PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / spi / spi-topcliff-pch.c
blob2e7f38c7a9610b11f63fd36c816f311b3372d66d
1 /*
2 * SPI bus driver for the Topcliff PCH used by Intel SoCs
4 * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
34 /* Register offsets */
35 #define PCH_SPCR 0x00 /* SPI control register */
36 #define PCH_SPBRR 0x04 /* SPI baud rate register */
37 #define PCH_SPSR 0x08 /* SPI status register */
38 #define PCH_SPDWR 0x0C /* SPI write data register */
39 #define PCH_SPDRR 0x10 /* SPI read data register */
40 #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
41 #define PCH_SRST 0x1C /* SPI reset register */
42 #define PCH_ADDRESS_SIZE 0x20
44 #define PCH_SPSR_TFD 0x000007C0
45 #define PCH_SPSR_RFD 0x0000F800
47 #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
50 #define PCH_RX_THOLD 7
51 #define PCH_RX_THOLD_MAX 15
53 #define PCH_TX_THOLD 2
55 #define PCH_MAX_BAUDRATE 5000000
56 #define PCH_MAX_FIFO_DEPTH 16
58 #define STATUS_RUNNING 1
59 #define STATUS_EXITING 2
60 #define PCH_SLEEP_TIME 10
62 #define SSN_LOW 0x02U
63 #define SSN_HIGH 0x03U
64 #define SSN_NO_CONTROL 0x00U
65 #define PCH_MAX_CS 0xFF
66 #define PCI_DEVICE_ID_GE_SPI 0x8816
68 #define SPCR_SPE_BIT (1 << 0)
69 #define SPCR_MSTR_BIT (1 << 1)
70 #define SPCR_LSBF_BIT (1 << 4)
71 #define SPCR_CPHA_BIT (1 << 5)
72 #define SPCR_CPOL_BIT (1 << 6)
73 #define SPCR_TFIE_BIT (1 << 8)
74 #define SPCR_RFIE_BIT (1 << 9)
75 #define SPCR_FIE_BIT (1 << 10)
76 #define SPCR_ORIE_BIT (1 << 11)
77 #define SPCR_MDFIE_BIT (1 << 12)
78 #define SPCR_FICLR_BIT (1 << 24)
79 #define SPSR_TFI_BIT (1 << 0)
80 #define SPSR_RFI_BIT (1 << 1)
81 #define SPSR_FI_BIT (1 << 2)
82 #define SPSR_ORF_BIT (1 << 3)
83 #define SPBRR_SIZE_BIT (1 << 10)
85 #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
86 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
88 #define SPCR_RFIC_FIELD 20
89 #define SPCR_TFIC_FIELD 16
91 #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
92 #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
93 #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
95 #define PCH_CLOCK_HZ 50000000
96 #define PCH_MAX_SPBR 1023
98 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
99 #define PCI_VENDOR_ID_ROHM 0x10DB
100 #define PCI_DEVICE_ID_ML7213_SPI 0x802c
101 #define PCI_DEVICE_ID_ML7223_SPI 0x800F
102 #define PCI_DEVICE_ID_ML7831_SPI 0x8816
105 * Set the number of SPI instance max
106 * Intel EG20T PCH : 1ch
107 * LAPIS Semiconductor ML7213 IOH : 2ch
108 * LAPIS Semiconductor ML7223 IOH : 1ch
109 * LAPIS Semiconductor ML7831 IOH : 1ch
111 #define PCH_SPI_MAX_DEV 2
113 #define PCH_BUF_SIZE 4096
114 #define PCH_DMA_TRANS_SIZE 12
116 static int use_dma = 1;
118 struct pch_spi_dma_ctrl {
119 struct dma_async_tx_descriptor *desc_tx;
120 struct dma_async_tx_descriptor *desc_rx;
121 struct pch_dma_slave param_tx;
122 struct pch_dma_slave param_rx;
123 struct dma_chan *chan_tx;
124 struct dma_chan *chan_rx;
125 struct scatterlist *sg_tx_p;
126 struct scatterlist *sg_rx_p;
127 struct scatterlist sg_tx;
128 struct scatterlist sg_rx;
129 int nent;
130 void *tx_buf_virt;
131 void *rx_buf_virt;
132 dma_addr_t tx_buf_dma;
133 dma_addr_t rx_buf_dma;
136 * struct pch_spi_data - Holds the SPI channel specific details
137 * @io_remap_addr: The remapped PCI base address
138 * @master: Pointer to the SPI master structure
139 * @work: Reference to work queue handler
140 * @wk: Workqueue for carrying out execution of the
141 * requests
142 * @wait: Wait queue for waking up upon receiving an
143 * interrupt.
144 * @transfer_complete: Status of SPI Transfer
145 * @bcurrent_msg_processing: Status flag for message processing
146 * @lock: Lock for protecting this structure
147 * @queue: SPI Message queue
148 * @status: Status of the SPI driver
149 * @bpw_len: Length of data to be transferred in bits per
150 * word
151 * @transfer_active: Flag showing active transfer
152 * @tx_index: Transmit data count; for bookkeeping during
153 * transfer
154 * @rx_index: Receive data count; for bookkeeping during
155 * transfer
156 * @tx_buff: Buffer for data to be transmitted
157 * @rx_index: Buffer for Received data
158 * @n_curnt_chip: The chip number that this SPI driver currently
159 * operates on
160 * @current_chip: Reference to the current chip that this SPI
161 * driver currently operates on
162 * @current_msg: The current message that this SPI driver is
163 * handling
164 * @cur_trans: The current transfer that this SPI driver is
165 * handling
166 * @board_dat: Reference to the SPI device data structure
167 * @plat_dev: platform_device structure
168 * @ch: SPI channel number
169 * @irq_reg_sts: Status of IRQ registration
171 struct pch_spi_data {
172 void __iomem *io_remap_addr;
173 unsigned long io_base_addr;
174 struct spi_master *master;
175 struct work_struct work;
176 struct workqueue_struct *wk;
177 wait_queue_head_t wait;
178 u8 transfer_complete;
179 u8 bcurrent_msg_processing;
180 spinlock_t lock;
181 struct list_head queue;
182 u8 status;
183 u32 bpw_len;
184 u8 transfer_active;
185 u32 tx_index;
186 u32 rx_index;
187 u16 *pkt_tx_buff;
188 u16 *pkt_rx_buff;
189 u8 n_curnt_chip;
190 struct spi_device *current_chip;
191 struct spi_message *current_msg;
192 struct spi_transfer *cur_trans;
193 struct pch_spi_board_data *board_dat;
194 struct platform_device *plat_dev;
195 int ch;
196 struct pch_spi_dma_ctrl dma;
197 int use_dma;
198 u8 irq_reg_sts;
199 int save_total_len;
203 * struct pch_spi_board_data - Holds the SPI device specific details
204 * @pdev: Pointer to the PCI device
205 * @suspend_sts: Status of suspend
206 * @num: The number of SPI device instance
208 struct pch_spi_board_data {
209 struct pci_dev *pdev;
210 u8 suspend_sts;
211 int num;
214 struct pch_pd_dev_save {
215 int num;
216 struct platform_device *pd_save[PCH_SPI_MAX_DEV];
217 struct pch_spi_board_data *board_dat;
220 static const struct pci_device_id pch_spi_pcidev_id[] = {
221 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
222 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
223 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
224 { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
229 * pch_spi_writereg() - Performs register writes
230 * @master: Pointer to struct spi_master.
