PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / core / hcd.c
blob2518c325075093a9c26044f2d9dd18483dc7dd60
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/usb.h>
46 #include <linux/usb/hcd.h>
47 #include <linux/usb/phy.h>
49 #include "usb.h"
52 /*-------------------------------------------------------------------------*/
55 * USB Host Controller Driver framework
57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58 * HCD-specific behaviors/bugs.
60 * This does error checks, tracks devices and urbs, and delegates to a
61 * "hc_driver" only for code (and data) that really needs to know about
62 * hardware differences. That includes root hub registers, i/o queues,
63 * and so on ... but as little else as possible.
65 * Shared code includes most of the "root hub" code (these are emulated,
66 * though each HC's hardware works differently) and PCI glue, plus request
67 * tracking overhead. The HCD code should only block on spinlocks or on
68 * hardware handshaking; blocking on software events (such as other kernel
69 * threads releasing resources, or completing actions) is all generic.
71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73 * only by the hub driver ... and that neither should be seen or used by
74 * usb client device drivers.
76 * Contributors of ideas or unattributed patches include: David Brownell,
77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79 * HISTORY:
80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
81 * associated cleanup. "usb_hcd" still != "usb_bus".
82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
85 /*-------------------------------------------------------------------------*/
87 /* Keep track of which host controller drivers are loaded */
88 unsigned long usb_hcds_loaded;
89 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91 /* host controllers we manage */
92 LIST_HEAD (usb_bus_list);
93 EXPORT_SYMBOL_GPL (usb_bus_list);
95 /* used when allocating bus numbers */
96 #define USB_MAXBUS 64
97 static DECLARE_BITMAP(busmap, USB_MAXBUS);
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 static inline int is_root_hub(struct usb_device *udev)
117 return (udev->parent == NULL);
120 /*-------------------------------------------------------------------------*/
123 * Sharable chunks of root hub code.
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152 static const u8 usb25_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
172 /* usb 2.0 root hub device descriptor */
173 static const u8 usb2_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 0x01, /* __u8 bDescriptorType; Device */
176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195 /* usb 1.1 root hub device descriptor */
196 static const u8 usb11_rh_dev_descriptor[18] = {
197 0x12, /* __u8 bLength; */
198 0x01, /* __u8 bDescriptorType; Device */
199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
202 0x00, /* __u8 bDeviceSubClass; */
203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
210 0x03, /* __u8 iManufacturer; */
211 0x02, /* __u8 iProduct; */
212 0x01, /* __u8 iSerialNumber; */
213 0x01 /* __u8 bNumConfigurations; */
217 /*-------------------------------------------------------------------------*/
219 /* Configuration descriptors for our root hubs */
221 static const u8 fs_rh_config_descriptor[] = {
223 /* one configuration */
224 0x09, /* __u8 bLength; */
225 0x02, /* __u8 bDescriptorType; Configuration */
226 0x19, 0x00, /* __le16 wTotalLength; */
227 0x01, /* __u8 bNumInterfaces; (1) */
228 0x01, /* __u8 bConfigurationValue; */
229 0x00, /* __u8 iConfiguration; */
230 0xc0, /* __u8 bmAttributes;
231 Bit 7: must be set,
232 6: Self-powered,
233 5: Remote wakeup,
234 4..0: resvd */
235 0x00, /* __u8 MaxPower; */
237 /* USB 1.1:
238 * USB 2.0, single TT organization (mandatory):
239 * one interface, protocol 0
241 * USB 2.0, multiple TT organization (optional):
242 * two interfaces, protocols 1 (like single TT)
243 * and 2 (multiple TT mode) ... config is
244 * sometimes settable
245 * NOT IMPLEMENTED
248 /* one interface */
249 0x09, /* __u8 if_bLength; */
250 0x04, /* __u8 if_bDescriptorType; Interface */
251 0x00, /* __u8 if_bInterfaceNumber; */
252 0x00, /* __u8 if_bAlternateSetting; */
253 0x01, /* __u8 if_bNumEndpoints; */
254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
255 0x00, /* __u8 if_bInterfaceSubClass; */
256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
257 0x00, /* __u8 if_iInterface; */
259 /* one endpoint (status change endpoint) */
260 0x07, /* __u8 ep_bLength; */
261 0x05, /* __u8 ep_bDescriptorType; Endpoint */
262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
263 0x03, /* __u8 ep_bmAttributes; Interrupt */
264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
268 static const u8 hs_rh_config_descriptor[] = {
270 /* one configuration */
271 0x09, /* __u8 bLength; */
272 0x02, /* __u8 bDescriptorType; Configuration */
273 0x19, 0x00, /* __le16 wTotalLength; */
274 0x01, /* __u8 bNumInterfaces; (1) */
275 0x01, /* __u8 bConfigurationValue; */
276 0x00, /* __u8 iConfiguration; */
277 0xc0, /* __u8 bmAttributes;
278 Bit 7: must be set,
279 6: Self-powered,
280 5: Remote wakeup,
281 4..0: resvd */
282 0x00, /* __u8 MaxPower; */
284 /* USB 1.1:
285 * USB 2.0, single TT organization (mandatory):
286 * one interface, protocol 0
288 * USB 2.0, multiple TT organization (optional):
289 * two interfaces, protocols 1 (like single TT)
290 * and 2 (multiple TT mode) ... config is
291 * sometimes settable
292 * NOT IMPLEMENTED
295 /* one interface */
296 0x09, /* __u8 if_bLength; */
297 0x04, /* __u8 if_bDescriptorType; Interface */
298 0x00, /* __u8 if_bInterfaceNumber; */
299 0x00, /* __u8 if_bAlternateSetting; */
300 0x01, /* __u8 if_bNumEndpoints; */
301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
302 0x00, /* __u8 if_bInterfaceSubClass; */
303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
304 0x00, /* __u8 if_iInterface; */
306 /* one endpoint (status change endpoint) */
307 0x07, /* __u8 ep_bLength; */
308 0x05, /* __u8 ep_bDescriptorType; Endpoint */
309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
310 0x03, /* __u8 ep_bmAttributes; Interrupt */
311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312 * see hub.c:hub_configure() for details. */
313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
317 static const u8 ss_rh_config_descriptor[] = {
318 /* one configuration */
319 0x09, /* __u8 bLength; */
320 0x02, /* __u8 bDescriptorType; Configuration */
321 0x1f, 0x00, /* __le16 wTotalLength; */
322 0x01, /* __u8 bNumInterfaces; (1) */
323 0x01, /* __u8 bConfigurationValue; */
324 0x00, /* __u8 iConfiguration; */
325 0xc0, /* __u8 bmAttributes;
326 Bit 7: must be set,
327 6: Self-powered,
328 5: Remote wakeup,
329 4..0: resvd */
330 0x00, /* __u8 MaxPower; */
332 /* one interface */
333 0x09, /* __u8 if_bLength; */
334 0x04, /* __u8 if_bDescriptorType; Interface */
335 0x00, /* __u8 if_bInterfaceNumber; */
336 0x00, /* __u8 if_bAlternateSetting; */
337 0x01, /* __u8 if_bNumEndpoints; */
338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
339 0x00, /* __u8 if_bInterfaceSubClass; */
340 0x00, /* __u8 if_bInterfaceProtocol; */
341 0x00, /* __u8 if_iInterface; */
343 /* one endpoint (status change endpoint) */
344 0x07, /* __u8 ep_bLength; */
345 0x05, /* __u8 ep_bDescriptorType; Endpoint */
346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
347 0x03, /* __u8 ep_bmAttributes; Interrupt */
348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349 * see hub.c:hub_configure() for details. */
350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
353 /* one SuperSpeed endpoint companion descriptor */
354 0x06, /* __u8 ss_bLength */
355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
361 /* authorized_default behaviour:
362 * -1 is authorized for all devices except wireless (old behaviour)
363 * 0 is unauthorized for all devices
364 * 1 is authorized for all devices
366 static int authorized_default = -1;
367 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368 MODULE_PARM_DESC(authorized_default,
369 "Default USB device authorization: 0 is not authorized, 1 is "
370 "authorized, -1 is authorized except for wireless USB (default, "
371 "old behaviour");
372 /*-------------------------------------------------------------------------*/
375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378 * @len: Length (in bytes; may be odd) of descriptor buffer.
380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381 * whichever is less.
383 * Note:
384 * USB String descriptors can contain at most 126 characters; input
385 * strings longer than that are truncated.
387 static unsigned
388 ascii2desc(char const *s, u8 *buf, unsigned len)
390 unsigned n, t = 2 + 2*strlen(s);
392 if (t > 254)
393 t = 254; /* Longest possible UTF string descriptor */
394 if (len > t)
395 len = t;
397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
399 n = len;
400 while (n--) {
401 *buf++ = t;
402 if (!n--)
403 break;
404 *buf++ = t >> 8;
405 t = (unsigned char)*s++;
407 return len;
411 * rh_string() - provides string descriptors for root hub
412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413 * @hcd: the host controller for this root hub
414 * @data: buffer for output packet
415 * @len: length of the provided buffer
417 * Produces either a manufacturer, product or serial number string for the
418 * virtual root hub device.
420 * Return: The number of bytes filled in: the length of the descriptor or
421 * of the provided buffer, whichever is less.
