2 * SPI driver for NVIDIA's Tegra114 SPI Controller.
4 * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
35 #include <linux/of_device.h>
36 #include <linux/reset.h>
37 #include <linux/spi/spi.h>
39 #define SPI_COMMAND1 0x000
40 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
41 #define SPI_PACKED (1 << 5)
42 #define SPI_TX_EN (1 << 11)
43 #define SPI_RX_EN (1 << 12)
44 #define SPI_BOTH_EN_BYTE (1 << 13)
45 #define SPI_BOTH_EN_BIT (1 << 14)
46 #define SPI_LSBYTE_FE (1 << 15)
47 #define SPI_LSBIT_FE (1 << 16)
48 #define SPI_BIDIROE (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH (3 << 18)
53 #define SPI_IDLE_SDA_MASK (3 << 18)
54 #define SPI_CS_SS_VAL (1 << 20)
55 #define SPI_CS_SW_HW (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
58 #define SPI_CS_POL_INACTIVE(n) (1 << (22 + (n)))
59 #define SPI_CS_POL_INACTIVE_MASK (0xF << 22)
61 #define SPI_CS_SEL_0 (0 << 26)
62 #define SPI_CS_SEL_1 (1 << 26)
63 #define SPI_CS_SEL_2 (2 << 26)
64 #define SPI_CS_SEL_3 (3 << 26)
65 #define SPI_CS_SEL_MASK (3 << 26)
66 #define SPI_CS_SEL(x) (((x) & 0x3) << 26)
67 #define SPI_CONTROL_MODE_0 (0 << 28)
68 #define SPI_CONTROL_MODE_1 (1 << 28)
69 #define SPI_CONTROL_MODE_2 (2 << 28)
70 #define SPI_CONTROL_MODE_3 (3 << 28)
71 #define SPI_CONTROL_MODE_MASK (3 << 28)
72 #define SPI_MODE_SEL(x) (((x) & 0x3) << 28)
73 #define SPI_M_S (1 << 30)
74 #define SPI_PIO (1 << 31)
76 #define SPI_COMMAND2 0x004
77 #define SPI_TX_TAP_DELAY(x) (((x) & 0x3F) << 6)
78 #define SPI_RX_TAP_DELAY(x) (((x) & 0x3F) << 0)
80 #define SPI_CS_TIMING1 0x008
81 #define SPI_SETUP_HOLD(setup, hold) (((setup) << 4) | (hold))
82 #define SPI_CS_SETUP_HOLD(reg, cs, val) \
83 ((((val) & 0xFFu) << ((cs) * 8)) | \
84 ((reg) & ~(0xFFu << ((cs) * 8))))
86 #define SPI_CS_TIMING2 0x00C
87 #define CYCLES_BETWEEN_PACKETS_0(x) (((x) & 0x1F) << 0)
88 #define CS_ACTIVE_BETWEEN_PACKETS_0 (1 << 5)
89 #define CYCLES_BETWEEN_PACKETS_1(x) (((x) & 0x1F) << 8)
90 #define CS_ACTIVE_BETWEEN_PACKETS_1 (1 << 13)
91 #define CYCLES_BETWEEN_PACKETS_2(x) (((x) & 0x1F) << 16)
92 #define CS_ACTIVE_BETWEEN_PACKETS_2 (1 << 21)
93 #define CYCLES_BETWEEN_PACKETS_3(x) (((x) & 0x1F) << 24)
94 #define CS_ACTIVE_BETWEEN_PACKETS_3 (1 << 29)
95 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val) \
96 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) | \
97 ((reg) & ~(1 << ((cs) * 8 + 5))))
98 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val) \
99 (reg = (((val) & 0xF) << ((cs) * 8)) | \
100 ((reg) & ~(0xF << ((cs) * 8))))
102 #define SPI_TRANS_STATUS 0x010
103 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF)
104 #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF)
105 #define SPI_RDY (1 << 30)
107 #define SPI_FIFO_STATUS 0x014
108 #define SPI_RX_FIFO_EMPTY (1 << 0)
109 #define SPI_RX_FIFO_FULL (1 << 1)
110 #define SPI_TX_FIFO_EMPTY (1 << 2)
111 #define SPI_TX_FIFO_FULL (1 << 3)
112 #define SPI_RX_FIFO_UNF (1 << 4)
113 #define SPI_RX_FIFO_OVF (1 << 5)
114 #define SPI_TX_FIFO_UNF (1 << 6)
115 #define SPI_TX_FIFO_OVF (1 << 7)
116 #define SPI_ERR (1 << 8)
117 #define SPI_TX_FIFO_FLUSH (1 << 14)
118 #define SPI_RX_FIFO_FLUSH (1 << 15)
119 #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F)
120 #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F)
121 #define SPI_FRAME_END (1 << 30)
122 #define SPI_CS_INACTIVE (1 << 31)
124 #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \
125 SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
126 #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
128 #define SPI_TX_DATA 0x018
129 #define SPI_RX_DATA 0x01C
131 #define SPI_DMA_CTL 0x020
132 #define SPI_TX_TRIG_1 (0 << 15)
133 #define SPI_TX_TRIG_4 (1 << 15)
134 #define SPI_TX_TRIG_8 (2 << 15)
135 #define SPI_TX_TRIG_16 (3 << 15)
136 #define SPI_TX_TRIG_MASK (3 << 15)
137 #define SPI_RX_TRIG_1 (0 << 19)
138 #define SPI_RX_TRIG_4 (1 << 19)
139 #define SPI_RX_TRIG_8 (2 << 19)
140 #define SPI_RX_TRIG_16 (3 << 19)
141 #define SPI_RX_TRIG_MASK (3 << 19)
