PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / thermal / intel_powerclamp.c
bloba084325f13861cc12de7824d9a251ccb58cdb282
1 /*
2 * intel_powerclamp.c - package c-state idle injection
4 * Copyright (c) 2012, Intel Corporation.
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 * Jacob Pan <jacob.jun.pan@linux.intel.com>
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms and conditions of the GNU General Public License,
12 * version 2, as published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
24 * TODO:
25 * 1. better handle wakeup from external interrupts, currently a fixed
26 * compensation is added to clamping duration when excessive amount
27 * of wakeups are observed during idle time. the reason is that in
28 * case of external interrupts without need for ack, clamping down
29 * cpu in non-irq context does not reduce irq. for majority of the
30 * cases, clamping down cpu does help reduce irq as well, we should
31 * be able to differenciate the two cases and give a quantitative
32 * solution for the irqs that we can control. perhaps based on
33 * get_cpu_iowait_time_us()
35 * 2. synchronization with other hw blocks
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47 #include <linux/cpu.h>
48 #include <linux/thermal.h>
49 #include <linux/slab.h>
50 #include <linux/tick.h>
51 #include <linux/debugfs.h>
52 #include <linux/seq_file.h>
53 #include <linux/sched/rt.h>
55 #include <asm/nmi.h>
56 #include <asm/msr.h>
57 #include <asm/mwait.h>
58 #include <asm/cpu_device_id.h>
59 #include <asm/idle.h>
60 #include <asm/hardirq.h>
62 #define MAX_TARGET_RATIO (50U)
63 /* For each undisturbed clamping period (no extra wake ups during idle time),
64 * we increment the confidence counter for the given target ratio.
65 * CONFIDENCE_OK defines the level where runtime calibration results are
66 * valid.
68 #define CONFIDENCE_OK (3)
69 /* Default idle injection duration, driver adjust sleep time to meet target
70 * idle ratio. Similar to frequency modulation.
72 #define DEFAULT_DURATION_JIFFIES (6)
74 static unsigned int target_mwait;
75 static struct dentry *debug_dir;
77 /* user selected target */
78 static unsigned int set_target_ratio;
79 static unsigned int current_ratio;
80 static bool should_skip;
81 static bool reduce_irq;
82 static atomic_t idle_wakeup_counter;
83 static unsigned int control_cpu; /* The cpu assigned to collect stat and update
84 * control parameters. default to BSP but BSP
85 * can be offlined.
87 static bool clamping;
90 static struct task_struct * __percpu *powerclamp_thread;
91 static struct thermal_cooling_device *cooling_dev;
92 static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
93 * clamping thread
96 static unsigned int duration;
97 static unsigned int pkg_cstate_ratio_cur;
98 static unsigned int window_size;
100 static int duration_set(const char *arg, const struct kernel_param *kp)
102 int ret = 0;
103 unsigned long new_duration;
105 ret = kstrtoul(arg, 10, &new_duration);
106 if (ret)
107 goto exit;
108 if (new_duration > 25 || new_duration < 6) {
109 pr_err("Out of recommended range %lu, between 6-25ms\n",
110 new_duration);
111 ret = -EINVAL;
114 duration = clamp(new_duration, 6ul, 25ul);
115 smp_mb();
117 exit:
119 return ret;
122 static struct kernel_param_ops duration_ops = {
123 .set = duration_set,
124 .get = param_get_int,
128 module_param_cb(duration, &duration_ops, &duration, 0644);
129 MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
131 struct powerclamp_calibration_data {
132 unsigned long confidence; /* used for calibration, basically a counter
133 * gets incremented each time a clamping
134 * period is completed without extra wakeups
135 * once that counter is reached given level,
136 * compensation is deemed usable.
138 unsigned long steady_comp; /* steady state compensation used when
139 * no extra wakeups occurred.
141 unsigned long dynamic_comp; /* compensate excessive wakeup from idle
142 * mostly from external interrupts.