423 static unsigned
424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426 char buf[100];
427 char const *s;
428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430 /* language ids */
431 switch (id) {
432 case 0:
433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435 if (len > 4)
436 len = 4;
437 memcpy(data, langids, len);
438 return len;
439 case 1:
440 /* Serial number */
441 s = hcd->self.bus_name;
442 break;
443 case 2:
444 /* Product name */
445 s = hcd->product_desc;
446 break;
447 case 3:
448 /* Manufacturer */
449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450 init_utsname()->release, hcd->driver->description);
451 s = buf;
452 break;
453 default:
454 /* Can't happen; caller guarantees it */
455 return 0;
458 return ascii2desc(s, data, len);
462 /* Root hub control transfers execute synchronously */
463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465 struct usb_ctrlrequest *cmd;
466 u16 typeReq, wValue, wIndex, wLength;
467 u8 *ubuf = urb->transfer_buffer;
468 unsigned len = 0;
469 int status;
470 u8 patch_wakeup = 0;
471 u8 patch_protocol = 0;
472 u16 tbuf_size;
473 u8 *tbuf = NULL;
474 const u8 *bufp;
476 might_sleep();
478 spin_lock_irq(&hcd_root_hub_lock);
479 status = usb_hcd_link_urb_to_ep(hcd, urb);
480 spin_unlock_irq(&hcd_root_hub_lock);
481 if (status)
482 return status;
483 urb->hcpriv = hcd; /* Indicate it's queued */
485 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
487 wValue = le16_to_cpu (cmd->wValue);
488 wIndex = le16_to_cpu (cmd->wIndex);
489 wLength = le16_to_cpu (cmd->wLength);
491 if (wLength > urb->transfer_buffer_length)
492 goto error;
495 * tbuf should be at least as big as the
496 * USB hub descriptor.
498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500 if (!tbuf)
501 return -ENOMEM;
503 bufp = tbuf;
506 urb->actual_length = 0;
507 switch (typeReq) {
509 /* DEVICE REQUESTS */
511 /* The root hub's remote wakeup enable bit is implemented using
512 * driver model wakeup flags. If this system supports wakeup
513 * through USB, userspace may change the default "allow wakeup"
514 * policy through sysfs or these calls.
516 * Most root hubs support wakeup from downstream devices, for
517 * runtime power management (disabling USB clocks and reducing
518 * VBUS power usage). However, not all of them do so; silicon,
519 * board, and BIOS bugs here are not uncommon, so these can't
520 * be treated quite like external hubs.
522 * Likewise, not all root hubs will pass wakeup events upstream,
523 * to wake up the whole system. So don't assume root hub and
524 * controller capabilities are identical.
527 case DeviceRequest | USB_REQ_GET_STATUS:
528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529 << USB_DEVICE_REMOTE_WAKEUP)
530 | (1 << USB_DEVICE_SELF_POWERED);
531 tbuf[1] = 0;
532 len = 2;
533 break;
534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537 else
538 goto error;
539 break;
540 case DeviceOutRequest | USB_REQ_SET_FEATURE:
541 if (device_can_wakeup(&hcd->self.root_hub->dev)
542 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544 else
545 goto error;
546 break;
547 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548 tbuf[0] = 1;
549 len = 1;
550 /* FALLTHROUGH */
551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552 break;
553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554 switch (wValue & 0xff00) {
555 case USB_DT_DEVICE << 8:
556 switch (hcd->speed) {
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB25:
561 bufp = usb25_rh_dev_descriptor;
562 break;
563 case HCD_USB2:
564 bufp = usb2_rh_dev_descriptor;
565 break;
566 case HCD_USB11:
567 bufp = usb11_rh_dev_descriptor;
568 break;
569 default:
570 goto error;
572 len = 18;
573 if (hcd->has_tt)
574 patch_protocol = 1;
575 break;
576 case USB_DT_CONFIG << 8:
577 switch (hcd->speed) {
578 case HCD_USB3:
579 bufp = ss_rh_config_descriptor;
580 len = sizeof ss_rh_config_descriptor;
581 break;
582 case HCD_USB25:
583 case HCD_USB2:
584 bufp = hs_rh_config_descriptor;
585 len = sizeof hs_rh_config_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = fs_rh_config_descriptor;
589 len = sizeof fs_rh_config_descriptor;
590 break;
591 default:
592 goto error;
594 if (device_can_wakeup(&hcd->self.root_hub->dev))
595 patch_wakeup = 1;
596 break;
597 case USB_DT_STRING << 8:
598 if ((wValue & 0xff) < 4)
599 urb->actual_length = rh_string(wValue & 0xff,
600 hcd, ubuf, wLength);
601 else /* unsupported IDs --> "protocol stall" */
602 goto error;
603 break;
604 case USB_DT_BOS << 8:
605 goto nongeneric;
606 default:
607 goto error;
609 break;
610 case DeviceRequest | USB_REQ_GET_INTERFACE:
611 tbuf[0] = 0;
612 len = 1;
613 /* FALLTHROUGH */
614 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615 break;
616 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617 /* wValue == urb->dev->devaddr */
618 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619 wValue);
620 break;
622 /* INTERFACE REQUESTS (no defined feature/status flags) */
624 /* ENDPOINT REQUESTS */
626 case EndpointRequest | USB_REQ_GET_STATUS:
627 /* ENDPOINT_HALT flag */
628 tbuf[0] = 0;
629 tbuf[1] = 0;
630 len = 2;
631 /* FALLTHROUGH */
632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633 case EndpointOutRequest | USB_REQ_SET_FEATURE:
634 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635 break;
637 /* CLASS REQUESTS (and errors) */
639 default:
640 nongeneric:
641 /* non-generic request */
642 switch (typeReq) {
643 case GetHubStatus:
644 case GetPortStatus:
645 len = 4;
646 break;
647 case GetHubDescriptor:
648 len = sizeof (struct usb_hub_descriptor);
649 break;
650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651 /* len is returned by hub_control */
652 break;
654 status = hcd->driver->hub_control (hcd,
655 typeReq, wValue, wIndex,
656 tbuf, wLength);
658 if (typeReq == GetHubDescriptor)
659 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660 (struct usb_hub_descriptor *)tbuf);
661 break;
662 error:
663 /* "protocol stall" on error */
664 status = -EPIPE;
667 if (status < 0) {
668 len = 0;
669 if (status != -EPIPE) {
670 dev_dbg (hcd->self.controller,
671 "CTRL: TypeReq=0x%x val=0x%x "
672 "idx=0x%x len=%d ==> %d\n",
673 typeReq, wValue, wIndex,
674 wLength, status);
676 } else if (status > 0) {
677 /* hub_control may return the length of data copied. */
678 len = status;
679 status = 0;
681 if (len) {
682 if (urb->transfer_buffer_length < len)
683 len = urb->transfer_buffer_length;
684 urb->actual_length = len;
685 /* always USB_DIR_IN, toward host */
686 memcpy (ubuf, bufp, len);
688 /* report whether RH hardware supports remote wakeup */
689 if (patch_wakeup &&
690 len > offsetof (struct usb_config_descriptor,
691 bmAttributes))
692 ((struct usb_config_descriptor *)ubuf)->bmAttributes
693 |= USB_CONFIG_ATT_WAKEUP;
695 /* report whether RH hardware has an integrated TT */
696 if (patch_protocol &&
697 len > offsetof(struct usb_device_descriptor,
698 bDeviceProtocol))
699 ((struct usb_device_descriptor *) ubuf)->
700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
703 kfree(tbuf);
705 /* any errors get returned through the urb completion */
706 spin_lock_irq(&hcd_root_hub_lock);
707 usb_hcd_unlink_urb_from_ep(hcd, urb);
708 usb_hcd_giveback_urb(hcd, urb, status);
709 spin_unlock_irq(&hcd_root_hub_lock);
710 return 0;
713 /*-------------------------------------------------------------------------*/
716 * Root Hub interrupt transfers are polled using a timer if the
717 * driver requests it; otherwise the driver is responsible for
718 * calling usb_hcd_poll_rh_status() when an event occurs.
720 * Completions are called in_interrupt(), but they may or may not
721 * be in_irq().
723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725 struct urb *urb;
726 int length;
727 unsigned long flags;
728 char buffer[6]; /* Any root hubs with > 31 ports? */
730 if (unlikely(!hcd->rh_pollable))
731 return;
732 if (!hcd->uses_new_polling && !hcd->status_urb)
733 return;
735 length = hcd->driver->hub_status_data(hcd, buffer);
736 if (length > 0) {
738 /* try to complete the status urb */
739 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740 urb = hcd->status_urb;
741 if (urb) {
742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743 hcd->status_urb = NULL;
744 urb->actual_length = length;
745 memcpy(urb->transfer_buffer, buffer, length);
747 usb_hcd_unlink_urb_from_ep(hcd, urb);
748 usb_hcd_giveback_urb(hcd, urb, 0);
749 } else {
750 length = 0;
751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
756 /* The USB 2.0 spec says 256 ms. This is close enough and won't
757 * exceed that limit if HZ is 100. The math is more clunky than
758 * maybe expected, this is to make sure that all timers for USB devices
759 * fire at the same time to give the CPU a break in between */
760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761 (length == 0 && hcd->status_urb != NULL))
762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766 /* timer callback */
767 static void rh_timer_func (unsigned long _hcd)
769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
772 /*-------------------------------------------------------------------------*/
774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776 int retval;
777 unsigned long flags;
778 unsigned len = 1 + (urb->dev->maxchild / 8);
780 spin_lock_irqsave (&hcd_root_hub_lock, flags);
781 if (hcd->status_urb || urb->transfer_buffer_length < len) {
782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783 retval = -EINVAL;
784 goto done;
787 retval = usb_hcd_link_urb_to_ep(hcd, urb);
788 if (retval)
789 goto done;
791 hcd->status_urb = urb;
792 urb->hcpriv = hcd; /* indicate it's queued */
793 if (!hcd->uses_new_polling)
794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796 /* If a status change has already occurred, report it ASAP */
797 else if (HCD_POLL_PENDING(hcd))
798 mod_timer(&hcd->rh_timer, jiffies);
799 retval = 0;
800 done:
801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802 return retval;
805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807 if (usb_endpoint_xfer_int(&urb->ep->desc))
808 return rh_queue_status (hcd, urb);
809 if (usb_endpoint_xfer_control(&urb->ep->desc))
810 return rh_call_control (hcd, urb);
811 return -EINVAL;
814 /*-------------------------------------------------------------------------*/
816 /* Unlinks of root-hub control URBs are legal, but they don't do anything
817 * since these URBs always execute synchronously.
