PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / spi / spi-tegra114.c
blob413c718434927f0d3278c051d15040639a68237a
1 /*
2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/reset.h>
37 #include <linux/spi/spi.h>
39 #define SPI_COMMAND1 0x000
40 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
41 #define SPI_PACKED (1 << 5)
42 #define SPI_TX_EN (1 << 11)
43 #define SPI_RX_EN (1 << 12)
44 #define SPI_BOTH_EN_BYTE (1 << 13)
45 #define SPI_BOTH_EN_BIT (1 << 14)
46 #define SPI_LSBYTE_FE (1 << 15)
47 #define SPI_LSBIT_FE (1 << 16)
48 #define SPI_BIDIROE (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
53 #define SPI_IDLE_SDA_MASK (3 << 18)
54 #define SPI_CS_SS_VAL (1 << 20)
55 #define SPI_CS_SW_HW (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57 /* n from 0 to 3 */
58 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
59 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
61 #define SPI_CS_SEL_0 (0 << 26)
62 #define SPI_CS_SEL_1 (1 << 26)
63 #define SPI_CS_SEL_2 (2 << 26)
64 #define SPI_CS_SEL_3 (3 << 26)
65 #define SPI_CS_SEL_MASK (3 << 26)
66 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
67 #define SPI_CONTROL_MODE_0 (0 << 28)
68 #define SPI_CONTROL_MODE_1 (1 << 28)
69 #define SPI_CONTROL_MODE_2 (2 << 28)
70 #define SPI_CONTROL_MODE_3 (3 << 28)
71 #define SPI_CONTROL_MODE_MASK (3 << 28)
72 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
73 #define SPI_M_S (1 << 30)
74 #define SPI_PIO (1 << 31)
76 #define SPI_COMMAND2 0x004
77 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
78 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
80 #define SPI_CS_TIMING1 0x008
81 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
82 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
83 ((((val) & 0xFFu) << ((cs) * 8)) | \
84 ((reg) & ~(0xFFu << ((cs) * 8))))
86 #define SPI_CS_TIMING2 0x00C
87 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
88 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
89 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
90 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
91 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
92 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
93 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
94 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
95 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
96 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
97 ((reg) & ~(1 << ((cs) * 8 + 5))))
98 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
99 (reg = (((val) & 0xF) << ((cs) * 8)) | \
100 ((reg) & ~(0xF << ((cs) * 8))))
102 #define SPI_TRANS_STATUS 0x010
103 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
104 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
105 #define SPI_RDY (1 << 30)
107 #define SPI_FIFO_STATUS 0x014
108 #define SPI_RX_FIFO_EMPTY (1 << 0)
109 #define SPI_RX_FIFO_FULL (1 << 1)
110 #define SPI_TX_FIFO_EMPTY (1 << 2)
111 #define SPI_TX_FIFO_FULL (1 << 3)
112 #define SPI_RX_FIFO_UNF (1 << 4)
113 #define SPI_RX_FIFO_OVF (1 << 5)
114 #define SPI_TX_FIFO_UNF (1 << 6)
115 #define SPI_TX_FIFO_OVF (1 << 7)
116 #define SPI_ERR (1 << 8)
117 #define SPI_TX_FIFO_FLUSH (1 << 14)
118 #define SPI_RX_FIFO_FLUSH (1 << 15)
119 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
120 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
121 #define SPI_FRAME_END (1 << 30)
122 #define SPI_CS_INACTIVE (1 << 31)
124 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
125 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
126 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
128 #define SPI_TX_DATA 0x018
129 #define SPI_RX_DATA 0x01C
131 #define SPI_DMA_CTL 0x020
132 #define SPI_TX_TRIG_1 (0 << 15)
133 #define SPI_TX_TRIG_4 (1 << 15)
134 #define SPI_TX_TRIG_8 (2 << 15)
135 #define SPI_TX_TRIG_16 (3 << 15)
136 #define SPI_TX_TRIG_MASK (3 << 15)
137 #define SPI_RX_TRIG_1 (0 << 19)
138 #define SPI_RX_TRIG_4 (1 << 19)
139 #define SPI_RX_TRIG_8 (2 << 19)
140 #define SPI_RX_TRIG_16 (3 << 19)
141 #define SPI_RX_TRIG_MASK (3 << 19)
142 #define SPI_IE_TX (1 << 28)
143 #define SPI_IE_RX (1 << 29)
144 #define SPI_CONT (1 << 30)
145 #define SPI_DMA (1 << 31)
146 #define SPI_DMA_EN SPI_DMA
148 #define SPI_DMA_BLK 0x024
149 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
151 #define SPI_TX_FIFO 0x108
152 #define SPI_RX_FIFO 0x188
