgmtm->hw;
3673 struct csio_ioreq *io_req;
3674 struct list_head *tmp;
3675 uint32_t count;
3677 count = 30;
3678 /* Wait for all outstanding req to complete gracefully */
3679 while ((!list_empty(&mgmtm->active_q)) && count--) {
3680 spin_unlock_irq(&hw->lock);
3681 msleep(2000);
3682 spin_lock_irq(&hw->lock);
3685 /* release outstanding req from ACTIVEQ */
3686 list_for_each(tmp, &mgmtm->active_q) {
3687 io_req = (struct csio_ioreq *) tmp;
3688 tmp = csio_list_prev(tmp);
3689 list_del_init(&io_req->sm.sm_list);
3690 mgmtm->stats.n_active--;
3691 if (io_req->io_cbfn) {
3692 /* io_req will be freed by completion handler */
3693 io_req->wr_status = -ETIMEDOUT;
3694 io_req->io_cbfn(mgmtm->hw, io_req);
3700 * csio_mgmt_init - Mgmt module init entry point
3701 * @mgmtsm - mgmt module
3702 * @hw - HW module
3704 * Initialize mgmt timer, resource wait queue, active queue,
3705 * completion q. Allocate Egress and Ingress
3706 * WR queues and save off the queue index returned by the WR
3707 * module for future use. Allocate and save off mgmt reqs in the
3708 * mgmt_req_freelist for future use. Make sure their SM is initialized
3709 * to uninit state.
3710 * Returns: 0 - on success
3711 * -ENOMEM - on error.
3713 static int
3714 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3716 struct timer_list *timer = &mgmtm->mgmt_timer;
3718 init_timer(timer);
3719 timer->function = csio_mgmt_tmo_handler;
3720 timer->data = (unsigned long)mgmtm;
3722 INIT_LIST_HEAD(&mgmtm->active_q);
3723 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3725 mgmtm->hw = hw;
3726 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3728 return 0;
3732 * csio_mgmtm_exit - MGMT module exit entry point
3733 * @mgmtsm - mgmt module
3735 * This function called during MGMT module uninit.
3736 * Stop timers, free ioreqs allocated.
3737 * Returns: None
3740 static void
3741 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3743 del_timer_sync(&mgmtm->mgmt_timer);
3748 * csio_hw_start - Kicks off the HW State machine
3749 * @hw: Pointer to HW module.
3751 * It is assumed that the initialization is a synchronous operation.
3752 * So when we return afer posting the event, the HW SM should be in
3753 * the ready state, if there were no errors during init.
3756 csio_hw_start(struct csio_hw *hw)
3758 spin_lock_irq(&hw->lock);
3759 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3760 spin_unlock_irq(&hw->lock);
3762 if (csio_is_hw_ready(hw))
3763 return 0;
3764 else
3765 return -EINVAL;
3769 csio_hw_stop(struct csio_hw *hw)
3771 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3773 if (csio_is_hw_removing(hw))
3774 return 0;
3775 else
3776 return -EINVAL;
3779 /* Max reset retries */
3780 #define CSIO_MAX_RESET_RETRIES 3
3783 * csio_hw_reset - Reset the hardware
3784 * @hw: HW module.
3786 * Caller should hold lock across this function.
3789 csio_hw_reset(struct csio_hw *hw)
3791 if (!csio_is_hw_master(hw))
3792 return -EPERM;
3794 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3795 csio_dbg(hw, "Max hw reset attempts reached..");
3796 return -EINVAL;
3799 hw->rst_retries++;
3800 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3802 if (csio_is_hw_ready(hw)) {
3803 hw->rst_retries = 0;
3804 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3805 return 0;
3806 } else
3807 return -EINVAL;
3811 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3812 * @hw: HW module.
3814 static void
3815 csio_hw_get_device_id(struct csio_hw *hw)
3817 /* Is the adapter device id cached already ?*/
3818 if (csio_is_dev_id_cached(hw))
3819 return;
3821 /* Get the PCI vendor & device id */
3822 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3823 &hw->params.pci.vendor_id);
3824 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3825 &hw->params.pci.device_id);
3827 csio_dev_id_cached(hw);
3828 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3830 } /* csio_hw_get_device_id */
3833 * csio_hw_set_description - Set the model, description of the hw.