231 * @idx: Register offset.
232 * @val: Value to be written to register.
234 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
236 struct pch_spi_data *data = spi_master_get_devdata(master);
237 iowrite32(val, (data->io_remap_addr + idx));
241 * pch_spi_readreg() - Performs register reads
242 * @master: Pointer to struct spi_master.
243 * @idx: Register offset.
245 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
247 struct pch_spi_data *data = spi_master_get_devdata(master);
248 return ioread32(data->io_remap_addr + idx);
251 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
252 u32 set, u32 clr)
254 u32 tmp = pch_spi_readreg(master, idx);
255 tmp = (tmp & ~clr) | set;
256 pch_spi_writereg(master, idx, tmp);
259 static void pch_spi_set_master_mode(struct spi_master *master)
261 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
265 * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
266 * @master: Pointer to struct spi_master.
268 static void pch_spi_clear_fifo(struct spi_master *master)
270 pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
271 pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
274 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
275 void __iomem *io_remap_addr)
277 u32 n_read, tx_index, rx_index, bpw_len;
278 u16 *pkt_rx_buffer, *pkt_tx_buff;
279 int read_cnt;
280 u32 reg_spcr_val;
281 void __iomem *spsr;
282 void __iomem *spdrr;
283 void __iomem *spdwr;
285 spsr = io_remap_addr + PCH_SPSR;
286 iowrite32(reg_spsr_val, spsr);
288 if (data->transfer_active) {
289 rx_index = data->rx_index;
290 tx_index = data->tx_index;
291 bpw_len = data->bpw_len;
292 pkt_rx_buffer = data->pkt_rx_buff;
293 pkt_tx_buff = data->pkt_tx_buff;
295 spdrr = io_remap_addr + PCH_SPDRR;
296 spdwr = io_remap_addr + PCH_SPDWR;
298 n_read = PCH_READABLE(reg_spsr_val);
300 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
301 pkt_rx_buffer[rx_index++] = ioread32(spdrr);
302 if (tx_index < bpw_len)
303 iowrite32(pkt_tx_buff[tx_index++], spdwr);
306 /* disable RFI if not needed */
307 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
308 reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
309 reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
311 /* reset rx threshold */
312 reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
313 reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
315 iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
318 /* update counts */
319 data->tx_index = tx_index;
320 data->rx_index = rx_index;
322 /* if transfer complete interrupt */
323 if (reg_spsr_val & SPSR_FI_BIT) {
324 if ((tx_index == bpw_len) && (rx_index == tx_index)) {
325 /* disable interrupts */
326 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
327 PCH_ALL);
329 /* transfer is completed;
330 inform pch_spi_process_messages */
331 data->transfer_complete = true;
332 data->transfer_active = false;
333 wake_up(&data->wait);
334 } else {
335 dev_err(&data->master->dev,
336 "%s : Transfer is not completed",
337 __func__);
344 * pch_spi_handler() - Interrupt handler
345 * @irq: The interrupt number.
346 * @dev_id: Pointer to struct pch_spi_board_data.
348 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
350 u32 reg_spsr_val;
351 void __iomem *spsr;
352 void __iomem *io_remap_addr;
353 irqreturn_t ret = IRQ_NONE;
354 struct pch_spi_data *data = dev_id;
355 struct pch_spi_board_data *board_dat = data->board_dat;
357 if (board_dat->suspend_sts) {
358 dev_dbg(&board_dat->pdev->dev,
359 "%s returning due to suspend\n", __func__);
360 return IRQ_NONE;
363 io_remap_addr = data->io_remap_addr;
364 spsr = io_remap_addr + PCH_SPSR;
366 reg_spsr_val = ioread32(spsr);
368 if (reg_spsr_val & SPSR_ORF_BIT) {
369 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
370 if (data->current_msg->complete) {
371 data->transfer_complete = true;
372 data->current_msg->status = -EIO;
373 data->current_msg->complete(data->current_msg->context);
374 data->bcurrent_msg_processing = false;
375 data->current_msg = NULL;
376 data->cur_trans = NULL;
380 if (data->use_dma)
381 return IRQ_NONE;
383 /* Check if the interrupt is for SPI device */
384 if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
385 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
386 ret = IRQ_HANDLED;
389 dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
390 __func__, ret);
392 return ret;
396 * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
397 * @master: Pointer to struct spi_master.
398 * @speed_hz: Baud rate.
400 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
402 u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
404 /* if baud rate is less than we can support limit it */
405 if (n_spbr > PCH_MAX_SPBR)
406 n_spbr = PCH_MAX_SPBR;
408 pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
412 * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
413 * @master: Pointer to struct spi_master.
414 * @bits_per_word: Bits per word for SPI transfer.
416 static void pch_spi_set_bits_per_word(struct spi_master *master,
417 u8 bits_per_word)
419 if (bits_per_word == 8)
420 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
421 else
422 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
426 * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
427 * @spi: Pointer to struct spi_device.
429 static void pch_spi_setup_transfer(struct spi_device *spi)
431 u32 flags = 0;
433 dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
434 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
435 spi->max_speed_hz);
436 pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
438 /* set bits per word */
439 pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
441 if (!(spi->mode & SPI_LSB_FIRST))
442 flags |= SPCR_LSBF_BIT;
443 if (spi->mode & SPI_CPOL)
444 flags |= SPCR_CPOL_BIT;
445 if (spi->mode & SPI_CPHA)
446 flags |= SPCR_CPHA_BIT;
447 pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
448 (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
450 /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
451 pch_spi_clear_fifo(spi->master);
455 * pch_spi_reset() - Clears SPI registers
456 * @master: Pointer to struct spi_master.
