2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/kernel.h>
36 #include <linux/string.h>
37 #include <linux/compiler.h>
38 #include <linux/slab.h>
40 #include <linux/cache.h>
45 #include "csio_defs.h"
47 int csio_intr_coalesce_cnt
; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
48 static int csio_sge_thresh_reg
; /* SGE_INGRESS_RX_THRESHOLD[0] */
50 int csio_intr_coalesce_time
= 10; /* value:SGE_TIMER_VALUE_1 */
51 static int csio_sge_timer_reg
= 1;
53 #define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
54 csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg)
57 csio_get_flbuf_size(struct csio_hw
*hw
, struct csio_sge
*sge
, uint32_t reg
)
59 sge
->sge_fl_buf_size
[reg
] = csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE0
+
60 reg
* sizeof(uint32_t));
63 /* Free list buffer size */
64 static inline uint32_t
65 csio_wr_fl_bufsz(struct csio_sge
*sge
, struct csio_dma_buf
*buf
)
67 return sge
->sge_fl_buf_size
[buf
->paddr
& 0xF];
70 /* Size of the egress queue status page */
71 static inline uint32_t
72 csio_wr_qstat_pgsz(struct csio_hw
*hw
)
74 return (hw
->wrm
.sge
.sge_control
& EGRSTATUSPAGESIZE(1)) ? 128 : 64;
77 /* Ring freelist doorbell */
79 csio_wr_ring_fldb(struct csio_hw
*hw
, struct csio_q
*flq
)
82 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
83 * number of bytes in the freelist queue. This translates to atleast
84 * 8 freelist buffer pointers (since each pointer is 8 bytes).
86 if (flq
->inc_idx
>= 8) {
87 csio_wr_reg32(hw
, DBPRIO(1) | QID(flq
->un
.fl
.flid
) |
88 CSIO_HW_PIDX(hw
, flq
->inc_idx
/ 8),
89 MYPF_REG(SGE_PF_KDOORBELL
));
94 /* Write a 0 cidx increment value to enable SGE interrupts for this queue */
96 csio_wr_sge_intr_enable(struct csio_hw
*hw
, uint16_t iqid
)
98 csio_wr_reg32(hw
, CIDXINC(0) |
100 TIMERREG(X_TIMERREG_RESTART_COUNTER
),
101 MYPF_REG(SGE_PF_GTS
));
105 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
107 * @flq: Freelist queue.
109 * Fill up freelist buffer entries with buffers of size specified
110 * in the size register.
114 csio_wr_fill_fl(struct csio_hw
*hw
, struct csio_q
*flq
)
116 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
117 struct csio_sge
*sge
= &wrm
->sge
;
118 __be64
*d
= (__be64
*)(flq
->vstart
);
119 struct csio_dma_buf
*buf
= &flq
->un
.fl
.bufs
[0];
121 int sreg
= flq
->un
.fl
.sreg
;
122 int n
= flq
->credits
;
125 buf
->len
= sge
->sge_fl_buf_size
[sreg
];
126 buf
->vaddr
= pci_alloc_consistent(hw
->pdev
, buf
->len
,
129 csio_err(hw
, "Could only fill %d buffers!\n", n
+ 1);
133 paddr
= buf
->paddr
| (sreg
& 0xF);
135 *d
++ = cpu_to_be64(paddr
);
143 * csio_wr_update_fl -
145 * @flq: Freelist queue.
150 csio_wr_update_fl(struct csio_hw
*hw
, struct csio_q
*flq
, uint16_t n
)
155 if (unlikely(flq
->pidx
>= flq
->credits
))
156 flq
->pidx
-= (uint16_t)flq
->credits
;
158 CSIO_INC_STATS(flq
, n_flq_refill
);
162 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
164 * @qsize: Size of the queue in bytes
165 * @wrsize: Since of WR in this queue, if fixed.
166 * @type: Type of queue (Ingress/Egress/Freelist)
167 * @owner: Module that owns this queue.
168 * @nflb: Number of freelist buffers for FL.
169 * @sreg: What is the FL buffer size register?
170 * @iq_int_handler: Ingress queue handler in INTx mode.
172 * This function allocates and sets up a queue for the caller
173 * of size qsize, aligned at the required boundary. This is subject to
174 * be free entries being available in the queue array. If one is found,
175 * it is initialized with the allocated queue, marked as being used (owner),
176 * and a handle returned to the caller in form of the queue's index
177 * into the q_arr array.
178 * If user has indicated a freelist (by specifying nflb > 0), create
179 * another queue (with its own index into q_arr) for the freelist. Allocate
180 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
181 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
182 * with its owning ingress queue.
185 csio_wr_alloc_q(struct csio_hw
*hw
, uint32_t qsize
, uint32_t wrsize
,
186 uint16_t type
, void *owner
, uint32_t nflb
, int sreg
,
187 iq_handler_t iq_intx_handler
)
189 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
190 struct csio_q
*q
, *flq
;
191 int free_idx
= wrm
->free_qidx
;
192 int ret_idx
= free_idx
;
196 if (free_idx
>= wrm
->num_q
) {
197 csio_err(hw
, "No more free queues.\n");
203 qsz
= ALIGN(qsize
, CSIO_QCREDIT_SZ
) + csio_wr_qstat_pgsz(hw
);
213 csio_err(hw
, "Invalid Ingress queue WR size:%d\n",
219 * Number of elements must be a multiple of 16
220 * So this includes status page size
222 qsz
= ALIGN(qsize
/wrsize
, 16) * wrsize
;
226 qsz
= ALIGN(qsize
/wrsize
, 8) * wrsize
+ csio_wr_qstat_pgsz(hw
);
229 csio_err(hw
, "Invalid queue type: 0x%x\n", type
);
233 q
= wrm
->q_arr
[free_idx
];
235 q
->vstart
= pci_alloc_consistent(hw
->pdev
, qsz
, &q
->pstart
);
238 "Failed to allocate DMA memory for "
239 "queue at id: %d size: %d\n", free_idx
, qsize
);
244 * We need to zero out the contents, importantly for ingress,
245 * since we start with a generatiom bit of 1 for ingress.
247 memset(q
->vstart
, 0, qsz
);
251 q
->pidx
= q
->cidx
= q
->inc_idx
= 0;
253 q
->wr_sz
= wrsize
; /* If using fixed size WRs */
257 if (type
== CSIO_INGRESS
) {
258 /* Since queue area is set to zero */
262 * Ingress queue status page size is always the size of
263 * the ingress queue entry.
