PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / spi / spi-sirf.c
blobe430689c3837360f02e5e6d7e70a40ceae712777
1 /*
2 * SPI bus driver for CSR SiRFprimaII
4 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
6 * Licensed under GPLv2 or later.
7 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/clk.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/of.h>
16 #include <linux/bitops.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/of_gpio.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi_bitbang.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-direction.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sirfsoc_dma.h>
27 #define DRIVER_NAME "sirfsoc_spi"
29 #define SIRFSOC_SPI_CTRL 0x0000
30 #define SIRFSOC_SPI_CMD 0x0004
31 #define SIRFSOC_SPI_TX_RX_EN 0x0008
32 #define SIRFSOC_SPI_INT_EN 0x000C
33 #define SIRFSOC_SPI_INT_STATUS 0x0010
34 #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
35 #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
36 #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
37 #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
38 #define SIRFSOC_SPI_TXFIFO_OP 0x0110
39 #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
40 #define SIRFSOC_SPI_TXFIFO_DATA 0x0118
41 #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
42 #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
43 #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
44 #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
45 #define SIRFSOC_SPI_RXFIFO_OP 0x0130
46 #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
47 #define SIRFSOC_SPI_RXFIFO_DATA 0x0138
48 #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
50 /* SPI CTRL register defines */
51 #define SIRFSOC_SPI_SLV_MODE BIT(16)
52 #define SIRFSOC_SPI_CMD_MODE BIT(17)
53 #define SIRFSOC_SPI_CS_IO_OUT BIT(18)
54 #define SIRFSOC_SPI_CS_IO_MODE BIT(19)
55 #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
56 #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
57 #define SIRFSOC_SPI_TRAN_MSB BIT(22)
58 #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
59 #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
60 #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
61 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
62 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
63 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
64 #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
65 #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
66 #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
67 #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
69 /* Interrupt Enable */
70 #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
71 #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
72 #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
73 #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
74 #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
75 #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
76 #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
77 #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
78 #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
79 #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
80 #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
82 #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
84 /* Interrupt status */
85 #define SIRFSOC_SPI_RX_DONE BIT(0)
86 #define SIRFSOC_SPI_TX_DONE BIT(1)
87 #define SIRFSOC_SPI_RX_OFLOW BIT(2)
88 #define SIRFSOC_SPI_TX_UFLOW BIT(3)
89 #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
90 #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
91 #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
92 #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
93 #define SIRFSOC_SPI_FRM_END BIT(10)
95 /* TX RX enable */
96 #define SIRFSOC_SPI_RX_EN BIT(0)
97 #define SIRFSOC_SPI_TX_EN BIT(1)
98 #define SIRFSOC_SPI_CMD_TX_EN BIT(2)
100 #define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
101 #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
103 /* FIFO OPs */
104 #define SIRFSOC_SPI_FIFO_RESET BIT(0)
105 #define SIRFSOC_SPI_FIFO_START BIT(1)
107 /* FIFO CTRL */
108 #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
109 #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
110 #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
112 /* FIFO Status */
113 #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
114 #define SIRFSOC_SPI_FIFO_FULL BIT(8)
115 #define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
117 /* 256 bytes rx/tx FIFO */
118 #define SIRFSOC_SPI_FIFO_SIZE 256
119 #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
121 #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
122 #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
123 #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
124 #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
127 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
128 * due to the limitation of dma controller
131 #define ALIGNED(x) (!((u32)x & 0x3))
132 #define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
133 ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))
135 struct sirfsoc_spi {
136 struct spi_bitbang bitbang;
137 struct completion rx_done;
138 struct completion tx_done;
