PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx-dma.c
blob3c0b55125f1eb6b85989a549fc50c51f114b9b0d
1 /*
2 * PXA2xx SPI DMA engine support.
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/pxa2xx_ssp.h>
17 #include <linux/scatterlist.h>
18 #include <linux/sizes.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/pxa2xx_spi.h>
22 #include "spi-pxa2xx.h"
24 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
25 enum dma_data_direction dir)
27 int i, nents, len = drv_data->len;
28 struct scatterlist *sg;
29 struct device *dmadev;
30 struct sg_table *sgt;
31 void *buf, *pbuf;
34 * Some DMA controllers have problems transferring buffers that are
35 * not multiple of 4 bytes. So we truncate the transfer so that it
36 * is suitable for such controllers, and handle the trailing bytes
37 * manually after the DMA completes.
39 * REVISIT: It would be better if this information could be
40 * retrieved directly from the DMA device in a similar way than
41 * ->copy_align etc. is done.
43 len = ALIGN(drv_data->len, 4);
45 if (dir == DMA_TO_DEVICE) {
46 dmadev = drv_data->tx_chan->device->dev;
47 sgt = &drv_data->tx_sgt;
48 buf = drv_data->tx;
49 drv_data->tx_map_len = len;
50 } else {
51 dmadev = drv_data->rx_chan->device->dev;
52 sgt = &drv_data->rx_sgt;
53 buf = drv_data->rx;
54 drv_data->rx_map_len = len;
57 nents = DIV_ROUND_UP(len, SZ_2K);
58 if (nents != sgt->nents) {
59 int ret;
61 sg_free_table(sgt);
62 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
63 if (ret)
64 return ret;
67 pbuf = buf;
68 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
69 size_t bytes = min_t(size_t, len, SZ_2K);
71 if (buf)
72 sg_set_buf(sg, pbuf, bytes);
73 else
74 sg_set_buf(sg, drv_data->dummy, bytes);
76 pbuf += bytes;
77 len -= bytes;
80 nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
81 if (!nents)
82 return -ENOMEM;
84 return nents;
87 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
88 enum dma_data_direction dir)
90 struct device *dmadev;
91 struct sg_table *sgt;
93 if (dir == DMA_TO_DEVICE) {
94 dmadev = drv_data->tx_chan->device->dev;
95 sgt = &drv_data->tx_sgt;
96 } else {
97 dmadev = drv_data->rx_chan->device->dev;
98 sgt = &drv_data->rx_sgt;
101 dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
104 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
106 if (!drv_data->dma_mapped)
107 return;
109 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
110 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
112 drv_data->dma_mapped = 0;
115 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
116 bool error)
118 struct spi_message *msg = drv_data->cur_msg;
121 * It is possible that one CPU is handling ROR interrupt and other
122 * just gets DMA completion. Calling pump_transfers() twice for the
123 * same transfer leads to problems thus we prevent concurrent calls
124 * by using ->dma_running.
126 if (atomic_dec_and_test(&drv_data->dma_running)) {
127 void __iomem *reg = drv_data->ioaddr;
130 * If the other CPU is still handling the ROR interrupt we
131 * might not know about the error yet. So we re-check the
132 * ROR bit here before we clear the status register.
134 if (!error) {
135 u32 status = read_SSSR(reg) & drv_data->mask_sr;
136 error = status & SSSR_ROR;
139 /* Clear status & disable interrupts */
140 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
141 write_SSSR_CS(drv_data, drv_data->clear_sr);
142 if (!pxa25x_ssp_comp(drv_data))
143 write_SSTO(0, reg);
145 if (!error) {
146 pxa2xx_spi_unmap_dma_buffers(drv_data);
148 /* Handle the last bytes of unaligned transfer */
149 drv_data->tx += drv_data->tx_map_len;
150 drv_data->write(drv_data);
152 drv_data->rx += drv_data->rx_map_len;
153 drv_data->read(drv_data);
155 msg->actual_length += drv_data->len;
156 msg->state = pxa2xx_spi_next_transfer(drv_data);
157 } else {
158 /* In case we got an error we disable the SSP now */
159 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
161 msg->state = ERROR_STATE;
164 tasklet_schedule(&drv_data->pump_transfers);
168 static void pxa2xx_spi_dma_callback(void *data)
170 pxa2xx_spi_dma_transfer_complete(data, false);
173 static struct dma_async_tx_descriptor *
174 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
175 enum dma_transfer_direction dir)
177 struct pxa2xx_spi_master *pdata = drv_data->master_info;
178 struct chip_data *chip = drv_data->cur_chip;
179 enum dma_slave_buswidth width;
180 struct dma_slave_config cfg;
181 struct dma_chan *chan;
182 struct sg_table *sgt;
183 int nents, ret;
185 switch (drv_data->n_bytes) {
186 case 1:
187 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
188 break;
189 case 2:
190 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
191 break;
192 default:
193 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
194 break;
197 memset(&cfg, 0, sizeof(cfg));
198 cfg.direction = dir;