153 #define MAX_CHIP_SELECT 4
154 #define SPI_FIFO_DEPTH 64
155 #define DATA_DIR_TX (1 << 0)
156 #define DATA_DIR_RX (1 << 1)
158 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
159 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
160 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
161 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
162 #define MAX_HOLD_CYCLES 16
163 #define SPI_DEFAULT_SPEED 25000000
165 struct tegra_spi_data {
166 struct device *dev;
167 struct spi_master *master;
168 spinlock_t lock;
170 struct clk *clk;
171 struct reset_control *rst;
172 void __iomem *base;
173 phys_addr_t phys;
174 unsigned irq;
175 u32 spi_max_frequency;
176 u32 cur_speed;
178 struct spi_device *cur_spi;
179 struct spi_device *cs_control;
180 unsigned cur_pos;
181 unsigned words_per_32bit;
182 unsigned bytes_per_word;
183 unsigned curr_dma_words;
184 unsigned cur_direction;
186 unsigned cur_rx_pos;
187 unsigned cur_tx_pos;
189 unsigned dma_buf_size;
190 unsigned max_buf_size;
191 bool is_curr_dma_xfer;
193 struct completion rx_dma_complete;
194 struct completion tx_dma_complete;
196 u32 tx_status;
197 u32 rx_status;
198 u32 status_reg;
199 bool is_packed;
201 u32 command1_reg;
202 u32 dma_control_reg;
203 u32 def_command1_reg;
205 struct completion xfer_completion;
206 struct spi_transfer *curr_xfer;
207 struct dma_chan *rx_dma_chan;
208 u32 *rx_dma_buf;
209 dma_addr_t rx_dma_phys;
210 struct dma_async_tx_descriptor *rx_dma_desc;
212 struct dma_chan *tx_dma_chan;
213 u32 *tx_dma_buf;
214 dma_addr_t tx_dma_phys;
215 struct dma_async_tx_descriptor *tx_dma_desc;
218 static int tegra_spi_runtime_suspend(struct device *dev);
219 static int tegra_spi_runtime_resume(struct device *dev);
221 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
222 unsigned long reg)
224 return readl(tspi->base + reg);
227 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
228 u32 val, unsigned long reg)
230 writel(val, tspi->base + reg);
232 /* Read back register to make sure that register writes completed */
233 if (reg != SPI_TX_FIFO)
234 readl(tspi->base + SPI_COMMAND1);
237 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
239 u32 val;
241 /* Write 1 to clear status register */
242 val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
243 tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
245 /* Clear fifo status error if any */
246 val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
247 if (val & SPI_ERR)
248 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
249 SPI_FIFO_STATUS);
252 static unsigned tegra_spi_calculate_curr_xfer_param(
253 struct spi_device *spi, struct tegra_spi_data *tspi,
254 struct spi_transfer *t)
256 unsigned remain_len = t->len - tspi->cur_pos;
257 unsigned max_word;
258 unsigned bits_per_word = t->bits_per_word;
259 unsigned max_len;
260 unsigned total_fifo_words;
262 tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
264 if (bits_per_word == 8 || bits_per_word == 16) {
265 tspi->is_packed = 1;
266 tspi->words_per_32bit = 32/bits_per_word;
267 } else {
268 tspi->is_packed = 0;
269 tspi->words_per_32bit = 1;
272 if (tspi->is_packed) {
273 max_len = min(remain_len, tspi->max_buf_size);
274 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
275 total_fifo_words = (max_len + 3) / 4;
276 } else {
277 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
278 max_word = min(max_word, tspi->max_buf_size/4);
279 tspi->curr_dma_words = max_word;
280 total_fifo_words = max_word;
282 return total_fifo_words;
285 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
286 struct tegra_spi_data *tspi, struct spi_transfer *t)
288 unsigned nbytes;
289 unsigned tx_empty_count;
290 u32 fifo_status;
291 unsigned max_n_32bit;
292 unsigned i, count;
293 unsigned int written_words;
294 unsigned fifo_words_left;
295 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
297 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
298 tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
300 if (tspi->is_packed) {
301 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
302 written_words = min(fifo_words_left, tspi->curr_dma_words);
303 nbytes = written_words * tspi->bytes_per_word;
304 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
305 for (count = 0; count < max_n_32bit; count++) {
306 u32 x = 0;