140 void __iomem *base;
141 u32 ctrl_freq; /* SPI controller clock speed */
142 struct clk *clk;
144 /* rx & tx bufs from the spi_transfer */
145 const void *tx;
146 void *rx;
148 /* place received word into rx buffer */
149 void (*rx_word) (struct sirfsoc_spi *);
150 /* get word from tx buffer for sending */
151 void (*tx_word) (struct sirfsoc_spi *);
153 /* number of words left to be tranmitted/received */
154 unsigned int left_tx_word;
155 unsigned int left_rx_word;
157 /* rx & tx DMA channels */
158 struct dma_chan *rx_chan;
159 struct dma_chan *tx_chan;
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 void *dummypage;
163 int word_width; /* in bytes */
165 int chipselect[0];
168 static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
170 u32 data;
171 u8 *rx = sspi->rx;
173 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
175 if (rx) {
176 *rx++ = (u8) data;
177 sspi->rx = rx;
180 sspi->left_rx_word--;
183 static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
185 u32 data = 0;
186 const u8 *tx = sspi->tx;
188 if (tx) {
189 data = *tx++;
190 sspi->tx = tx;
193 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
194 sspi->left_tx_word--;
197 static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
199 u32 data;
200 u16 *rx = sspi->rx;
202 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
204 if (rx) {
205 *rx++ = (u16) data;
206 sspi->rx = rx;
209 sspi->left_rx_word--;
212 static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
214 u32 data = 0;
215 const u16 *tx = sspi->tx;
217 if (tx) {
218 data = *tx++;
219 sspi->tx = tx;
222 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
223 sspi->left_tx_word--;
226 static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
228 u32 data;
229 u32 *rx = sspi->rx;
231 data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
233 if (rx) {
234 *rx++ = (u32) data;
235 sspi->rx = rx;
238 sspi->left_rx_word--;
242 static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
244 u32 data = 0;
245 const u32 *tx = sspi->tx;
247 if (tx) {
248 data = *tx++;
249 sspi->tx = tx;
252 writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
253 sspi->left_tx_word--;
256 static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
258 struct sirfsoc_spi *sspi = dev_id;
259 u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
261 writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
263 /* Error Conditions */
264 if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
265 spi_stat & SIRFSOC_SPI_TX_UFLOW) {
266 complete(&sspi->rx_done);
267 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
270 if (spi_stat & (SIRFSOC_SPI_FRM_END
271 | SIRFSOC_SPI_RXFIFO_THD_REACH))
272 while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
273 & SIRFSOC_SPI_FIFO_EMPTY)) &&
274 sspi->left_rx_word)
275 sspi->rx_word(sspi);
277 if (spi_stat & (SIRFSOC_SPI_FIFO_EMPTY
278 | SIRFSOC_SPI_TXFIFO_THD_REACH))
279 while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
280 & SIRFSOC_SPI_FIFO_FULL)) &&
281 sspi->left_tx_word)
282 sspi->tx_word(sspi);
284 /* Received all words */
285 if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) {
286 complete(&sspi->rx_done);
287 writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
289 return IRQ_HANDLED;
292 static void spi_sirfsoc_dma_fini_callback(void *data)
294 struct completion *dma_complete = data;
296 complete(dma_complete);
299 static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
301 struct sirfsoc_spi *sspi;
302 int timeout = t->len * 10;
303 sspi = spi_master_get_devdata(spi->master);
305 sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
306 sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
307 sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
308 reinit_completion(&sspi->rx_done);
309 reinit_completion(&sspi->tx_done);
311 writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
313 if (sspi->left_tx_word == 1) {
314 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
315 SIRFSOC_SPI_ENA_AUTO_CLR,
316 sspi->base + SIRFSOC_SPI_CTRL);
317 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
318 writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
319 } else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word <
320 SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
321 writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
322 SIRFSOC_SPI_MUL_DAT_MODE |
323 SIRFSOC_SPI_ENA_AUTO_CLR,
324 sspi->base + SIRFSOC_SPI_CTRL);
325 writel(sspi->left_tx_word - 1,
326 sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
327 writel(sspi->left_tx_word - 1,
328 sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
329 } else {
330 writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
331 sspi->base + SIRFSOC_SPI_CTRL);
332 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
333 writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
336 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
337 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
338 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
339 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
341 if (IS_DMA_VALID(t)) {
342 struct dma_async_tx_descriptor *rx_desc, *tx_desc;
344 sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