265 q
->credits
= (qsz
- q
->wr_sz
) / q
->wr_sz
;
266 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
269 /* Allocate memory for FL if requested */
271 flq_idx
= csio_wr_alloc_q(hw
, nflb
* sizeof(__be64
),
272 sizeof(__be64
), CSIO_FREELIST
,
273 owner
, 0, sreg
, NULL
);
276 "Failed to allocate FL queue"
277 " for IQ idx:%d\n", free_idx
);
281 /* Associate the new FL with the Ingress quue */
282 q
->un
.iq
.flq_idx
= flq_idx
;
284 flq
= wrm
->q_arr
[q
->un
.iq
.flq_idx
];
285 flq
->un
.fl
.bufs
= kzalloc(flq
->credits
*
286 sizeof(struct csio_dma_buf
),
288 if (!flq
->un
.fl
.bufs
) {
290 "Failed to allocate FL queue bufs"
291 " for IQ idx:%d\n", free_idx
);
295 flq
->un
.fl
.packen
= 0;
296 flq
->un
.fl
.offset
= 0;
297 flq
->un
.fl
.sreg
= sreg
;
299 /* Fill up the free list buffers */
300 if (csio_wr_fill_fl(hw
, flq
))
304 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
305 * remains unpopulated,otherwise HW thinks
308 flq
->pidx
= flq
->inc_idx
= flq
->credits
- 8;
310 q
->un
.iq
.flq_idx
= -1;
313 /* Associate the IQ INTx handler. */
314 q
->un
.iq
.iq_intx_handler
= iq_intx_handler
;
316 csio_q_iqid(hw
, ret_idx
) = CSIO_MAX_QID
;
318 } else if (type
== CSIO_EGRESS
) {
319 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / CSIO_QCREDIT_SZ
;
320 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
321 - csio_wr_qstat_pgsz(hw
));
322 csio_q_eqid(hw
, ret_idx
) = CSIO_MAX_QID
;
323 } else { /* Freelist */
324 q
->credits
= (qsz
- csio_wr_qstat_pgsz(hw
)) / sizeof(__be64
);
325 q
->vwrap
= (void *)((uintptr_t)(q
->vstart
) + qsz
326 - csio_wr_qstat_pgsz(hw
));
327 csio_q_flid(hw
, ret_idx
) = CSIO_MAX_QID
;
334 * csio_wr_iq_create_rsp - Response handler for IQ creation.
335 * @hw: The HW module.
337 * @iq_idx: Ingress queue that got created.
339 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
342 csio_wr_iq_create_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
344 struct csio_iq_params iqp
;
345 enum fw_retval retval
;
349 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
351 csio_mb_iq_alloc_write_rsp(hw
, mbp
, &retval
, &iqp
);
353 if (retval
!= FW_SUCCESS
) {
354 csio_err(hw
, "IQ cmd returned 0x%x!\n", retval
);
355 mempool_free(mbp
, hw
->mb_mempool
);
359 csio_q_iqid(hw
, iq_idx
) = iqp
.iqid
;
360 csio_q_physiqid(hw
, iq_idx
) = iqp
.physiqid
;
361 csio_q_pidx(hw
, iq_idx
) = csio_q_cidx(hw
, iq_idx
) = 0;
362 csio_q_inc_idx(hw
, iq_idx
) = 0;
365 iq_id
= iqp
.iqid
- hw
->wrm
.fw_iq_start
;
367 /* Set the iq-id to iq map table. */
368 if (iq_id
>= CSIO_MAX_IQ
) {
370 "Exceeding MAX_IQ(%d) supported!"
371 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
372 CSIO_MAX_IQ
, iq_id
, iqp
.iqid
, hw
->wrm
.fw_iq_start
);
373 mempool_free(mbp
, hw
->mb_mempool
);
376 csio_q_set_intr_map(hw
, iq_idx
, iq_id
);
379 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
380 * ingress context of this queue. This will block interrupts to
381 * this queue until the next GTS write. Therefore, we do a
382 * 0-cidx increment GTS write for this queue just to clear the
383 * interrupt_sent bit. This will re-enable interrupts to this
386 csio_wr_sge_intr_enable(hw
, iqp
.physiqid
);
388 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
390 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
392 csio_q_flid(hw
, flq_idx
) = iqp
.fl0id
;
393 csio_q_cidx(hw
, flq_idx
) = 0;
394 csio_q_pidx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
395 csio_q_inc_idx(hw
, flq_idx
) = csio_q_credits(hw
, flq_idx
) - 8;
397 /* Now update SGE about the buffers allocated during init */
398 csio_wr_ring_fldb(hw
, flq
);
401 mempool_free(mbp
, hw
->mb_mempool
);
407 * csio_wr_iq_create - Configure an Ingress queue with FW.
408 * @hw: The HW module.
409 * @priv: Private data object.
410 * @iq_idx: Ingress queue index in the WR module.
412 * @portid: PCIE Channel to be associated with this queue.
413 * @async: Is this a FW asynchronous message handling queue?
414 * @cbfn: Completion callback.
416 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
417 * with alloc/write bits set.