146 static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
148 static int window_size_set(const char *arg, const struct kernel_param *kp)
150 int ret = 0;
151 unsigned long new_window_size;
153 ret = kstrtoul(arg, 10, &new_window_size);
154 if (ret)
155 goto exit_win;
156 if (new_window_size > 10 || new_window_size < 2) {
157 pr_err("Out of recommended window size %lu, between 2-10\n",
158 new_window_size);
159 ret = -EINVAL;
162 window_size = clamp(new_window_size, 2ul, 10ul);
163 smp_mb();
165 exit_win:
167 return ret;
170 static struct kernel_param_ops window_size_ops = {
171 .set = window_size_set,
172 .get = param_get_int,
175 module_param_cb(window_size, &window_size_ops, &window_size, 0644);
176 MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
177 "\tpowerclamp controls idle ratio within this window. larger\n"
178 "\twindow size results in slower response time but more smooth\n"
179 "\tclamping results. default to 2.");
181 static void find_target_mwait(void)
183 unsigned int eax, ebx, ecx, edx;
184 unsigned int highest_cstate = 0;
185 unsigned int highest_subcstate = 0;
186 int i;
188 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
189 return;
191 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
193 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
194 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
195 return;
197 edx >>= MWAIT_SUBSTATE_SIZE;
198 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
199 if (edx & MWAIT_SUBSTATE_MASK) {
200 highest_cstate = i;
201 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
204 target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
205 (highest_subcstate - 1);
209 static bool has_pkg_state_counter(void)
211 u64 tmp;
212 return !rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &tmp) ||
213 !rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &tmp) ||
214 !rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &tmp) ||
215 !rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &tmp);
218 static u64 pkg_state_counter(void)
220 u64 val;
221 u64 count = 0;
223 static bool skip_c2;
224 static bool skip_c3;
225 static bool skip_c6;
226 static bool skip_c7;
228 if (!skip_c2) {
229 if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
230 count += val;
231 else
232 skip_c2 = true;
235 if (!skip_c3) {
236 if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
237 count += val;
238 else
239 skip_c3 = true;
242 if (!skip_c6) {
243 if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
244 count += val;
245 else
246 skip_c6 = true;
249 if (!skip_c7) {
250 if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
251 count += val;
252 else
253 skip_c7 = true;
256 return count;
259 static void noop_timer(unsigned long foo)
261 /* empty... just the fact that we get the interrupt wakes us up */
264 static unsigned int get_compensation(int ratio)
266 unsigned int comp = 0;
268 /* we only use compensation if all adjacent ones are good */
269 if (ratio == 1 &&
270 cal_data[ratio].confidence >= CONFIDENCE_OK &&
271 cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
272 cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
273 comp = (cal_data[ratio].steady_comp +
274 cal_data[ratio + 1].steady_comp +
275 cal_data[ratio + 2].steady_comp) / 3;
276 } else if (ratio == MAX_TARGET_RATIO - 1 &&
277 cal_data[ratio].confidence >= CONFIDENCE_OK &&
278 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
279 cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
280 comp = (cal_data[ratio].steady_comp +
281 cal_data[ratio - 1].steady_comp +
282 cal_data[ratio - 2].steady_comp) / 3;
283 } else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
284 cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
285 cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
286 comp = (cal_data[ratio].steady_comp +
287 cal_data[ratio - 1].steady_comp +
288 cal_data[ratio + 1].steady_comp) / 3;
291 /* REVISIT: simple penalty of double idle injection */
292 if (reduce_irq)
293 comp = ratio;
294 /* do not exceed limit */
295 if (comp + ratio >= MAX_TARGET_RATIO)
296 comp = MAX_TARGET_RATIO - ratio - 1;
298 return comp;
301 static void adjust_compensation(int target_ratio, unsigned int win)
303 int delta;
304 struct powerclamp_calibration_data *d = &cal_data[target_ratio];
307 * adjust compensations if confidence level has not been reached or
308 * there are too many wakeups during the last idle injection period, we
309 * cannot trust the data for compensation.
311 if (d->confidence >= CONFIDENCE_OK ||
312 atomic_read(&idle_wakeup_counter) >
313 win * num_online_cpus())
314 return;
316 delta = set_target_ratio - current_ratio;
317 /* filter out bad data */
318 if (delta >= 0 && delta <= (1+target_ratio/10)) {
319 if (d->steady_comp)
320 d->steady_comp =
321 roundup(delta+d->steady_comp, 2)/2;
322 else
323 d->steady_comp = delta;
324 d->confidence++;
328 static bool powerclamp_adjust_controls(unsigned int target_ratio,
329 unsigned int guard, unsigned int win)
331 static u64 msr_last, tsc_last;
332 u64 msr_now, tsc_now;
333 u64 val64;
335 /* check result for the last window */
336 msr_now = pkg_state_counter();
337 rdtscll(tsc_now);
339 /* calculate pkg cstate vs tsc ratio */
340 if (!msr_last || !tsc_last)
341 current_ratio = 1;
342 else if (tsc_now-tsc_last) {
343 val64 = 100*(msr_now-msr_last);
344 do_div(val64, (tsc_now-tsc_last));
345 current_ratio = val64;
348 /* update record */
349 msr_last = msr_now;
350 tsc_last = tsc_now;
352 adjust_compensation(target_ratio, win);
354 * too many external interrupts, set flag such
355 * that we can take measure later.