3834 * @hw: HW module.
3835 * @ven_id: PCI Vendor ID
3836 * @dev_id: PCI Device ID
3838 static void
3839 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3841 uint32_t adap_type, prot_type;
3843 if (ven_id == CSIO_VENDOR_ID) {
3844 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3845 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3847 if (prot_type == CSIO_T4_FCOE_ASIC) {
3848 memcpy(hw->hw_ver,
3849 csio_t4_fcoe_adapters[adap_type].model_no, 16);
3850 memcpy(hw->model_desc,
3851 csio_t4_fcoe_adapters[adap_type].description,
3852 32);
3853 } else if (prot_type == CSIO_T5_FCOE_ASIC) {
3854 memcpy(hw->hw_ver,
3855 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3856 memcpy(hw->model_desc,
3857 csio_t5_fcoe_adapters[adap_type].description,
3858 32);
3859 } else {
3860 char tempName[32] = "Chelsio FCoE Controller";
3861 memcpy(hw->model_desc, tempName, 32);
3864 } /* csio_hw_set_description */
3867 * csio_hw_init - Initialize HW module.
3868 * @hw: Pointer to HW module.
3870 * Initialize the members of the HW module.
3873 csio_hw_init(struct csio_hw *hw)
3875 int rv = -EINVAL;
3876 uint32_t i;
3877 uint16_t ven_id, dev_id;
3878 struct csio_evt_msg *evt_entry;
3880 INIT_LIST_HEAD(&hw->sm.sm_list);
3881 csio_init_state(&hw->sm, csio_hws_uninit);
3882 spin_lock_init(&hw->lock);
3883 INIT_LIST_HEAD(&hw->sln_head);
3885 /* Get the PCI vendor & device id */
3886 csio_hw_get_device_id(hw);
3888 strcpy(hw->name, CSIO_HW_NAME);
3890 /* Initialize the HW chip ops with T4/T5 specific ops */
3891 hw->chip_ops = csio_is_t4(hw->chip_id) ? &t4_ops : &t5_ops;
3893 /* Set the model & its description */
3895 ven_id = hw->params.pci.vendor_id;
3896 dev_id = hw->params.pci.device_id;
3898 csio_hw_set_description(hw, ven_id, dev_id);
3900 /* Initialize default log level */
3901 hw->params.log_level = (uint32_t) csio_dbg_level;
3903 csio_set_fwevt_intr_idx(hw, -1);
3904 csio_set_nondata_intr_idx(hw, -1);
3906 /* Init all the modules: Mailbox, WorkRequest and Transport */
3907 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3908 goto err;
3910 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3911 if (rv)
3912 goto err_mbm_exit;
3914 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3915 if (rv)
3916 goto err_wrm_exit;
3918 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3919 if (rv)
3920 goto err_scsim_exit;
3921 /* Pre-allocate evtq and initialize them */
3922 INIT_LIST_HEAD(&hw->evt_active_q);
3923 INIT_LIST_HEAD(&hw->evt_free_q);
3924 for (i = 0; i < csio_evtq_sz; i++) {
3926 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3927 if (!evt_entry) {
3928 csio_err(hw, "Failed to initialize eventq");
3929 goto err_evtq_cleanup;
3932 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3933 CSIO_INC_STATS(hw, n_evt_freeq);
3936 hw->dev_num = dev_num;
3937 dev_num++;
3939 return 0;
3941 err_evtq_cleanup:
3942 csio_evtq_cleanup(hw);
3943 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3944 err_scsim_exit:
3945 csio_scsim_exit(csio_hw_to_scsim(hw));
3946 err_wrm_exit:
3947 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3948 err_mbm_exit:
3949 csio_mbm_exit(csio_hw_to_mbm(hw));
3950 err:
3951 return rv;
3955 * csio_hw_exit - Un-initialize HW module.
3956 * @hw: Pointer to HW module.
3959 void
3960 csio_hw_exit(struct csio_hw *hw)
3962 csio_evtq_cleanup(hw);
3963 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3964 csio_scsim_exit(csio_hw_to_scsim(hw));
3965 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3966 csio_mbm_exit(csio_hw_to_mbm(hw));