307 for (i = 0; (i < 4) && nbytes; i++, nbytes--)
308 x |= (u32)(*tx_buf++) << (i * 8);
309 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
311 } else {
312 max_n_32bit = min(tspi->curr_dma_words, tx_empty_count);
313 written_words = max_n_32bit;
314 nbytes = written_words * tspi->bytes_per_word;
315 for (count = 0; count < max_n_32bit; count++) {
316 u32 x = 0;
317 for (i = 0; nbytes && (i < tspi->bytes_per_word);
318 i++, nbytes--)
319 x |= (u32)(*tx_buf++) << (i * 8);
320 tegra_spi_writel(tspi, x, SPI_TX_FIFO);
323 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
324 return written_words;
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328 struct tegra_spi_data *tspi, struct spi_transfer *t)
330 unsigned rx_full_count;
331 u32 fifo_status;
332 unsigned i, count;
333 unsigned int read_words = 0;
334 unsigned len;
335 u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
337 fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
338 rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
339 if (tspi->is_packed) {
340 len = tspi->curr_dma_words * tspi->bytes_per_word;
341 for (count = 0; count < rx_full_count; count++) {
342 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
343 for (i = 0; len && (i < 4); i++, len--)
344 *rx_buf++ = (x >> i*8) & 0xFF;
346 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
347 read_words += tspi->curr_dma_words;
348 } else {
349 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
350 for (count = 0; count < rx_full_count; count++) {
351 u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
352 for (i = 0; (i < tspi->bytes_per_word); i++)
353 *rx_buf++ = (x >> (i*8)) & 0xFF;
355 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
356 read_words += rx_full_count;
358 return read_words;
361 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
362 struct tegra_spi_data *tspi, struct spi_transfer *t)
364 /* Make the dma buffer to read by cpu */
365 dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
366 tspi->dma_buf_size, DMA_TO_DEVICE);
368 if (tspi->is_packed) {
369 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
370 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
371 } else {
372 unsigned int i;
373 unsigned int count;
374 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
375 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
377 for (count = 0; count < tspi->curr_dma_words; count++) {
378 u32 x = 0;
379 for (i = 0; consume && (i < tspi->bytes_per_word);
380 i++, consume--)
381 x |= (u32)(*tx_buf++) << (i * 8);
382 tspi->tx_dma_buf[count] = x;
385 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
387 /* Make the dma buffer to read by dma */
388 dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
389 tspi->dma_buf_size, DMA_TO_DEVICE);
392 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
393 struct tegra_spi_data *tspi, struct spi_transfer *t)
395 /* Make the dma buffer to read by cpu */
396 dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
397 tspi->dma_buf_size, DMA_FROM_DEVICE);
399 if (tspi->is_packed) {
400 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
401 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
402 } else {
403 unsigned int i;
404 unsigned int count;
405 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
406 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
408 for (count = 0; count < tspi->curr_dma_words; count++) {
409 u32 x = tspi->rx_dma_buf[count] & rx_mask;
410 for (i = 0; (i < tspi->bytes_per_word); i++)
411 *rx_buf++ = (x >> (i*8)) & 0xFF;
414 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
416 /* Make the dma buffer to read by dma */
417 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
418 tspi->dma_buf_size, DMA_FROM_DEVICE);
421 static void tegra_spi_dma_complete(void *args)
423 struct completion *dma_complete = args;
425 complete(dma_complete);
428 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
430 reinit_completion(&tspi->tx_dma_complete);
431 tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
432 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
433 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
434 if (!tspi->tx_dma_desc) {
435 dev_err(tspi->dev, "Not able to get desc for Tx\n");
436 return -EIO;
439 tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
440 tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