357 reduce_irq = atomic_read(&idle_wakeup_counter) >=
358 2 * win * num_online_cpus();
360 atomic_set(&idle_wakeup_counter, 0);
361 /* if we are above target+guard, skip */
362 return set_target_ratio + guard <= current_ratio;
365 static int clamp_thread(void *arg)
367 int cpunr = (unsigned long)arg;
368 DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
369 static const struct sched_param param = {
370 .sched_priority = MAX_USER_RT_PRIO/2,
372 unsigned int count = 0;
373 unsigned int target_ratio;
375 set_bit(cpunr, cpu_clamping_mask);
376 set_freezable();
377 init_timer_on_stack(&wakeup_timer);
378 sched_setscheduler(current, SCHED_FIFO, &param);
380 while (true == clamping && !kthread_should_stop() &&
381 cpu_online(cpunr)) {
382 int sleeptime;
383 unsigned long target_jiffies;
384 unsigned int guard;
385 unsigned int compensation = 0;
386 int interval; /* jiffies to sleep for each attempt */
387 unsigned int duration_jiffies = msecs_to_jiffies(duration);
388 unsigned int window_size_now;
390 try_to_freeze();
392 * make sure user selected ratio does not take effect until
393 * the next round. adjust target_ratio if user has changed
394 * target such that we can converge quickly.
396 target_ratio = set_target_ratio;
397 guard = 1 + target_ratio/20;
398 window_size_now = window_size;
399 count++;
402 * systems may have different ability to enter package level
403 * c-states, thus we need to compensate the injected idle ratio
404 * to achieve the actual target reported by the HW.
406 compensation = get_compensation(target_ratio);
407 interval = duration_jiffies*100/(target_ratio+compensation);
409 /* align idle time */
410 target_jiffies = roundup(jiffies, interval);
411 sleeptime = target_jiffies - jiffies;
412 if (sleeptime <= 0)
413 sleeptime = 1;
414 schedule_timeout_interruptible(sleeptime);
416 * only elected controlling cpu can collect stats and update
417 * control parameters.
419 if (cpunr == control_cpu && !(count%window_size_now)) {
420 should_skip =
421 powerclamp_adjust_controls(target_ratio,
422 guard, window_size_now);
423 smp_mb();
426 if (should_skip)
427 continue;
429 target_jiffies = jiffies + duration_jiffies;
430 mod_timer(&wakeup_timer, target_jiffies);
431 if (unlikely(local_softirq_pending()))
432 continue;
434 * stop tick sched during idle time, interrupts are still
435 * allowed. thus jiffies are updated properly.
437 preempt_disable();
438 tick_nohz_idle_enter();
439 /* mwait until target jiffies is reached */
440 while (time_before(jiffies, target_jiffies)) {
441 unsigned long ecx = 1;
442 unsigned long eax = target_mwait;
445 * REVISIT: may call enter_idle() to notify drivers who
446 * can save power during cpu idle. same for exit_idle()
448 local_touch_nmi();
449 stop_critical_timings();
450 mwait_idle_with_hints(eax, ecx);
451 start_critical_timings();
452 atomic_inc(&idle_wakeup_counter);
454 tick_nohz_idle_exit();
455 preempt_enable();
457 del_timer_sync(&wakeup_timer);
458 clear_bit(cpunr, cpu_clamping_mask);
460 return 0;
464 * 1 HZ polling while clamping is active, useful for userspace
465 * to monitor actual idle ratio.
467 static void poll_pkg_cstate(struct work_struct *dummy);
468 static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
469 static void poll_pkg_cstate(struct work_struct *dummy)
471 static u64 msr_last;
472 static u64 tsc_last;
473 static unsigned long jiffies_last;
475 u64 msr_now;
476 unsigned long jiffies_now;
477 u64 tsc_now;
478 u64 val64;
480 msr_now = pkg_state_counter();
481 rdtscll(tsc_now);
482 jiffies_now = jiffies;
484 /* calculate pkg cstate vs tsc ratio */
485 if (!msr_last || !tsc_last)
486 pkg_cstate_ratio_cur = 1;
487 else {
488 if (tsc_now - tsc_last) {
489 val64 = 100 * (msr_now - msr_last);
490 do_div(val64, (tsc_now - tsc_last));
491 pkg_cstate_ratio_cur = val64;
495 /* update record */
496 msr_last = msr_now;
497 jiffies_last = jiffies_now;
498 tsc_last = tsc_now;
500 if (true == clamping)
501 schedule_delayed_work(&poll_pkg_cstate_work, HZ);
504 static int start_power_clamp(void)
506 unsigned long cpu;
507 struct task_struct *thread;
509 /* check if pkg cstate counter is completely 0, abort in this case */
510 if (!has_pkg_state_counter()) {
511 pr_err("pkg cstate counter not functional, abort\n");
512 return -EINVAL;
515 set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
516 /* prevent cpu hotplug */
517 get_online_cpus();
519 /* prefer BSP */
520 control_cpu = 0;
521 if (!cpu_online(control_cpu))
522 control_cpu = smp_processor_id();
524 clamping = true;
525 schedule_delayed_work(&poll_pkg_cstate_work, 0);
527 /* start one thread per online cpu */
528 for_each_online_cpu(cpu) {
529 struct task_struct **p =
530 per_cpu_ptr(powerclamp_thread, cpu);
532 thread = kthread_create_on_node(clamp_thread,
533 (void *) cpu,
534 cpu_to_node(cpu),
535 "kidle_inject/%ld", cpu);
536 /* bind to cpu here */
537 if (likely(!IS_ERR(thread))) {
538 kthread_bind(thread, cpu);
539 wake_up_process(thread);
540 *p = thread;
544 put_online_cpus();
546 return 0;
549 static void end_power_clamp(void)
551 int i;
552 struct task_struct *thread;
554 clamping = false;
556 * make clamping visible to other cpus and give per cpu clamping threads
557 * sometime to exit, or gets killed later.
559 smp_mb();
560 msleep(20);
561 if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
562 for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
563 pr_debug("clamping thread for cpu %d alive, kill\n", i);
564 thread = *per_cpu_ptr(powerclamp_thread, i);
565 kthread_stop(thread);
570 static int powerclamp_cpu_callback(struct notifier_block *nfb,
571 unsigned long action, void *hcpu)
573 unsigned long cpu = (unsigned long)hcpu;
574 struct task_struct *thread;
575 struct task_struct **percpu_thread =
576 per_cpu_ptr(powerclamp_thread, cpu);
578 if (false == clamping)
579 goto exit_ok;
581 switch (action) {
582 case CPU_ONLINE:
583 thread = kthread_create_on_node(clamp_thread,
584 (void *) cpu,
585 cpu_to_node(cpu),
586 "kidle_inject/%lu", cpu);
587 if (likely(!IS_ERR(thread))) {
588 kthread_bind(thread, cpu);
589 wake_up_process(thread);
590 *percpu_thread = thread;
592 /* prefer BSP as controlling CPU */
593 if (cpu == 0) {
594 control_cpu = 0;
595 smp_mb();
597 break;
598 case CPU_DEAD:
599 if (test_bit(cpu, cpu_clamping_mask)) {
600 pr_err("cpu %lu dead but powerclamping thread is not\n",
601 cpu);
602 kthread_stop(*percpu_thread);
604 if (cpu == control_cpu) {
605 control_cpu = smp_processor_id();
606 smp_mb();
610 exit_ok:
611 return NOTIFY_OK;
614 static struct notifier_block powerclamp_cpu_notifier = {
615 .notifier_call = powerclamp_cpu_callback,
618 static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
619 unsigned long *state)
621 *state = MAX_TARGET_RATIO;
623 return 0;
626 static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
627 unsigned long *state)
629 if (true == clamping)
630 *state = pkg_cstate_ratio_cur;
631 else
632 /* to save power, do not poll idle ratio while not clamping */
633 *state = -1; /* indicates invalid state */
635 return 0;
638 static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
639 unsigned long new_target_ratio)
641 int ret = 0;
643 new_target_ratio = clamp(new_target_ratio, 0UL,
644 (unsigned long) (MAX_TARGET_RATIO-1));
645 if (set_target_ratio == 0 && new_target_ratio > 0) {
646 pr_info("Start idle injection to reduce power\n");
647 set_target_ratio = new_target_ratio;
648 ret = start_power_clamp();
649 goto exit_set;
650 } else if (set_target_ratio > 0 && new_target_ratio == 0) {
651 pr_info("Stop forced idle injection\n");
652 set_target_ratio = 0;
653 end_power_clamp();
654 } else /* adjust currently running */ {
655 set_target_ratio = new_target_ratio;
656 /* make new set_target_ratio visible to other cpus */
657 smp_mb();
660 exit_set:
661 return ret;
664 /* bind to generic thermal layer as cooling device*/
665 static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
666 .get_max_state = powerclamp_get_max_state,
667 .get_cur_state = powerclamp_get_cur_state,
668 .set_cur_state = powerclamp_set_cur_state,
671 /* runs on Nehalem and later */
672 static const struct x86_cpu_id intel_powerclamp_ids[] = {
673 { X86_VENDOR_INTEL, 6, 0x1a},
674 { X86_VENDOR_INTEL, 6, 0x1c},
675 { X86_VENDOR_INTEL, 6, 0x1e},
676 { X86_VENDOR_INTEL, 6, 0x1f},
677 { X86_VENDOR_INTEL, 6, 0x25},
678 { X86_VENDOR_INTEL, 6, 0x26},
679 { X86_VENDOR_INTEL, 6, 0x2a},
680 { X86_VENDOR_INTEL, 6, 0x2c},
681 { X86_VENDOR_INTEL, 6, 0x2d},
682 { X86_VENDOR_INTEL, 6, 0x2e},
683 { X86_VENDOR_INTEL, 6, 0x2f},
684 { X86_VENDOR_INTEL, 6, 0x3a},
685 { X86_VENDOR_INTEL, 6, 0x3c},
686 { X86_VENDOR_INTEL, 6, 0x3e},
687 { X86_VENDOR_INTEL, 6, 0x3f},
688 { X86_VENDOR_INTEL, 6, 0x45},
689 { X86_VENDOR_INTEL, 6, 0x46},
692 MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
694 static int powerclamp_probe(void)
696 if (!x86_match_cpu(intel_powerclamp_ids)) {
697 pr_err("Intel powerclamp does not run on family %d model %d\n",
698 boot_cpu_data.x86, boot_cpu_data.x86_model);
699 return -ENODEV;
701 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
702 !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
703 !boot_cpu_has(X86_FEATURE_MWAIT) ||
704 !boot_cpu_has(X86_FEATURE_ARAT))
705 return -ENODEV;
707 /* find the deepest mwait value */
708 find_target_mwait();
710 return 0;
713 static int powerclamp_debug_show(struct seq_file *m, void *unused)
715 int i = 0;
717 seq_printf(m, "controlling cpu: %d\n", control_cpu);
718 seq_printf(m, "pct confidence steady dynamic (compensation)\n");
719 for (i = 0; i < MAX_TARGET_RATIO; i++) {
720 seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
722 cal_data[i].confidence,
723 cal_data[i].steady_comp,
724 cal_data[i].dynamic_comp);
727 return 0;
730 static int powerclamp_debug_open(struct inode *inode,
731 struct file *file)
733 return single_open(file, powerclamp_debug_show, inode->i_private);
736 static const struct file_operations powerclamp_debug_fops = {
737 .open = powerclamp_debug_open,
738 .read = seq_read,
739 .llseek = seq_lseek,
740 .release = single_release,
741 .owner = THIS_MODULE,
744 static inline void powerclamp_create_debug_files(void)
746 debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
747 if (!debug_dir)
748 return;
750 if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
751 cal_data, &powerclamp_debug_fops))
752 goto file_error;
754 return;
756 file_error:
757 debugfs_remove_recursive(debug_dir);
760 static int powerclamp_init(void)
762 int retval;
763 int bitmap_size;
765 bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
766 cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
767 if (!cpu_clamping_mask)
768 return -ENOMEM;
770 /* probe cpu features and ids here */
771 retval = powerclamp_probe();
772 if (retval)
773 goto exit_free;
775 /* set default limit, maybe adjusted during runtime based on feedback */
776 window_size = 2;
777 register_hotcpu_notifier(&powerclamp_cpu_notifier);
779 powerclamp_thread = alloc_percpu(struct task_struct *);
780 if (!powerclamp_thread) {
781 retval = -ENOMEM;
782 goto exit_unregister;
785 cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
786 &powerclamp_cooling_ops);
787 if (IS_ERR(cooling_dev)) {
788 retval = -ENODEV;
789 goto exit_free_thread;
792 if (!duration)
793 duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
795 powerclamp_create_debug_files();
797 return 0;
799 exit_free_thread:
800 free_percpu(powerclamp_thread);
801 exit_unregister:
802 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
803 exit_free:
804 kfree(cpu_clamping_mask);
805 return retval;
807 module_init(powerclamp_init);
809 static void powerclamp_exit(void)
811 unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
812 end_power_clamp();
813 free_percpu(powerclamp_thread);
814 thermal_cooling_device_unregister(cooling_dev);
815 kfree(cpu_clamping_mask);
817 cancel_delayed_work_sync(&poll_pkg_cstate_work);
818 debugfs_remove_recursive(debug_dir);
820 module_exit(powerclamp_exit);
822 MODULE_LICENSE("GPL");
823 MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
824 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
825 MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");