345 rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
346 sspi->dst_start, t->len, DMA_DEV_TO_MEM,
347 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
348 rx_desc->callback = spi_sirfsoc_dma_fini_callback;
349 rx_desc->callback_param = &sspi->rx_done;
351 sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE);
352 tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
353 sspi->src_start, t->len, DMA_MEM_TO_DEV,
354 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
355 tx_desc->callback = spi_sirfsoc_dma_fini_callback;
356 tx_desc->callback_param = &sspi->tx_done;
358 dmaengine_submit(tx_desc);
359 dmaengine_submit(rx_desc);
360 dma_async_issue_pending(sspi->tx_chan);
361 dma_async_issue_pending(sspi->rx_chan);
362 } else {
363 /* Send the first word to trigger the whole tx/rx process */
364 sspi->tx_word(sspi);
366 writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
367 SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
368 SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
369 SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
372 writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
374 if (!IS_DMA_VALID(t)) { /* for PIO */
375 if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
376 dev_err(&spi->dev, "transfer timeout\n");
377 } else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
378 dev_err(&spi->dev, "transfer timeout\n");
379 dmaengine_terminate_all(sspi->rx_chan);
380 } else
381 sspi->left_rx_word = 0;
384 * we only wait tx-done event if transferring by DMA. for PIO,
385 * we get rx data by writing tx data, so if rx is done, tx has
386 * done earlier
388 if (IS_DMA_VALID(t)) {
389 if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
390 dev_err(&spi->dev, "transfer timeout\n");
391 dmaengine_terminate_all(sspi->tx_chan);
395 if (IS_DMA_VALID(t)) {
396 dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
397 dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
400 /* TX, RX FIFO stop */
401 writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
402 writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
403 writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
404 writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
406 return t->len - sspi->left_rx_word * sspi->word_width;
409 static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
411 struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
413 if (sspi->chipselect[spi->chip_select] == 0) {
414 u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
415 switch (value) {
416 case BITBANG_CS_ACTIVE:
417 if (spi->mode & SPI_CS_HIGH)
418 regval |= SIRFSOC_SPI_CS_IO_OUT;
419 else
420 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
421 break;
422 case BITBANG_CS_INACTIVE:
423 if (spi->mode & SPI_CS_HIGH)
424 regval &= ~SIRFSOC_SPI_CS_IO_OUT;
425 else
426 regval |= SIRFSOC_SPI_CS_IO_OUT;
427 break;
429 writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
430 } else {
431 int gpio = sspi->chipselect[spi->chip_select];
432 gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
436 static int
437 spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
439 struct sirfsoc_spi *sspi;
440 u8 bits_per_word = 0;
441 int hz = 0;
442 u32 regval;
443 u32 txfifo_ctrl, rxfifo_ctrl;
444 u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
446 sspi = spi_master_get_devdata(spi->master);
448 bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
449 hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
451 regval = (sspi->ctrl_freq / (2 * hz)) - 1;
452 if (regval > 0xFFFF || regval < 0) {
453 dev_err(&spi->dev, "Speed %d not supported\n", hz);
454 return -EINVAL;
457 switch (bits_per_word) {
458 case 8:
459 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
460 sspi->rx_word = spi_sirfsoc_rx_word_u8;
461 sspi->tx_word = spi_sirfsoc_tx_word_u8;
462 txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
463 SIRFSOC_SPI_FIFO_WIDTH_BYTE;
464 rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
465 SIRFSOC_SPI_FIFO_WIDTH_BYTE;
466 sspi->word_width = 1;
467 break;
468 case 12:
469 case 16:
470 regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
471 SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
472 sspi->rx_word = spi_sirfsoc_rx_word_u16;
473 sspi->tx_word = spi_sirfsoc_tx_word_u16;
474 txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
475 SIRFSOC_SPI_FIFO_WIDTH_WORD;
476 rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
477 SIRFSOC_SPI_FIFO_WIDTH_WORD;
478 sspi->word_width = 2;
479 break;
480 case 32:
481 regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
482 sspi->rx_word = spi_sirfsoc_rx_word_u32;
483 sspi->tx_word = spi_sirfsoc_tx_word_u32;
484 txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
485 SIRFSOC_SPI_FIFO_WIDTH_DWORD;
486 rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
487 SIRFSOC_SPI_FIFO_WIDTH_DWORD;
488 sspi->word_width = 4;
489 break;
490 default:
491 BUG();
494 if (!(spi->mode & SPI_CS_HIGH))
495 regval |= SIRFSOC_SPI_CS_IDLE_STAT;
496 if (!(spi->mode & SPI_LSB_FIRST))
497 regval |= SIRFSOC_SPI_TRAN_MSB;
498 if (spi->mode & SPI_CPOL)
499 regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
502 * Data should be driven at least 1/2 cycle before the fetch edge to make
503 * sure that data gets stable at the fetch edge.