142 #define SPI_IE_TX (1 << 28)
143 #define SPI_IE_RX (1 << 29)
144 #define SPI_CONT (1 << 30)
145 #define SPI_DMA (1 << 31)
146 #define SPI_DMA_EN SPI_DMA
148 #define SPI_DMA_BLK 0x024
149 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0)
151 #define SPI_TX_FIFO 0x108
152 #define SPI_RX_FIFO 0x188
153 #define MAX_CHIP_SELECT 4
154 #define SPI_FIFO_DEPTH 64
155 #define DATA_DIR_TX (1 << 0)
156 #define DATA_DIR_RX (1 << 1)
158 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
159 #define DEFAULT_SPI_DMA_BUF_LEN (16*1024)
160 #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40)
161 #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0)
162 #define MAX_HOLD_CYCLES 16
163 #define SPI_DEFAULT_SPEED 25000000
165 struct tegra_spi_data
{
167 struct spi_master
*master
;
171 struct reset_control
*rst
;
175 u32 spi_max_frequency
;
178 struct spi_device
*cur_spi
;
179 struct spi_device
*cs_control
;
181 unsigned words_per_32bit
;
182 unsigned bytes_per_word
;
183 unsigned curr_dma_words
;
184 unsigned cur_direction
;
189 unsigned dma_buf_size
;
190 unsigned max_buf_size
;
191 bool is_curr_dma_xfer
;
193 struct completion rx_dma_complete
;
194 struct completion tx_dma_complete
;
203 u32 def_command1_reg
;
205 struct completion xfer_completion
;
206 struct spi_transfer
*curr_xfer
;
207 struct dma_chan
*rx_dma_chan
;
209 dma_addr_t rx_dma_phys
;
210 struct dma_async_tx_descriptor
*rx_dma_desc
;
212 struct dma_chan
*tx_dma_chan
;
214 dma_addr_t tx_dma_phys
;
215 struct dma_async_tx_descriptor
*tx_dma_desc
;
218 static int tegra_spi_runtime_suspend(struct device
*dev
);
219 static int tegra_spi_runtime_resume(struct device
*dev
);
221 static inline u32
tegra_spi_readl(struct tegra_spi_data
*tspi
,
224 return readl(tspi
->base
+ reg
);
227 static inline void tegra_spi_writel(struct tegra_spi_data
*tspi
,
228 u32 val
, unsigned long reg
)
230 writel(val
, tspi
->base
+ reg
);
232 /* Read back register to make sure that register writes completed */
233 if (reg
!= SPI_TX_FIFO
)
234 readl(tspi
->base
+ SPI_COMMAND1
);
237 static void tegra_spi_clear_status(struct tegra_spi_data
*tspi
)
241 /* Write 1 to clear status register */
242 val
= tegra_spi_readl(tspi
, SPI_TRANS_STATUS
);
243 tegra_spi_writel(tspi
, val
, SPI_TRANS_STATUS
);
245 /* Clear fifo status error if any */
246 val
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
248 tegra_spi_writel(tspi
, SPI_ERR
| SPI_FIFO_ERROR
,
252 static unsigned tegra_spi_calculate_curr_xfer_param(
253 struct spi_device
*spi
, struct tegra_spi_data
*tspi
,
254 struct spi_transfer
*t
)
256 unsigned remain_len
= t
->len
- tspi
->cur_pos
;
258 unsigned bits_per_word
= t
->bits_per_word
;
260 unsigned total_fifo_words
;
262 tspi
->bytes_per_word
= DIV_ROUND_UP(bits_per_word
, 8);
264 if (bits_per_word
== 8 || bits_per_word
== 16) {
266 tspi
->words_per_32bit
= 32/bits_per_word
;
269 tspi
->words_per_32bit
= 1;
272 if (tspi
->is_packed
) {
273 max_len
= min(remain_len
, tspi
->max_buf_size
);
274 tspi
->curr_dma_words
= max_len
/tspi
->bytes_per_word
;
275 total_fifo_words
= (max_len
+ 3) / 4;
277 max_word
= (remain_len
- 1) / tspi
->bytes_per_word
+ 1;
278 max_word
= min(max_word
, tspi
->max_buf_size
/4);
279 tspi
->curr_dma_words
= max_word
;
280 total_fifo_words
= max_word
;
282 return total_fifo_words
;
285 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
286 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
289 unsigned tx_empty_count
;
291 unsigned max_n_32bit
;
293 unsigned int written_words
;
294 unsigned fifo_words_left
;
295 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
297 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
298 tx_empty_count
= SPI_TX_FIFO_EMPTY_COUNT(fifo_status
);
300 if (tspi
->is_packed
) {
301 fifo_words_left
= tx_empty_count
* tspi
->words_per_32bit
;
302 written_words
= min(fifo_words_left
, tspi
->curr_dma_words
);
303 nbytes
= written_words
* tspi
->bytes_per_word
;
304 max_n_32bit
= DIV_ROUND_UP(nbytes
, 4);
305 for (count
= 0; count