819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821 unsigned long flags;
822 int rc;
824 spin_lock_irqsave(&hcd_root_hub_lock, flags);
825 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826 if (rc)
827 goto done;
829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
830 ; /* Do nothing */
832 } else { /* Status URB */
833 if (!hcd->uses_new_polling)
834 del_timer (&hcd->rh_timer);
835 if (urb == hcd->status_urb) {
836 hcd->status_urb = NULL;
837 usb_hcd_unlink_urb_from_ep(hcd, urb);
838 usb_hcd_giveback_urb(hcd, urb, status);
841 done:
842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843 return rc;
849 * Show & store the current value of authorized_default
851 static ssize_t authorized_default_show(struct device *dev,
852 struct device_attribute *attr, char *buf)
854 struct usb_device *rh_usb_dev = to_usb_device(dev);
855 struct usb_bus *usb_bus = rh_usb_dev->bus;
856 struct usb_hcd *usb_hcd;
858 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
859 return -ENODEV;
860 usb_hcd = bus_to_hcd(usb_bus);
861 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
864 static ssize_t authorized_default_store(struct device *dev,
865 struct device_attribute *attr,
866 const char *buf, size_t size)
868 ssize_t result;
869 unsigned val;
870 struct usb_device *rh_usb_dev = to_usb_device(dev);
871 struct usb_bus *usb_bus = rh_usb_dev->bus;
872 struct usb_hcd *usb_hcd;
874 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
875 return -ENODEV;
876 usb_hcd = bus_to_hcd(usb_bus);
877 result = sscanf(buf, "%u\n", &val);
878 if (result == 1) {
879 usb_hcd->authorized_default = val ? 1 : 0;
880 result = size;
881 } else {
882 result = -EINVAL;
884 return result;
886 static DEVICE_ATTR_RW(authorized_default);
888 /* Group all the USB bus attributes */
889 static struct attribute *usb_bus_attrs[] = {
890 &dev_attr_authorized_default.attr,
891 NULL,
894 static struct attribute_group usb_bus_attr_group = {
895 .name = NULL, /* we want them in the same directory */
896 .attrs = usb_bus_attrs,
901 /*-------------------------------------------------------------------------*/
904 * usb_bus_init - shared initialization code
905 * @bus: the bus structure being initialized
907 * This code is used to initialize a usb_bus structure, memory for which is
908 * separately managed.
910 static void usb_bus_init (struct usb_bus *bus)
912 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
914 bus->devnum_next = 1;
916 bus->root_hub = NULL;
917 bus->busnum = -1;
918 bus->bandwidth_allocated = 0;
919 bus->bandwidth_int_reqs = 0;
920 bus->bandwidth_isoc_reqs = 0;
922 INIT_LIST_HEAD (&bus->bus_list);
925 /*-------------------------------------------------------------------------*/
928 * usb_register_bus - registers the USB host controller with the usb core
929 * @bus: pointer to the bus to register
930 * Context: !in_interrupt()
932 * Assigns a bus number, and links the controller into usbcore data
933 * structures so that it can be seen by scanning the bus list.
935 * Return: 0 if successful. A negative error code otherwise.
937 static int usb_register_bus(struct usb_bus *bus)
939 int result = -E2BIG;
940 int busnum;
942 mutex_lock(&usb_bus_list_lock);
943 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
944 if (busnum >= USB_MAXBUS) {
945 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
946 goto error_find_busnum;
948 set_bit(busnum, busmap);
949 bus->busnum = busnum;
951 /* Add it to the local list of buses */
952 list_add (&bus->bus_list, &usb_bus_list);
953 mutex_unlock(&usb_bus_list_lock);
955 usb_notify_add_bus(bus);
957 dev_info (bus->controller, "new USB bus registered, assigned bus "
958 "number %d\n", bus->busnum);
959 return 0;
961 error_find_busnum:
962 mutex_unlock(&usb_bus_list_lock);
963 return result;
967 * usb_deregister_bus - deregisters the USB host controller
968 * @bus: pointer to the bus to deregister
969 * Context: !in_interrupt()
971 * Recycles the bus number, and unlinks the controller from usbcore data
972 * structures so that it won't be seen by scanning the bus list.
974 static void usb_deregister_bus (struct usb_bus *bus)
976 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
979 * NOTE: make sure that all the devices are removed by the
980 * controller code, as well as having it call this when cleaning
981 * itself up
983 mutex_lock(&usb_bus_list_lock);
984 list_del (&bus->bus_list);
985 mutex_unlock(&usb_bus_list_lock);
987 usb_notify_remove_bus(bus);
989 clear_bit(bus->busnum, busmap);
993 * register_root_hub - called by usb_add_hcd() to register a root hub
994 * @hcd: host controller for this root hub
996 * This function registers the root hub with the USB subsystem. It sets up
997 * the device properly in the device tree and then calls usb_new_device()
998 * to register the usb device. It also assigns the root hub's USB address
999 * (always 1).
1001 * Return: 0 if successful. A negative error code otherwise.
1003 static int register_root_hub(struct usb_hcd *hcd)
1005 struct device *parent_dev = hcd->self.controller;
1006 struct usb_device *usb_dev = hcd->self.root_hub;
1007 const int devnum = 1;
1008 int retval;
1010 usb_dev->devnum = devnum;
1011 usb_dev->bus->devnum_next = devnum + 1;
1012 memset (&usb_dev->bus->devmap.devicemap, 0,
1013 sizeof usb_dev->bus->devmap.devicemap);
1014 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1017 mutex_lock(&usb_bus_list_lock);
1019 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021 if (retval != sizeof usb_dev->descriptor) {
1022 mutex_unlock(&usb_bus_list_lock);
1023 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 return (retval < 0) ? retval : -EMSGSIZE;
1027 if (usb_dev->speed == USB_SPEED_SUPER) {
1028 retval = usb_get_bos_descriptor(usb_dev);
1029 if (retval < 0) {
1030 mutex_unlock(&usb_bus_list_lock);
1031 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032 dev_name(&usb_dev->dev), retval);
1033 return retval;
1037 retval = usb_new_device (usb_dev);
1038 if (retval) {
1039 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040 dev_name(&usb_dev->dev), retval);
1041 } else {
1042 spin_lock_irq (&hcd_root_hub_lock);
1043 hcd->rh_registered = 1;
1044 spin_unlock_irq (&hcd_root_hub_lock);
1046 /* Did the HC die before the root hub was registered? */
1047 if (HCD_DEAD(hcd))
1048 usb_hc_died (hcd); /* This time clean up */
1050 mutex_unlock(&usb_bus_list_lock);
1052 return retval;
1056 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1060 * HCDs should call this function when they know that a resume signal is
1061 * being sent to a root-hub port. The root hub will be prevented from
1062 * going into autosuspend until usb_hcd_end_port_resume() is called.
1064 * The bus's private lock must be held by the caller.
1066 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068 unsigned bit = 1 << portnum;
1070 if (!(bus->resuming_ports & bit)) {
1071 bus->resuming_ports |= bit;
1072 pm_runtime_get_noresume(&bus->root_hub->dev);
1075 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1078 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079 * @bus: the bus which the root hub belongs to
1080 * @portnum: the port which is being resumed
1082 * HCDs should call this function when they know that a resume signal has
1083 * stopped being sent to a root-hub port. The root hub will be allowed to
1084 * autosuspend again.
1086 * The bus's private lock must be held by the caller.
1088 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090 unsigned bit = 1 << portnum;
1092 if (bus->resuming_ports & bit) {
1093 bus->resuming_ports &= ~bit;
1094 pm_runtime_put_noidle(&bus->root_hub->dev);
1097 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099 /*-------------------------------------------------------------------------*/
1102 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104 * @is_input: true iff the transaction sends data to the host
1105 * @isoc: true for isochronous transactions, false for interrupt ones
1106 * @bytecount: how many bytes in the transaction.
1108 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110 * Note:
1111 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112 * scheduled in software, this function is only used for such scheduling.
1114 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116 unsigned long tmp;
1118 switch (speed) {
1119 case USB_SPEED_LOW: /* INTR only */
1120 if (is_input) {
1121 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123 } else {
1124 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1127 case USB_SPEED_FULL: /* ISOC or INTR */
1128 if (isoc) {
1129 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131 } else {
1132 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133 return 9107L + BW_HOST_DELAY + tmp;
1135 case USB_SPEED_HIGH: /* ISOC or INTR */
1136 /* FIXME adjust for input vs output */
1137 if (isoc)
1138 tmp = HS_NSECS_ISO (bytecount);
1139 else
1140 tmp = HS_NSECS (bytecount);
1141 return tmp;
1142 default:
1143 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144 return -1;
1147 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1150 /*-------------------------------------------------------------------------*/
1153 * Generic HC operations.