505 if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
506 (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
507 regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
508 else
509 regval |= SIRFSOC_SPI_DRV_POS_EDGE;
511 writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
512 SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
513 SIRFSOC_SPI_FIFO_HC(2),
514 sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
515 writel(SIRFSOC_SPI_FIFO_SC(2) |
516 SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
517 SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
518 sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
519 writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
520 writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
522 writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
524 if (IS_DMA_VALID(t)) {
525 /* Enable DMA mode for RX, TX */
526 writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
527 writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
528 } else {
529 /* Enable IO mode for RX, TX */
530 writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
531 writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
534 return 0;
537 static int spi_sirfsoc_setup(struct spi_device *spi)
539 if (!spi->max_speed_hz)
540 return -EINVAL;
542 return spi_sirfsoc_setup_transfer(spi, NULL);
545 static int spi_sirfsoc_probe(struct platform_device *pdev)
547 struct sirfsoc_spi *sspi;
548 struct spi_master *master;
549 struct resource *mem_res;
550 int num_cs, cs_gpio, irq;
551 u32 rx_dma_ch, tx_dma_ch;
552 dma_cap_mask_t dma_cap_mask;
553 int i;
554 int ret;
556 ret = of_property_read_u32(pdev->dev.of_node,
557 "sirf,spi-num-chipselects", &num_cs);
558 if (ret < 0) {
559 dev_err(&pdev->dev, "Unable to get chip select number\n");
560 goto err_cs;
563 ret = of_property_read_u32(pdev->dev.of_node,
564 "sirf,spi-dma-rx-channel", &rx_dma_ch);
565 if (ret < 0) {
566 dev_err(&pdev->dev, "Unable to get rx dma channel\n");
567 goto err_cs;
570 ret = of_property_read_u32(pdev->dev.of_node,
571 "sirf,spi-dma-tx-channel", &tx_dma_ch);
572 if (ret < 0) {
573 dev_err(&pdev->dev, "Unable to get tx dma channel\n");
574 goto err_cs;
577 master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
578 if (!master) {
579 dev_err(&pdev->dev, "Unable to allocate SPI master\n");
580 return -ENOMEM;
582 platform_set_drvdata(pdev, master);
583 sspi = spi_master_get_devdata(master);
585 master->num_chipselect = num_cs;
587 for (i = 0; i < master->num_chipselect; i++) {
588 cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
589 if (cs_gpio < 0) {
590 dev_err(&pdev->dev, "can't get cs gpio from DT\n");
591 ret = -ENODEV;
592 goto free_master;
595 sspi->chipselect[i] = cs_gpio;
596 if (cs_gpio == 0)
597 continue; /* use cs from spi controller */
599 ret = gpio_request(cs_gpio, DRIVER_NAME);
600 if (ret) {
601 while (i > 0) {
602 i--;
603 if (sspi->chipselect[i] > 0)
604 gpio_free(sspi->chipselect[i]);
606 dev_err(&pdev->dev, "fail to request cs gpios\n");
607 goto free_master;
611 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
612 sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
613 if (IS_ERR(sspi->base)) {
614 ret = PTR_ERR(sspi->base);
615 goto free_master;
618 irq = platform_get_irq(pdev, 0);
619 if (irq < 0) {
620 ret = -ENXIO;
621 goto free_master;
623 ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
624 DRIVER_NAME, sspi);
625 if (ret)
626 goto free_master;
628 sspi->bitbang.master = master;
629 sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
630 sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
631 sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
632 sspi->bitbang.master->setup = spi_sirfsoc_setup;
633 master->bus_num = pdev->id;
634 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
635 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
636 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
637 sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