458 static void pch_spi_reset(struct spi_master *master)
460 /* write 1 to reset SPI */
461 pch_spi_writereg(master, PCH_SRST, 0x1);
463 /* clear reset */
464 pch_spi_writereg(master, PCH_SRST, 0x0);
467 static int pch_spi_setup(struct spi_device *pspi)
469 /* Check baud rate setting */
470 /* if baud rate of chip is greater than
471 max we can support,return error */
472 if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
473 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
475 dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
476 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
478 return 0;
481 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
484 struct spi_transfer *transfer;
485 struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
486 int retval;
487 unsigned long flags;
489 /* validate spi message and baud rate */
490 if (unlikely(list_empty(&pmsg->transfers) == 1)) {
491 dev_err(&pspi->dev, "%s list empty\n", __func__);
492 retval = -EINVAL;
493 goto err_out;
496 if (unlikely(pspi->max_speed_hz == 0)) {
497 dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
498 __func__, pspi->max_speed_hz);
499 retval = -EINVAL;
500 goto err_out;
503 dev_dbg(&pspi->dev,
504 "%s Transfer List not empty. Transfer Speed is set.\n", __func__);
506 spin_lock_irqsave(&data->lock, flags);
507 /* validate Tx/Rx buffers and Transfer length */
508 list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
509 if (!transfer->tx_buf && !transfer->rx_buf) {
510 dev_err(&pspi->dev,
511 "%s Tx and Rx buffer NULL\n", __func__);
512 retval = -EINVAL;
513 goto err_return_spinlock;
516 if (!transfer->len) {
517 dev_err(&pspi->dev, "%s Transfer length invalid\n",
518 __func__);
519 retval = -EINVAL;
520 goto err_return_spinlock;
523 dev_dbg(&pspi->dev,
524 "%s Tx/Rx buffer valid. Transfer length valid\n",
525 __func__);
527 /* if baud rate has been specified validate the same */
528 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
529 transfer->speed_hz = PCH_MAX_BAUDRATE;
531 spin_unlock_irqrestore(&data->lock, flags);
533 /* We won't process any messages if we have been asked to terminate */
534 if (data->status == STATUS_EXITING) {
535 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
536 retval = -ESHUTDOWN;
537 goto err_out;
540 /* If suspended ,return -EINVAL */
541 if (data->board_dat->suspend_sts) {
542 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
543 retval = -EINVAL;
544 goto err_out;
547 /* set status of message */
548 pmsg->actual_length = 0;
549 dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
551 pmsg->status = -EINPROGRESS;
552 spin_lock_irqsave(&data->lock, flags);
553 /* add message to queue */
554 list_add_tail(&pmsg->queue, &data->queue);
555 spin_unlock_irqrestore(&data->lock, flags);
557 dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
559 /* schedule work queue to run */
560 queue_work(data->wk, &data->work);
561 dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
563 retval = 0;
565 err_out:
566 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
567 return retval;
568 err_return_spinlock:
569 dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
570 spin_unlock_irqrestore(&data->lock, flags);
571 return retval;
574 static inline void pch_spi_select_chip(struct pch_spi_data *data,
575 struct spi_device *pspi)
577 if (data->current_chip != NULL) {
578 if (pspi->chip_select != data->n_curnt_chip) {
579 dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
580 data->current_chip = NULL;
584 data->current_chip = pspi;
586 data->n_curnt_chip = data->current_chip->chip_select;
588 dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
589 pch_spi_setup_transfer(pspi);
592 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
594 int size;
595 u32 n_writes;
596 int j;
597 struct spi_message *pmsg, *tmp;
598 const u8 *tx_buf;
599 const u16 *tx_sbuf;
601 /* set baud rate if needed */
602 if (data->cur_trans->speed_hz) {
603 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
604 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
607 /* set bits per word if needed */
608 if (data->cur_trans->bits_per_word &&
609 (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
610 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
611 pch_spi_set_bits_per_word(data->master,
612 data->cur_trans->bits_per_word);
613 *bpw = data->cur_trans->bits_per_word;
614 } else {
615 *bpw = data->current_msg->spi->bits_per_word;
618 /* reset Tx/Rx index */
619 data->tx_index = 0;
620 data->rx_index = 0;
622 data->bpw_len = data->cur_trans->len / (*bpw / 8);
624 /* find alloc size */
625 size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
627 /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
628 data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
629 if (data->pkt_tx_buff != NULL) {
630 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
631 if (!data->pkt_rx_buff)
632 kfree(data->pkt_tx_buff);
635 if (!data->pkt_rx_buff) {
636 /* flush queue and set status of all transfers to -ENOMEM */
637 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
638 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
639 pmsg->status = -ENOMEM;
641 if (pmsg->complete)
642 pmsg->complete(pmsg->context);
644 /* delete from queue */
645 list_del_init(&pmsg->queue);
647 return;
650 /* copy Tx Data */
651 if (data->cur_trans->tx_buf != NULL) {
652 if (*bpw == 8) {
653 tx_buf = data->cur_trans->tx_buf;
654 for (j = 0; j < data->bpw_len; j++)
655 data->pkt_tx_buff[j] = *tx_buf++;
656 } else {
657 tx_sbuf = data->cur_trans->tx_buf;
658 for (j = 0; j < data->bpw_len; j++)
659 data->pkt_tx_buff[j] = *tx_sbuf++;
663 /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
664 n_writes = data->bpw_len;
665 if (n_writes > PCH_MAX_FIFO_DEPTH)
666 n_writes = PCH_MAX_FIFO_DEPTH;
668 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
669 "0x2 to SSNXCR\n", __func__);
670 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
672 for (j = 0; j < n_writes; j++)
673 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
675 /* update tx_index */
676 data->tx_index = j;
678 /* reset transfer complete flag */
679 data->transfer_complete = false;
680 data->transfer_active = true;