1156 /*-------------------------------------------------------------------------*/
1159 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160 * @hcd: host controller to which @urb was submitted
1161 * @urb: URB being submitted
1163 * Host controller drivers should call this routine in their enqueue()
1164 * method. The HCD's private spinlock must be held and interrupts must
1165 * be disabled. The actions carried out here are required for URB
1166 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168 * Return: 0 for no error, otherwise a negative error code (in which case
1169 * the enqueue() method must fail). If no error occurs but enqueue() fails
1170 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171 * the private spinlock and returning.
1173 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175 int rc = 0;
1177 spin_lock(&hcd_urb_list_lock);
1179 /* Check that the URB isn't being killed */
1180 if (unlikely(atomic_read(&urb->reject))) {
1181 rc = -EPERM;
1182 goto done;
1185 if (unlikely(!urb->ep->enabled)) {
1186 rc = -ENOENT;
1187 goto done;
1190 if (unlikely(!urb->dev->can_submit)) {
1191 rc = -EHOSTUNREACH;
1192 goto done;
1196 * Check the host controller's state and add the URB to the
1197 * endpoint's queue.
1199 if (HCD_RH_RUNNING(hcd)) {
1200 urb->unlinked = 0;
1201 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202 } else {
1203 rc = -ESHUTDOWN;
1204 goto done;
1206 done:
1207 spin_unlock(&hcd_urb_list_lock);
1208 return rc;
1210 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1213 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214 * @hcd: host controller to which @urb was submitted
1215 * @urb: URB being checked for unlinkability
1216 * @status: error code to store in @urb if the unlink succeeds
1218 * Host controller drivers should call this routine in their dequeue()
1219 * method. The HCD's private spinlock must be held and interrupts must
1220 * be disabled. The actions carried out here are required for making
1221 * sure than an unlink is valid.
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the dequeue() method must fail). The possible error codes are:
1226 * -EIDRM: @urb was not submitted or has already completed.
1227 * The completion function may not have been called yet.
1229 * -EBUSY: @urb has already been unlinked.
1231 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232 int status)
1234 struct list_head *tmp;
1236 /* insist the urb is still queued */
1237 list_for_each(tmp, &urb->ep->urb_list) {
1238 if (tmp == &urb->urb_list)
1239 break;
1241 if (tmp != &urb->urb_list)
1242 return -EIDRM;
1244 /* Any status except -EINPROGRESS means something already started to
1245 * unlink this URB from the hardware. So there's no more work to do.
1247 if (urb->unlinked)
1248 return -EBUSY;
1249 urb->unlinked = status;
1250 return 0;
1252 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1255 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256 * @hcd: host controller to which @urb was submitted
1257 * @urb: URB being unlinked
1259 * Host controller drivers should call this routine before calling
1260 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1261 * interrupts must be disabled. The actions carried out here are required
1262 * for URB completion.
1264 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266 /* clear all state linking urb to this dev (and hcd) */
1267 spin_lock(&hcd_urb_list_lock);
1268 list_del_init(&urb->urb_list);
1269 spin_unlock(&hcd_urb_list_lock);
1271 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1274 * Some usb host controllers can only perform dma using a small SRAM area.
1275 * The usb core itself is however optimized for host controllers that can dma
1276 * using regular system memory - like pci devices doing bus mastering.
1278 * To support host controllers with limited dma capabilites we provide dma
1279 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280 * For this to work properly the host controller code must first use the
1281 * function dma_declare_coherent_memory() to point out which memory area
1282 * that should be used for dma allocations.
1284 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285 * dma using dma_alloc_coherent() which in turn allocates from the memory
1286 * area pointed out with dma_declare_coherent_memory().
1288 * So, to summarize...
1290 * - We need "local" memory, canonical example being
1291 * a small SRAM on a discrete controller being the
1292 * only memory that the controller can read ...
1293 * (a) "normal" kernel memory is no good, and
1294 * (b) there's not enough to share
1296 * - The only *portable* hook for such stuff in the
1297 * DMA framework is dma_declare_coherent_memory()
1299 * - So we use that, even though the primary requirement
1300 * is that the memory be "local" (hence addressable
1301 * by that device), not "coherent".
1305 static int hcd_alloc_coherent(struct usb_bus *bus,
1306 gfp_t mem_flags, dma_addr_t *dma_handle,
1307 void **vaddr_handle, size_t size,
1308 enum dma_data_direction dir)
1310 unsigned char *vaddr;
1312 if (*vaddr_handle == NULL) {
1313 WARN_ON_ONCE(1);
1314 return -EFAULT;
1317 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318 mem_flags, dma_handle);
1319 if (!vaddr)
1320 return -ENOMEM;
1323 * Store the virtual address of the buffer at the end
1324 * of the allocated dma buffer. The size of the buffer
1325 * may be uneven so use unaligned functions instead
1326 * of just rounding up. It makes sense to optimize for
1327 * memory footprint over access speed since the amount
1328 * of memory available for dma may be limited.
1330 put_unaligned((unsigned long)*vaddr_handle,
1331 (unsigned long *)(vaddr + size));
1333 if (dir == DMA_TO_DEVICE)
1334 memcpy(vaddr, *vaddr_handle, size);
1336 *vaddr_handle = vaddr;
1337 return 0;
1340 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341 void **vaddr_handle, size_t size,
1342 enum dma_data_direction dir)
1344 unsigned char *vaddr = *vaddr_handle;
1346 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348 if (dir == DMA_FROM_DEVICE)
1349 memcpy(vaddr, *vaddr_handle, size);
1351 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353 *vaddr_handle = vaddr;
1354 *dma_handle = 0;
1357 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360 dma_unmap_single(hcd->self.controller,
1361 urb->setup_dma,
1362 sizeof(struct usb_ctrlrequest),
1363 DMA_TO_DEVICE);
1364 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->setup_dma,
1367 (void **) &urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378 if (hcd->driver->unmap_urb_for_dma)
1379 hcd->driver->unmap_urb_for_dma(hcd, urb);
1380 else
1381 usb_hcd_unmap_urb_for_dma(hcd, urb);
1384 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386 enum dma_data_direction dir;
1388 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391 if (urb->transfer_flags & URB_DMA_MAP_SG)
1392 dma_unmap_sg(hcd->self.controller,
1393 urb->sg,
1394 urb->num_sgs,
1395 dir);
1396 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397 dma_unmap_page(hcd->self.controller,
1398 urb->transfer_dma,
1399 urb->transfer_buffer_length,
1400 dir);
1401 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402 dma_unmap_single(hcd->self.controller,
1403 urb->transfer_dma,
1404 urb->transfer_buffer_length,
1405 dir);
1406 else if (urb->transfer_flags & URB_MAP_LOCAL)
1407 hcd_free_coherent(urb->dev->bus,
1408 &urb->transfer_dma,
1409 &urb->transfer_buffer,
1410 urb->transfer_buffer_length,
1411 dir);
1413 /* Make it safe to call this routine more than once */
1414 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420 gfp_t mem_flags)
1422 if (hcd->driver->map_urb_for_dma)
1423 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424 else
1425 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1428 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429 gfp_t mem_flags)
1431 enum dma_data_direction dir;
1432 int ret = 0;
1434 /* Map the URB's buffers for DMA access.
1435 * Lower level HCD code should use *_dma exclusively,
1436 * unless it uses pio or talks to another transport,
1437 * or uses the provided scatter gather list for bulk.
1440 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441 if (hcd->self.uses_pio_for_control)
1442 return ret;
1443 if (hcd->self.uses_dma) {
1444 urb->setup_dma = dma_map_single(
1445 hcd->self.controller,
1446 urb->setup_packet,
1447 sizeof(struct usb_ctrlrequest),
1448 DMA_TO_DEVICE);
1449 if (dma_mapping_error(hcd->self.controller,
1450 urb->setup_dma))
1451 return -EAGAIN;
1452 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454 ret = hcd_alloc_coherent(
1455 urb->dev->bus, mem_flags,
1456 &urb->setup_dma,
1457 (void **)&urb->setup_packet,
1458 sizeof(struct usb_ctrlrequest),
1459 DMA_TO_DEVICE);
1460 if (ret)
1461 return ret;
1462 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1466 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467 if (urb->transfer_buffer_length != 0
1468 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469 if (hcd->self.uses_dma) {
1470 if (urb->num_sgs) {
1471 int n;
1473 /* We don't support sg for isoc transfers ! */
1474 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475 WARN_ON(1);
1476 return -EINVAL;
1479 n = dma_map_sg(
1480 hcd->self.controller,
1481 urb->sg,
1482 urb->num_sgs,
1483 dir);
1484 if (n <= 0)
1485 ret = -EAGAIN;
1486 else
1487 urb->transfer_flags |= URB_DMA_MAP_SG;
1488 urb->num_mapped_sgs = n;
1489 if (n != urb->num_sgs)
1490 urb->transfer_flags |=
1491 URB_DMA_SG_COMBINED;
1492 } else if (urb->sg) {
1493 struct scatterlist *sg = urb->sg;
1494 urb->transfer_dma = dma_map_page(
1495 hcd->self.controller,
1496 sg_page(sg),
1497 sg->offset,
1498 urb->transfer_buffer_length,
1499 dir);
1500 if (dma_mapping_error(hcd->self.controller,
1501 urb->transfer_dma))
1502 ret = -EAGAIN;
1503 else
1504 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1505 } else {
1506 urb->transfer_dma = dma_map_single(
1507 hcd->self.controller,
1508 urb->transfer_buffer,
1509 urb->transfer_buffer_length,
1510 dir);
1511 if (dma_mapping_error(hcd->self.controller,
1512 urb->transfer_dma))
1513 ret = -EAGAIN;
1514 else
1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1517 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518 ret = hcd_alloc_coherent(
1519 urb->dev->bus, mem_flags,
1520 &urb->transfer_dma,
1521 &urb->transfer_buffer,
1522 urb->transfer_buffer_length,
1523 dir);
1524 if (ret == 0)
1525 urb->transfer_flags |= URB_MAP_LOCAL;
1527 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528 URB_SETUP_MAP_LOCAL)))
1529 usb_hcd_unmap_urb_for_dma(hcd, urb);
1531 return ret;
1533 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1535 /*-------------------------------------------------------------------------*/
1537 /* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1542 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1544 int status;
1545 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1547 /* increment urb's reference count as part of giving it to the HCD
1548 * (which will control it). HCD guarantees that it either returns
1549 * an error or calls giveback(), but not both.