420 csio_wr_iq_create(struct csio_hw
*hw
, void *priv
, int iq_idx
,
421 uint32_t vec
, uint8_t portid
, bool async
,
422 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
425 struct csio_iq_params iqp
;
428 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
429 csio_q_portid(hw
, iq_idx
) = portid
;
431 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
433 csio_err(hw
, "IQ command out of memory!\n");
437 switch (hw
->intr_mode
) {
440 /* For interrupt forwarding queue only */
441 if (hw
->intr_iq_idx
== iq_idx
)
442 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
444 iqp
.iqandst
= X_INTERRUPTDESTINATION_IQ
;
446 csio_q_physiqid(hw
, hw
->intr_iq_idx
);
449 iqp
.iqandst
= X_INTERRUPTDESTINATION_PCIE
;
450 iqp
.iqandstindex
= (uint16_t)vec
;
453 mempool_free(mbp
, hw
->mb_mempool
);
457 /* Pass in the ingress queue cmd parameters */
462 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
463 iqp
.iqasynch
= async
;
464 if (csio_intr_coalesce_cnt
)
465 iqp
.iqanus
= X_UPDATESCHEDULING_COUNTER_OPTTIMER
;
467 iqp
.iqanus
= X_UPDATESCHEDULING_TIMER
;
468 iqp
.iqanud
= X_UPDATEDELIVERY_INTERRUPT
;
469 iqp
.iqpciech
= portid
;
470 iqp
.iqintcntthresh
= (uint8_t)csio_sge_thresh_reg
;
472 switch (csio_q_wr_sz(hw
, iq_idx
)) {
474 iqp
.iqesize
= 0; break;
476 iqp
.iqesize
= 1; break;
478 iqp
.iqesize
= 2; break;
480 iqp
.iqesize
= 3; break;
483 iqp
.iqsize
= csio_q_size(hw
, iq_idx
) /
484 csio_q_wr_sz(hw
, iq_idx
);
485 iqp
.iqaddr
= csio_q_pstart(hw
, iq_idx
);
487 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
489 struct csio_q
*flq
= hw
->wrm
.q_arr
[flq_idx
];
492 iqp
.fl0packen
= flq
->un
.fl
.packen
? 1 : 0;
493 iqp
.fl0fbmin
= X_FETCHBURSTMIN_64B
;
494 iqp
.fl0fbmax
= X_FETCHBURSTMAX_512B
;
495 iqp
.fl0size
= csio_q_size(hw
, flq_idx
) / CSIO_QCREDIT_SZ
;
496 iqp
.fl0addr
= csio_q_pstart(hw
, flq_idx
);
499 csio_mb_iq_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
501 if (csio_mb_issue(hw
, mbp
)) {
502 csio_err(hw
, "Issue of IQ cmd failed!\n");
503 mempool_free(mbp
, hw
->mb_mempool
);
510 return csio_wr_iq_create_rsp(hw
, mbp
, iq_idx
);
514 * csio_wr_eq_create_rsp - Response handler for EQ creation.
515 * @hw: The HW module.
517 * @eq_idx: Egress queue that got created.
519 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
522 csio_wr_eq_cfg_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
524 struct csio_eq_params eqp
;
525 enum fw_retval retval
;
527 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
529 csio_mb_eq_ofld_alloc_write_rsp(hw
, mbp
, &retval
, &eqp
);
531 if (retval
!= FW_SUCCESS
) {
532 csio_err(hw
, "EQ OFLD cmd returned 0x%x!\n", retval
);
533 mempool_free(mbp
, hw
->mb_mempool
);
537 csio_q_eqid(hw
, eq_idx
) = (uint16_t)eqp
.eqid
;
538 csio_q_physeqid(hw
, eq_idx
) = (uint16_t)eqp
.physeqid
;
539 csio_q_pidx(hw
, eq_idx
) = csio_q_cidx(hw
, eq_idx
) = 0;
540 csio_q_inc_idx(hw
, eq_idx
) = 0;
542 mempool_free(mbp
, hw
->mb_mempool
);
548 * csio_wr_eq_create - Configure an Egress queue with FW.
550 * @priv: Private data.
551 * @eq_idx: Egress queue index in the WR module.
552 * @iq_idx: Associated ingress queue index.
553 * @cbfn: Completion callback.
555 * This API configures a offload egress queue with FW by issuing a
556 * FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
559 csio_wr_eq_create(struct csio_hw
*hw
, void *priv
, int eq_idx
,
560 int iq_idx
, uint8_t portid
,
561 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
564 struct csio_eq_params eqp
;
566 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
568 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
570 csio_err(hw
, "EQ command out of memory!\n");
577 eqp
.hostfcmode
= X_HOSTFCMODE_STATUS_PAGE
;
578 eqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
579 eqp
.fbmin
= X_FETCHBURSTMIN_64B
;
580 eqp
.fbmax
= X_FETCHBURSTMAX_512B
;
582 eqp
.pciechn
= portid
;
583 eqp
.eqsize
= csio_q_size(hw
, eq_idx
) / CSIO_QCREDIT_SZ
;
584 eqp
.eqaddr
= csio_q_pstart(hw
, eq_idx
);
586 csio_mb_eq_ofld_alloc_write(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
,
589 if (csio_mb_issue(hw
, mbp
)) {
590 csio_err(hw
, "Issue of EQ OFLD cmd failed!\n");
591 mempool_free(mbp
, hw
->mb_mempool
);
598 return csio_wr_eq_cfg_rsp(hw
, mbp
, eq_idx
);
602 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
603 * @hw: The HW module.
605 * @iq_idx: Ingress queue that was freed.
607 * Handle FW_IQ_CMD (free) mailbox completion.
610 csio_wr_iq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int iq_idx
)
612 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
615 if (retval
!= FW_SUCCESS
)
618 mempool_free(mbp
, hw
->mb_mempool
);
624 * csio_wr_iq_destroy - Free an ingress queue.
625 * @hw: The HW module.
626 * @priv: Private data object.
627 * @iq_idx: Ingress queue index to destroy
628 * @cbfn: Completion callback.
630 * This API frees an ingress queue by issuing the FW_IQ_CMD
631 * with the free bit set.
634 csio_wr_iq_destroy(struct csio_hw
*hw
, void *priv
, int iq_idx
,
635 void (*cbfn
)(struct csio_hw
*, struct csio_mb
*))
639 struct csio_iq_params iqp
;
642 memset(&iqp
, 0, sizeof(struct csio_iq_params
));
644 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
650 iqp
.iqid
= csio_q_iqid(hw
, iq_idx
);
651 iqp
.type
= FW_IQ_TYPE_FL_INT_CAP
;
653 flq_idx
= csio_q_iq_flq_idx(hw
, iq_idx
);
655 iqp
.fl0id
= csio_q_flid(hw
, flq_idx
);
661 csio_mb_iq_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &iqp
, cbfn
);
663 rv
= csio_mb_issue(hw
, mbp
);
665 mempool_free(mbp
, hw
->mb_mempool
);
672 return csio_wr_iq_destroy_rsp(hw
, mbp
, iq_idx
);
676 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
677 * @hw: The HW module.
679 * @eq_idx: Egress queue that was freed.
681 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
684 csio_wr_eq_destroy_rsp(struct csio_hw
*hw
, struct csio_mb
*mbp
, int eq_idx
)
686 enum fw_retval retval
= csio_mb_fw_retval(mbp
);
689 if (retval
!= FW_SUCCESS
)
692 mempool_free(mbp
, hw
->mb_mempool
);
698 * csio_wr_eq_destroy - Free an Egress queue.
699 * @hw: The HW module.
700 * @priv: Private data object.
701 * @eq_idx: Egress queue index to destroy
702 * @cbfn: Completion callback.
704 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
705 * with the free bit set.