683 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
685 struct spi_message *pmsg, *tmp;
686 dev_dbg(&data->master->dev, "%s called\n", __func__);
687 /* Invoke complete callback
688 * [To the spi core..indicating end of transfer] */
689 data->current_msg->status = 0;
691 if (data->current_msg->complete) {
692 dev_dbg(&data->master->dev,
693 "%s:Invoking callback of SPI core\n", __func__);
694 data->current_msg->complete(data->current_msg->context);
697 /* update status in global variable */
698 data->bcurrent_msg_processing = false;
700 dev_dbg(&data->master->dev,
701 "%s:data->bcurrent_msg_processing = false\n", __func__);
703 data->current_msg = NULL;
704 data->cur_trans = NULL;
706 /* check if we have items in list and not suspending
707 * return 1 if list empty */
708 if ((list_empty(&data->queue) == 0) &&
709 (!data->board_dat->suspend_sts) &&
710 (data->status != STATUS_EXITING)) {
711 /* We have some more work to do (either there is more tranint
712 * bpw;sfer requests in the current message or there are
713 *more messages)
715 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
716 queue_work(data->wk, &data->work);
717 } else if (data->board_dat->suspend_sts ||
718 data->status == STATUS_EXITING) {
719 dev_dbg(&data->master->dev,
720 "%s suspend/remove initiated, flushing queue\n",
721 __func__);
722 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
723 pmsg->status = -EIO;
725 if (pmsg->complete)
726 pmsg->complete(pmsg->context);
728 /* delete from queue */
729 list_del_init(&pmsg->queue);
734 static void pch_spi_set_ir(struct pch_spi_data *data)
736 /* enable interrupts, set threshold, enable SPI */
737 if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
738 /* set receive threshold to PCH_RX_THOLD */
739 pch_spi_setclr_reg(data->master, PCH_SPCR,
740 PCH_RX_THOLD << SPCR_RFIC_FIELD |
741 SPCR_FIE_BIT | SPCR_RFIE_BIT |
742 SPCR_ORIE_BIT | SPCR_SPE_BIT,
743 MASK_RFIC_SPCR_BITS | PCH_ALL);
744 else
745 /* set receive threshold to maximum */
746 pch_spi_setclr_reg(data->master, PCH_SPCR,
747 PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
748 SPCR_FIE_BIT | SPCR_ORIE_BIT |
749 SPCR_SPE_BIT,
750 MASK_RFIC_SPCR_BITS | PCH_ALL);
752 /* Wait until the transfer completes; go to sleep after
753 initiating the transfer. */
754 dev_dbg(&data->master->dev,
755 "%s:waiting for transfer to get over\n", __func__);
757 wait_event_interruptible(data->wait, data->transfer_complete);
759 /* clear all interrupts */
760 pch_spi_writereg(data->master, PCH_SPSR,
761 pch_spi_readreg(data->master, PCH_SPSR));
762 /* Disable interrupts and SPI transfer */
763 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
764 /* clear FIFO */
765 pch_spi_clear_fifo(data->master);
768 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
770 int j;
771 u8 *rx_buf;
772 u16 *rx_sbuf;
774 /* copy Rx Data */
775 if (!data->cur_trans->rx_buf)
776 return;
778 if (bpw == 8) {
779 rx_buf = data->cur_trans->rx_buf;
780 for (j = 0; j < data->bpw_len; j++)
781 *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
782 } else {
783 rx_sbuf = data->cur_trans->rx_buf;
784 for (j = 0; j < data->bpw_len; j++)
785 *rx_sbuf++ = data->pkt_rx_buff[j];
789 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
791 int j;
792 u8 *rx_buf;
793 u16 *rx_sbuf;
794 const u8 *rx_dma_buf;
795 const u16 *rx_dma_sbuf;
797 /* copy Rx Data */
798 if (!data->cur_trans->rx_buf)
799 return;
801 if (bpw == 8) {
802 rx_buf = data->cur_trans->rx_buf;
803 rx_dma_buf = data->dma.rx_buf_virt;
804 for (j = 0; j < data->bpw_len; j++)
805 *rx_buf++ = *rx_dma_buf++ & 0xFF;
806 data->cur_trans->rx_buf = rx_buf;
807 } else {
808 rx_sbuf = data->cur_trans->rx_buf;
809 rx_dma_sbuf = data->dma.rx_buf_virt;
810 for (j = 0; j < data->bpw_len; j++)
811 *rx_sbuf++ = *rx_dma_sbuf++;
812 data->cur_trans->rx_buf = rx_sbuf;
816 static int pch_spi_start_transfer(struct pch_spi_data *data)
818 struct pch_spi_dma_ctrl *dma;
819 unsigned long flags;
820 int rtn;
822 dma = &data->dma;
824 spin_lock_irqsave(&data->lock, flags);
826 /* disable interrupts, SPI set enable */
827 pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
829 spin_unlock_irqrestore(&data->lock, flags);
831 /* Wait until the transfer completes; go to sleep after
832 initiating the transfer. */
833 dev_dbg(&data->master->dev,
834 "%s:waiting for transfer to get over\n", __func__);
835 rtn = wait_event_interruptible_timeout(data->wait,
836 data->transfer_complete,
837 msecs_to_jiffies(2 * HZ));
838 if (!rtn)
839 dev_err(&data->master->dev,
840 "%s wait-event timeout\n", __func__);
842 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
843 DMA_FROM_DEVICE);
845 dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
846 DMA_FROM_DEVICE);
847 memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
849 async_tx_ack(dma->desc_rx);
850 async_tx_ack(dma->desc_tx);
851 kfree(dma->sg_tx_p);
852 kfree(dma->sg_rx_p);
854 spin_lock_irqsave(&data->lock, flags);
856 /* clear fifo threshold, disable interrupts, disable SPI transfer */
857 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
858 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
859 SPCR_SPE_BIT);
860 /* clear all interrupts */
861 pch_spi_writereg(data->master, PCH_SPSR,
862 pch_spi_readreg(data->master, PCH_SPSR));
863 /* clear FIFO */
864 pch_spi_clear_fifo(data->master);
866 spin_unlock_irqrestore(&data->lock, flags);
868 return rtn;
871 static void pch_dma_rx_complete(void *arg)
873 struct pch_spi_data *data = arg;
875 /* transfer is completed;inform pch_spi_process_messages_dma */
876 data->transfer_complete = true;
877 wake_up_interruptible(&data->wait);
880 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
882 struct pch_dma_slave *param = slave;
884 if ((chan->chan_id == param->chan_id) &&
885 (param->dma_dev == chan->device->dev)) {
886 chan->private = param;
887 return true;
888 } else {
889 return false;
893 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
895 dma_cap_mask_t mask;
896 struct dma_chan *chan;
897 struct pci_dev *dma_dev;
898 struct pch_dma_slave *param;
899 struct pch_spi_dma_ctrl *dma;
900 unsigned int width;
902 if (bpw == 8)
903 width = PCH_DMA_WIDTH_1_BYTE;
904 else
905 width = PCH_DMA_WIDTH_2_BYTES;
907 dma = &data->dma;