< max_n_32bit
; count
++) {
307 for (i
= 0; (i
< 4) && nbytes
; i
++, nbytes
--)
308 x
|= (u32
)(*tx_buf
++) << (i
* 8);
309 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
312 max_n_32bit
= min(tspi
->curr_dma_words
, tx_empty_count
);
313 written_words
= max_n_32bit
;
314 nbytes
= written_words
* tspi
->bytes_per_word
;
315 for (count
= 0; count
< max_n_32bit
; count
++) {
317 for (i
= 0; nbytes
&& (i
< tspi
->bytes_per_word
);
319 x
|= (u32
)(*tx_buf
++) << (i
* 8);
320 tegra_spi_writel(tspi
, x
, SPI_TX_FIFO
);
323 tspi
->cur_tx_pos
+= written_words
* tspi
->bytes_per_word
;
324 return written_words
;
327 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
328 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
330 unsigned rx_full_count
;
333 unsigned int read_words
= 0;
335 u8
*rx_buf
= (u8
*)t
->rx_buf
+ tspi
->cur_rx_pos
;
337 fifo_status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
338 rx_full_count
= SPI_RX_FIFO_FULL_COUNT(fifo_status
);
339 if (tspi
->is_packed
) {
340 len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
341 for (count
= 0; count
< rx_full_count
; count
++) {
342 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
);
343 for (i
= 0; len
&& (i
< 4); i
++, len
--)
344 *rx_buf
++ = (x
>> i
*8) & 0xFF;
346 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
347 read_words
+= tspi
->curr_dma_words
;
349 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
350 for (count
= 0; count
< rx_full_count
; count
++) {
351 u32 x
= tegra_spi_readl(tspi
, SPI_RX_FIFO
) & rx_mask
;
352 for (i
= 0; (i
< tspi
->bytes_per_word
); i
++)
353 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
355 tspi
->cur_rx_pos
+= rx_full_count
* tspi
->bytes_per_word
;
356 read_words
+= rx_full_count
;
361 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
362 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
364 /* Make the dma buffer to read by cpu */
365 dma_sync_single_for_cpu(tspi
->dev
, tspi
->tx_dma_phys
,
366 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
368 if (tspi
->is_packed
) {
369 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
370 memcpy(tspi
->tx_dma_buf
, t
->tx_buf
+ tspi
->cur_pos
, len
);
374 u8
*tx_buf
= (u8
*)t
->tx_buf
+ tspi
->cur_tx_pos
;
375 unsigned consume
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
377 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
379 for (i
= 0; consume
&& (i
< tspi
->bytes_per_word
);
381 x
|= (u32
)(*tx_buf
++) << (i
* 8);
382 tspi
->tx_dma_buf
[count
] = x
;
385 tspi
->cur_tx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
387 /* Make the dma buffer to read by dma */
388 dma_sync_single_for_device(tspi
->dev
, tspi
->tx_dma_phys
,
389 tspi
->dma_buf_size
, DMA_TO_DEVICE
);
392 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
393 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
395 /* Make the dma buffer to read by cpu */
396 dma_sync_single_for_cpu(tspi
->dev
, tspi
->rx_dma_phys
,
397 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
399 if (tspi
->is_packed
) {
400 unsigned len
= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
401 memcpy(t
->rx_buf
+ tspi
->cur_rx_pos
, tspi
->rx_dma_buf
, len
);
405 unsigned char *rx_buf
= t
->rx_buf
+ tspi
->cur_rx_pos
;
406 u32 rx_mask
= ((u32
)1 << t
->bits_per_word
) - 1;
408 for (count
= 0; count
< tspi
->curr_dma_words
; count
++) {
409 u32 x
= tspi
->rx_dma_buf
[count
] & rx_mask
;
410 for (i
= 0; (i
< tspi
->bytes_per_word
); i
++)
411 *rx_buf
++ = (x
>> (i
*8)) & 0xFF;
414 tspi
->cur_rx_pos
+= tspi
->curr_dma_words
* tspi
->bytes_per_word
;
416 /* Make the dma buffer to read by dma */
417 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
418 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
421 static void tegra_spi_dma_complete(void *args
)
423 struct completion
*dma_complete
= args
;
425 complete(dma_complete
);
428 static int tegra_spi_start_tx_dma(struct tegra_spi_data
*tspi
, int len
)
430 reinit_completion(&tspi