708 csio_wr_eq_destroy(struct csio_hw
*hw
, void *priv
, int eq_idx
,
709 void (*cbfn
) (struct csio_hw
*, struct csio_mb
*))
713 struct csio_eq_params eqp
;
715 memset(&eqp
, 0, sizeof(struct csio_eq_params
));
717 mbp
= mempool_alloc(hw
->mb_mempool
, GFP_ATOMIC
);
723 eqp
.eqid
= csio_q_eqid(hw
, eq_idx
);
725 csio_mb_eq_ofld_free(hw
, mbp
, priv
, CSIO_MB_DEFAULT_TMO
, &eqp
, cbfn
);
727 rv
= csio_mb_issue(hw
, mbp
);
729 mempool_free(mbp
, hw
->mb_mempool
);
736 return csio_wr_eq_destroy_rsp(hw
, mbp
, eq_idx
);
740 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
742 * @qidx: Egress queue index
744 * Cleanup the Egress queue status page.
747 csio_wr_cleanup_eq_stpg(struct csio_hw
*hw
, int qidx
)
749 struct csio_q
*q
= csio_hw_to_wrm(hw
)->q_arr
[qidx
];
750 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
752 memset(stp
, 0, sizeof(*stp
));
756 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
758 * @qidx: Ingress queue index
760 * Cleanup the footer entries in the given ingress queue,
761 * set to 1 the internal copy of genbit.
764 csio_wr_cleanup_iq_ftr(struct csio_hw
*hw
, int qidx
)
766 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
767 struct csio_q
*q
= wrm
->q_arr
[qidx
];
769 struct csio_iqwr_footer
*ftr
;
772 /* set to 1 since we are just about zero out genbit */
775 for (i
= 0; i
< q
->credits
; i
++) {
777 wr
= (void *)((uintptr_t)q
->vstart
+
780 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
781 (q
->wr_sz
- sizeof(*ftr
)));
782 /* Zero out footer */
783 memset(ftr
, 0, sizeof(*ftr
));
788 csio_wr_destroy_queues(struct csio_hw
*hw
, bool cmd
)
792 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
795 for (i
= 0; i
< wrm
->free_qidx
; i
++) {
800 if (csio_q_eqid(hw
, i
) != CSIO_MAX_QID
) {
801 csio_wr_cleanup_eq_stpg(hw
, i
);
803 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
807 rv
= csio_wr_eq_destroy(hw
, NULL
, i
, NULL
);
808 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
811 csio_q_eqid(hw
, i
) = CSIO_MAX_QID
;
814 if (csio_q_iqid(hw
, i
) != CSIO_MAX_QID
) {
815 csio_wr_cleanup_iq_ftr(hw
, i
);
817 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
818 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
820 csio_q_flid(hw
, flq_idx
) =
825 rv
= csio_wr_iq_destroy(hw
, NULL
, i
, NULL
);
826 if ((rv
== -EBUSY
) || (rv
== -ETIMEDOUT
))
829 csio_q_iqid(hw
, i
) = CSIO_MAX_QID
;
830 flq_idx
= csio_q_iq_flq_idx(hw
, i
);
832 csio_q_flid(hw
, flq_idx
) = CSIO_MAX_QID
;
839 hw
->flags
&= ~CSIO_HWF_Q_FW_ALLOCED
;
845 * csio_wr_get - Get requested size of WR entry/entries from queue.
847 * @qidx: Index of queue.
848 * @size: Cumulative size of Work request(s).
849 * @wrp: Work request pair.
851 * If requested credits are available, return the start address of the
852 * work request in the work request pair. Set pidx accordingly and
855 * NOTE about WR pair:
857 * A WR can start towards the end of a queue, and then continue at the
858 * beginning, since the queue is considered to be circular. This will
859 * require a pair of address/size to be passed back to the caller -
860 * hence Work request pair format.
863 csio_wr_get(struct csio_hw
*hw
, int qidx
, uint32_t size
,
864 struct csio_wr_pair
*wrp
)
866 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
867 struct csio_q
*q
= wrm
->q_arr
[qidx
];
868 void *cwr
= (void *)((uintptr_t)(q
->vstart
) +
869 (q
->pidx
* CSIO_QCREDIT_SZ
));
870 struct csio_qstatus_page
*stp
= (struct csio_qstatus_page
*)q
->vwrap
;
871 uint16_t cidx
= q
->cidx
= ntohs(stp
->cidx
);
872 uint16_t pidx
= q
->pidx
;
873 uint32_t req_sz
= ALIGN(size
, CSIO_QCREDIT_SZ
);
874 int req_credits
= req_sz
/ CSIO_QCREDIT_SZ
;
877 CSIO_DB_ASSERT(q
->owner
!= NULL
);
878 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
879 CSIO_DB_ASSERT(cidx
<= q
->credits
);
881 /* Calculate credits */
883 credits
= q
->credits
- (pidx
- cidx
) - 1;
884 } else if (cidx
> pidx
) {
885 credits
= cidx
- pidx
- 1;
887 /* cidx == pidx, empty queue */
888 credits
= q
->credits
;
889 CSIO_INC_STATS(q
, n_qempty
);
893 * Check if we have enough credits.
894 * credits = 1 implies queue is full.
896 if (!credits
|| (req_credits
> credits
)) {
897 CSIO_INC_STATS(q
, n_qfull
);
902 * If we are here, we have enough credits to satisfy the
903 * request. Check if we are near the end of q, and if WR spills over.
904 * If it does, use the first addr/size to cover the queue until
905 * the end. Fit the remainder portion of the request at the top
906 * of queue and return it in the second addr/len. Set pidx
909 if (unlikely(((uintptr_t)cwr
+ req_sz
) > (uintptr_t)(q
->vwrap
))) {
911 wrp
->size1
= (uint32_t)((uintptr_t)q
->vwrap
- (uintptr_t)cwr
);
912 wrp
->addr2
= q
->vstart
;
913 wrp
->size2
= req_sz
- wrp
->size1
;
914 q
->pidx
= (uint16_t)(ALIGN(wrp
->size2
, CSIO_QCREDIT_SZ
) /
916 CSIO_INC_STATS(q
, n_qwrap
);
917 CSIO_INC_STATS(q
, n_eq_wr_split
);
923 q
->pidx
+= (uint16_t)req_credits
;
925 /* We are the end of queue, roll back pidx to top of queue */
926 if (unlikely(q
->pidx
== q
->credits
)) {
928 CSIO_INC_STATS(q
, n_qwrap
);
932 q
->inc_idx
= (uint16_t)req_credits
;
934 CSIO_INC_STATS(q
, n_tot_reqs
);
940 * csio_wr_copy_to_wrp - Copies given data into WR.