908 dma_cap_zero(mask);
909 dma_cap_set(DMA_SLAVE, mask);
911 /* Get DMA's dev information */
912 dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
913 PCI_DEVFN(12, 0));
915 /* Set Tx DMA */
916 param = &dma->param_tx;
917 param->dma_dev = &dma_dev->dev;
918 param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
919 param->tx_reg = data->io_base_addr + PCH_SPDWR;
920 param->width = width;
921 chan = dma_request_channel(mask, pch_spi_filter, param);
922 if (!chan) {
923 dev_err(&data->master->dev,
924 "ERROR: dma_request_channel FAILS(Tx)\n");
925 data->use_dma = 0;
926 return;
928 dma->chan_tx = chan;
930 /* Set Rx DMA */
931 param = &dma->param_rx;
932 param->dma_dev = &dma_dev->dev;
933 param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
934 param->rx_reg = data->io_base_addr + PCH_SPDRR;
935 param->width = width;
936 chan = dma_request_channel(mask, pch_spi_filter, param);
937 if (!chan) {
938 dev_err(&data->master->dev,
939 "ERROR: dma_request_channel FAILS(Rx)\n");
940 dma_release_channel(dma->chan_tx);
941 dma->chan_tx = NULL;
942 data->use_dma = 0;
943 return;
945 dma->chan_rx = chan;
948 static void pch_spi_release_dma(struct pch_spi_data *data)
950 struct pch_spi_dma_ctrl *dma;
952 dma = &data->dma;
953 if (dma->chan_tx) {
954 dma_release_channel(dma->chan_tx);
955 dma->chan_tx = NULL;
957 if (dma->chan_rx) {
958 dma_release_channel(dma->chan_rx);
959 dma->chan_rx = NULL;
961 return;
964 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
966 const u8 *tx_buf;
967 const u16 *tx_sbuf;
968 u8 *tx_dma_buf;
969 u16 *tx_dma_sbuf;
970 struct scatterlist *sg;
971 struct dma_async_tx_descriptor *desc_tx;
972 struct dma_async_tx_descriptor *desc_rx;
973 int num;
974 int i;
975 int size;
976 int rem;
977 int head;
978 unsigned long flags;
979 struct pch_spi_dma_ctrl *dma;
981 dma = &data->dma;
983 /* set baud rate if needed */
984 if (data->cur_trans->speed_hz) {
985 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
986 spin_lock_irqsave(&data->lock, flags);
987 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
988 spin_unlock_irqrestore(&data->lock, flags);
991 /* set bits per word if needed */
992 if (data->cur_trans->bits_per_word &&
993 (data->current_msg->spi->bits_per_word !=
994 data->cur_trans->bits_per_word)) {
995 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
996 spin_lock_irqsave(&data->lock, flags);
997 pch_spi_set_bits_per_word(data->master,
998 data->cur_trans->bits_per_word);
999 spin_unlock_irqrestore(&data->lock, flags);
1000 *bpw = data->cur_trans->bits_per_word;
1001 } else {
1002 *bpw = data->current_msg->spi->bits_per_word;
1004 data->bpw_len = data->cur_trans->len / (*bpw / 8);
1006 if (data->bpw_len > PCH_BUF_SIZE) {
1007 data->bpw_len = PCH_BUF_SIZE;
1008 data->cur_trans->len -= PCH_BUF_SIZE;
1011 /* copy Tx Data */
1012 if (data->cur_trans->tx_buf != NULL) {
1013 if (*bpw == 8) {
1014 tx_buf = data->cur_trans->tx_buf;
1015 tx_dma_buf = dma->tx_buf_virt;
1016 for (i = 0; i < data->bpw_len; i++)
1017 *tx_dma_buf++ = *tx_buf++;
1018 } else {
1019 tx_sbuf = data->cur_trans->tx_buf;
1020 tx_dma_sbuf = dma->tx_buf_virt;
1021 for (i = 0; i < data->bpw_len; i++)
1022 *tx_dma_sbuf++ = *tx_sbuf++;
1026 /* Calculate Rx parameter for DMA transmitting */
1027 if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1028 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
1029 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1030 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1031 } else {
1032 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1033 rem = PCH_DMA_TRANS_SIZE;
1035 size = PCH_DMA_TRANS_SIZE;
1036 } else {
1037 num = 1;
1038 size = data->bpw_len;
1039 rem = data->bpw_len;
1041 dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1042 __func__, num, size, rem);
1043 spin_lock_irqsave(&data->lock, flags);
1045 /* set receive fifo threshold and transmit fifo threshold */
1046 pch_spi_setclr_reg(data->master, PCH_SPCR,
1047 ((size - 1) << SPCR_RFIC_FIELD) |
1048 (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1049 MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1051 spin_unlock_irqrestore(&data->lock, flags);
1053 /* RX */
1054 dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1055 sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1056 /* offset, length setting */
1057 sg = dma->sg_rx_p;
1058 for (i = 0; i < num; i++, sg++) {
1059 if (i == (num - 2)) {
1060 sg->offset = size * i;
1061 sg->offset = sg->offset * (*bpw / 8);
1062 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1063 sg->offset);
1064 sg_dma_len(sg) = rem;
1065 } else if (i == (num - 1)) {
1066 sg->offset = size * (i - 1) + rem;
1067 sg->offset = sg->offset * (*bpw / 8);
1068 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1069 sg->offset);
1070 sg_dma_len(sg) = size;
1071 } else {
1072 sg->offset = size * i;
1073 sg->offset = sg->offset * (*bpw / 8);
1074 sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1075 sg->offset);
1076 sg_dma_len(sg) = size;
1078 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1080 sg = dma->sg_rx_p;
1081 desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1082 num, DMA_DEV_TO_MEM,
1083 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1084 if (!desc_rx) {
1085 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1086 __func__);
1087 return;
1089 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1090 desc_rx->callback = pch_dma_rx_complete;
1091 desc_rx->callback_param = data;
1092 dma->nent = num;
1093 dma->desc_rx = desc_rx;
1095 /* Calculate Tx parameter for DMA transmitting */
1096 if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1097 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1098 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1099 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1100 rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1101 } else {
1102 num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1103 rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1104 PCH_DMA_TRANS_SIZE - head;
1106 size = PCH_DMA_TRANS_SIZE;
1107 } else {
1108 num = 1;
1109 size = data->bpw_len;
1110 rem = data->bpw_len;
1111 head = 0;