442 dmaengine_submit(tspi->tx_dma_desc);
443 dma_async_issue_pending(tspi->tx_dma_chan);
444 return 0;
447 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
449 reinit_completion(&tspi->rx_dma_complete);
450 tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
451 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
452 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
453 if (!tspi->rx_dma_desc) {
454 dev_err(tspi->dev, "Not able to get desc for Rx\n");
455 return -EIO;
458 tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
459 tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
461 dmaengine_submit(tspi->rx_dma_desc);
462 dma_async_issue_pending(tspi->rx_dma_chan);
463 return 0;
466 static int tegra_spi_start_dma_based_transfer(
467 struct tegra_spi_data *tspi, struct spi_transfer *t)
469 u32 val;
470 unsigned int len;
471 int ret = 0;
472 u32 status;
474 /* Make sure that Rx and Tx fifo are empty */
475 status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
476 if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
477 dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08x\n",
478 (unsigned)status);
479 return -EIO;
482 val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
483 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
485 if (tspi->is_packed)
486 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
487 4) * 4;
488 else
489 len = tspi->curr_dma_words * 4;
491 /* Set attention level based on length of transfer */
492 if (len & 0xF)
493 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
494 else if (((len) >> 4) & 0x1)
495 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
496 else
497 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
499 if (tspi->cur_direction & DATA_DIR_TX)
500 val |= SPI_IE_TX;
502 if (tspi->cur_direction & DATA_DIR_RX)
503 val |= SPI_IE_RX;
505 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
506 tspi->dma_control_reg = val;
508 if (tspi->cur_direction & DATA_DIR_TX) {
509 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
510 ret = tegra_spi_start_tx_dma(tspi, len);
511 if (ret < 0) {
512 dev_err(tspi->dev,
513 "Starting tx dma failed, err %d\n", ret);
514 return ret;
518 if (tspi->cur_direction & DATA_DIR_RX) {
519 /* Make the dma buffer to read by dma */
520 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
521 tspi->dma_buf_size, DMA_FROM_DEVICE);
523 ret = tegra_spi_start_rx_dma(tspi, len);
524 if (ret < 0) {
525 dev_err(tspi->dev,
526 "Starting rx dma failed, err %d\n", ret);
527 if (tspi->cur_direction & DATA_DIR_TX)
528 dmaengine_terminate_all(tspi->tx_dma_chan);
529 return ret;
532 tspi->is_curr_dma_xfer = true;
533 tspi->dma_control_reg = val;
535 val |= SPI_DMA_EN;
536 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
537 return ret;
540 static int tegra_spi_start_cpu_based_transfer(
541 struct tegra_spi_data *tspi, struct spi_transfer *t)
543 u32 val;
544 unsigned cur_words;
546 if (tspi->cur_direction & DATA_DIR_TX)
547 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
548 else
549 cur_words = tspi->curr_dma_words;
551 val = SPI_DMA_BLK_SET(cur_words - 1);
552 tegra_spi_writel(tspi, val, SPI_DMA_BLK);
554 val = 0;
555 if (tspi->cur_direction & DATA_DIR_TX)
556 val |= SPI_IE_TX;
558 if (tspi->cur_direction & DATA_DIR_RX)
559 val |= SPI_IE_RX;
561 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
562 tspi->dma_control_reg = val;
564 tspi->is_curr_dma_xfer = false;
566 val |= SPI_DMA_EN;
567 tegra_spi_writel(tspi, val, SPI_DMA_CTL);
568 return 0;
571 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
572 bool dma_to_memory)
574 struct dma_chan *dma_chan;
575 u32 *dma_buf;
576 dma_addr_t dma_phys;
577 int ret;
578 struct dma_slave_config dma_sconfig;
580 dma_chan = dma_request_slave_channel_reason(tspi->dev,
581 dma_to_memory ? "rx" : "tx");
582 if (IS_ERR(dma_chan)) {
583 ret = PTR_ERR(dma_chan);
584 if (ret != -EPROBE_DEFER)
585 dev_err(tspi->dev,
586 "Dma channel is not available: %d\n", ret);
587 return ret;
590 dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
591 &dma_phys, GFP_KERNEL);
592 if (!dma_buf) {
593 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
594 dma_release_channel(dma_chan);
595 return -ENOMEM;
598 if (dma_to_memory) {
599 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
600 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
601 dma_sconfig.src_maxburst = 0;
602 } else {
603 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
604 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 dma_sconfig.dst_maxburst = 0;
608 ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
609 if (ret)
610 goto scrub;
611 if (dma_to_memory) {
612 tspi->rx_dma_chan = dma_chan;
613 tspi->rx_dma_buf = dma_buf;
614 tspi->rx_dma_phys = dma_phys;
615 } else {
616 tspi->tx_dma_chan = dma_chan;
617 tspi->tx_dma_buf = dma_buf;
618 tspi->tx_dma_phys = dma_phys;
620 return 0;
622 scrub:
623 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
624 dma_release_channel(dma_chan);
625 return ret;
628 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
629 bool dma_to_memory)
631 u32 *dma_buf;
632 dma_addr_t dma_phys;
633 struct dma_chan *dma_chan;
635 if (dma_to_memory) {
636 dma_buf = tspi->rx_dma_buf;
637 dma_chan = tspi->rx_dma_chan;
638 dma_phys = tspi->rx_dma_phys;
639 tspi->rx_dma_chan = NULL;
640 tspi->rx_dma_buf = NULL;
641 } else {
642 dma_buf = tspi->tx_dma_buf;
643 dma_chan = tspi->tx_dma_chan;
644 dma_phys = tspi->tx_dma_phys;
645 tspi->tx_dma_buf = NULL;
646 tspi->tx_dma_chan = NULL;
648 if (!dma_chan)
649 return;
651 dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
652 dma_release_channel(dma_chan);
655 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
656 struct spi_transfer *t, bool is_first_of_msg)
658 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
659 u32 speed = t->speed_hz;
660 u8 bits_per_word = t->bits_per_word;
661 u32 command1;
662 int req_mode;
664 if (speed != tspi->cur_speed) {
665 clk_set_rate(tspi->clk, speed);
666 tspi->cur_speed = speed;
669 tspi->cur_spi = spi;
670 tspi->cur_pos = 0;
671 tspi->cur_rx_pos = 0;
672 tspi->cur_tx_pos = 0;
673 tspi->curr_xfer = t;
675 if (is_first_of_msg) {
676 tegra_spi_clear_status(tspi);
678 command1 = tspi->def_command1_reg;
679 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
681 command1 &= ~SPI_CONTROL_MODE_MASK;
682 req_mode = spi->mode & 0x3;
683 if (req_mode == SPI_MODE_0)
684 command1 |= SPI_CONTROL_MODE_0;
685 else if (req_mode == SPI_MODE_1)
686 command1 |= SPI_CONTROL_MODE_1;
687 else if (req_mode == SPI_MODE_2)
688 command1 |= SPI_CONTROL_MODE_2;
689 else if (req_mode == SPI_MODE_3)
690 command1 |= SPI_CONTROL_MODE_3;
692 if (tspi->cs_control) {
693 if (tspi->cs_control != spi)
694 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
695 tspi->cs_control = NULL;
696 } else
697 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
699 command1 |= SPI_CS_SW_HW;
700 if (spi->mode & SPI_CS_HIGH)
701 command1 |= SPI_CS_SS_VAL;
702 else
703 command1 &= ~SPI_CS_SS_VAL;
705 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
706 } else {
707 command1 = tspi->command1_reg;
708 command1 &= ~SPI_BIT_LENGTH(~0);
709 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
712 return command1;
715 static int tegra_spi_start_transfer_one(struct spi_device *spi,
716 struct spi_transfer *t, u32 command1)
718 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
719 unsigned total_fifo_words;
720 int ret;
722 total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
724 if (tspi->is_packed)
725 command1 |= SPI_PACKED;
727 command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
728 tspi->cur_direction = 0;
729 if (t->rx_buf) {
730 command1 |= SPI_RX_EN;
731 tspi->cur_direction |= DATA_DIR_RX;
733 if (t->tx_buf) {
734 command1 |= SPI_TX_EN;
735 tspi->cur_direction |= DATA_DIR_TX;
737 command1 |= SPI_CS_SEL(spi->chip_select);
738 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
739 tspi->command1_reg = command1;
741 dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
742 tspi->def_command1_reg, (unsigned)command1);
744 if (total_fifo_words > SPI_FIFO_DEPTH)
745 ret = tegra_spi_start_dma_based_transfer(tspi, t);
746 else
747 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
748 return ret;
751 static int tegra_spi_setup(struct spi_device *spi)
753 struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
754 u32 val;
755 unsigned long flags;
756 int ret;
758 dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
759 spi->bits_per_word,
760 spi->mode & SPI_CPOL ? "" : "~",
761 spi->mode & SPI_CPHA ? "" : "~",
762 spi->max_speed_hz);
764 BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