1551 usb_get_urb(urb);
1552 atomic_inc(&urb->use_count);
1553 atomic_inc(&urb->dev->urbnum);
1554 usbmon_urb_submit(&hcd->self, urb);
1556 /* NOTE requirements on root-hub callers (usbfs and the hub
1557 * driver, for now): URBs' urb->transfer_buffer must be
1558 * valid and usb_buffer_{sync,unmap}() not be needed, since
1559 * they could clobber root hub response data. Also, control
1560 * URBs must be submitted in process context with interrupts
1561 * enabled.
1564 if (is_root_hub(urb->dev)) {
1565 status = rh_urb_enqueue(hcd, urb);
1566 } else {
1567 status = map_urb_for_dma(hcd, urb, mem_flags);
1568 if (likely(status == 0)) {
1569 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570 if (unlikely(status))
1571 unmap_urb_for_dma(hcd, urb);
1575 if (unlikely(status)) {
1576 usbmon_urb_submit_error(&hcd->self, urb, status);
1577 urb->hcpriv = NULL;
1578 INIT_LIST_HEAD(&urb->urb_list);
1579 atomic_dec(&urb->use_count);
1580 atomic_dec(&urb->dev->urbnum);
1581 if (atomic_read(&urb->reject))
1582 wake_up(&usb_kill_urb_queue);
1583 usb_put_urb(urb);
1585 return status;
1588 /*-------------------------------------------------------------------------*/
1590 /* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical. we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1595 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1597 int value;
1599 if (is_root_hub(urb->dev))
1600 value = usb_rh_urb_dequeue(hcd, urb, status);
1601 else {
1603 /* The only reason an HCD might fail this call is if
1604 * it has not yet fully queued the urb to begin with.
1605 * Such failures should be harmless. */
1606 value = hcd->driver->urb_dequeue(hcd, urb, status);
1608 return value;
1612 * called in any context
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1617 int usb_hcd_unlink_urb (struct urb *urb, int status)
1619 struct usb_hcd *hcd;
1620 int retval = -EIDRM;
1621 unsigned long flags;
1623 /* Prevent the device and bus from going away while
1624 * the unlink is carried out. If they are already gone
1625 * then urb->use_count must be 0, since disconnected
1626 * devices can't have any active URBs.
1628 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629 if (atomic_read(&urb->use_count) > 0) {
1630 retval = 0;
1631 usb_get_dev(urb->dev);
1633 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634 if (retval == 0) {
1635 hcd = bus_to_hcd(urb->dev->bus);
1636 retval = unlink1(hcd, urb, status);
1637 usb_put_dev(urb->dev);
1640 if (retval == 0)
1641 retval = -EINPROGRESS;
1642 else if (retval != -EIDRM && retval != -EBUSY)
1643 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644 urb, retval);
1645 return retval;
1648 /*-------------------------------------------------------------------------*/
1650 static void __usb_hcd_giveback_urb(struct urb *urb)
1652 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653 struct usb_anchor *anchor = urb->anchor;
1654 int status = urb->unlinked;
1655 unsigned long flags;
1657 urb->hcpriv = NULL;
1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659 urb->actual_length < urb->transfer_buffer_length &&
1660 !status))
1661 status = -EREMOTEIO;
1663 unmap_urb_for_dma(hcd, urb);
1664 usbmon_urb_complete(&hcd->self, urb, status);
1665 usb_anchor_suspend_wakeups(anchor);
1666 usb_unanchor_urb(urb);
1668 /* pass ownership to the completion handler */
1669 urb->status = status;
1672 * We disable local IRQs here avoid possible deadlock because
1673 * drivers may call spin_lock() to hold lock which might be
1674 * acquired in one hard interrupt handler.
1676 * The local_irq_save()/local_irq_restore() around complete()
1677 * will be removed if current USB drivers have been cleaned up
1678 * and no one may trigger the above deadlock situation when
1679 * running complete() in tasklet.
1681 local_irq_save(flags);
1682 urb->complete(urb);
1683 local_irq_restore(flags);
1685 usb_anchor_resume_wakeups(anchor);
1686 atomic_dec(&urb->use_count);
1687 if (unlikely(atomic_read(&urb->reject)))
1688 wake_up(&usb_kill_urb_queue);
1689 usb_put_urb(urb);
1692 static void usb_giveback_urb_bh(unsigned long param)
1694 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695 struct list_head local_list;
1697 spin_lock_irq(&bh->lock);
1698 bh->running = true;
1699 restart:
1700 list_replace_init(&bh->head, &local_list);
1701 spin_unlock_irq(&bh->lock);
1703 while (!list_empty(&local_list)) {
1704 struct urb *urb;
1706 urb = list_entry(local_list.next, struct urb, urb_list);
1707 list_del_init(&urb->urb_list);
1708 bh->completing_ep = urb->ep;
1709 __usb_hcd_giveback_urb(urb);
1710 bh->completing_ep = NULL;
1713 /* check if there are new URBs to giveback */
1714 spin_lock_irq(&bh->lock);
1715 if (!list_empty(&bh->head))
1716 goto restart;
1717 bh->running = false;
1718 spin_unlock_irq(&bh->lock);
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function. The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv). It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked. Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1738 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1740 struct giveback_urb_bh *bh;
1741 bool running, high_prio_bh;
1743 /* pass status to tasklet via unlinked */
1744 if (likely(!urb->unlinked))
1745 urb->unlinked = status;
1747 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748 __usb_hcd_giveback_urb(urb);
1749 return;
1752 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753 bh = &hcd->high_prio_bh;
1754 high_prio_bh = true;
1755 } else {
1756 bh = &hcd->low_prio_bh;
1757 high_prio_bh = false;
1760 spin_lock(&bh->lock);
1761 list_add_tail(&urb->urb_list, &bh->head);
1762 running = bh->running;
1763 spin_unlock(&bh->lock);
1765 if (running)
1767 else if (high_prio_bh)
1768 tasklet_hi_schedule(&bh->bh);
1769 else
1770 tasklet_schedule(&bh->bh);
1772 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1774 /*-------------------------------------------------------------------------*/
1776 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely. The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1780 void usb_hcd_flush_endpoint(struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1783 struct usb_hcd *hcd;
1784 struct urb *urb;
1786 if (!ep)
1787 return;
1788 might_sleep();
1789 hcd = bus_to_hcd(udev->bus);
1791 /* No more submits can occur */
1792 spin_lock_irq(&hcd_urb_list_lock);
1793 rescan:
1794 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795 int is_in;
1797 if (urb->unlinked)
1798 continue;
1799 usb_get_urb (urb);
1800 is_in = usb_urb_dir_in(urb);
1801 spin_unlock(&hcd_urb_list_lock);
1803 /* kick hcd */
1804 unlink1(hcd, urb, -ESHUTDOWN);
1805 dev_dbg (hcd->self.controller,
1806 "shutdown urb %p ep%d%s%s\n",
1807 urb, usb_endpoint_num(&ep->desc),
1808 is_in ? "in" : "out",
1809 ({ char *s;
1811 switch (usb_endpoint_type(&ep->desc)) {
1812 case USB_ENDPOINT_XFER_CONTROL:
1813 s = ""; break;
1814 case USB_ENDPOINT_XFER_BULK:
1815 s = "-bulk"; break;
1816 case USB_ENDPOINT_XFER_INT:
1817 s = "-intr"; break;
1818 default:
1819 s = "-iso"; break;
1822 }));
1823 usb_put_urb (urb);
1825 /* list contents may have changed */
1826 spin_lock(&hcd_urb_list_lock);
1827 goto rescan;
1829 spin_unlock_irq(&hcd_urb_list_lock);
1831 /* Wait until the endpoint queue is completely empty */
1832 while (!list_empty (&ep->urb_list)) {
1833 spin_lock_irq(&hcd_urb_list_lock);
1835 /* The list may have changed while we acquired the spinlock */
1836 urb = NULL;
1837 if (!list_empty (&ep->urb_list)) {
1838 urb = list_entry (ep->urb_list.prev, struct urb,
1839 urb_list);
1840 usb_get_urb (urb);
1842 spin_unlock_irq(&hcd_urb_list_lock);
1844 if (urb) {
1845 usb_kill_urb (urb);
1846 usb_put_urb (urb);
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 * the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1872 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873 struct usb_host_config *new_config,
1874 struct usb_host_interface *cur_alt,
1875 struct usb_host_interface *new_alt)
1877 int num_intfs, i, j;
1878 struct usb_host_interface *alt = NULL;
1879 int ret = 0;
1880 struct usb_hcd *hcd;
1881 struct usb_host_endpoint *ep;
1883 hcd = bus_to_hcd(udev->bus);
1884 if (!hcd->driver->check_bandwidth)
1885 return 0;
1887 /* Configuration is being removed - set configuration 0 */
1888 if (!new_config && !cur_alt) {
1889 for (i = 1; i < 16; ++i) {
1890 ep = udev->ep_out[i];
1891 if (ep)
1892 hcd->driver->drop_endpoint(hcd, udev, ep);
1893 ep = udev->ep_in[i];
1894 if (ep)
1895 hcd->driver->drop_endpoint(hcd, udev, ep);
1897 hcd->driver->check_bandwidth(hcd, udev);
1898 return 0;
1900 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1901 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902 * of the bus. There will always be bandwidth for endpoint 0, so it's
1903 * ok to exclude it.