1114 dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1115 sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1116 /* offset, length setting */
1117 sg = dma->sg_tx_p;
1118 for (i = 0; i < num; i++, sg++) {
1119 if (i == 0) {
1120 sg->offset = 0;
1121 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1122 sg->offset);
1123 sg_dma_len(sg) = size + head;
1124 } else if (i == (num - 1)) {
1125 sg->offset = head + size * i;
1126 sg->offset = sg->offset * (*bpw / 8);
1127 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1128 sg->offset);
1129 sg_dma_len(sg) = rem;
1130 } else {
1131 sg->offset = head + size * i;
1132 sg->offset = sg->offset * (*bpw / 8);
1133 sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1134 sg->offset);
1135 sg_dma_len(sg) = size;
1137 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1139 sg = dma->sg_tx_p;
1140 desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1141 sg, num, DMA_MEM_TO_DEV,
1142 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1143 if (!desc_tx) {
1144 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1145 __func__);
1146 return;
1148 dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1149 desc_tx->callback = NULL;
1150 desc_tx->callback_param = data;
1151 dma->nent = num;
1152 dma->desc_tx = desc_tx;
1154 dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1155 "0x2 to SSNXCR\n", __func__);
1157 spin_lock_irqsave(&data->lock, flags);
1158 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1159 desc_rx->tx_submit(desc_rx);
1160 desc_tx->tx_submit(desc_tx);
1161 spin_unlock_irqrestore(&data->lock, flags);
1163 /* reset transfer complete flag */
1164 data->transfer_complete = false;
1167 static void pch_spi_process_messages(struct work_struct *pwork)
1169 struct spi_message *pmsg, *tmp;
1170 struct pch_spi_data *data;
1171 int bpw;
1173 data = container_of(pwork, struct pch_spi_data, work);
1174 dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1176 spin_lock(&data->lock);
1177 /* check if suspend has been initiated;if yes flush queue */
1178 if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1179 dev_dbg(&data->master->dev,
1180 "%s suspend/remove initiated, flushing queue\n", __func__);
1181 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1182 pmsg->status = -EIO;
1184 if (pmsg->complete) {
1185 spin_unlock(&data->lock);
1186 pmsg->complete(pmsg->context);
1187 spin_lock(&data->lock);
1190 /* delete from queue */
1191 list_del_init(&pmsg->queue);
1194 spin_unlock(&data->lock);
1195 return;
1198 data->bcurrent_msg_processing = true;
1199 dev_dbg(&data->master->dev,
1200 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1202 /* Get the message from the queue and delete it from there. */
1203 data->current_msg = list_entry(data->queue.next, struct spi_message,
1204 queue);
1206 list_del_init(&data->current_msg->queue);
1208 data->current_msg->status = 0;
1210 pch_spi_select_chip(data, data->current_msg->spi);
1212 spin_unlock(&data->lock);
1214 if (data->use_dma)
1215 pch_spi_request_dma(data,
1216 data->current_msg->spi->bits_per_word);
1217 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1218 do {
1219 int cnt;
1220 /* If we are already processing a message get the next
1221 transfer structure from the message otherwise retrieve
1222 the 1st transfer request from the message. */
1223 spin_lock(&data->lock);
1224 if (data->cur_trans == NULL) {
1225 data->cur_trans =
1226 list_entry(data->current_msg->transfers.next,
1227 struct spi_transfer, transfer_list);
1228 dev_dbg(&data->master->dev, "%s "
1229 ":Getting 1st transfer message\n", __func__);
1230 } else {
1231 data->cur_trans =
1232 list_entry(data->cur_trans->transfer_list.next,
1233 struct spi_transfer, transfer_list);
1234 dev_dbg(&data->master->dev, "%s "
1235 ":Getting next transfer message\n", __func__);
1237 spin_unlock(&data->lock);
1239 if (!data->cur_trans->len)
1240 goto out;
1241 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1242 data->save_total_len = data->cur_trans->len;
1243 if (data->use_dma) {
1244 int i;
1245 char *save_rx_buf = data->cur_trans->rx_buf;
1246 for (i = 0; i < cnt; i ++) {
1247 pch_spi_handle_dma(data, &bpw);
1248 if (!pch_spi_start_transfer(data)) {
1249 data->transfer_complete = true;
1250 data->current_msg->status = -EIO;
1251 data->current_msg->complete
1252 (data->current_msg->context);
1253 data->bcurrent_msg_processing = false;
1254 data->current_msg = NULL;
1255 data->cur_trans = NULL;
1256 goto out;
1258 pch_spi_copy_rx_data_for_dma(data, bpw);
1260 data->cur_trans->rx_buf = save_rx_buf;
1261 } else {
1262 pch_spi_set_tx(data, &bpw);
1263 pch_spi_set_ir(data);
1264 pch_spi_copy_rx_data(data, bpw);
1265 kfree(data->pkt_rx_buff);
1266 data->pkt_rx_buff = NULL;
1267 kfree(data->pkt_tx_buff);
1268 data->pkt_tx_buff = NULL;
1270 /* increment message count */
1271 data->cur_trans->len = data->save_total_len;
1272 data->current_msg->actual_length += data->cur_trans->len;
1274 dev_dbg(&data->master->dev,
1275 "%s:data->current_msg->actual_length=%d\n",
1276 __func__, data->current_msg->actual_length);
1278 /* check for delay */
1279 if (data->cur_trans->delay_usecs) {
1280 dev_dbg(&data->master->dev, "%s:"
1281 "delay in usec=%d\n", __func__,
1282 data->cur_trans->delay_usecs);
1283 udelay(data->cur_trans->delay_usecs);
1286 spin_lock(&data->lock);
1288 /* No more transfer in this message. */
1289 if ((data->cur_trans->transfer_list.next) ==
1290 &(data->current_msg->transfers)) {
1291 pch_spi_nomore_transfer(data);
1294 spin_unlock(&data->lock);
1296 } while (data->cur_trans != NULL);
1298 out:
1299 pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1300 if (data->use_dma)
1301 pch_spi_release_dma(data);
1304 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1305 struct pch_spi_data *data)
1307 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1309 /* free workqueue */
1310 if (data->wk != NULL) {
1311 destroy_workqueue(data->wk);
1312 data->wk = NULL;
1313 dev_dbg(&board_dat->pdev->dev,
1314 "%s destroy_workqueue invoked successfully\n",
1315 __func__);
1319 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1320 struct pch_spi_data *data)
1322 int retval = 0;
1324 dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1326 /* create workqueue */