766 /* Set speed to the spi max fequency if spi device has not set */
767 spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
769 ret = pm_runtime_get_sync(tspi->dev);
770 if (ret < 0) {
771 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
772 return ret;
775 spin_lock_irqsave(&tspi->lock, flags);
776 val = tspi->def_command1_reg;
777 if (spi->mode & SPI_CS_HIGH)
778 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
779 else
780 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
781 tspi->def_command1_reg = val;
782 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
783 spin_unlock_irqrestore(&tspi->lock, flags);
785 pm_runtime_put(tspi->dev);
786 return 0;
789 static void tegra_spi_transfer_delay(int delay)
791 if (!delay)
792 return;
794 if (delay >= 1000)
795 mdelay(delay / 1000);
797 udelay(delay % 1000);
800 static int tegra_spi_transfer_one_message(struct spi_master *master,
801 struct spi_message *msg)
803 bool is_first_msg = true;
804 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
805 struct spi_transfer *xfer;
806 struct spi_device *spi = msg->spi;
807 int ret;
808 bool skip = false;
810 msg->status = 0;
811 msg->actual_length = 0;
813 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
814 u32 cmd1;
816 reinit_completion(&tspi->xfer_completion);
818 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
820 if (!xfer->len) {
821 ret = 0;
822 skip = true;
823 goto complete_xfer;
826 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
827 if (ret < 0) {
828 dev_err(tspi->dev,
829 "spi can not start transfer, err %d\n", ret);
830 goto complete_xfer;
833 is_first_msg = false;
834 ret = wait_for_completion_timeout(&tspi->xfer_completion,
835 SPI_DMA_TIMEOUT);
836 if (WARN_ON(ret == 0)) {
837 dev_err(tspi->dev,
838 "spi trasfer timeout, err %d\n", ret);
839 ret = -EIO;
840 goto complete_xfer;
843 if (tspi->tx_status || tspi->rx_status) {
844 dev_err(tspi->dev, "Error in Transfer\n");
845 ret = -EIO;
846 goto complete_xfer;
848 msg->actual_length += xfer->len;
850 complete_xfer:
851 if (ret < 0 || skip) {
852 tegra_spi_writel(tspi, tspi->def_command1_reg,
853 SPI_COMMAND1);
854 tegra_spi_transfer_delay(xfer->delay_usecs);
855 goto exit;
856 } else if (msg->transfers.prev == &xfer->transfer_list) {
857 /* This is the last transfer in message */
858 if (xfer->cs_change)
859 tspi->cs_control = spi;
860 else {
861 tegra_spi_writel(tspi, tspi->def_command1_reg,
862 SPI_COMMAND1);
863 tegra_spi_transfer_delay(xfer->delay_usecs);
865 } else if (xfer->cs_change) {
866 tegra_spi_writel(tspi, tspi->def_command1_reg,
867 SPI_COMMAND1);
868 tegra_spi_transfer_delay(xfer->delay_usecs);
872 ret = 0;
873 exit:
874 msg->status = ret;
875 spi_finalize_current_message(master);
876 return ret;
879 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
881 struct spi_transfer *t = tspi->curr_xfer;
882 unsigned long flags;
884 spin_lock_irqsave(&tspi->lock, flags);
885 if (tspi->tx_status || tspi->rx_status) {
886 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
887 tspi->status_reg);
888 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
889 tspi->command1_reg, tspi->dma_control_reg);
890 reset_control_assert(tspi->rst);
891 udelay(2);
892 reset_control_deassert(tspi->rst);
893 complete(&tspi->xfer_completion);
894 goto exit;
897 if (tspi->cur_direction & DATA_DIR_RX)
898 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
900 if (tspi->cur_direction & DATA_DIR_TX)
901 tspi->cur_pos = tspi->cur_tx_pos;
902 else
903 tspi->cur_pos = tspi->cur_rx_pos;
905 if (tspi->cur_pos == t->len) {
906 complete(&tspi->xfer_completion);
907 goto exit;
910 tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
911 tegra_spi_start_cpu_based_transfer(tspi, t);
912 exit:
913 spin_unlock_irqrestore(&tspi->lock, flags);
914 return IRQ_HANDLED;
917 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
919 struct spi_transfer *t = tspi->curr_xfer;
920 long wait_status;
921 int err = 0;
922 unsigned total_fifo_words;
923 unsigned long flags;
925 /* Abort dmas if any error */
926 if (tspi->cur_direction & DATA_DIR_TX) {
927 if (tspi->tx_status) {
928 dmaengine_terminate_all(tspi->tx_dma_chan);
929 err += 1;
930 } else {
931 wait_status = wait_for_completion_interruptible_timeout(
932 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
933 if (wait_status <= 0) {