->tx_dma_complete
);
431 tspi
->tx_dma_desc
= dmaengine_prep_slave_single(tspi
->tx_dma_chan
,
432 tspi
->tx_dma_phys
, len
, DMA_MEM_TO_DEV
,
433 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
434 if (!tspi
->tx_dma_desc
) {
435 dev_err(tspi
->dev
, "Not able to get desc for Tx\n");
439 tspi
->tx_dma_desc
->callback
= tegra_spi_dma_complete
;
440 tspi
->tx_dma_desc
->callback_param
= &tspi
->tx_dma_complete
;
442 dmaengine_submit(tspi
->tx_dma_desc
);
443 dma_async_issue_pending(tspi
->tx_dma_chan
);
447 static int tegra_spi_start_rx_dma(struct tegra_spi_data
*tspi
, int len
)
449 reinit_completion(&tspi
->rx_dma_complete
);
450 tspi
->rx_dma_desc
= dmaengine_prep_slave_single(tspi
->rx_dma_chan
,
451 tspi
->rx_dma_phys
, len
, DMA_DEV_TO_MEM
,
452 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
453 if (!tspi
->rx_dma_desc
) {
454 dev_err(tspi
->dev
, "Not able to get desc for Rx\n");
458 tspi
->rx_dma_desc
->callback
= tegra_spi_dma_complete
;
459 tspi
->rx_dma_desc
->callback_param
= &tspi
->rx_dma_complete
;
461 dmaengine_submit(tspi
->rx_dma_desc
);
462 dma_async_issue_pending(tspi
->rx_dma_chan
);
466 static int tegra_spi_start_dma_based_transfer(
467 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
474 /* Make sure that Rx and Tx fifo are empty */
475 status
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
476 if ((status
& SPI_FIFO_EMPTY
) != SPI_FIFO_EMPTY
) {
477 dev_err(tspi
->dev
, "Rx/Tx fifo are not empty status 0x%08x\n",
482 val
= SPI_DMA_BLK_SET(tspi
->curr_dma_words
- 1);
483 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
486 len
= DIV_ROUND_UP(tspi
->curr_dma_words
* tspi
->bytes_per_word
,
489 len
= tspi
->curr_dma_words
* 4;
491 /* Set attention level based on length of transfer */
493 val
|= SPI_TX_TRIG_1
| SPI_RX_TRIG_1
;
494 else if (((len
) >> 4) & 0x1)
495 val
|= SPI_TX_TRIG_4
| SPI_RX_TRIG_4
;
497 val
|= SPI_TX_TRIG_8
| SPI_RX_TRIG_8
;
499 if (tspi
->cur_direction
& DATA_DIR_TX
)
502 if (tspi
->cur_direction
& DATA_DIR_RX
)
505 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
506 tspi
->dma_control_reg
= val
;
508 if (tspi
->cur_direction
& DATA_DIR_TX
) {
509 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi
, t
);
510 ret
= tegra_spi_start_tx_dma(tspi
, len
);
513 "Starting tx dma failed, err %d\n", ret
);
518 if (tspi
->cur_direction
& DATA_DIR_RX
) {
519 /* Make the dma buffer to read by dma */
520 dma_sync_single_for_device(tspi
->dev
, tspi
->rx_dma_phys
,
521 tspi
->dma_buf_size
, DMA_FROM_DEVICE
);
523 ret
= tegra_spi_start_rx_dma(tspi
, len
);
526 "Starting rx dma failed, err %d\n", ret
);
527 if (tspi
->cur_direction
& DATA_DIR_TX
)
528 dmaengine_terminate_all(tspi
->tx_dma_chan
);
532 tspi
->is_curr_dma_xfer
= true;
533 tspi
->dma_control_reg
= val
;
536 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
540 static int tegra_spi_start_cpu_based_transfer(
541 struct tegra_spi_data
*tspi
, struct spi_transfer
*t
)
546 if (tspi
->cur_direction
& DATA_DIR_TX
)
547 cur_words
= tegra_spi_fill_tx_fifo_from_client_txbuf(tspi
, t
);
549 cur_words
= tspi
->curr_dma_words
;
551 val
= SPI_DMA_BLK_SET(cur_words
- 1);
552 tegra_spi_writel(tspi
, val
, SPI_DMA_BLK
);
555 if (tspi
->cur_direction
& DATA_DIR_TX
)
558 if (tspi
->cur_direction
& DATA_DIR_RX
)
561 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
562 tspi
->dma_control_reg
= val
;
564 tspi
->is_curr_dma_xfer
= false;
567 tegra_spi_writel(tspi
, val
, SPI_DMA_CTL
);
571 static int tegra_spi_init_dma_param(struct tegra_spi_data
*tspi
,
574 struct dma_chan
*dma_chan
;
578 struct dma_slave_config dma_sconfig
;
580 dma_chan
= dma_request_slave_channel_reason(tspi
->dev
,
581 dma_to_memory
? "rx" : "tx");
582 if (IS_ERR(dma_chan
)) {
583 ret
= PTR_ERR(dma_chan
);
584 if (ret
!= -EPROBE_DEFER
)
586 "Dma channel is not available: %d\n", ret
);
590 dma_buf
= dma_alloc_coherent(tspi
->dev
, tspi
->dma_buf_size
,
591 &dma_phys
, GFP_KERNEL
);
593 dev_err(tspi
->dev
, " Not able to allocate the dma buffer\n");