1327 data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1328 if (!data->wk) {
1329 dev_err(&board_dat->pdev->dev,
1330 "%s create_singlet hread_workqueue failed\n", __func__);
1331 retval = -EBUSY;
1332 goto err_return;
1335 /* reset PCH SPI h/w */
1336 pch_spi_reset(data->master);
1337 dev_dbg(&board_dat->pdev->dev,
1338 "%s pch_spi_reset invoked successfully\n", __func__);
1340 dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1342 err_return:
1343 if (retval != 0) {
1344 dev_err(&board_dat->pdev->dev,
1345 "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1346 pch_spi_free_resources(board_dat, data);
1349 dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1351 return retval;
1354 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1355 struct pch_spi_data *data)
1357 struct pch_spi_dma_ctrl *dma;
1359 dma = &data->dma;
1360 if (dma->tx_buf_dma)
1361 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1362 dma->tx_buf_virt, dma->tx_buf_dma);
1363 if (dma->rx_buf_dma)
1364 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1365 dma->rx_buf_virt, dma->rx_buf_dma);
1366 return;
1369 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1370 struct pch_spi_data *data)
1372 struct pch_spi_dma_ctrl *dma;
1374 dma = &data->dma;
1375 /* Get Consistent memory for Tx DMA */
1376 dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1377 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1378 /* Get Consistent memory for Rx DMA */
1379 dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1380 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1383 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1385 int ret;
1386 struct spi_master *master;
1387 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1388 struct pch_spi_data *data;
1390 dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1392 master = spi_alloc_master(&board_dat->pdev->dev,
1393 sizeof(struct pch_spi_data));
1394 if (!master) {
1395 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1396 plat_dev->id);
1397 return -ENOMEM;
1400 data = spi_master_get_devdata(master);
1401 data->master = master;
1403 platform_set_drvdata(plat_dev, data);
1405 /* baseaddress + address offset) */
1406 data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1407 PCH_ADDRESS_SIZE * plat_dev->id;
1408 data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1409 if (!data->io_remap_addr) {
1410 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1411 ret = -ENOMEM;
1412 goto err_pci_iomap;
1414 data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1416 dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1417 plat_dev->id, data->io_remap_addr);
1419 /* initialize members of SPI master */
1420 master->num_chipselect = PCH_MAX_CS;
1421 master->setup = pch_spi_setup;
1422 master->transfer = pch_spi_transfer;
1423 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1424 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1426 data->board_dat = board_dat;
1427 data->plat_dev = plat_dev;
1428 data->n_curnt_chip = 255;
1429 data->status = STATUS_RUNNING;
1430 data->ch = plat_dev->id;
1431 data->use_dma = use_dma;
1433 INIT_LIST_HEAD(&data->queue);
1434 spin_lock_init(&data->lock);
1435 INIT_WORK(&data->work, pch_spi_process_messages);
1436 init_waitqueue_head(&data->wait);
1438 ret = pch_spi_get_resources(board_dat, data);
1439 if (ret) {
1440 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1441 goto err_spi_get_resources;
1444 ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1445 IRQF_SHARED, KBUILD_MODNAME, data);
1446 if (ret) {
1447 dev_err(&plat_dev->dev,
1448 "%s request_irq failed\n", __func__);
1449 goto err_request_irq;
1451 data->irq_reg_sts = true;
1453 pch_spi_set_master_mode(master);
1455 ret = spi_register_master(master);
1456 if (ret != 0) {
1457 dev_err(&plat_dev->dev,
1458 "%s spi_register_master FAILED\n", __func__);
1459 goto err_spi_register_master;
1462 if (use_dma) {
1463 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1464 pch_alloc_dma_buf(board_dat, data);
1467 return 0;
1469 err_spi_register_master:
1470 free_irq(board_dat->pdev->irq, data);
1471 err_request_irq:
1472 pch_spi_free_resources(board_dat, data);
1473 err_spi_get_resources:
1474 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1475 err_pci_iomap:
1476 spi_master_put(master);
1478 return ret;
1481 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1483 struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1484 struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1485 int count;
1486 unsigned long flags;
1488 dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1489 __func__, plat_dev->id, board_dat->pdev->irq);
1491 if (use_dma)
1492 pch_free_dma_buf(board_dat, data);
1494 /* check for any pending messages; no action is taken if the queue
1495 * is still full; but at least we tried. Unload anyway */
1496 count = 500;
1497 spin_lock_irqsave(&data->lock, flags);
1498 data->status = STATUS_EXITING;
1499 while ((list_empty(&data->queue) == 0) && --count) {
1500 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1501 __func__);
1502 spin_unlock_irqrestore(&data->lock, flags);
1503 msleep(PCH_SLEEP_TIME);
1504 spin_lock_irqsave(&data->lock, flags);
1506 spin_unlock_irqrestore(&data->lock, flags);
1508 pch_spi_free_resources(board_dat, data);
1509 /* disable interrupts & free IRQ */
1510 if (data->irq_reg_sts) {
1511 /* disable interrupts */
1512 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1513 data->irq_reg_sts = false;
1514 free_irq(board_dat->pdev->irq, data);
1517 pci_iounmap(board_dat->pdev, data->io_remap_addr);
1518 spi_unregister_master(data->master);
1520 return 0;
1522 #ifdef CONFIG_PM
1523 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1524 pm_message_t state)
1526 u8 count;
1527 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1528 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1530 dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1532 if (!board_dat) {
1533 dev_err(&pd_dev->dev,
1534 "%s pci_get_drvdata returned NULL\n", __func__);
1535 return -EFAULT;
1538 /* check if the current message is processed:
1539 Only after thats done the transfer will be suspended */
1540 count = 255;
1541 while ((--count) > 0) {