934 dmaengine_terminate_all(tspi->tx_dma_chan);
935 dev_err(tspi->dev, "TxDma Xfer failed\n");
936 err += 1;
941 if (tspi->cur_direction & DATA_DIR_RX) {
942 if (tspi->rx_status) {
943 dmaengine_terminate_all(tspi->rx_dma_chan);
944 err += 2;
945 } else {
946 wait_status = wait_for_completion_interruptible_timeout(
947 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
948 if (wait_status <= 0) {
949 dmaengine_terminate_all(tspi->rx_dma_chan);
950 dev_err(tspi->dev, "RxDma Xfer failed\n");
951 err += 2;
956 spin_lock_irqsave(&tspi->lock, flags);
957 if (err) {
958 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
959 tspi->status_reg);
960 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
961 tspi->command1_reg, tspi->dma_control_reg);
962 reset_control_assert(tspi->rst);
963 udelay(2);
964 reset_control_deassert(tspi->rst);
965 complete(&tspi->xfer_completion);
966 spin_unlock_irqrestore(&tspi->lock, flags);
967 return IRQ_HANDLED;
970 if (tspi->cur_direction & DATA_DIR_RX)
971 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
973 if (tspi->cur_direction & DATA_DIR_TX)
974 tspi->cur_pos = tspi->cur_tx_pos;
975 else
976 tspi->cur_pos = tspi->cur_rx_pos;
978 if (tspi->cur_pos == t->len) {
979 complete(&tspi->xfer_completion);
980 goto exit;
983 /* Continue transfer in current message */
984 total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
985 tspi, t);
986 if (total_fifo_words > SPI_FIFO_DEPTH)
987 err = tegra_spi_start_dma_based_transfer(tspi, t);
988 else
989 err = tegra_spi_start_cpu_based_transfer(tspi, t);
991 exit:
992 spin_unlock_irqrestore(&tspi->lock, flags);
993 return IRQ_HANDLED;
996 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
998 struct tegra_spi_data *tspi = context_data;
1000 if (!tspi->is_curr_dma_xfer)
1001 return handle_cpu_based_xfer(tspi);
1002 return handle_dma_based_xfer(tspi);
1005 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1007 struct tegra_spi_data *tspi = context_data;
1009 tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1010 if (tspi->cur_direction & DATA_DIR_TX)
1011 tspi->tx_status = tspi->status_reg &
1012 (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1014 if (tspi->cur_direction & DATA_DIR_RX)
1015 tspi->rx_status = tspi->status_reg &
1016 (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1017 tegra_spi_clear_status(tspi);
1019 return IRQ_WAKE_THREAD;
1022 static void tegra_spi_parse_dt(struct platform_device *pdev,
1023 struct tegra_spi_data *tspi)
1025 struct device_node *np = pdev->dev.of_node;
1027 if (of_property_read_u32(np, "spi-max-frequency",
1028 &tspi->spi_max_frequency))
1029 tspi->spi_max_frequency = 25000000; /* 25MHz */
1032 static struct of_device_id tegra_spi_of_match[] = {
1033 { .compatible = "nvidia,tegra114-spi", },
1036 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1038 static int tegra_spi_probe(struct platform_device *pdev)
1040 struct spi_master *master;
1041 struct tegra_spi_data *tspi;
1042 struct resource *r;
1043 int ret, spi_irq;
1045 master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1046 if (!master) {
1047 dev_err(&pdev->dev, "master allocation failed\n");
1048 return -ENOMEM;
1050 platform_set_drvdata(pdev, master);
1051 tspi = spi_master_get_devdata(master);
1053 /* Parse DT */
1054 tegra_spi_parse_dt(pdev, tspi);
1056 /* the spi->mode bits understood by this driver: */
1057 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1058 master->setup = tegra_spi_setup;
1059 master->transfer_one_message = tegra_spi_transfer_one_message;
1060 master->num_chipselect = MAX_CHIP_SELECT;
1061 master->bus_num = -1;
1062 master->auto_runtime_pm = true;
1064 tspi->master = master;
1065 tspi->dev = &pdev->dev;
1066 spin_lock_init(&tspi->lock);
1068 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1069 tspi->base = devm_ioremap_resource(&pdev->dev, r);
1070 if (IS_ERR(tspi->base)) {
1071 ret = PTR_ERR(tspi->base);
1072 goto exit_free_master;
1074 tspi->phys = r->start;
1076 spi_irq = platform_get_irq(pdev, 0);
1077 tspi->irq = spi_irq;
1078 ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1079 tegra_spi_isr_thread, IRQF_ONESHOT,
1080 dev_name(&pdev->dev), tspi);
1081 if (ret < 0) {
1082 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1083 tspi->irq);
1084 goto exit_free_master;
1087 tspi->clk = devm_clk_get(&pdev->dev, "spi");