200 if (dir == DMA_MEM_TO_DEV) {
201 cfg.dst_addr = drv_data->ssdr_physical;
202 cfg.dst_addr_width = width;
203 cfg.dst_maxburst = chip->dma_burst_size;
204 cfg.slave_id = pdata->tx_slave_id;
206 sgt = &drv_data->tx_sgt;
207 nents = drv_data->tx_nents;
208 chan = drv_data->tx_chan;
209 } else {
210 cfg.src_addr = drv_data->ssdr_physical;
211 cfg.src_addr_width = width;
212 cfg.src_maxburst = chip->dma_burst_size;
213 cfg.slave_id = pdata->rx_slave_id;
215 sgt = &drv_data->rx_sgt;
216 nents = drv_data->rx_nents;
217 chan = drv_data->rx_chan;
220 ret = dmaengine_slave_config(chan, &cfg);
221 if (ret) {
222 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
223 return NULL;
226 return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
227 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
230 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
232 const struct pxa2xx_spi_master *pdata = param;
234 return chan->chan_id == pdata->tx_chan_id ||
235 chan->chan_id == pdata->rx_chan_id;
238 bool pxa2xx_spi_dma_is_possible(size_t len)
240 return len <= MAX_DMA_LEN;
243 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
245 const struct chip_data *chip = drv_data->cur_chip;
246 int ret;
248 if (!chip->enable_dma)
249 return 0;
251 /* Don't bother with DMA if we can't do even a single burst */
252 if (drv_data->len < chip->dma_burst_size)
253 return 0;
255 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
256 if (ret <= 0) {
257 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
258 return 0;
261 drv_data->tx_nents = ret;
263 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
264 if (ret <= 0) {
265 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
266 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
267 return 0;
270 drv_data->rx_nents = ret;
271 return 1;
274 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
276 u32 status;
278 status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
279 if (status & SSSR_ROR) {
280 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
282 dmaengine_terminate_all(drv_data->rx_chan);
283 dmaengine_terminate_all(drv_data->tx_chan);
285 pxa2xx_spi_dma_transfer_complete(drv_data, true);
286 return IRQ_HANDLED;
289 return IRQ_NONE;
292 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
294 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
296 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
297 if (!tx_desc) {
298 dev_err(&drv_data->pdev->dev,
299 "failed to get DMA TX descriptor\n");
300 return -EBUSY;
303 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
304 if (!rx_desc) {
305 dev_err(&drv_data->pdev->dev,
306 "failed to get DMA RX descriptor\n");
307 return -EBUSY;
310 /* We are ready when RX completes */
311 rx_desc->callback = pxa2xx_spi_dma_callback;
312 rx_desc->callback_param = drv_data;
314 dmaengine_submit(rx_desc);
315 dmaengine_submit(tx_desc);
316 return 0;
319 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
321 dma_async_issue_pending(drv_data->rx_chan);
322 dma_async_issue_pending(drv_data->tx_chan);
324 atomic_set(&drv_data->dma_running, 1);
327 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
329 struct pxa2xx_spi_master *pdata = drv_data->master_info;
330 struct device *dev = &drv_data->pdev->dev;
331 dma_cap_mask_t mask;
333 dma_cap_zero(mask);
334 dma_cap_set(DMA_SLAVE, mask);
336 drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
337 if (!drv_data->dummy)
338 return -ENOMEM;
340 drv_data->tx_chan = dma_request_slave_channel_compat(mask,
341 pxa2xx_spi_dma_filter, pdata, dev, "tx");
342 if (!drv_data->tx_chan)
343 return -ENODEV;
345 drv_data->rx_chan = dma_request_slave_channel_compat(mask,
346 pxa2xx_spi_dma_filter, pdata, dev, "rx");
347 if (!drv_data->rx_chan) {
348 dma_release_channel(drv_data->tx_chan);
349 drv_data->tx_chan = NULL;
350 return -ENODEV;
353 return 0;
356 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
358 if (drv_data->rx_chan) {
359 dmaengine_terminate_all(drv_data->rx_chan);
360 dma_release_channel(drv_data->rx_chan);
361 sg_free_table(&drv_data->rx_sgt);
362 drv_data->rx_chan = NULL;
364 if (drv_data->tx_chan) {
365 dmaengine_terminate_all(drv_data->tx_chan);
366 dma_release_channel(drv_data->tx_chan);
367 sg_free_table(&drv_data->tx_sgt);
368 drv_data->tx_chan = NULL;
372 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
376 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
377 struct spi_device *spi,
378 u8 bits_per_word, u32 *burst_code,
379 u32 *threshold)
381 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
384 * If the DMA burst size is given in chip_info we use that,
385 * otherwise we use the default. Also we use the default FIFO
386 * thresholds for now.
388 *burst_code = chip_info ? chip_info->dma_burst_size : 16;
389 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
390 | SSCR1_TxTresh(TX_THRESH_DFLT);
392 return 0;