1542 if (!(data->bcurrent_msg_processing))
1543 break;
1544 msleep(PCH_SLEEP_TIME);
1547 /* Free IRQ */
1548 if (data->irq_reg_sts) {
1549 /* disable all interrupts */
1550 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1551 pch_spi_reset(data->master);
1552 free_irq(board_dat->pdev->irq, data);
1554 data->irq_reg_sts = false;
1555 dev_dbg(&pd_dev->dev,
1556 "%s free_irq invoked successfully.\n", __func__);
1559 return 0;
1562 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1564 struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1565 struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1566 int retval;
1568 if (!board_dat) {
1569 dev_err(&pd_dev->dev,
1570 "%s pci_get_drvdata returned NULL\n", __func__);
1571 return -EFAULT;
1574 if (!data->irq_reg_sts) {
1575 /* register IRQ */
1576 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1577 IRQF_SHARED, KBUILD_MODNAME, data);
1578 if (retval < 0) {
1579 dev_err(&pd_dev->dev,
1580 "%s request_irq failed\n", __func__);
1581 return retval;
1584 /* reset PCH SPI h/w */
1585 pch_spi_reset(data->master);
1586 pch_spi_set_master_mode(data->master);
1587 data->irq_reg_sts = true;
1589 return 0;
1591 #else
1592 #define pch_spi_pd_suspend NULL
1593 #define pch_spi_pd_resume NULL
1594 #endif
1596 static struct platform_driver pch_spi_pd_driver = {
1597 .driver = {
1598 .name = "pch-spi",
1599 .owner = THIS_MODULE,
1601 .probe = pch_spi_pd_probe,
1602 .remove = pch_spi_pd_remove,
1603 .suspend = pch_spi_pd_suspend,
1604 .resume = pch_spi_pd_resume
1607 static int pch_spi_probe(struct pci_dev *pdev,
1608 const struct pci_device_id *id)
1610 struct pch_spi_board_data *board_dat;
1611 struct platform_device *pd_dev = NULL;
1612 int retval;
1613 int i;
1614 struct pch_pd_dev_save *pd_dev_save;
1616 pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1617 if (!pd_dev_save) {
1618 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1619 return -ENOMEM;
1622 board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1623 if (!board_dat) {
1624 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1625 retval = -ENOMEM;
1626 goto err_no_mem;
1629 retval = pci_request_regions(pdev, KBUILD_MODNAME);
1630 if (retval) {
1631 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1632 goto pci_request_regions;
1635 board_dat->pdev = pdev;
1636 board_dat->num = id->driver_data;
1637 pd_dev_save->num = id->driver_data;
1638 pd_dev_save->board_dat = board_dat;
1640 retval = pci_enable_device(pdev);
1641 if (retval) {
1642 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1643 goto pci_enable_device;
1646 for (i = 0; i < board_dat->num; i++) {
1647 pd_dev = platform_device_alloc("pch-spi", i);
1648 if (!pd_dev) {
1649 dev_err(&pdev->dev, "platform_device_alloc failed\n");
1650 retval = -ENOMEM;
1651 goto err_platform_device;
1653 pd_dev_save->pd_save[i] = pd_dev;
1654 pd_dev->dev.parent = &pdev->dev;
1656 retval = platform_device_add_data(pd_dev, board_dat,
1657 sizeof(*board_dat));
1658 if (retval) {
1659 dev_err(&pdev->dev,
1660 "platform_device_add_data failed\n");
1661 platform_device_put(pd_dev);
1662 goto err_platform_device;
1665 retval = platform_device_add(pd_dev);
1666 if (retval) {
1667 dev_err(&pdev->dev, "platform_device_add failed\n");
1668 platform_device_put(pd_dev);
1669 goto err_platform_device;
1673 pci_set_drvdata(pdev, pd_dev_save);
1675 return 0;
1677 err_platform_device:
1678 pci_disable_device(pdev);
1679 pci_enable_device:
1680 pci_release_regions(pdev);
1681 pci_request_regions:
1682 kfree(board_dat);
1683 err_no_mem:
1684 kfree(pd_dev_save);
1686 return retval;
1689 static void pch_spi_remove(struct pci_dev *pdev)
1691 int i;
1692 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1694 dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1696 for (i = 0; i < pd_dev_save->num; i++)
1697 platform_device_unregister(pd_dev_save->pd_save[i]);
1699 pci_disable_device(pdev);
1700 pci_release_regions(pdev);
1701 kfree(pd_dev_save->board_dat);
1702 kfree(pd_dev_save);
1705 #ifdef CONFIG_PM
1706 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1708 int retval;
1709 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1711 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1713 pd_dev_save->board_dat->suspend_sts = true;
1715 /* save config space */
1716 retval = pci_save_state(pdev);
1717 if (retval == 0) {
1718 pci_enable_wake(pdev, PCI_D3hot, 0);
1719 pci_disable_device(pdev);
1720 pci_set_power_state(pdev, PCI_D3hot);
1721 } else {
1722 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1725 return retval;
1728 static int pch_spi_resume(struct pci_dev *pdev)
1730 int retval;
1731 struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1732 dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1734 pci_set_power_state(pdev, PCI_D0);
1735 pci_restore_state(pdev);
1737 retval = pci_enable_device(pdev);
1738 if (retval < 0) {
1739 dev_err(&pdev->dev,
1740 "%s pci_enable_device failed\n", __func__);
1741 } else {
1742 pci_enable_wake(pdev, PCI_D3hot, 0);
1744 /* set suspend status to false */
1745 pd_dev_save->board_dat->suspend_sts = false;
1748 return retval;
1750 #else
1751 #define pch_spi_suspend NULL
1752 #define pch_spi_resume NULL
1754 #endif
1756 static struct pci_driver pch_spi_pcidev_driver = {
1757 .name = "pch_spi",
1758 .id_table = pch_spi_pcidev_id,
1759 .probe = pch_spi_probe,
1760 .remove = pch_spi_remove,
1761 .suspend = pch_spi_suspend,
1762 .resume = pch_spi_resume,
1765 static int __init pch_spi_init(void)
1767 int ret;
1768 ret = platform_driver_register(&pch_spi_pd_driver);
1769 if (ret)
1770 return ret;
1772 ret = pci_register_driver(&pch_spi_pcidev_driver);
1773 if (ret) {
1774 platform_driver_unregister(&pch_spi_pd_driver);
1775 return ret;
1778 return 0;
1780 module_init(pch_spi_init);
1782 static void __exit pch_spi_exit(void)
1784 pci_unregister_driver(&pch_spi_pcidev_driver);
1785 platform_driver_unregister(&pch_spi_pd_driver);
1787 module_exit(pch_spi_exit);
1789 module_param(use_dma, int, 0644);
1790 MODULE_PARM_DESC(use_dma,
1791 "to use DMA for data transfers pass 1 else 0; default 1");
1793 MODULE_LICENSE("GPL");
1794 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1795 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);