2 * PXA2xx SPI DMA engine support.
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/pxa2xx_ssp.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sizes.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/pxa2xx_spi.h>
22 #include "spi-pxa2xx.h"
24 static int pxa2xx_spi_map_dma_buffer(struct driver_data
*drv_data
,
25 enum dma_data_direction dir
)
27 int i
, nents
, len
= drv_data
->len
;
28 struct scatterlist
*sg
;
29 struct device
*dmadev
;
34 * Some DMA controllers have problems transferring buffers that are
35 * not multiple of 4 bytes. So we truncate the transfer so that it
36 * is suitable for such controllers, and handle the trailing bytes
37 * manually after the DMA completes.
39 * REVISIT: It would be better if this information could be
40 * retrieved directly from the DMA device in a similar way than
41 * ->copy_align etc. is done.
43 len
= ALIGN(drv_data
->len
, 4);
45 if (dir
== DMA_TO_DEVICE
) {
46 dmadev
= drv_data
->tx_chan
->device
->dev
;
47 sgt
= &drv_data
->tx_sgt
;
49 drv_data
->tx_map_len
= len
;
51 dmadev
= drv_data
->rx_chan
->device
->dev
;
52 sgt
= &drv_data
->rx_sgt
;
54 drv_data
->rx_map_len
= len
;
57 nents
= DIV_ROUND_UP(len
, SZ_2K
);
58 if (nents
!= sgt
->nents
) {
62 ret
= sg_alloc_table(sgt
, nents
, GFP_ATOMIC
);
68 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
69 size_t bytes
= min_t(size_t, len
, SZ_2K
);
72 sg_set_buf(sg
, pbuf
, bytes
);
74 sg_set_buf(sg
, drv_data
->dummy
, bytes
);
80 nents
= dma_map_sg(dmadev
, sgt
->sgl
, sgt
->nents
, dir
);
87 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data
*drv_data
,
88 enum dma_data_direction dir
)
90 struct device
*dmadev
;
93 if (dir
== DMA_TO_DEVICE
) {
94 dmadev
= drv_data
->tx_chan
->device
->dev
;
95 sgt
= &drv_data
->tx_sgt
;
97 dmadev
= drv_data
->rx_chan
->device
->dev
;
98 sgt
= &drv_data
->rx_sgt
;
101 dma_unmap_sg(dmadev
, sgt
->sgl
, sgt
->nents
, dir
);
104 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data
*drv_data
)
106 if (!drv_data
->dma_mapped
)
109 pxa2xx_spi_unmap_dma_buffer(drv_data
, DMA_FROM_DEVICE
);
110 pxa2xx_spi_unmap_dma_buffer(drv_data
, DMA_TO_DEVICE
);
112 drv_data
->dma_mapped
= 0;
115 static void pxa2xx_spi_dma_transfer_complete(struct driver_data
*drv_data
,
118 struct spi_message
*msg
= drv_data
->cur_msg
;
121 * It is possible that one CPU is handling ROR interrupt and other
122 * just gets DMA completion. Calling pump_transfers() twice for the
123 * same transfer leads to problems thus we prevent concurrent calls
124 * by using ->dma_running.
126 if (atomic_dec_and_test(&drv_data
->dma_running
)) {
127 void __iomem
*reg
= drv_data
->ioaddr
;
130 * If the other CPU is still handling the ROR interrupt we
131 * might not know about the error yet. So we re-check the
132 * ROR bit here before we clear the status register.