594 dma_release_channel(dma_chan
);
599 dma_sconfig
.src_addr
= tspi
->phys
+ SPI_RX_FIFO
;
600 dma_sconfig
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
601 dma_sconfig
.src_maxburst
= 0;
603 dma_sconfig
.dst_addr
= tspi
->phys
+ SPI_TX_FIFO
;
604 dma_sconfig
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
605 dma_sconfig
.dst_maxburst
= 0;
608 ret
= dmaengine_slave_config(dma_chan
, &dma_sconfig
);
612 tspi
->rx_dma_chan
= dma_chan
;
613 tspi
->rx_dma_buf
= dma_buf
;
614 tspi
->rx_dma_phys
= dma_phys
;
616 tspi
->tx_dma_chan
= dma_chan
;
617 tspi
->tx_dma_buf
= dma_buf
;
618 tspi
->tx_dma_phys
= dma_phys
;
623 dma_free_coherent(tspi
->dev
, tspi
->dma_buf_size
, dma_buf
, dma_phys
);
624 dma_release_channel(dma_chan
);
628 static void tegra_spi_deinit_dma_param(struct tegra_spi_data
*tspi
,
633 struct dma_chan
*dma_chan
;
636 dma_buf
= tspi
->rx_dma_buf
;
637 dma_chan
= tspi
->rx_dma_chan
;
638 dma_phys
= tspi
->rx_dma_phys
;
639 tspi
->rx_dma_chan
= NULL
;
640 tspi
->rx_dma_buf
= NULL
;
642 dma_buf
= tspi
->tx_dma_buf
;
643 dma_chan
= tspi
->tx_dma_chan
;
644 dma_phys
= tspi
->tx_dma_phys
;
645 tspi
->tx_dma_buf
= NULL
;
646 tspi
->tx_dma_chan
= NULL
;
651 dma_free_coherent(tspi
->dev
, tspi
->dma_buf_size
, dma_buf
, dma_phys
);
652 dma_release_channel(dma_chan
);
655 static u32
tegra_spi_setup_transfer_one(struct spi_device
*spi
,
656 struct spi_transfer
*t
, bool is_first_of_msg
)
658 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
659 u32 speed
= t
->speed_hz
;
660 u8 bits_per_word
= t
->bits_per_word
;
664 if (speed
!= tspi
->cur_speed
) {
665 clk_set_rate(tspi
->clk
, speed
);
666 tspi
->cur_speed
= speed
;
671 tspi
->cur_rx_pos
= 0;
672 tspi
->cur_tx_pos
= 0;
675 if (is_first_of_msg
) {
676 tegra_spi_clear_status(tspi
);
678 command1
= tspi
->def_command1_reg
;
679 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
681 command1
&= ~SPI_CONTROL_MODE_MASK
;
682 req_mode
= spi
->mode
& 0x3;
683 if (req_mode
== SPI_MODE_0
)
684 command1
|= SPI_CONTROL_MODE_0
;
685 else if (req_mode
== SPI_MODE_1
)
686 command1
|= SPI_CONTROL_MODE_1
;
687 else if (req_mode
== SPI_MODE_2
)
688 command1
|= SPI_CONTROL_MODE_2
;
689 else if (req_mode
== SPI_MODE_3
)
690 command1
|= SPI_CONTROL_MODE_3
;
692 if (tspi
->cs_control
) {
693 if (tspi
->cs_control
!= spi
)
694 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
695 tspi
->cs_control
= NULL
;
697 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
699 command1
|= SPI_CS_SW_HW
;
700 if (spi
->mode
& SPI_CS_HIGH
)
701 command1
|= SPI_CS_SS_VAL
;
703 command1
&= ~SPI_CS_SS_VAL
;
705 tegra_spi_writel(tspi
, 0, SPI_COMMAND2
);
707 command1
= tspi
->command1_reg
;
708 command1
&= ~SPI_BIT_LENGTH(~0);
709 command1
|= SPI_BIT_LENGTH(bits_per_word
- 1);
715 static int tegra_spi_start_transfer_one(struct spi_device
*spi
,
716 struct spi_transfer
*t
, u32 command1
)
718 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
719 unsigned total_fifo_words
;
722 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(spi
, tspi
, t
);
725 command1
|= SPI_PACKED
;
727 command1
&= ~(SPI_CS_SEL_MASK
| SPI_TX_EN
| SPI_RX_EN
);
728 tspi
->cur_direction
= 0;
730 command1
|= SPI_RX_EN
;
731 tspi
->cur_direction
|= DATA_DIR_RX
;
734 command1
|= SPI_TX_EN
;
735 tspi
->cur_direction
|= DATA_DIR_TX
;
737 command1
|= SPI_CS_SEL(spi
->chip_select
);
738 tegra_spi_writel(tspi
, command1
, SPI_COMMAND1
);
739 tspi
->command1_reg
= command1
;
741 dev_dbg(tspi
->dev
, "The def 0x%x and written 0x%x\n",
742 tspi
->def_command1_reg
, (unsigned)command1
);
744 if (total_fifo_words
> SPI_FIFO_DEPTH
)
745 ret
= tegra_spi_start_dma_based_transfer(tspi
, t
);
747 ret
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
751 static int tegra_spi_setup(struct spi_device
*spi
)
753 struct tegra_spi_data
*tspi
= spi_master_get_devdata(spi
->master
);
758 dev_dbg(&spi
->dev
, "setup %d bpw, %scpol, %scpha, %dHz\n",
760 spi
->mode
& SPI_CPOL
? "" : "~",
761 spi
->mode
& SPI_CPHA