941 * @data_buf - Data buffer
942 * @wrp - Work request pair.
943 * @wr_off - Work request offset.
944 * @data_len - Data length.
946 * Copies the given data in Work Request. Work request pair(wrp) specifies
947 * address information of Work request.
951 csio_wr_copy_to_wrp(void *data_buf
, struct csio_wr_pair
*wrp
,
952 uint32_t wr_off
, uint32_t data_len
)
956 /* Number of space available in buffer addr1 of WRP */
957 nbytes
= ((wrp
->size1
- wr_off
) >= data_len
) ?
958 data_len
: (wrp
->size1
- wr_off
);
960 memcpy((uint8_t *) wrp
->addr1
+ wr_off
, data_buf
, nbytes
);
963 /* Write the remaining data from the begining of circular buffer */
965 CSIO_DB_ASSERT(data_len
<= wrp
->size2
);
966 CSIO_DB_ASSERT(wrp
->addr2
!= NULL
);
967 memcpy(wrp
->addr2
, (uint8_t *) data_buf
+ nbytes
, data_len
);
972 * csio_wr_issue - Notify chip of Work request.
974 * @qidx: Index of queue.
975 * @prio: 0: Low priority, 1: High priority
977 * Rings the SGE Doorbell by writing the current producer index of the passed
978 * in queue into the register.
982 csio_wr_issue(struct csio_hw
*hw
, int qidx
, bool prio
)
984 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
985 struct csio_q
*q
= wrm
->q_arr
[qidx
];
987 CSIO_DB_ASSERT((qidx
>= 0) && (qidx
< wrm
->free_qidx
));
990 /* Ring SGE Doorbell writing q->pidx into it */
991 csio_wr_reg32(hw
, DBPRIO(prio
) | QID(q
->un
.eq
.physeqid
) |
992 CSIO_HW_PIDX(hw
, q
->inc_idx
),
993 MYPF_REG(SGE_PF_KDOORBELL
));
999 static inline uint32_t
1000 csio_wr_avail_qcredits(struct csio_q
*q
)
1002 if (q
->pidx
> q
->cidx
)
1003 return q
->pidx
- q
->cidx
;
1004 else if (q
->cidx
> q
->pidx
)
1005 return q
->credits
- (q
->cidx
- q
->pidx
);
1007 return 0; /* cidx == pidx, empty queue */
1011 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
1013 * @flq: The freelist queue.
1015 * Invalidate the driver's version of a freelist buffer entry,
1016 * without freeing the associated the DMA memory. The entry
1017 * to be invalidated is picked up from the current Free list
1022 csio_wr_inval_flq_buf(struct csio_hw
*hw
, struct csio_q
*flq
)
1025 if (flq
->cidx
== flq
->credits
) {
1027 CSIO_INC_STATS(flq
, n_qwrap
);
1032 * csio_wr_process_fl - Process a freelist completion.
1034 * @q: The ingress queue attached to the Freelist.
1035 * @wr: The freelist completion WR in the ingress queue.
1036 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
1037 * @iq_handler: Caller's handler for this completion.
1038 * @priv: Private pointer of caller
1042 csio_wr_process_fl(struct csio_hw
*hw
, struct csio_q
*q
,
1043 void *wr
, uint32_t len_to_qid
,
1044 void (*iq_handler
)(struct csio_hw
*, void *,
1045 uint32_t, struct csio_fl_dma_buf
*,
1049 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1050 struct csio_sge
*sge
= &wrm
->sge
;
1051 struct csio_fl_dma_buf flb
;
1052 struct csio_dma_buf
*buf
, *fbuf
;
1053 uint32_t bufsz
, len
, lastlen
= 0;
1055 struct csio_q
*flq
= hw
->wrm
.q_arr
[q
->un
.iq
.flq_idx
];
1057 CSIO_DB_ASSERT(flq
!= NULL
);
1061 if (len
& IQWRF_NEWBUF
) {
1062 if (flq
->un
.fl
.offset
> 0) {
1063 csio_wr_inval_flq_buf(hw
, flq
);
1064 flq
->un
.fl
.offset
= 0;
1066 len
= IQWRF_LEN_GET(len
);
1069 CSIO_DB_ASSERT(len
!= 0);
1073 /* Consume all freelist buffers used for len bytes */
1074 for (n
= 0, fbuf
= flb
.flbufs
; ; n
++, fbuf
++) {
1075 buf
= &flq
->un
.fl
.bufs
[flq
->cidx
];
1076 bufsz
= csio_wr_fl_bufsz(sge
, buf
);
1078 fbuf
->paddr
= buf
->paddr
;
1079 fbuf
->vaddr
= buf
->vaddr
;
1081 flb
.offset
= flq
->un
.fl
.offset
;
1082 lastlen
= min(bufsz
, len
);
1083 fbuf
->len
= lastlen
;
1088 csio_wr_inval_flq_buf(hw
, flq
);
1091 flb
.defer_free
= flq
->un
.fl
.packen
? 0 : 1;
1093 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(struct csio_iqwr_footer
),
1096 if (flq
->un
.fl
.packen
)
1097 flq
->un
.fl
.offset
+= ALIGN(lastlen
, sge
->csio_fl_align
);
1099 csio_wr_inval_flq_buf(hw
, flq
);
1104 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
1105 * @q: Ingress quueue.
1106 * @ftr: Ingress queue WR SGE footer.
1108 * The entry is new if our generation bit matches the corresponding
1109 * bit in the footer of the current WR.
1112 csio_is_new_iqwr(struct csio_q
*q
, struct csio_iqwr_footer
*ftr
)
1114 return (q
->un
.iq
.genbit
== (ftr
->u
.type_gen
>> IQWRF_GEN_SHIFT
));
1118 * csio_wr_process_iq - Process elements in Ingress queue.
1120 * @qidx: Index of queue
1121 * @iq_handler: Handler for this queue
1122 * @priv: Caller's private pointer
1124 * This routine walks through every entry of the ingress queue, calling
1125 * the provided iq_handler with the entry, until the generation bit
1129 csio_wr_process_iq(struct csio_hw
*hw
, struct csio_q
*q
,
1130 void (*iq_handler
)(struct csio_hw
*, void *,
1131 uint32_t, struct csio_fl_dma_buf
*,
1135 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1136 void *wr
= (void *)((uintptr_t)q
->vstart
+ (q
->cidx
* q
->wr_sz
));
1137 struct csio_iqwr_footer
*ftr
;
1138 uint32_t wr_type
, fw_qid
, qid
;
1139 struct csio_q
*q_completed
;
1140 struct csio_q
*flq
= csio_iq_has_fl(q
) ?