639 /* request DMA channels */
640 dma_cap_zero(dma_cap_mask);
641 dma_cap_set(DMA_INTERLEAVE, dma_cap_mask);
643 sspi->rx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
644 (void *)rx_dma_ch);
645 if (!sspi->rx_chan) {
646 dev_err(&pdev->dev, "can not allocate rx dma channel\n");
647 ret = -ENODEV;
648 goto free_master;
650 sspi->tx_chan = dma_request_channel(dma_cap_mask, (dma_filter_fn)sirfsoc_dma_filter_id,
651 (void *)tx_dma_ch);
652 if (!sspi->tx_chan) {
653 dev_err(&pdev->dev, "can not allocate tx dma channel\n");
654 ret = -ENODEV;
655 goto free_rx_dma;
658 sspi->clk = clk_get(&pdev->dev, NULL);
659 if (IS_ERR(sspi->clk)) {
660 ret = PTR_ERR(sspi->clk);
661 goto free_tx_dma;
663 clk_prepare_enable(sspi->clk);
664 sspi->ctrl_freq = clk_get_rate(sspi->clk);
666 init_completion(&sspi->rx_done);
667 init_completion(&sspi->tx_done);
669 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
670 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
671 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
672 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
673 /* We are not using dummy delay between command and data */
674 writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
676 sspi->dummypage = kmalloc(2 * PAGE_SIZE, GFP_KERNEL);
677 if (!sspi->dummypage) {
678 ret = -ENOMEM;
679 goto free_clk;
682 ret = spi_bitbang_start(&sspi->bitbang);
683 if (ret)
684 goto free_dummypage;
686 dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
688 return 0;
689 free_dummypage:
690 kfree(sspi->dummypage);
691 free_clk:
692 clk_disable_unprepare(sspi->clk);
693 clk_put(sspi->clk);
694 free_tx_dma:
695 dma_release_channel(sspi->tx_chan);
696 free_rx_dma:
697 dma_release_channel(sspi->rx_chan);
698 free_master:
699 spi_master_put(master);
700 err_cs:
701 return ret;
704 static int spi_sirfsoc_remove(struct platform_device *pdev)
706 struct spi_master *master;
707 struct sirfsoc_spi *sspi;
708 int i;
710 master = platform_get_drvdata(pdev);
711 sspi = spi_master_get_devdata(master);
713 spi_bitbang_stop(&sspi->bitbang);
714 for (i = 0; i < master->num_chipselect; i++) {
715 if (sspi->chipselect[i] > 0)
716 gpio_free(sspi->chipselect[i]);
718 kfree(sspi->dummypage);
719 clk_disable_unprepare(sspi->clk);
720 clk_put(sspi->clk);
721 dma_release_channel(sspi->rx_chan);
722 dma_release_channel(sspi->tx_chan);
723 spi_master_put(master);
724 return 0;
727 #ifdef CONFIG_PM
728 static int spi_sirfsoc_suspend(struct device *dev)
730 struct spi_master *master = dev_get_drvdata(dev);
731 struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
733 clk_disable(sspi->clk);
734 return 0;
737 static int spi_sirfsoc_resume(struct device *dev)
739 struct spi_master *master = dev_get_drvdata(dev);
740 struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
742 clk_enable(sspi->clk);
743 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
744 writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
745 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
746 writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
748 return 0;
751 static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
752 .suspend = spi_sirfsoc_suspend,
753 .resume = spi_sirfsoc_resume,
755 #endif
757 static const struct of_device_id spi_sirfsoc_of_match[] = {
758 { .compatible = "sirf,prima2-spi", },
759 { .compatible = "sirf,marco-spi", },
762 MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);
764 static struct platform_driver spi_sirfsoc_driver = {
765 .driver = {
766 .name = DRIVER_NAME,
767 .owner = THIS_MODULE,
768 #ifdef CONFIG_PM
769 .pm = &spi_sirfsoc_pm_ops,
770 #endif
771 .of_match_table = spi_sirfsoc_of_match,
773 .probe = spi_sirfsoc_probe,
774 .remove = spi_sirfsoc_remove,
776 module_platform_driver(spi_sirfsoc_driver);
778 MODULE_DESCRIPTION("SiRF SoC SPI master driver");
779 MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
780 "Barry Song <Baohua.Song@csr.com>");
781 MODULE_LICENSE("GPL v2");