? "" : "~",
764 BUG_ON(spi
->chip_select
>= MAX_CHIP_SELECT
);
766 /* Set speed to the spi max fequency if spi device has not set */
767 spi
->max_speed_hz
= spi
->max_speed_hz
? : tspi
->spi_max_frequency
;
769 ret
= pm_runtime_get_sync(tspi
->dev
);
771 dev_err(tspi
->dev
, "pm runtime failed, e = %d\n", ret
);
775 spin_lock_irqsave(&tspi
->lock
, flags
);
776 val
= tspi
->def_command1_reg
;
777 if (spi
->mode
& SPI_CS_HIGH
)
778 val
&= ~SPI_CS_POL_INACTIVE(spi
->chip_select
);
780 val
|= SPI_CS_POL_INACTIVE(spi
->chip_select
);
781 tspi
->def_command1_reg
= val
;
782 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
783 spin_unlock_irqrestore(&tspi
->lock
, flags
);
785 pm_runtime_put(tspi
->dev
);
789 static void tegra_spi_transfer_delay(int delay
)
795 mdelay(delay
/ 1000);
797 udelay(delay
% 1000);
800 static int tegra_spi_transfer_one_message(struct spi_master
*master
,
801 struct spi_message
*msg
)
803 bool is_first_msg
= true;
804 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
805 struct spi_transfer
*xfer
;
806 struct spi_device
*spi
= msg
->spi
;
811 msg
->actual_length
= 0;
813 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
816 reinit_completion(&tspi
->xfer_completion
);
818 cmd1
= tegra_spi_setup_transfer_one(spi
, xfer
, is_first_msg
);
826 ret
= tegra_spi_start_transfer_one(spi
, xfer
, cmd1
);
829 "spi can not start transfer, err %d\n", ret
);
833 is_first_msg
= false;
834 ret
= wait_for_completion_timeout(&tspi
->xfer_completion
,
836 if (WARN_ON(ret
== 0)) {
838 "spi trasfer timeout, err %d\n", ret
);
843 if (tspi
->tx_status
|| tspi
->rx_status
) {
844 dev_err(tspi
->dev
, "Error in Transfer\n");
848 msg
->actual_length
+= xfer
->len
;
851 if (ret
< 0 || skip
) {
852 tegra_spi_writel(tspi
, tspi
->def_command1_reg
,
854 tegra_spi_transfer_delay(xfer
->delay_usecs
);
856 } else if (msg
->transfers
.prev
== &xfer
->transfer_list
) {
857 /* This is the last transfer in message */
859 tspi
->cs_control
= spi
;
861 tegra_spi_writel(tspi
, tspi
->def_command1_reg
,
863 tegra_spi_transfer_delay(xfer
->delay_usecs
);
865 } else if (xfer
->cs_change
) {
866 tegra_spi_writel(tspi
, tspi
->def_command1_reg
,
868 tegra_spi_transfer_delay(xfer
->delay_usecs
);
875 spi_finalize_current_message(master
);
879 static irqreturn_t
handle_cpu_based_xfer(struct tegra_spi_data
*tspi
)
881 struct spi_transfer
*t
= tspi
->curr_xfer
;
884 spin_lock_irqsave(&tspi
->lock
, flags
);
885 if (tspi
->tx_status
|| tspi
->rx_status
) {
886 dev_err(tspi
->dev
, "CpuXfer ERROR bit set 0x%x\n",
888 dev_err(tspi
->dev
, "CpuXfer 0x%08x:0x%08x\n",
889 tspi
->command1_reg
, tspi
->dma_control_reg
);
890 reset_control_assert(tspi
->rst
);
892 reset_control_deassert(tspi
->rst
);
893 complete(&tspi
->xfer_completion
);
897 if (tspi
->cur_direction
& DATA_DIR_RX
)
898 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi
, t
);
900 if (tspi
->cur_direction
& DATA_DIR_TX
)
901 tspi
->cur_pos
= tspi
->cur_tx_pos
;
903 tspi
->cur_pos
= tspi
->cur_rx_pos
;
905 if (tspi
->cur_pos
== t
->len
) {
906 complete(&tspi
->xfer_completion
);
910 tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
, tspi
, t
);
911 tegra_spi_start_cpu_based_transfer(tspi
, t
);
913 spin_unlock_irqrestore(&tspi
->lock
, flags
);
917 static irqreturn_t
handle_dma_based_xfer(struct tegra_spi_data
*tspi
)
919 struct spi_transfer
*t
= tspi
->curr_xfer
;
922 unsigned total_fifo_words
;
925 /* Abort dmas if any error */
926 if (tspi
->cur_direction
& DATA_DIR_TX
) {
927 if (tspi
->tx_status
) {
928 dmaengine_terminate_all(tspi
->tx_dma_chan
);
931 wait_status
= wait_for_completion_interruptible_timeout(
932 &tspi
->tx_dma_complete
, SPI_DMA_TIMEOUT
);
933 if (wait_status
<= 0) {
934 dmaengine_terminate_all(tspi
->tx_dma_chan
);
935 dev_err(tspi
->dev
, "TxDma Xfer failed\n");
941 if (tspi
->cur_direction
& DATA_DIR_RX
) {
942 if (tspi
->rx_status
) {
943 dmaengine_terminate_all(tspi
->rx_dma_chan
);
946 wait_status
= wait_for_completion_interruptible_timeout(