1141 wrm
->q_arr
[q
->un
.iq
.flq_idx
] : NULL
;
1144 /* Get the footer */
1145 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1146 (q
->wr_sz
- sizeof(*ftr
)));
1149 * When q wrapped around last time, driver should have inverted
1150 * ic.genbit as well.
1152 while (csio_is_new_iqwr(q
, ftr
)) {
1154 CSIO_DB_ASSERT(((uintptr_t)wr
+ q
->wr_sz
) <=
1155 (uintptr_t)q
->vwrap
);
1157 wr_type
= IQWRF_TYPE_GET(ftr
->u
.type_gen
);
1160 case X_RSPD_TYPE_CPL
:
1161 /* Subtract footer from WR len */
1162 iq_handler(hw
, wr
, q
->wr_sz
- sizeof(*ftr
), NULL
, priv
);
1164 case X_RSPD_TYPE_FLBUF
:
1165 csio_wr_process_fl(hw
, q
, wr
,
1166 ntohl(ftr
->pldbuflen_qid
),
1169 case X_RSPD_TYPE_INTR
:
1170 fw_qid
= ntohl(ftr
->pldbuflen_qid
);
1171 qid
= fw_qid
- wrm
->fw_iq_start
;
1172 q_completed
= hw
->wrm
.intr_map
[qid
];
1175 csio_q_physiqid(hw
, hw
->intr_iq_idx
))) {
1177 * We are already in the Forward Interrupt
1178 * Interrupt Queue Service! Do-not service
1183 CSIO_DB_ASSERT(q_completed
);
1185 q_completed
->un
.iq
.iq_intx_handler
);
1187 /* Call the queue handler. */
1188 q_completed
->un
.iq
.iq_intx_handler(hw
, NULL
,
1189 0, NULL
, (void *)q_completed
);
1193 csio_warn(hw
, "Unknown resp type 0x%x received\n",
1195 CSIO_INC_STATS(q
, n_rsp_unknown
);
1200 * Ingress *always* has fixed size WR entries. Therefore,
1201 * there should always be complete WRs towards the end of
1204 if (((uintptr_t)wr
+ q
->wr_sz
) == (uintptr_t)q
->vwrap
) {
1206 /* Roll over to start of queue */
1211 q
->un
.iq
.genbit
^= 0x1;
1213 CSIO_INC_STATS(q
, n_qwrap
);
1216 wr
= (void *)((uintptr_t)(q
->vstart
) +
1217 (q
->cidx
* q
->wr_sz
));
1220 ftr
= (struct csio_iqwr_footer
*)((uintptr_t)wr
+
1221 (q
->wr_sz
- sizeof(*ftr
)));
1224 } /* while (q->un.iq.genbit == hdr->genbit) */
1227 * We need to re-arm SGE interrupts in case we got a stray interrupt,
1228 * especially in msix mode. With INTx, this may be a common occurence.
1230 if (unlikely(!q
->inc_idx
)) {
1231 CSIO_INC_STATS(q
, n_stray_comp
);
1236 /* Replenish free list buffers if pending falls below low water mark */
1238 uint32_t avail
= csio_wr_avail_qcredits(flq
);
1240 /* Make sure in FLQ, atleast 1 credit (8 FL buffers)
1241 * remains unpopulated otherwise HW thinks
1244 csio_wr_update_fl(hw
, flq
, (flq
->credits
- 8) - avail
);
1245 csio_wr_ring_fldb(hw
, flq
);
1250 /* Now inform SGE about our incremental index value */
1251 csio_wr_reg32(hw
, CIDXINC(q
->inc_idx
) |
1252 INGRESSQID(q
->un
.iq
.physiqid
) |
1253 TIMERREG(csio_sge_timer_reg
),
1254 MYPF_REG(SGE_PF_GTS
));
1255 q
->stats
.n_tot_rsps
+= q
->inc_idx
;
1263 csio_wr_process_iq_idx(struct csio_hw
*hw
, int qidx
,
1264 void (*iq_handler
)(struct csio_hw
*, void *,
1265 uint32_t, struct csio_fl_dma_buf
*,
1269 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1270 struct csio_q
*iq
= wrm
->q_arr
[qidx
];
1272 return csio_wr_process_iq(hw
, iq
, iq_handler
, priv
);
1276 csio_closest_timer(struct csio_sge
*s
, int time
)
1278 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1280 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
1281 delta
= time
- s
->timer_val
[i
];
1284 if (delta
< min_delta
) {
1293 csio_closest_thresh(struct csio_sge
*s
, int cnt
)
1295 int i
, delta
, match
= 0, min_delta
= INT_MAX
;
1297 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
1298 delta
= cnt
- s
->counter_val
[i
];
1301 if (delta
< min_delta
) {
1310 csio_wr_fixup_host_params(struct csio_hw
*hw
)
1312 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1313 struct csio_sge
*sge
= &wrm
->sge
;
1314 uint32_t clsz
= L1_CACHE_BYTES
;
1315 uint32_t s_hps
= PAGE_SHIFT
- 10;
1316 uint32_t ingpad
= 0;
1317 uint32_t stat_len
= clsz
> 64 ? 128 : 64;
1319 csio_wr_reg32(hw
, HOSTPAGESIZEPF0(s_hps
) | HOSTPAGESIZEPF1(s_hps
) |
1320 HOSTPAGESIZEPF2(s_hps
) | HOSTPAGESIZEPF3(s_hps
) |
1321 HOSTPAGESIZEPF4(s_hps
) | HOSTPAGESIZEPF5(s_hps
) |
1322 HOSTPAGESIZEPF6(s_hps
) | HOSTPAGESIZEPF7(s_hps
),
1323 SGE_HOST_PAGE_SIZE
);
1325 sge
->csio_fl_align
= clsz
< 32 ? 32 : clsz
;
1326 ingpad
= ilog2(sge
->csio_fl_align
) - 5;
1328 csio_set_reg_field(hw
, SGE_CONTROL
, INGPADBOUNDARY_MASK
|
1329 EGRSTATUSPAGESIZE(1),
1330 INGPADBOUNDARY(ingpad
) |
1331 EGRSTATUSPAGESIZE(stat_len
!= 64));
1333 /* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
1334 csio_wr_reg32(hw
, PAGE_SIZE
, SGE_FL_BUFFER_SIZE0
);
1337 * If using hard params, the following will get set correctly
1338 * in csio_wr_set_sge().
1340 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
) {
1342 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE2
) +
1343 sge
->csio_fl_align
- 1) & ~(sge
->csio_fl_align
- 1),
1344 SGE_FL_BUFFER_SIZE2
);
1346 (csio_rd_reg32(hw
, SGE_FL_BUFFER_SIZE3
) +
1347 sge
->csio_fl_align
- 1) & ~(sge
->csio_fl_align
- 1),
1348 SGE_FL_BUFFER_SIZE3
);
1351 csio_wr_reg32(hw
, HPZ0(PAGE_SHIFT
- 12), ULP_RX_TDDP_PSZ
);
1353 /* default value of rx_dma_offset of the NIC driver */
1354 csio_set_reg_field(hw
, SGE_CONTROL
, PKTSHIFT_MASK
,
1355 PKTSHIFT(CSIO_SGE_RX_DMA_OFFSET
));
1357 csio_hw_tp_wr_bits_indirect(hw
, TP_INGRESS_CONFIG
,
1358 CSUM_HAS_PSEUDO_HDR
, 0);
1362 csio_init_intr_coalesce_parms(struct csio_hw
*hw
)
1364 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1365 struct csio_sge
*sge
= &wrm
->sge
;
1367 csio_sge_thresh_reg
= csio_closest_thresh(sge
, csio_intr_coalesce_cnt
);
1368 if (csio_intr_coalesce_cnt
) {
1369 csio_sge_thresh_reg
= 0;
1370 csio_sge_timer_reg
= X_TIMERREG_RESTART_COUNTER
;
1374 csio_sge_timer_reg
= csio_closest_timer(sge
, csio_intr_coalesce_time
);
1378 * csio_wr_get_sge - Get SGE register values.
1381 * Used by non-master functions and by master-functions relying on config file.
1384 csio_wr_get_sge(struct csio_hw
*hw
)
1386 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1387 struct csio_sge
*sge
= &wrm
->sge
;
1390 u32 timer_value_0_and_1
, timer_value_2_and_3
, timer_value_4_and_5
;
1391 u32 ingress_rx_threshold
;
1393 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL
);
1395 ingpad
= INGPADBOUNDARY_GET(sge
->sge_control
);
1398 case X_INGPCIEBOUNDARY_32B
:
1399 sge
->csio_fl_align
= 32; break;
1400 case X_INGPCIEBOUNDARY_64B
:
1401 sge
->csio_fl_align
= 64; break;
1402 case X_INGPCIEBOUNDARY_128B
:
1403 sge
->csio_fl_align
= 128; break;
1404 case X_INGPCIEBOUNDARY_256B
:
1405 sge
->csio_fl_align
= 256; break;
1406 case X_INGPCIEBOUNDARY_512B
:
1407 sge
->csio_fl_align
= 512; break;
1408 case X_INGPCIEBOUNDARY_1024B
:
1409 sge
->csio_fl_align
= 1024; break;
1410 case X_INGPCIEBOUNDARY_2048B
:
1411 sge
->csio_fl_align
= 2048; break;
1412 case X_INGPCIEBOUNDARY_4096B
:
1413 sge
->csio_fl_align
= 4096; break;
1416 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1417 csio_get_flbuf_size(hw
, sge
, i
);
1419 timer_value_0_and_1
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_0_AND_1
);
1420 timer_value_2_and_3
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_2_AND_3
);
1421 timer_value_4_and_5
= csio_rd_reg32(hw
, SGE_TIMER_VALUE_4_AND_5
);
1423 sge
->timer_val
[0] = (uint16_t)csio_core_ticks_to_us(hw
,
1424 TIMERVALUE0_GET(timer_value_0_and_1
));
1425 sge
->timer_val
[1] = (uint16_t)csio_core_ticks_to_us(hw
,
1426 TIMERVALUE1_GET(timer_value_0_and_1
));
1427 sge
->timer_val
[2] = (uint16_t)csio_core_ticks_to_us(hw
,
1428 TIMERVALUE2_GET(timer_value_2_and_3
));
1429 sge
->timer_val
[3] = (uint16_t)csio_core_ticks_to_us(hw
,
1430 TIMERVALUE3_GET(timer_value_2_and_3
));
1431 sge
->timer_val
[4] = (uint16_t)csio_core_ticks_to_us(hw
,
1432 TIMERVALUE4_GET(timer_value_4_and_5
));
1433 sge
->timer_val
[5] = (uint16_t)csio_core_ticks_to_us(hw
,
1434 TIMERVALUE5_GET(timer_value_4_and_5
));
1436 ingress_rx_threshold
= csio_rd_reg32(hw
, SGE_INGRESS_RX_THRESHOLD
);
1437 sge
->counter_val
[0] = THRESHOLD_0_GET(ingress_rx_threshold
);
1438 sge
->counter_val
[1] = THRESHOLD_1_GET(ingress_rx_threshold
);
1439 sge
->counter_val
[2] = THRESHOLD_2_GET(ingress_rx_threshold
);
1440 sge
->counter_val
[3] = THRESHOLD_3_GET(ingress_rx_threshold
);
1442 csio_init_intr_coalesce_parms(hw
);
1446 * csio_wr_set_sge - Initialize SGE registers
1449 * Used by Master function to initialize SGE registers in the absence
1453 csio_wr_set_sge(struct csio_hw
*hw
)
1455 struct csio_wrm
*wrm
= csio_hw_to_wrm(hw
);
1456 struct csio_sge
*sge
= &wrm
->sge
;
1460 * Set up our basic SGE mode to deliver CPL messages to our Ingress
1461 * Queue and Packet Date to the Free List.
1463 csio_set_reg_field(hw
, SGE_CONTROL
, RXPKTCPLMODE(1), RXPKTCPLMODE(1));
1465 sge
->sge_control
= csio_rd_reg32(hw
, SGE_CONTROL
);
1467 /* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
1470 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
1471 * and generate an interrupt when this occurs so we can recover.