1905 if (new_config) {
1906 num_intfs = new_config->desc.bNumInterfaces;
1907 /* Remove endpoints (except endpoint 0, which is always on the
1908 * schedule) from the old config from the schedule
1910 for (i = 1; i < 16; ++i) {
1911 ep = udev->ep_out[i];
1912 if (ep) {
1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914 if (ret < 0)
1915 goto reset;
1917 ep = udev->ep_in[i];
1918 if (ep) {
1919 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920 if (ret < 0)
1921 goto reset;
1924 for (i = 0; i < num_intfs; ++i) {
1925 struct usb_host_interface *first_alt;
1926 int iface_num;
1928 first_alt = &new_config->intf_cache[i]->altsetting[0];
1929 iface_num = first_alt->desc.bInterfaceNumber;
1930 /* Set up endpoints for alternate interface setting 0 */
1931 alt = usb_find_alt_setting(new_config, iface_num, 0);
1932 if (!alt)
1933 /* No alt setting 0? Pick the first setting. */
1934 alt = first_alt;
1936 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938 if (ret < 0)
1939 goto reset;
1943 if (cur_alt && new_alt) {
1944 struct usb_interface *iface = usb_ifnum_to_if(udev,
1945 cur_alt->desc.bInterfaceNumber);
1947 if (!iface)
1948 return -EINVAL;
1949 if (iface->resetting_device) {
1951 * The USB core just reset the device, so the xHCI host
1952 * and the device will think alt setting 0 is installed.
1953 * However, the USB core will pass in the alternate
1954 * setting installed before the reset as cur_alt. Dig
1955 * out the alternate setting 0 structure, or the first
1956 * alternate setting if a broken device doesn't have alt
1957 * setting 0.
1959 cur_alt = usb_altnum_to_altsetting(iface, 0);
1960 if (!cur_alt)
1961 cur_alt = &iface->altsetting[0];
1964 /* Drop all the endpoints in the current alt setting */
1965 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966 ret = hcd->driver->drop_endpoint(hcd, udev,
1967 &cur_alt->endpoint[i]);
1968 if (ret < 0)
1969 goto reset;
1971 /* Add all the endpoints in the new alt setting */
1972 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973 ret = hcd->driver->add_endpoint(hcd, udev,
1974 &new_alt->endpoint[i]);
1975 if (ret < 0)
1976 goto reset;
1979 ret = hcd->driver->check_bandwidth(hcd, udev);
1980 reset:
1981 if (ret < 0)
1982 hcd->driver->reset_bandwidth(hcd, udev);
1983 return ret;
1986 /* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1988 * have been called previously. Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1991 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1994 void usb_hcd_disable_endpoint(struct usb_device *udev,
1995 struct usb_host_endpoint *ep)
1997 struct usb_hcd *hcd;
1999 might_sleep();
2000 hcd = bus_to_hcd(udev->bus);
2001 if (hcd->driver->endpoint_disable)
2002 hcd->driver->endpoint_disable(hcd, ep);
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep: the endpoint to reset.
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2013 void usb_hcd_reset_endpoint(struct usb_device *udev,
2014 struct usb_host_endpoint *ep)
2016 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2018 if (hcd->driver->endpoint_reset)
2019 hcd->driver->endpoint_reset(hcd, ep);
2020 else {
2021 int epnum = usb_endpoint_num(&ep->desc);
2022 int is_out = usb_endpoint_dir_out(&ep->desc);
2023 int is_control = usb_endpoint_xfer_control(&ep->desc);
2025 usb_settoggle(udev, epnum, is_out, 0);
2026 if (is_control)
2027 usb_settoggle(udev, epnum, !is_out, 0);
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface: alternate setting that includes all endpoints.
2034 * @eps: array of endpoints that need streams.
2035 * @num_eps: number of endpoints in the array.
2036 * @num_streams: number of streams to allocate.
2037 * @mem_flags: flags hcd should use to allocate memory.
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2046 int usb_alloc_streams(struct usb_interface *interface,
2047 struct usb_host_endpoint **eps, unsigned int num_eps,
2048 unsigned int num_streams, gfp_t mem_flags)
2050 struct usb_hcd *hcd;
2051 struct usb_device *dev;
2052 int i;
2054 dev = interface_to_usbdev(interface);
2055 hcd = bus_to_hcd(dev->bus);
2056 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057 return -EINVAL;
2058 if (dev->speed != USB_SPEED_SUPER)
2059 return -EINVAL;
2061 /* Streams only apply to bulk endpoints. */
2062 for (i = 0; i < num_eps; i++)
2063 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064 return -EINVAL;
2066 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2067 num_streams, mem_flags);
2069 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2072 * usb_free_streams - free bulk endpoint stream IDs.
2073 * @interface: alternate setting that includes all endpoints.
2074 * @eps: array of endpoints to remove streams from.
2075 * @num_eps: number of endpoints in the array.
2076 * @mem_flags: flags hcd should use to allocate memory.
2078 * Reverts a group of bulk endpoints back to not using stream IDs.
2079 * Can fail if we are given bad arguments, or HCD is broken.
2081 * Return: On success, the number of allocated streams. On failure, a negative
2082 * error code.
2084 int usb_free_streams(struct usb_interface *interface,
2085 struct usb_host_endpoint **eps, unsigned int num_eps,
2086 gfp_t mem_flags)
2088 struct usb_hcd *hcd;
2089 struct usb_device *dev;
2090 int i;
2092 dev = interface_to_usbdev(interface);
2093 hcd = bus_to_hcd(dev->bus);
2094 if (dev->speed != USB_SPEED_SUPER)
2095 return -EINVAL;
2097 /* Streams only apply to bulk endpoints. */
2098 for (i = 0; i < num_eps; i++)
2099 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2100 return -EINVAL;
2102 return hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2104 EXPORT_SYMBOL_GPL(usb_free_streams);
2106 /* Protect against drivers that try to unlink URBs after the device
2107 * is gone, by waiting until all unlinks for @udev are finished.
2108 * Since we don't currently track URBs by device, simply wait until
2109 * nothing is running in the locked region of usb_hcd_unlink_urb().
2111 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2113 spin_lock_irq(&hcd_urb_unlink_lock);
2114 spin_unlock_irq(&hcd_urb_unlink_lock);
2117 /*-------------------------------------------------------------------------*/
2119 /* called in any context */
2120 int usb_hcd_get_frame_number (struct usb_device *udev)
2122 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2124 if (!HCD_RH_RUNNING(hcd))
2125 return -ESHUTDOWN;
2126 return hcd->driver->get_frame_number (hcd);
2129 /*-------------------------------------------------------------------------*/
2131 #ifdef CONFIG_PM
2133 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2135 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2136 int status;
2137 int old_state = hcd->state;
2139 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2140 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2141 rhdev->do_remote_wakeup);
2142 if (HCD_DEAD(hcd)) {
2143 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2144 return 0;
2147 if (!hcd->driver->bus_suspend) {
2148 status = -ENOENT;
2149 } else {
2150 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2151 hcd->state = HC_STATE_QUIESCING;
2152 status = hcd->driver->bus_suspend(hcd);
2154 if (status == 0) {
2155 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2156 hcd->state = HC_STATE_SUSPENDED;
2158 /* Did we race with a root-hub wakeup event? */
2159 if (rhdev->do_remote_wakeup) {
2160 char buffer[6];
2162 status = hcd->driver->hub_status_data(hcd, buffer);
2163 if (status != 0) {
2164 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2165 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2166 status = -EBUSY;
2169 } else {
2170 spin_lock_irq(&hcd_root_hub_lock);
2171 if (!HCD_DEAD(hcd)) {
2172 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2173 hcd->state = old_state;
2175 spin_unlock_irq(&hcd_root_hub_lock);
2176 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2177 "suspend", status);
2179 return status;
2182 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2184 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2185 int status;
2186 int old_state = hcd->state;
2188 dev_dbg(&rhdev->dev, "usb %sresume\n",
2189 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2190 if (HCD_DEAD(hcd)) {
2191 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2192 return 0;
2194 if (!hcd->driver->bus_resume)
2195 return -ENOENT;
2196 if (HCD_RH_RUNNING(hcd))
2197 return 0;
2199 hcd->state = HC_STATE_RESUMING;
2200 status = hcd->driver->bus_resume(hcd);
2201 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2202 if (status == 0) {
2203 struct usb_device *udev;
2204 int port1;
2206 spin_lock_irq(&hcd_root_hub_lock);
2207 if (!HCD_DEAD(hcd)) {
2208 usb_set_device_state(rhdev, rhdev->actconfig
2209 ? USB_STATE_CONFIGURED
2210 : USB_STATE_ADDRESS);
2211 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2212 hcd->state = HC_STATE_RUNNING;
2214 spin_unlock_irq(&hcd_root_hub_lock);
2217 * Check whether any of the enabled ports on the root hub are
2218 * unsuspended. If they are then a TRSMRCY delay is needed
2219 * (this is what the USB-2 spec calls a "global resume").