947 &tspi
->rx_dma_complete
, SPI_DMA_TIMEOUT
);
948 if (wait_status
<= 0) {
949 dmaengine_terminate_all(tspi
->rx_dma_chan
);
950 dev_err(tspi
->dev
, "RxDma Xfer failed\n");
956 spin_lock_irqsave(&tspi
->lock
, flags
);
958 dev_err(tspi
->dev
, "DmaXfer: ERROR bit set 0x%x\n",
960 dev_err(tspi
->dev
, "DmaXfer 0x%08x:0x%08x\n",
961 tspi
->command1_reg
, tspi
->dma_control_reg
);
962 reset_control_assert(tspi
->rst
);
964 reset_control_deassert(tspi
->rst
);
965 complete(&tspi
->xfer_completion
);
966 spin_unlock_irqrestore(&tspi
->lock
, flags
);
970 if (tspi
->cur_direction
& DATA_DIR_RX
)
971 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi
, t
);
973 if (tspi
->cur_direction
& DATA_DIR_TX
)
974 tspi
->cur_pos
= tspi
->cur_tx_pos
;
976 tspi
->cur_pos
= tspi
->cur_rx_pos
;
978 if (tspi
->cur_pos
== t
->len
) {
979 complete(&tspi
->xfer_completion
);
983 /* Continue transfer in current message */
984 total_fifo_words
= tegra_spi_calculate_curr_xfer_param(tspi
->cur_spi
,
986 if (total_fifo_words
> SPI_FIFO_DEPTH
)
987 err
= tegra_spi_start_dma_based_transfer(tspi
, t
);
989 err
= tegra_spi_start_cpu_based_transfer(tspi
, t
);
992 spin_unlock_irqrestore(&tspi
->lock
, flags
);
996 static irqreturn_t
tegra_spi_isr_thread(int irq
, void *context_data
)
998 struct tegra_spi_data
*tspi
= context_data
;
1000 if (!tspi
->is_curr_dma_xfer
)
1001 return handle_cpu_based_xfer(tspi
);
1002 return handle_dma_based_xfer(tspi
);
1005 static irqreturn_t
tegra_spi_isr(int irq
, void *context_data
)
1007 struct tegra_spi_data
*tspi
= context_data
;
1009 tspi
->status_reg
= tegra_spi_readl(tspi
, SPI_FIFO_STATUS
);
1010 if (tspi
->cur_direction
& DATA_DIR_TX
)
1011 tspi
->tx_status
= tspi
->status_reg
&
1012 (SPI_TX_FIFO_UNF
| SPI_TX_FIFO_OVF
);
1014 if (tspi
->cur_direction
& DATA_DIR_RX
)
1015 tspi
->rx_status
= tspi
->status_reg
&
1016 (SPI_RX_FIFO_OVF
| SPI_RX_FIFO_UNF
);
1017 tegra_spi_clear_status(tspi
);
1019 return IRQ_WAKE_THREAD
;
1022 static void tegra_spi_parse_dt(struct platform_device
*pdev
,
1023 struct tegra_spi_data
*tspi
)
1025 struct device_node
*np
= pdev
->dev
.of_node
;
1027 if (of_property_read_u32(np
, "spi-max-frequency",
1028 &tspi
->spi_max_frequency
))
1029 tspi
->spi_max_frequency
= 25000000; /* 25MHz */
1032 static struct of_device_id tegra_spi_of_match
[] = {
1033 { .compatible
= "nvidia,tegra114-spi", },
1036 MODULE_DEVICE_TABLE(of
, tegra_spi_of_match
);
1038 static int tegra_spi_probe(struct platform_device
*pdev
)
1040 struct spi_master
*master
;
1041 struct tegra_spi_data
*tspi
;
1045 master
= spi_alloc_master(&pdev
->dev
, sizeof(*tspi
));
1047 dev_err(&pdev
->dev
, "master allocation failed\n");
1050 platform_set_drvdata(pdev
, master
);
1051 tspi
= spi_master_get_devdata(master
);
1054 tegra_spi_parse_dt(pdev
, tspi
);
1056 /* the spi->mode bits understood by this driver: */
1057 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1058 master
->setup
= tegra_spi_setup
;
1059 master
->transfer_one_message
= tegra_spi_transfer_one_message
;
1060 master
->num_chipselect
= MAX_CHIP_SELECT
;
1061 master
->bus_num
= -1;
1062 master
->auto_runtime_pm
= true;
1064 tspi
->master
= master
;
1065 tspi
->dev
= &pdev
->dev
;
1066 spin_lock_init(&tspi
->lock
);
1068 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1069 tspi
->base
= devm_ioremap_resource(&pdev
->dev
, r
);
1070 if (IS_ERR(tspi
->base
)) {
1071 ret
= PTR_ERR(tspi
->base
);
1072 goto exit_free_master
;
1074 tspi
->phys
= r
->start
;
1076 spi_irq
= platform_get_irq(pdev
, 0);
1077 tspi
->irq
= spi_irq
;
1078 ret
= request_threaded_irq(tspi
->irq
, tegra_spi_isr
,
1079 tegra_spi_isr_thread
, IRQF_ONESHOT
,
1080 dev_name(&pdev
->dev
), tspi
);
1082 dev_err(&pdev
->dev
, "Failed to register ISR for IRQ %d\n",
1084 goto exit_free_master
;
1087 tspi
->clk
= devm_clk_get(&pdev
->dev
, "spi");
1088 if (IS_ERR(tspi
->clk
)) {
1089 dev_err(&pdev
->dev
, "can not get clock\n");
1090 ret
= PTR_ERR(tspi
->clk
);
1094 tspi
->rst