135 u32 status
= read_SSSR(reg
) & drv_data
->mask_sr
;
136 error
= status
& SSSR_ROR
;
139 /* Clear status & disable interrupts */
140 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
141 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
142 if (!pxa25x_ssp_comp(drv_data
))
146 pxa2xx_spi_unmap_dma_buffers(drv_data
);
148 /* Handle the last bytes of unaligned transfer */
149 drv_data
->tx
+= drv_data
->tx_map_len
;
150 drv_data
->write(drv_data
);
152 drv_data
->rx
+= drv_data
->rx_map_len
;
153 drv_data
->read(drv_data
);
155 msg
->actual_length
+= drv_data
->len
;
156 msg
->state
= pxa2xx_spi_next_transfer(drv_data
);
158 /* In case we got an error we disable the SSP now */
159 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
161 msg
->state
= ERROR_STATE
;
164 tasklet_schedule(&drv_data
->pump_transfers
);
168 static void pxa2xx_spi_dma_callback(void *data
)
170 pxa2xx_spi_dma_transfer_complete(data
, false);
173 static struct dma_async_tx_descriptor
*
174 pxa2xx_spi_dma_prepare_one(struct driver_data
*drv_data
,
175 enum dma_transfer_direction dir
)
177 struct pxa2xx_spi_master
*pdata
= drv_data
->master_info
;
178 struct chip_data
*chip
= drv_data
->cur_chip
;
179 enum dma_slave_buswidth width
;
180 struct dma_slave_config cfg
;
181 struct dma_chan
*chan
;
182 struct sg_table
*sgt
;
185 switch (drv_data
->n_bytes
) {
187 width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
190 width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
193 width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
197 memset(&cfg
, 0, sizeof(cfg
));
200 if (dir
== DMA_MEM_TO_DEV
) {
201 cfg
.dst_addr
= drv_data
->ssdr_physical
;
202 cfg
.dst_addr_width
= width
;
203 cfg
.dst_maxburst
= chip
->dma_burst_size
;
204 cfg
.slave_id
= pdata
->tx_slave_id
;
206 sgt
= &drv_data
->tx_sgt
;
207 nents
= drv_data
->tx_nents
;
208 chan
= drv_data
->tx_chan
;
210 cfg
.src_addr
= drv_data
->ssdr_physical
;
211 cfg
.src_addr_width
= width
;
212 cfg
.src_maxburst
= chip
->dma_burst_size
;
213 cfg
.slave_id
= pdata
->rx_slave_id
;
215 sgt
= &drv_data
->rx_sgt
;
216 nents
= drv_data
->rx_nents
;
217 chan
= drv_data
->rx_chan
;
220 ret
= dmaengine_slave_config(chan
, &cfg
);
222 dev_warn(&drv_data
->pdev
->dev
, "DMA slave config failed\n");
226 return dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
,
227 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
230 static bool pxa2xx_spi_dma_filter(struct dma_chan
*chan
, void *param
)
232 const struct pxa2xx_spi_master
*pdata
= param
;
234 return chan
->chan_id
== pdata
->tx_chan_id
||
235 chan
->chan_id
== pdata
->rx_chan_id
;
238 bool pxa2xx_spi_dma_is_possible(size_t len
)
240 return len
<= MAX_DMA_LEN
;
243 int pxa2xx_spi_map_dma_buffers(struct driver_data
*drv_data
)
245 const struct chip_data
*chip
= drv_data
->cur_chip
;
248 if (!chip
->enable_dma
)
251 /* Don't bother with DMA if we can't do even a single burst */
252 if (drv_data
->len
< chip
->dma_burst_size
)
255 ret
= pxa2xx_spi_map_dma_buffer(drv_data
, DMA_TO_DEVICE
);
257 dev_warn(&drv_data
->pdev
->dev
, "failed to DMA map TX\n");
261 drv_data
->tx_nents
= ret
;