1473 csio_set_reg_field(hw
, SGE_DBFIFO_STATUS
,
1474 HP_INT_THRESH(HP_INT_THRESH_MASK
) |
1475 CSIO_HW_LP_INT_THRESH(hw
, CSIO_HW_M_LP_INT_THRESH(hw
)),
1476 HP_INT_THRESH(CSIO_SGE_DBFIFO_INT_THRESH
) |
1477 CSIO_HW_LP_INT_THRESH(hw
, CSIO_SGE_DBFIFO_INT_THRESH
));
1479 csio_set_reg_field(hw
, SGE_DOORBELL_CONTROL
, ENABLE_DROP
,
1482 /* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
1484 CSIO_SET_FLBUF_SIZE(hw
, 1, CSIO_SGE_FLBUF_SIZE1
);
1485 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE2
+ sge
->csio_fl_align
- 1)
1486 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE2
);
1487 csio_wr_reg32(hw
, (CSIO_SGE_FLBUF_SIZE3
+ sge
->csio_fl_align
- 1)
1488 & ~(sge
->csio_fl_align
- 1), SGE_FL_BUFFER_SIZE3
);
1489 CSIO_SET_FLBUF_SIZE(hw
, 4, CSIO_SGE_FLBUF_SIZE4
);
1490 CSIO_SET_FLBUF_SIZE(hw
, 5, CSIO_SGE_FLBUF_SIZE5
);
1491 CSIO_SET_FLBUF_SIZE(hw
, 6, CSIO_SGE_FLBUF_SIZE6
);
1492 CSIO_SET_FLBUF_SIZE(hw
, 7, CSIO_SGE_FLBUF_SIZE7
);
1493 CSIO_SET_FLBUF_SIZE(hw
, 8, CSIO_SGE_FLBUF_SIZE8
);
1495 for (i
= 0; i
< CSIO_SGE_FL_SIZE_REGS
; i
++)
1496 csio_get_flbuf_size(hw
, sge
, i
);
1498 /* Initialize interrupt coalescing attributes */
1499 sge
->timer_val
[0] = CSIO_SGE_TIMER_VAL_0
;
1500 sge
->timer_val
[1] = CSIO_SGE_TIMER_VAL_1
;
1501 sge
->timer_val
[2] = CSIO_SGE_TIMER_VAL_2
;
1502 sge
->timer_val
[3] = CSIO_SGE_TIMER_VAL_3
;
1503 sge
->timer_val
[4] = CSIO_SGE_TIMER_VAL_4
;
1504 sge
->timer_val
[5] = CSIO_SGE_TIMER_VAL_5
;
1506 sge
->counter_val
[0] = CSIO_SGE_INT_CNT_VAL_0
;
1507 sge
->counter_val
[1] = CSIO_SGE_INT_CNT_VAL_1
;
1508 sge
->counter_val
[2] = CSIO_SGE_INT_CNT_VAL_2
;
1509 sge
->counter_val
[3] = CSIO_SGE_INT_CNT_VAL_3
;
1511 csio_wr_reg32(hw
, THRESHOLD_0(sge
->counter_val
[0]) |
1512 THRESHOLD_1(sge
->counter_val
[1]) |
1513 THRESHOLD_2(sge
->counter_val
[2]) |
1514 THRESHOLD_3(sge
->counter_val
[3]),
1515 SGE_INGRESS_RX_THRESHOLD
);
1518 TIMERVALUE0(csio_us_to_core_ticks(hw
, sge
->timer_val
[0])) |
1519 TIMERVALUE1(csio_us_to_core_ticks(hw
, sge
->timer_val
[1])),
1520 SGE_TIMER_VALUE_0_AND_1
);
1523 TIMERVALUE2(csio_us_to_core_ticks(hw
, sge
->timer_val
[2])) |
1524 TIMERVALUE3(csio_us_to_core_ticks(hw
, sge
->timer_val
[3])),
1525 SGE_TIMER_VALUE_2_AND_3
);
1528 TIMERVALUE4(csio_us_to_core_ticks(hw
, sge
->timer_val
[4])) |
1529 TIMERVALUE5(csio_us_to_core_ticks(hw
, sge
->timer_val
[5])),
1530 SGE_TIMER_VALUE_4_AND_5
);
1532 csio_init_intr_coalesce_parms(hw
);
1536 csio_wr_sge_init(struct csio_hw
*hw
)
1539 * If we are master and chip is not initialized:
1540 * - If we plan to use the config file, we need to fixup some
1541 * host specific registers, and read the rest of the SGE
1543 * - If we dont plan to use the config file, we need to initialize
1544 * SGE entirely, including fixing the host specific registers.
1545 * If we are master and chip is initialized, just read and work off of
1546 * the already initialized SGE values.
1547 * If we arent the master, we are only allowed to read and work off of
1548 * the already initialized SGE values.
1550 * Therefore, before calling this function, we assume that the master-
1551 * ship of the card, state and whether to use config file or not, have
1552 * already been decided.
1554 if (csio_is_hw_master(hw
)) {
1555 if (hw
->fw_state
!= CSIO_DEV_STATE_INIT
)
1556 csio_wr_fixup_host_params(hw
);
1558 if (hw
->flags
& CSIO_HWF_USING_SOFT_PARAMS
)
1559 csio_wr_get_sge(hw
);
1561 csio_wr_set_sge(hw
);
1563 csio_wr_get_sge(hw
);
1567 * csio_wrm_init - Initialize Work request module.
1571 * Allocates memory for an array of queue pointers starting at q_arr.
1574 csio_wrm_init(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1579 csio_err(hw
, "Num queues is not set\n");
1583 wrm
->q_arr
= kzalloc(sizeof(struct csio_q
*) * wrm
->num_q
, GFP_KERNEL
);
1587 for (i
= 0; i
< wrm
->num_q
; i
++) {
1588 wrm
->q_arr
[i
] = kzalloc(sizeof(struct csio_q
), GFP_KERNEL
);
1589 if (!wrm
->q_arr
[i
]) {
1591 kfree(wrm
->q_arr
[i
]);
1606 * csio_wrm_exit - Initialize Work request module.
1610 * Uninitialize WR module. Free q_arr and pointers in it.
1611 * We have the additional job of freeing the DMA memory associated
1615 csio_wrm_exit(struct csio_wrm
*wrm
, struct csio_hw
*hw
)
1620 struct csio_dma_buf
*buf
;
1622 for (i
= 0; i
< wrm
->num_q
; i
++) {
1625 if (wrm
->free_qidx
&& (i
< wrm
->free_qidx
)) {
1626 if (q
->type
== CSIO_FREELIST
) {
1629 for (j
= 0; j
< q
->credits
; j
++) {
1630 buf
= &q
->un
.fl
.bufs
[j
];
1633 pci_free_consistent(hw
->pdev
, buf
->len
,
1637 kfree(q
->un
.fl
.bufs
);
1639 pci_free_consistent(hw
->pdev
, q
->size
,
1640 q
->vstart
, q
->pstart
);
1645 hw
->flags
&= ~CSIO_HWF_Q_MEM_ALLOCED
;