1088 if (IS_ERR(tspi->clk)) {
1089 dev_err(&pdev->dev, "can not get clock\n");
1090 ret = PTR_ERR(tspi->clk);
1091 goto exit_free_irq;
1094 tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1095 if (IS_ERR(tspi->rst)) {
1096 dev_err(&pdev->dev, "can not get reset\n");
1097 ret = PTR_ERR(tspi->rst);
1098 goto exit_free_irq;
1101 tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1102 tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1104 ret = tegra_spi_init_dma_param(tspi, true);
1105 if (ret < 0)
1106 goto exit_free_irq;
1107 ret = tegra_spi_init_dma_param(tspi, false);
1108 if (ret < 0)
1109 goto exit_rx_dma_free;
1110 tspi->max_buf_size = tspi->dma_buf_size;
1111 init_completion(&tspi->tx_dma_complete);
1112 init_completion(&tspi->rx_dma_complete);
1114 init_completion(&tspi->xfer_completion);
1116 pm_runtime_enable(&pdev->dev);
1117 if (!pm_runtime_enabled(&pdev->dev)) {
1118 ret = tegra_spi_runtime_resume(&pdev->dev);
1119 if (ret)
1120 goto exit_pm_disable;
1123 ret = pm_runtime_get_sync(&pdev->dev);
1124 if (ret < 0) {
1125 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1126 goto exit_pm_disable;
1128 tspi->def_command1_reg = SPI_M_S;
1129 tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1130 pm_runtime_put(&pdev->dev);
1132 master->dev.of_node = pdev->dev.of_node;
1133 ret = devm_spi_register_master(&pdev->dev, master);
1134 if (ret < 0) {
1135 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1136 goto exit_pm_disable;
1138 return ret;
1140 exit_pm_disable:
1141 pm_runtime_disable(&pdev->dev);
1142 if (!pm_runtime_status_suspended(&pdev->dev))
1143 tegra_spi_runtime_suspend(&pdev->dev);
1144 tegra_spi_deinit_dma_param(tspi, false);
1145 exit_rx_dma_free:
1146 tegra_spi_deinit_dma_param(tspi, true);
1147 exit_free_irq:
1148 free_irq(spi_irq, tspi);
1149 exit_free_master:
1150 spi_master_put(master);
1151 return ret;
1154 static int tegra_spi_remove(struct platform_device *pdev)
1156 struct spi_master *master = platform_get_drvdata(pdev);
1157 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1159 free_irq(tspi->irq, tspi);
1161 if (tspi->tx_dma_chan)
1162 tegra_spi_deinit_dma_param(tspi, false);
1164 if (tspi->rx_dma_chan)
1165 tegra_spi_deinit_dma_param(tspi, true);
1167 pm_runtime_disable(&pdev->dev);
1168 if (!pm_runtime_status_suspended(&pdev->dev))
1169 tegra_spi_runtime_suspend(&pdev->dev);
1171 return 0;
1174 #ifdef CONFIG_PM_SLEEP
1175 static int tegra_spi_suspend(struct device *dev)
1177 struct spi_master *master = dev_get_drvdata(dev);
1179 return spi_master_suspend(master);
1182 static int tegra_spi_resume(struct device *dev)
1184 struct spi_master *master = dev_get_drvdata(dev);
1185 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1186 int ret;
1188 ret = pm_runtime_get_sync(dev);
1189 if (ret < 0) {
1190 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1191 return ret;
1193 tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1194 pm_runtime_put(dev);
1196 return spi_master_resume(master);
1198 #endif
1200 static int tegra_spi_runtime_suspend(struct device *dev)
1202 struct spi_master *master = dev_get_drvdata(dev);
1203 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1205 /* Flush all write which are in PPSB queue by reading back */
1206 tegra_spi_readl(tspi, SPI_COMMAND1);
1208 clk_disable_unprepare(tspi->clk);
1209 return 0;
1212 static int tegra_spi_runtime_resume(struct device *dev)
1214 struct spi_master *master = dev_get_drvdata(dev);
1215 struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216 int ret;
1218 ret = clk_prepare_enable(tspi->clk);
1219 if (ret < 0) {
1220 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1221 return ret;
1223 return 0;
1226 static const struct dev_pm_ops tegra_spi_pm_ops = {
1227 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1228 tegra_spi_runtime_resume, NULL)
1229 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1231 static struct platform_driver tegra_spi_driver = {
1232 .driver = {
1233 .name = "spi-tegra114",
1234 .owner = THIS_MODULE,
1235 .pm = &tegra_spi_pm_ops,
1236 .of_match_table = tegra_spi_of_match,
1238 .probe = tegra_spi_probe,
1239 .remove = tegra_spi_remove,
1241 module_platform_driver(tegra_spi_driver);
1243 MODULE_ALIAS("platform:spi-tegra114");
1244 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246 MODULE_LICENSE("GPL v2");