263 ret
= pxa2xx_spi_map_dma_buffer(drv_data
, DMA_FROM_DEVICE
);
265 pxa2xx_spi_unmap_dma_buffer(drv_data
, DMA_TO_DEVICE
);
266 dev_warn(&drv_data
->pdev
->dev
, "failed to DMA map RX\n");
270 drv_data
->rx_nents
= ret
;
274 irqreturn_t
pxa2xx_spi_dma_transfer(struct driver_data
*drv_data
)
278 status
= read_SSSR(drv_data
->ioaddr
) & drv_data
->mask_sr
;
279 if (status
& SSSR_ROR
) {
280 dev_err(&drv_data
->pdev
->dev
, "FIFO overrun\n");
282 dmaengine_terminate_all(drv_data
->rx_chan
);
283 dmaengine_terminate_all(drv_data
->tx_chan
);
285 pxa2xx_spi_dma_transfer_complete(drv_data
, true);
292 int pxa2xx_spi_dma_prepare(struct driver_data
*drv_data
, u32 dma_burst
)
294 struct dma_async_tx_descriptor
*tx_desc
, *rx_desc
;
296 tx_desc
= pxa2xx_spi_dma_prepare_one(drv_data
, DMA_MEM_TO_DEV
);
298 dev_err(&drv_data
->pdev
->dev
,
299 "failed to get DMA TX descriptor\n");
303 rx_desc
= pxa2xx_spi_dma_prepare_one(drv_data
, DMA_DEV_TO_MEM
);
305 dev_err(&drv_data
->pdev
->dev
,
306 "failed to get DMA RX descriptor\n");
310 /* We are ready when RX completes */
311 rx_desc
->callback
= pxa2xx_spi_dma_callback
;
312 rx_desc
->callback_param
= drv_data
;
314 dmaengine_submit(rx_desc
);
315 dmaengine_submit(tx_desc
);
319 void pxa2xx_spi_dma_start(struct driver_data
*drv_data
)
321 dma_async_issue_pending(drv_data
->rx_chan
);
322 dma_async_issue_pending(drv_data
->tx_chan
);
324 atomic_set(&drv_data
->dma_running
, 1);
327 int pxa2xx_spi_dma_setup(struct driver_data
*drv_data
)
329 struct pxa2xx_spi_master
*pdata
= drv_data
->master_info
;
330 struct device
*dev
= &drv_data
->pdev
->dev
;
334 dma_cap_set(DMA_SLAVE
, mask
);
336 drv_data
->dummy
= devm_kzalloc(dev
, SZ_2K
, GFP_KERNEL
);
337 if (!drv_data
->dummy
)
340 drv_data
->tx_chan
= dma_request_slave_channel_compat(mask
,
341 pxa2xx_spi_dma_filter
, pdata
, dev
, "tx");
342 if (!drv_data
->tx_chan
)
345 drv_data
->rx_chan
= dma_request_slave_channel_compat(mask
,
346 pxa2xx_spi_dma_filter
, pdata
, dev
, "rx");
347 if (!drv_data
->rx_chan
) {
348 dma_release_channel(drv_data
->tx_chan
);
349 drv_data
->tx_chan
= NULL
;
356 void pxa2xx_spi_dma_release(struct driver_data
*drv_data
)
358 if (drv_data
->rx_chan
) {
359 dmaengine_terminate_all(drv_data
->rx_chan
);
360 dma_release_channel(drv_data
->rx_chan
);
361 sg_free_table(&drv_data
->rx_sgt
);
362 drv_data
->rx_chan
= NULL
;
364 if (drv_data
->tx_chan
) {
365 dmaengine_terminate_all(drv_data
->tx_chan
);
366 dma_release_channel(drv_data
->tx_chan
);
367 sg_free_table(&drv_data
->tx_sgt
);
368 drv_data
->tx_chan
= NULL
;
372 void pxa2xx_spi_dma_resume(struct driver_data
*drv_data
)
376 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data
*chip
,
377 struct spi_device
*spi
,
378 u8 bits_per_word
, u32
*burst_code
,
381 struct pxa2xx_spi_chip
*chip_info
= spi
->controller_data
;
384 * If the DMA burst size is given in chip_info we use that,
385 * otherwise we use the default. Also we use the default FIFO
386 * thresholds for now.
388 *burst_code
= chip_info
? chip_info
->dma_burst_size
: 16;
389 *threshold
= SSCR1_RxTresh(RX_THRESH_DFLT
)
390 | SSCR1_TxTresh(TX_THRESH_DFLT
);