= devm_reset_control_get(&pdev
->dev
, "spi");
1095 if (IS_ERR(tspi
->rst
)) {
1096 dev_err(&pdev
->dev
, "can not get reset\n");
1097 ret
= PTR_ERR(tspi
->rst
);
1101 tspi
->max_buf_size
= SPI_FIFO_DEPTH
<< 2;
1102 tspi
->dma_buf_size
= DEFAULT_SPI_DMA_BUF_LEN
;
1104 ret
= tegra_spi_init_dma_param(tspi
, true);
1107 ret
= tegra_spi_init_dma_param(tspi
, false);
1109 goto exit_rx_dma_free
;
1110 tspi
->max_buf_size
= tspi
->dma_buf_size
;
1111 init_completion(&tspi
->tx_dma_complete
);
1112 init_completion(&tspi
->rx_dma_complete
);
1114 init_completion(&tspi
->xfer_completion
);
1116 pm_runtime_enable(&pdev
->dev
);
1117 if (!pm_runtime_enabled(&pdev
->dev
)) {
1118 ret
= tegra_spi_runtime_resume(&pdev
->dev
);
1120 goto exit_pm_disable
;
1123 ret
= pm_runtime_get_sync(&pdev
->dev
);
1125 dev_err(&pdev
->dev
, "pm runtime get failed, e = %d\n", ret
);
1126 goto exit_pm_disable
;
1128 tspi
->def_command1_reg
= SPI_M_S
;
1129 tegra_spi_writel(tspi
, tspi
->def_command1_reg
, SPI_COMMAND1
);
1130 pm_runtime_put(&pdev
->dev
);
1132 master
->dev
.of_node
= pdev
->dev
.of_node
;
1133 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1135 dev_err(&pdev
->dev
, "can not register to master err %d\n", ret
);
1136 goto exit_pm_disable
;
1141 pm_runtime_disable(&pdev
->dev
);
1142 if (!pm_runtime_status_suspended(&pdev
->dev
))
1143 tegra_spi_runtime_suspend(&pdev
->dev
);
1144 tegra_spi_deinit_dma_param(tspi
, false);
1146 tegra_spi_deinit_dma_param(tspi
, true);
1148 free_irq(spi_irq
, tspi
);
1150 spi_master_put(master
);
1154 static int tegra_spi_remove(struct platform_device
*pdev
)
1156 struct spi_master
*master
= platform_get_drvdata(pdev
);
1157 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1159 free_irq(tspi
->irq
, tspi
);
1161 if (tspi
->tx_dma_chan
)
1162 tegra_spi_deinit_dma_param(tspi
, false);
1164 if (tspi
->rx_dma_chan
)
1165 tegra_spi_deinit_dma_param(tspi
, true);
1167 pm_runtime_disable(&pdev
->dev
);
1168 if (!pm_runtime_status_suspended(&pdev
->dev
))
1169 tegra_spi_runtime_suspend(&pdev
->dev
);
1174 #ifdef CONFIG_PM_SLEEP
1175 static int tegra_spi_suspend(struct device
*dev
)
1177 struct spi_master
*master
= dev_get_drvdata(dev
);
1179 return spi_master_suspend(master
);
1182 static int tegra_spi_resume(struct device
*dev
)
1184 struct spi_master
*master
= dev_get_drvdata(dev
);
1185 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1188 ret
= pm_runtime_get_sync(dev
);
1190 dev_err(dev
, "pm runtime failed, e = %d\n", ret
);
1193 tegra_spi_writel(tspi
, tspi
->command1_reg
, SPI_COMMAND1
);
1194 pm_runtime_put(dev
);
1196 return spi_master_resume(master
);
1200 static int tegra_spi_runtime_suspend(struct device
*dev
)
1202 struct spi_master
*master
= dev_get_drvdata(dev
);
1203 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1205 /* Flush all write which are in PPSB queue by reading back */
1206 tegra_spi_readl(tspi
, SPI_COMMAND1
);
1208 clk_disable_unprepare(tspi
->clk
);
1212 static int tegra_spi_runtime_resume(struct device
*dev
)
1214 struct spi_master
*master
= dev_get_drvdata(dev
);
1215 struct tegra_spi_data
*tspi
= spi_master_get_devdata(master
);
1218 ret
= clk_prepare_enable(tspi
->clk
);
1220 dev_err(tspi
->dev
, "clk_prepare failed: %d\n", ret
);
1226 static const struct dev_pm_ops tegra_spi_pm_ops
= {
1227 SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend
,
1228 tegra_spi_runtime_resume
, NULL
)
1229 SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend
, tegra_spi_resume
)
1231 static struct platform_driver tegra_spi_driver
= {
1233 .name
= "spi-tegra114",
1234 .owner
= THIS_MODULE
,
1235 .pm
= &tegra_spi_pm_ops
,
1236 .of_match_table
= tegra_spi_of_match
,
1238 .probe
= tegra_spi_probe
,
1239 .remove
= tegra_spi_remove
,
1241 module_platform_driver(tegra_spi_driver
);
1243 MODULE_ALIAS("platform:spi-tegra114");
1244 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1245 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1246 MODULE_LICENSE("GPL v2");