2220 * Otherwise we can skip the delay.
2222 usb_hub_for_each_child(rhdev, port1, udev) {
2223 if (udev->state != USB_STATE_NOTATTACHED &&
2224 !udev->port_is_suspended) {
2225 usleep_range(10000, 11000); /* TRSMRCY */
2226 break;
2229 } else {
2230 hcd->state = old_state;
2231 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2232 "resume", status);
2233 if (status != -ESHUTDOWN)
2234 usb_hc_died(hcd);
2236 return status;
2239 #endif /* CONFIG_PM */
2241 #ifdef CONFIG_PM_RUNTIME
2243 /* Workqueue routine for root-hub remote wakeup */
2244 static void hcd_resume_work(struct work_struct *work)
2246 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2247 struct usb_device *udev = hcd->self.root_hub;
2249 usb_lock_device(udev);
2250 usb_remote_wakeup(udev);
2251 usb_unlock_device(udev);
2255 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2256 * @hcd: host controller for this root hub
2258 * The USB host controller calls this function when its root hub is
2259 * suspended (with the remote wakeup feature enabled) and a remote
2260 * wakeup request is received. The routine submits a workqueue request
2261 * to resume the root hub (that is, manage its downstream ports again).
2263 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2265 unsigned long flags;
2267 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2268 if (hcd->rh_registered) {
2269 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2270 queue_work(pm_wq, &hcd->wakeup_work);
2272 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2274 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2276 #endif /* CONFIG_PM_RUNTIME */
2278 /*-------------------------------------------------------------------------*/
2280 #ifdef CONFIG_USB_OTG
2283 * usb_bus_start_enum - start immediate enumeration (for OTG)
2284 * @bus: the bus (must use hcd framework)
2285 * @port_num: 1-based number of port; usually bus->otg_port
2286 * Context: in_interrupt()
2288 * Starts enumeration, with an immediate reset followed later by
2289 * khubd identifying and possibly configuring the device.
2290 * This is needed by OTG controller drivers, where it helps meet
2291 * HNP protocol timing requirements for starting a port reset.
2293 * Return: 0 if successful.
2295 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2297 struct usb_hcd *hcd;
2298 int status = -EOPNOTSUPP;
2300 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2301 * boards with root hubs hooked up to internal devices (instead of
2302 * just the OTG port) may need more attention to resetting...
2304 hcd = container_of (bus, struct usb_hcd, self);
2305 if (port_num && hcd->driver->start_port_reset)
2306 status = hcd->driver->start_port_reset(hcd, port_num);
2308 /* run khubd shortly after (first) root port reset finishes;
2309 * it may issue others, until at least 50 msecs have passed.
2311 if (status == 0)
2312 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2313 return status;
2315 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2317 #endif
2319 /*-------------------------------------------------------------------------*/
2322 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2323 * @irq: the IRQ being raised
2324 * @__hcd: pointer to the HCD whose IRQ is being signaled
2326 * If the controller isn't HALTed, calls the driver's irq handler.
2327 * Checks whether the controller is now dead.
2329 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2331 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2333 struct usb_hcd *hcd = __hcd;
2334 irqreturn_t rc;
2336 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2337 rc = IRQ_NONE;
2338 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2339 rc = IRQ_NONE;
2340 else
2341 rc = IRQ_HANDLED;
2343 return rc;
2345 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2347 /*-------------------------------------------------------------------------*/
2350 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2351 * @hcd: pointer to the HCD representing the controller
2353 * This is called by bus glue to report a USB host controller that died
2354 * while operations may still have been pending. It's called automatically
2355 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 * Only call this function with the primary HCD.
2359 void usb_hc_died (struct usb_hcd *hcd)
2361 unsigned long flags;
2363 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2366 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2367 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2368 if (hcd->rh_registered) {
2369 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371 /* make khubd clean up old urbs and devices */
2372 usb_set_device_state (hcd->self.root_hub,
2373 USB_STATE_NOTATTACHED);
2374 usb_kick_khubd (hcd->self.root_hub);
2376 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2377 hcd = hcd->shared_hcd;
2378 if (hcd->rh_registered) {
2379 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2381 /* make khubd clean up old urbs and devices */
2382 usb_set_device_state(hcd->self.root_hub,
2383 USB_STATE_NOTATTACHED);
2384 usb_kick_khubd(hcd->self.root_hub);
2387 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2388 /* Make sure that the other roothub is also deallocated. */
2390 EXPORT_SYMBOL_GPL (usb_hc_died);
2392 /*-------------------------------------------------------------------------*/
2394 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2397 spin_lock_init(&bh->lock);
2398 INIT_LIST_HEAD(&bh->head);
2399 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2403 * usb_create_shared_hcd - create and initialize an HCD structure
2404 * @driver: HC driver that will use this hcd
2405 * @dev: device for this HC, stored in hcd->self.controller
2406 * @bus_name: value to store in hcd->self.bus_name
2407 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2408 * PCI device. Only allocate certain resources for the primary HCD
2409 * Context: !in_interrupt()
2411 * Allocate a struct usb_hcd, with extra space at the end for the
2412 * HC driver's private data. Initialize the generic members of the
2413 * hcd structure.
2415 * Return: On success, a pointer to the created and initialized HCD structure.
2416 * On failure (e.g. if memory is unavailable), %NULL.
2418 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2419 struct device *dev, const char *bus_name,
2420 struct usb_hcd *primary_hcd)
2422 struct usb_hcd *hcd;
2424 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2425 if (!hcd) {
2426 dev_dbg (dev, "hcd alloc failed\n");
2427 return NULL;
2429 if (primary_hcd == NULL) {
2430 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431 GFP_KERNEL);
2432 if (!hcd->bandwidth_mutex) {
2433 kfree(hcd);
2434 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2435 return NULL;
2437 mutex_init(hcd->bandwidth_mutex);
2438 dev_set_drvdata(dev, hcd);
2439 } else {
2440 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2441 hcd->primary_hcd = primary_hcd;
2442 primary_hcd->primary_hcd = primary_hcd;
2443 hcd->shared_hcd = primary_hcd;
2444 primary_hcd->shared_hcd = hcd;
2447 kref_init(&hcd->kref);
2449 usb_bus_init(&hcd->self);
2450 hcd->self.controller = dev;
2451 hcd->self.bus_name = bus_name;
2452 hcd->self.uses_dma = (dev->dma_mask != NULL);
2454 init_timer(&hcd->rh_timer);
2455 hcd->rh_timer.function = rh_timer_func;
2456 hcd->rh_timer.data = (unsigned long) hcd;
2457 #ifdef CONFIG_PM_RUNTIME
2458 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2459 #endif
2461 hcd->driver = driver;
2462 hcd->speed = driver->flags & HCD_MASK;
2463 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2464 "USB Host Controller";
2465 return hcd;
2467 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2470 * usb_create_hcd - create and initialize an HCD structure
2471 * @driver: HC driver that will use this hcd
2472 * @dev: device for this HC, stored in hcd->self.controller
2473 * @bus_name: value to store in hcd->self.bus_name
2474 * Context: !in_interrupt()
2476 * Allocate a struct usb_hcd, with extra space at the end for the
2477 * HC driver's private data. Initialize the generic members of the
2478 * hcd structure.
2480 * Return: On success, a pointer to the created and initialized HCD
2481 * structure. On failure (e.g. if memory is unavailable), %NULL.
2483 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2484 struct device *dev, const char *bus_name)
2486 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2488 EXPORT_SYMBOL_GPL(usb_create_hcd);
2491 * Roothubs that share one PCI device must also share the bandwidth mutex.
2492 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2493 * deallocated.
2495 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2496 * freed. When hcd_release() is called for the non-primary HCD, set the
2497 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2498 * freed shortly).
2500 static void hcd_release (struct kref *kref)
2502 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2504 if (usb_hcd_is_primary_hcd(hcd))
2505 kfree(hcd->bandwidth_mutex);
2506 else
2507 hcd->shared_hcd->shared_hcd = NULL;
2508 kfree(hcd);
2511 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2513 if (hcd)
2514 kref_get (&hcd->kref);
2515 return hcd;
2517 EXPORT_SYMBOL_GPL(usb_get_hcd);
2519 void usb_put_hcd (struct usb_hcd *hcd)
2521 if (hcd)
2522 kref_put (&hcd->kref, hcd_release);
2524 EXPORT_SYMBOL_GPL(usb_put_hcd);
2526 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2528 if (!hcd->primary_hcd)
2529 return 1;
2530 return hcd == hcd->primary_hcd;
2532 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2534 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2536 if (!hcd->driver->find_raw_port_number)
2537 return port1;
2539 return hcd->driver->find_raw_port_number(hcd, port1);
2542 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2543 unsigned int irqnum, unsigned long irqflags)
2545 int retval;
2547 if (hcd->driver->irq) {
2549 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2550 hcd->driver->description, hcd->self.busnum);
2551 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2552 hcd->irq_descr, hcd);
2553 if (retval != 0) {
2554 dev_err(hcd->self.controller,
2555 "request interrupt %d failed\n",
2556 irqnum);
2557 return retval;
2559 hcd->irq = irqnum;
2560 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2561 (hcd->driver->flags & HCD_MEMORY) ?
2562 "io mem" : "io base",
2563 (unsigned long long)hcd->rsrc_start);
2564 } else {
2565 hcd->irq = 0;
2566 if (hcd->rsrc_start)
2567 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2568 (hcd->driver->flags & HCD_MEMORY) ?
2569 "io mem" : "io base",
2570 (unsigned long long)hcd->rsrc_start);
2572 return 0;
2576 * usb_add_hcd - finish generic HCD structure initialization and register
2577 * @hcd: the usb_hcd structure to initialize
2578 * @irqnum: Interrupt line to allocate
2579 * @irqflags: Interrupt type flags
2581 * Finish the remaining parts of generic HCD initialization: allocate the
2582 * buffers of consistent memory, register the bus, request the IRQ line,
2583 * and call the driver's reset() and start() routines.
2585 int usb_add_hcd(struct usb_hcd *hcd,
2586 unsigned int irqnum, unsigned long irqflags)
2588 int retval;
2589 struct usb_device *rhdev;
2591 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2592 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2594 if (IS_ERR(phy)) {
2595 retval = PTR_ERR(phy);
2596 if (retval == -EPROBE_DEFER)
2597 return retval;
2598 } else {
2599 retval = usb_phy_init(phy);
2600 if (retval) {
2601 usb_put_phy(phy);
2602 return retval;
2604 hcd->phy = phy;
2605 hcd->remove_phy = 1;
2609 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2611 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2612 if (authorized_default < 0 || authorized_default > 1)
2613 hcd->authorized_default = hcd->wireless ? 0 : 1;
2614 else
2615 hcd->authorized_default = authorized_default;
2616 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2618 /* HC is in reset state, but accessible. Now do the one-time init,
2619 * bottom up so that hcds can customize the root hubs before khubd
2620 * starts talking to them. (Note, bus id is assigned early too.)
2622 if ((retval = hcd_buffer_create(hcd)) != 0) {
2623 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2624 goto err_remove_phy;
2627 if ((retval = usb_register_bus(&hcd->self)) < 0)
2628 goto err_register_bus;
2630 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2631 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2632 retval = -ENOMEM;
2633 goto err_allocate_root_hub;
2635 hcd->self.root_hub = rhdev;
2637 switch (hcd->speed) {
2638 case HCD_USB11:
2639 rhdev->speed = USB_SPEED_FULL;
2640 break;
2641 case HCD_USB2:
2642 rhdev->speed = USB_SPEED_HIGH;
2643 break;
2644 case HCD_USB25:
2645 rhdev->speed = USB_SPEED_WIRELESS;
2646 break;
2647 case HCD_USB3:
2648 rhdev->speed = USB_SPEED_SUPER;
2649 break;
2650 default:
2651 retval = -EINVAL;
2652 goto err_set_rh_speed;
2655 /* wakeup flag init defaults to "everything works" for root hubs,
2656 * but drivers can override it in reset() if needed, along with
2657 * recording the overall controller's system wakeup capability.
2659 device_set_wakeup_capable(&rhdev->dev, 1);
2661 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2662 * registered. But since the controller can die at any time,
2663 * let's initialize the flag before touching the hardware.
2665 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2667 /* "reset" is misnamed; its role is now one-time init. the controller
2668 * should already have been reset (and boot firmware kicked off etc).
2670 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2671 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2672 goto err_hcd_driver_setup;
2674 hcd->rh_pollable = 1;
2676 /* NOTE: root hub and controller capabilities may not be the same */
2677 if (device_can_wakeup(hcd->self.controller)
2678 && device_can_wakeup(&hcd->self.root_hub->dev))
2679 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2681 /* initialize tasklets */
2682 init_giveback_urb_bh(&hcd->high_prio_bh);
2683 init_giveback_urb_bh(&hcd->low_prio_bh);
2685 /* enable irqs just before we start the controller,
2686 * if the BIOS provides legacy PCI irqs.
2688 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2689 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2690 if (retval)
2691 goto err_request_irq;
2694 hcd->state = HC_STATE_RUNNING;
2695 retval = hcd->driver->start(hcd);
2696 if (retval < 0) {
2697 dev_err(hcd->self.controller, "startup error %d\n", retval);
2698 goto err_hcd_driver_start;
2701 /* starting here, usbcore will pay attention to this root hub */
2702 if ((retval = register_root_hub(hcd)) != 0)
2703 goto err_register_root_hub;
2705 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2706 if (retval < 0) {
2707 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2708 retval);
2709 goto error_create_attr_group;
2711 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2712 usb_hcd_poll_rh_status(hcd);
2714 return retval;
2716 error_create_attr_group:
2717 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2718 if (HC_IS_RUNNING(hcd->state))
2719 hcd->state = HC_STATE_QUIESCING;
2720 spin_lock_irq(&hcd_root_hub_lock);
2721 hcd->rh_registered = 0;
2722 spin_unlock_irq(&hcd_root_hub_lock);
2724 #ifdef CONFIG_PM_RUNTIME
2725 cancel_work_sync(&hcd->wakeup_work);
2726 #endif
2727 mutex_lock(&usb_bus_list_lock);
2728 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2729 mutex_unlock(&usb_bus_list_lock);
2730 err_register_root_hub:
2731 hcd->rh_pollable = 0;
2732 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2733 del_timer_sync(&hcd->rh_timer);
2734 hcd->driver->stop(hcd);
2735 hcd->state = HC_STATE_HALT;
2736 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2737 del_timer_sync(&hcd->rh_timer);
2738 err_hcd_driver_start:
2739 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2740 free_irq(irqnum, hcd);
2741 err_request_irq:
2742 err_hcd_driver_setup:
2743 err_set_rh_speed:
2744 usb_put_dev(hcd->self.root_hub);
2745 err_allocate_root_hub:
2746 usb_deregister_bus(&hcd->self);
2747 err_register_bus:
2748 hcd_buffer_destroy(hcd);
2749 err_remove_phy:
2750 if (hcd->remove_phy && hcd->phy) {
2751 usb_phy_shutdown(hcd->phy);
2752 usb_put_phy(hcd->phy);
2753 hcd->phy = NULL;
2755 return retval;
2757 EXPORT_SYMBOL_GPL(usb_add_hcd);
2760 * usb_remove_hcd - shutdown processing for generic HCDs
2761 * @hcd: the usb_hcd structure to remove
2762 * Context: !in_interrupt()
2764 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2765 * invoking the HCD's stop() method.
2767 void usb_remove_hcd(struct usb_hcd *hcd)
2769 struct usb_device *rhdev = hcd->self.root_hub;
2771 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2773 usb_get_dev(rhdev);
2774 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2776 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2777 if (HC_IS_RUNNING (hcd->state))
2778 hcd->state = HC_STATE_QUIESCING;
2780 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2781 spin_lock_irq (&hcd_root_hub_lock);
2782 hcd->rh_registered = 0;
2783 spin_unlock_irq (&hcd_root_hub_lock);
2785 #ifdef CONFIG_PM_RUNTIME
2786 cancel_work_sync(&hcd->wakeup_work);
2787 #endif
2789 mutex_lock(&usb_bus_list_lock);
2790 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2791 mutex_unlock(&usb_bus_list_lock);
2794 * tasklet_kill() isn't needed here because:
2795 * - driver's disconnect() called from usb_disconnect() should
2796 * make sure its URBs are completed during the disconnect()
2797 * callback
2799 * - it is too late to run complete() here since driver may have
2800 * been removed already now
2803 /* Prevent any more root-hub status calls from the timer.
2804 * The HCD might still restart the timer (if a port status change
2805 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2806 * the hub_status_data() callback.
2808 hcd->rh_pollable = 0;
2809 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2810 del_timer_sync(&hcd->rh_timer);
2812 hcd->driver->stop(hcd);
2813 hcd->state = HC_STATE_HALT;
2815 /* In case the HCD restarted the timer, stop it again. */
2816 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2817 del_timer_sync(&hcd->rh_timer);
2819 if (usb_hcd_is_primary_hcd(hcd)) {
2820 if (hcd->irq > 0)
2821 free_irq(hcd->irq, hcd);
2824 usb_put_dev(hcd->self.root_hub);
2825 usb_deregister_bus(&hcd->self);
2826 hcd_buffer_destroy(hcd);
2827 if (hcd->remove_phy && hcd->phy) {
2828 usb_phy_shutdown(hcd->phy);
2829 usb_put_phy(hcd->phy);
2830 hcd->phy = NULL;
2833 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2835 void
2836 usb_hcd_platform_shutdown(struct platform_device *dev)
2838 struct usb_hcd *hcd = platform_get_drvdata(dev);
2840 if (hcd->driver->shutdown)
2841 hcd->driver->shutdown(hcd);
2843 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2845 /*-------------------------------------------------------------------------*/
2847 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2849 struct usb_mon_operations *mon_ops;
2852 * The registration is unlocked.
2853 * We do it this way because we do not want to lock in hot paths.
2855 * Notice that the code is minimally error-proof. Because usbmon needs
2856 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2859 int usb_mon_register (struct usb_mon_operations *ops)
2862 if (mon_ops)
2863 return -EBUSY;
2865 mon_ops = ops;
2866 mb();
2867 return 0;
2869 EXPORT_SYMBOL_GPL (usb_mon_register);
2871 void usb_mon_deregister (void)
2874 if (mon_ops == NULL) {
2875 printk(KERN_ERR "USB: monitor was not registered\n");
2876 return;
2878 mon_ops = NULL;
2879 mb();
2881 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2883 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */