PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / dwc2 / core.c
blob1d129884cc39ad71e8fddc34b6dc9715ae679f47
1 /*
2 * core.c - DesignWare HS OTG Controller common routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * The Core code provides basic services for accessing and managing the
39 * DWC_otg hardware. These services are used by both the Host Controller
40 * Driver and the Peripheral Controller Driver.
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
56 #include "core.h"
57 #include "hcd.h"
59 /**
60 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
61 * used in both device and host modes
63 * @hsotg: Programming view of the DWC_otg controller
65 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
67 u32 intmsk;
69 /* Clear any pending OTG Interrupts */
70 writel(0xffffffff, hsotg->regs + GOTGINT);
72 /* Clear any pending interrupts */
73 writel(0xffffffff, hsotg->regs + GINTSTS);
75 /* Enable the interrupts in the GINTMSK */
76 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
78 if (hsotg->core_params->dma_enable <= 0)
79 intmsk |= GINTSTS_RXFLVL;
81 intmsk |= GINTSTS_CONIDSTSCHNG | GINTSTS_WKUPINT | GINTSTS_USBSUSP |
82 GINTSTS_SESSREQINT;
84 writel(intmsk, hsotg->regs + GINTMSK);
88 * Initializes the FSLSPClkSel field of the HCFG register depending on the
89 * PHY type
91 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
93 u32 hcfg, val;
95 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
96 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
97 hsotg->core_params->ulpi_fs_ls > 0) ||
98 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
99 /* Full speed PHY */
100 val = HCFG_FSLSPCLKSEL_48_MHZ;
101 } else {
102 /* High speed PHY running at full speed or high speed */
103 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
106 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
107 hcfg = readl(hsotg->regs + HCFG);
108 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
109 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
110 writel(hcfg, hsotg->regs + HCFG);
114 * Do core a soft reset of the core. Be careful with this because it
115 * resets all the internal state machines of the core.
117 static int dwc2_core_reset(struct dwc2_hsotg *hsotg)
119 u32 greset;
120 int count = 0;
122 dev_vdbg(hsotg->dev, "%s()\n", __func__);
124 /* Wait for AHB master IDLE state */
125 do {
126 usleep_range(20000, 40000);
127 greset = readl(hsotg->regs + GRSTCTL);
128 if (++count > 50) {
129 dev_warn(hsotg->dev,
130 "%s() HANG! AHB Idle GRSTCTL=%0x\n",
131 __func__, greset);
132 return -EBUSY;
134 } while (!(greset & GRSTCTL_AHBIDLE));
136 /* Core Soft Reset */
137 count = 0;
138 greset |= GRSTCTL_CSFTRST;
139 writel(greset, hsotg->regs + GRSTCTL);
140 do {
141 usleep_range(20000, 40000);
142 greset = readl(hsotg->regs + GRSTCTL);
143 if (++count > 50) {
144 dev_warn(hsotg->dev,
145 "%s() HANG! Soft Reset GRSTCTL=%0x\n",
146 __func__, greset);
147 return -EBUSY;
149 } while (greset & GRSTCTL_CSFTRST);
152 * NOTE: This long sleep is _very_ important, otherwise the core will
153 * not stay in host mode after a connector ID change!
155 usleep_range(150000, 200000);
157 return 0;
160 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
162 u32 usbcfg, i2cctl;
163 int retval = 0;
166 * core_init() is now called on every switch so only call the
167 * following for the first time through
169 if (select_phy) {
170 dev_dbg(hsotg->dev, "FS PHY selected\n");
171 usbcfg = readl(hsotg->regs + GUSBCFG);
172 usbcfg |= GUSBCFG_PHYSEL;
173 writel(usbcfg, hsotg->regs + GUSBCFG);
175 /* Reset after a PHY select */
176 retval = dwc2_core_reset(hsotg);
177 if (retval) {
178 dev_err(hsotg->dev, "%s() Reset failed, aborting",
179 __func__);
180 return retval;
185 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
186 * do this on HNP Dev/Host mode switches (done in dev_init and
187 * host_init).
189 if (dwc2_is_host_mode(hsotg))
190 dwc2_init_fs_ls_pclk_sel(hsotg);
192 if (hsotg->core_params->i2c_enable > 0) {
193 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
195 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
196 usbcfg = readl(hsotg->regs + GUSBCFG);
197 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
198 writel(usbcfg, hsotg->regs + GUSBCFG);
200 /* Program GI2CCTL.I2CEn */
201 i2cctl = readl(hsotg->regs + GI2CCTL);
202 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
203 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
204 i2cctl &= ~GI2CCTL_I2CEN;
205 writel(i2cctl, hsotg->regs + GI2CCTL);
206 i2cctl |= GI2CCTL_I2CEN;
207 writel(i2cctl, hsotg->regs + GI2CCTL);
210 return retval;
213 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
215 u32 usbcfg;
216 int retval = 0;
218 if (!select_phy)
219 return 0;
221 usbcfg = readl(hsotg->regs + GUSBCFG);
224 * HS PHY parameters. These parameters are preserved during soft reset
225 * so only program the first time. Do a soft reset immediately after
226 * setting phyif.
228 switch (hsotg->core_params->phy_type) {
229 case DWC2_PHY_TYPE_PARAM_ULPI:
230 /* ULPI interface */
231 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
232 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
233 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
234 if (hsotg->core_params->phy_ulpi_ddr > 0)
235 usbcfg |= GUSBCFG_DDRSEL;
236 break;
237 case DWC2_PHY_TYPE_PARAM_UTMI:
238 /* UTMI+ interface */
239 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
240 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
241 if (hsotg->core_params->phy_utmi_width == 16)
242 usbcfg |= GUSBCFG_PHYIF16;
243 break;
244 default:
245 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
246 break;
249 writel(usbcfg, hsotg->regs + GUSBCFG);
251 /* Reset after setting the PHY parameters */
252 retval = dwc2_core_reset(hsotg);
253 if (retval) {
254 dev_err(hsotg->dev, "%s() Reset failed, aborting",
255 __func__);
256 return retval;
259 return retval;
262 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
264 u32 usbcfg;
265 int retval = 0;
267 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
268 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
269 /* If FS mode with FS PHY */
270 retval = dwc2_fs_phy_init(hsotg, select_phy);
271 if (retval)
272 return retval;
273 } else {
274 /* High speed PHY */
275 retval = dwc2_hs_phy_init(hsotg, select_phy);
276 if (retval)
277 return retval;
280 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
281 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
282 hsotg->core_params->ulpi_fs_ls > 0) {
283 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
284 usbcfg = readl(hsotg->regs + GUSBCFG);
285 usbcfg |= GUSBCFG_ULPI_FS_LS;
286 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
287 writel(usbcfg, hsotg->regs + GUSBCFG);
288 } else {
289 usbcfg = readl(hsotg->regs + GUSBCFG);
290 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
291 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
292 writel(usbcfg, hsotg->regs + GUSBCFG);
295 return retval;
298 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
300 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
302 switch (hsotg->hw_params.arch) {
303 case GHWCFG2_EXT_DMA_ARCH:
304 dev_err(hsotg->dev, "External DMA Mode not supported\n");
305 return -EINVAL;
307 case GHWCFG2_INT_DMA_ARCH:
308 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
309 if (hsotg->core_params->ahbcfg != -1) {
310 ahbcfg &= GAHBCFG_CTRL_MASK;
311 ahbcfg |= hsotg->core_params->ahbcfg &
312 ~GAHBCFG_CTRL_MASK;
314 break;
316 case GHWCFG2_SLAVE_ONLY_ARCH:
317 default:
318 dev_dbg(hsotg->dev, "Slave Only Mode\n");
319 break;
322 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
323 hsotg->core_params->dma_enable,
324 hsotg->core_params->dma_desc_enable);
326 if (hsotg->core_params->dma_enable > 0) {
327 if (hsotg->core_params->dma_desc_enable > 0)
328 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
329 else
330 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
331 } else {
332 dev_dbg(hsotg->dev, "Using Slave mode\n");
333 hsotg->core_params->dma_desc_enable = 0;
336 if (hsotg->core_params->dma_enable > 0)
337 ahbcfg |= GAHBCFG_DMA_EN;
339 writel(ahbcfg, hsotg->regs + GAHBCFG);
341 return 0;
344 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
346 u32 usbcfg;
348 usbcfg = readl(hsotg->regs + GUSBCFG);
349 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
351 switch (hsotg->hw_params.op_mode) {
352 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
353 if (hsotg->core_params->otg_cap ==
354 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
355 usbcfg |= GUSBCFG_HNPCAP;
356 if (hsotg->core_params->otg_cap !=
357 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
358 usbcfg |= GUSBCFG_SRPCAP;
359 break;
361 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
362 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
363 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
364 if (hsotg->core_params->otg_cap !=
365 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
366 usbcfg |= GUSBCFG_SRPCAP;
367 break;
369 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
370 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
371 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
372 default:
373 break;
376 writel(usbcfg, hsotg->regs + GUSBCFG);
380 * dwc2_core_init() - Initializes the DWC_otg controller registers and
381 * prepares the core for device mode or host mode operation
383 * @hsotg: Programming view of the DWC_otg controller
384 * @select_phy: If true then also set the Phy type
385 * @irq: If >= 0, the irq to register
387 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool select_phy, int irq)
389 u32 usbcfg, otgctl;
390 int retval;
392 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
394 usbcfg = readl(hsotg->regs + GUSBCFG);
396 /* Set ULPI External VBUS bit if needed */
397 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
398 if (hsotg->core_params->phy_ulpi_ext_vbus ==
399 DWC2_PHY_ULPI_EXTERNAL_VBUS)
400 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
402 /* Set external TS Dline pulsing bit if needed */
403 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
404 if (hsotg->core_params->ts_dline > 0)
405 usbcfg |= GUSBCFG_TERMSELDLPULSE;
407 writel(usbcfg, hsotg->regs + GUSBCFG);
409 /* Reset the Controller */
410 retval = dwc2_core_reset(hsotg);
411 if (retval) {
412 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
413 __func__);
414 return retval;
418 * This needs to happen in FS mode before any other programming occurs
420 retval = dwc2_phy_init(hsotg, select_phy);
421 if (retval)
422 return retval;
424 /* Program the GAHBCFG Register */
425 retval = dwc2_gahbcfg_init(hsotg);
426 if (retval)
427 return retval;
429 /* Program the GUSBCFG register */
430 dwc2_gusbcfg_init(hsotg);
432 /* Program the GOTGCTL register */
433 otgctl = readl(hsotg->regs + GOTGCTL);
434 otgctl &= ~GOTGCTL_OTGVER;
435 if (hsotg->core_params->otg_ver > 0)
436 otgctl |= GOTGCTL_OTGVER;
437 writel(otgctl, hsotg->regs + GOTGCTL);
438 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
440 /* Clear the SRP success bit for FS-I2c */
441 hsotg->srp_success = 0;
443 if (irq >= 0) {
444 dev_dbg(hsotg->dev, "registering common handler for irq%d\n",
445 irq);
446 retval = devm_request_irq(hsotg->dev, irq,
447 dwc2_handle_common_intr, IRQF_SHARED,
448 dev_name(hsotg->dev), hsotg);
449 if (retval)
450 return retval;
453 /* Enable common interrupts */
454 dwc2_enable_common_interrupts(hsotg);
457 * Do device or host intialization based on mode during PCD and
458 * HCD initialization
460 if (dwc2_is_host_mode(hsotg)) {
461 dev_dbg(hsotg->dev, "Host Mode\n");
462 hsotg->op_state = OTG_STATE_A_HOST;
463 } else {
464 dev_dbg(hsotg->dev, "Device Mode\n");
465 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
468 return 0;
472 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
474 * @hsotg: Programming view of DWC_otg controller
476 void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
478 u32 intmsk;
480 dev_dbg(hsotg->dev, "%s()\n", __func__);
482 /* Disable all interrupts */
483 writel(0, hsotg->regs + GINTMSK);
484 writel(0, hsotg->regs + HAINTMSK);
486 /* Enable the common interrupts */
487 dwc2_enable_common_interrupts(hsotg);
489 /* Enable host mode interrupts without disturbing common interrupts */
490 intmsk = readl(hsotg->regs + GINTMSK);
491 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
492 writel(intmsk, hsotg->regs + GINTMSK);
496 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
498 * @hsotg: Programming view of DWC_otg controller
500 void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
502 u32 intmsk = readl(hsotg->regs + GINTMSK);
504 /* Disable host mode interrupts without disturbing common interrupts */
505 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
506 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
507 writel(intmsk, hsotg->regs + GINTMSK);
510 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
512 struct dwc2_core_params *params = hsotg->core_params;
513 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
515 if (!params->enable_dynamic_fifo)
516 return;
518 /* Rx FIFO */
519 grxfsiz = readl(hsotg->regs + GRXFSIZ);
520 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
521 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
522 grxfsiz |= params->host_rx_fifo_size <<
523 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
524 writel(grxfsiz, hsotg->regs + GRXFSIZ);
525 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", readl(hsotg->regs + GRXFSIZ));
527 /* Non-periodic Tx FIFO */
528 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
529 readl(hsotg->regs + GNPTXFSIZ));
530 nptxfsiz = params->host_nperio_tx_fifo_size <<
531 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
532 nptxfsiz |= params->host_rx_fifo_size <<
533 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
534 writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
535 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
536 readl(hsotg->regs + GNPTXFSIZ));
538 /* Periodic Tx FIFO */
539 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
540 readl(hsotg->regs + HPTXFSIZ));
541 hptxfsiz = params->host_perio_tx_fifo_size <<
542 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
543 hptxfsiz |= (params->host_rx_fifo_size +
544 params->host_nperio_tx_fifo_size) <<
545 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
546 writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
547 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
548 readl(hsotg->regs + HPTXFSIZ));
550 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
551 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
553 * Global DFIFOCFG calculation for Host mode -
554 * include RxFIFO, NPTXFIFO and HPTXFIFO
556 dfifocfg = readl(hsotg->regs + GDFIFOCFG);
557 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
558 dfifocfg |= (params->host_rx_fifo_size +
559 params->host_nperio_tx_fifo_size +
560 params->host_perio_tx_fifo_size) <<
561 GDFIFOCFG_EPINFOBASE_SHIFT &
562 GDFIFOCFG_EPINFOBASE_MASK;
563 writel(dfifocfg, hsotg->regs + GDFIFOCFG);
568 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
569 * Host mode
571 * @hsotg: Programming view of DWC_otg controller
573 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
574 * request queues. Host channels are reset to ensure that they are ready for
575 * performing transfers.
577 void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
579 u32 hcfg, hfir, otgctl;
581 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
583 /* Restart the Phy Clock */
584 writel(0, hsotg->regs + PCGCTL);
586 /* Initialize Host Configuration Register */
587 dwc2_init_fs_ls_pclk_sel(hsotg);
588 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
589 hcfg = readl(hsotg->regs + HCFG);
590 hcfg |= HCFG_FSLSSUPP;
591 writel(hcfg, hsotg->regs + HCFG);
595 * This bit allows dynamic reloading of the HFIR register during
596 * runtime. This bit needs to be programmed during initial configuration
597 * and its value must not be changed during runtime.
599 if (hsotg->core_params->reload_ctl > 0) {
600 hfir = readl(hsotg->regs + HFIR);
601 hfir |= HFIR_RLDCTRL;
602 writel(hfir, hsotg->regs + HFIR);
605 if (hsotg->core_params->dma_desc_enable > 0) {
606 u32 op_mode = hsotg->hw_params.op_mode;
607 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
608 !hsotg->hw_params.dma_desc_enable ||
609 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
610 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
611 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
612 dev_err(hsotg->dev,
613 "Hardware does not support descriptor DMA mode -\n");
614 dev_err(hsotg->dev,
615 "falling back to buffer DMA mode.\n");
616 hsotg->core_params->dma_desc_enable = 0;
617 } else {
618 hcfg = readl(hsotg->regs + HCFG);
619 hcfg |= HCFG_DESCDMA;
620 writel(hcfg, hsotg->regs + HCFG);
624 /* Configure data FIFO sizes */
625 dwc2_config_fifos(hsotg);
627 /* TODO - check this */
628 /* Clear Host Set HNP Enable in the OTG Control Register */
629 otgctl = readl(hsotg->regs + GOTGCTL);
630 otgctl &= ~GOTGCTL_HSTSETHNPEN;
631 writel(otgctl, hsotg->regs + GOTGCTL);
633 /* Make sure the FIFOs are flushed */
634 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
635 dwc2_flush_rx_fifo(hsotg);
637 /* Clear Host Set HNP Enable in the OTG Control Register */
638 otgctl = readl(hsotg->regs + GOTGCTL);
639 otgctl &= ~GOTGCTL_HSTSETHNPEN;
640 writel(otgctl, hsotg->regs + GOTGCTL);
642 if (hsotg->core_params->dma_desc_enable <= 0) {
643 int num_channels, i;
644 u32 hcchar;
646 /* Flush out any leftover queued requests */
647 num_channels = hsotg->core_params->host_channels;
648 for (i = 0; i < num_channels; i++) {
649 hcchar = readl(hsotg->regs + HCCHAR(i));
650 hcchar &= ~HCCHAR_CHENA;
651 hcchar |= HCCHAR_CHDIS;
652 hcchar &= ~HCCHAR_EPDIR;
653 writel(hcchar, hsotg->regs + HCCHAR(i));
656 /* Halt all channels to put them into a known state */
657 for (i = 0; i < num_channels; i++) {
658 int count = 0;
660 hcchar = readl(hsotg->regs + HCCHAR(i));
661 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
662 hcchar &= ~HCCHAR_EPDIR;
663 writel(hcchar, hsotg->regs + HCCHAR(i));
664 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
665 __func__, i);
666 do {
667 hcchar = readl(hsotg->regs + HCCHAR(i));
668 if (++count > 1000) {
669 dev_err(hsotg->dev,
670 "Unable to clear enable on channel %d\n",
672 break;
674 udelay(1);
675 } while (hcchar & HCCHAR_CHENA);
679 /* Turn on the vbus power */
680 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
681 if (hsotg->op_state == OTG_STATE_A_HOST) {
682 u32 hprt0 = dwc2_read_hprt0(hsotg);
684 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
685 !!(hprt0 & HPRT0_PWR));
686 if (!(hprt0 & HPRT0_PWR)) {
687 hprt0 |= HPRT0_PWR;
688 writel(hprt0, hsotg->regs + HPRT0);
692 dwc2_enable_host_interrupts(hsotg);
695 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
696 struct dwc2_host_chan *chan)
698 u32 hcintmsk = HCINTMSK_CHHLTD;
700 switch (chan->ep_type) {
701 case USB_ENDPOINT_XFER_CONTROL:
702 case USB_ENDPOINT_XFER_BULK:
703 dev_vdbg(hsotg->dev, "control/bulk\n");
704 hcintmsk |= HCINTMSK_XFERCOMPL;
705 hcintmsk |= HCINTMSK_STALL;
706 hcintmsk |= HCINTMSK_XACTERR;
707 hcintmsk |= HCINTMSK_DATATGLERR;
708 if (chan->ep_is_in) {
709 hcintmsk |= HCINTMSK_BBLERR;
710 } else {
711 hcintmsk |= HCINTMSK_NAK;
712 hcintmsk |= HCINTMSK_NYET;
713 if (chan->do_ping)
714 hcintmsk |= HCINTMSK_ACK;
717 if (chan->do_split) {
718 hcintmsk |= HCINTMSK_NAK;
719 if (chan->complete_split)
720 hcintmsk |= HCINTMSK_NYET;
721 else
722 hcintmsk |= HCINTMSK_ACK;
725 if (chan->error_state)
726 hcintmsk |= HCINTMSK_ACK;
727 break;
729 case USB_ENDPOINT_XFER_INT:
730 if (dbg_perio())
731 dev_vdbg(hsotg->dev, "intr\n");
732 hcintmsk |= HCINTMSK_XFERCOMPL;
733 hcintmsk |= HCINTMSK_NAK;
734 hcintmsk |= HCINTMSK_STALL;
735 hcintmsk |= HCINTMSK_XACTERR;
736 hcintmsk |= HCINTMSK_DATATGLERR;
737 hcintmsk |= HCINTMSK_FRMOVRUN;
739 if (chan->ep_is_in)
740 hcintmsk |= HCINTMSK_BBLERR;
741 if (chan->error_state)
742 hcintmsk |= HCINTMSK_ACK;
743 if (chan->do_split) {
744 if (chan->complete_split)
745 hcintmsk |= HCINTMSK_NYET;
746 else
747 hcintmsk |= HCINTMSK_ACK;
749 break;
751 case USB_ENDPOINT_XFER_ISOC:
752 if (dbg_perio())
753 dev_vdbg(hsotg->dev, "isoc\n");
754 hcintmsk |= HCINTMSK_XFERCOMPL;
755 hcintmsk |= HCINTMSK_FRMOVRUN;
756 hcintmsk |= HCINTMSK_ACK;
758 if (chan->ep_is_in) {
759 hcintmsk |= HCINTMSK_XACTERR;
760 hcintmsk |= HCINTMSK_BBLERR;
762 break;
763 default:
764 dev_err(hsotg->dev, "## Unknown EP type ##\n");
765 break;
768 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
769 if (dbg_hc(chan))
770 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
773 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
774 struct dwc2_host_chan *chan)
776 u32 hcintmsk = HCINTMSK_CHHLTD;
779 * For Descriptor DMA mode core halts the channel on AHB error.
780 * Interrupt is not required.
782 if (hsotg->core_params->dma_desc_enable <= 0) {
783 if (dbg_hc(chan))
784 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
785 hcintmsk |= HCINTMSK_AHBERR;
786 } else {
787 if (dbg_hc(chan))
788 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
789 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
790 hcintmsk |= HCINTMSK_XFERCOMPL;
793 if (chan->error_state && !chan->do_split &&
794 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
795 if (dbg_hc(chan))
796 dev_vdbg(hsotg->dev, "setting ACK\n");
797 hcintmsk |= HCINTMSK_ACK;
798 if (chan->ep_is_in) {
799 hcintmsk |= HCINTMSK_DATATGLERR;
800 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
801 hcintmsk |= HCINTMSK_NAK;
805 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
806 if (dbg_hc(chan))
807 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
810 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
811 struct dwc2_host_chan *chan)
813 u32 intmsk;
815 if (hsotg->core_params->dma_enable > 0) {
816 if (dbg_hc(chan))
817 dev_vdbg(hsotg->dev, "DMA enabled\n");
818 dwc2_hc_enable_dma_ints(hsotg, chan);
819 } else {
820 if (dbg_hc(chan))
821 dev_vdbg(hsotg->dev, "DMA disabled\n");
822 dwc2_hc_enable_slave_ints(hsotg, chan);
825 /* Enable the top level host channel interrupt */
826 intmsk = readl(hsotg->regs + HAINTMSK);
827 intmsk |= 1 << chan->hc_num;
828 writel(intmsk, hsotg->regs + HAINTMSK);
829 if (dbg_hc(chan))
830 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
832 /* Make sure host channel interrupts are enabled */
833 intmsk = readl(hsotg->regs + GINTMSK);
834 intmsk |= GINTSTS_HCHINT;
835 writel(intmsk, hsotg->regs + GINTMSK);
836 if (dbg_hc(chan))
837 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
841 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
842 * a specific endpoint
844 * @hsotg: Programming view of DWC_otg controller
845 * @chan: Information needed to initialize the host channel
847 * The HCCHARn register is set up with the characteristics specified in chan.
848 * Host channel interrupts that may need to be serviced while this transfer is
849 * in progress are enabled.
851 void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
853 u8 hc_num = chan->hc_num;
854 u32 hcintmsk;
855 u32 hcchar;
856 u32 hcsplt = 0;
858 if (dbg_hc(chan))
859 dev_vdbg(hsotg->dev, "%s()\n", __func__);
861 /* Clear old interrupt conditions for this host channel */
862 hcintmsk = 0xffffffff;
863 hcintmsk &= ~HCINTMSK_RESERVED14_31;
864 writel(hcintmsk, hsotg->regs + HCINT(hc_num));
866 /* Enable channel interrupts required for this transfer */
867 dwc2_hc_enable_ints(hsotg, chan);
870 * Program the HCCHARn register with the endpoint characteristics for
871 * the current transfer
873 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
874 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
875 if (chan->ep_is_in)
876 hcchar |= HCCHAR_EPDIR;
877 if (chan->speed == USB_SPEED_LOW)
878 hcchar |= HCCHAR_LSPDDEV;
879 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
880 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
881 writel(hcchar, hsotg->regs + HCCHAR(hc_num));
882 if (dbg_hc(chan)) {
883 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
884 hc_num, hcchar);
886 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
887 __func__, hc_num);
888 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
889 chan->dev_addr);
890 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
891 chan->ep_num);
892 dev_vdbg(hsotg->dev, " Is In: %d\n",
893 chan->ep_is_in);
894 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
895 chan->speed == USB_SPEED_LOW);
896 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
897 chan->ep_type);
898 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
899 chan->max_packet);
902 /* Program the HCSPLT register for SPLITs */
903 if (chan->do_split) {
904 if (dbg_hc(chan))
905 dev_vdbg(hsotg->dev,
906 "Programming HC %d with split --> %s\n",
907 hc_num,
908 chan->complete_split ? "CSPLIT" : "SSPLIT");
909 if (chan->complete_split)
910 hcsplt |= HCSPLT_COMPSPLT;
911 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
912 HCSPLT_XACTPOS_MASK;
913 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
914 HCSPLT_HUBADDR_MASK;
915 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
916 HCSPLT_PRTADDR_MASK;
917 if (dbg_hc(chan)) {
918 dev_vdbg(hsotg->dev, " comp split %d\n",
919 chan->complete_split);
920 dev_vdbg(hsotg->dev, " xact pos %d\n",
921 chan->xact_pos);
922 dev_vdbg(hsotg->dev, " hub addr %d\n",
923 chan->hub_addr);
924 dev_vdbg(hsotg->dev, " hub port %d\n",
925 chan->hub_port);
926 dev_vdbg(hsotg->dev, " is_in %d\n",
927 chan->ep_is_in);
928 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
929 chan->max_packet);
930 dev_vdbg(hsotg->dev, " xferlen %d\n",
931 chan->xfer_len);
935 writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
939 * dwc2_hc_halt() - Attempts to halt a host channel
941 * @hsotg: Controller register interface
942 * @chan: Host channel to halt
943 * @halt_status: Reason for halting the channel
945 * This function should only be called in Slave mode or to abort a transfer in
946 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
947 * controller halts the channel when the transfer is complete or a condition
948 * occurs that requires application intervention.
950 * In slave mode, checks for a free request queue entry, then sets the Channel
951 * Enable and Channel Disable bits of the Host Channel Characteristics
952 * register of the specified channel to intiate the halt. If there is no free
953 * request queue entry, sets only the Channel Disable bit of the HCCHARn
954 * register to flush requests for this channel. In the latter case, sets a
955 * flag to indicate that the host channel needs to be halted when a request
956 * queue slot is open.
958 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
959 * HCCHARn register. The controller ensures there is space in the request
960 * queue before submitting the halt request.
962 * Some time may elapse before the core flushes any posted requests for this
963 * host channel and halts. The Channel Halted interrupt handler completes the
964 * deactivation of the host channel.
966 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
967 enum dwc2_halt_status halt_status)
969 u32 nptxsts, hptxsts, hcchar;
971 if (dbg_hc(chan))
972 dev_vdbg(hsotg->dev, "%s()\n", __func__);
973 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
974 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
976 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
977 halt_status == DWC2_HC_XFER_AHB_ERR) {
979 * Disable all channel interrupts except Ch Halted. The QTD
980 * and QH state associated with this transfer has been cleared
981 * (in the case of URB_DEQUEUE), so the channel needs to be
982 * shut down carefully to prevent crashes.
984 u32 hcintmsk = HCINTMSK_CHHLTD;
986 dev_vdbg(hsotg->dev, "dequeue/error\n");
987 writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
990 * Make sure no other interrupts besides halt are currently
991 * pending. Handling another interrupt could cause a crash due
992 * to the QTD and QH state.
994 writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
997 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
998 * even if the channel was already halted for some other
999 * reason
1001 chan->halt_status = halt_status;
1003 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1004 if (!(hcchar & HCCHAR_CHENA)) {
1006 * The channel is either already halted or it hasn't
1007 * started yet. In DMA mode, the transfer may halt if
1008 * it finishes normally or a condition occurs that
1009 * requires driver intervention. Don't want to halt
1010 * the channel again. In either Slave or DMA mode,
1011 * it's possible that the transfer has been assigned
1012 * to a channel, but not started yet when an URB is
1013 * dequeued. Don't want to halt a channel that hasn't
1014 * started yet.
1016 return;
1019 if (chan->halt_pending) {
1021 * A halt has already been issued for this channel. This might
1022 * happen when a transfer is aborted by a higher level in
1023 * the stack.
1025 dev_vdbg(hsotg->dev,
1026 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1027 __func__, chan->hc_num);
1028 return;
1031 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1033 /* No need to set the bit in DDMA for disabling the channel */
1034 /* TODO check it everywhere channel is disabled */
1035 if (hsotg->core_params->dma_desc_enable <= 0) {
1036 if (dbg_hc(chan))
1037 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1038 hcchar |= HCCHAR_CHENA;
1039 } else {
1040 if (dbg_hc(chan))
1041 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1043 hcchar |= HCCHAR_CHDIS;
1045 if (hsotg->core_params->dma_enable <= 0) {
1046 if (dbg_hc(chan))
1047 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1048 hcchar |= HCCHAR_CHENA;
1050 /* Check for space in the request queue to issue the halt */
1051 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1052 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1053 dev_vdbg(hsotg->dev, "control/bulk\n");
1054 nptxsts = readl(hsotg->regs + GNPTXSTS);
1055 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1056 dev_vdbg(hsotg->dev, "Disabling channel\n");
1057 hcchar &= ~HCCHAR_CHENA;
1059 } else {
1060 if (dbg_perio())
1061 dev_vdbg(hsotg->dev, "isoc/intr\n");
1062 hptxsts = readl(hsotg->regs + HPTXSTS);
1063 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1064 hsotg->queuing_high_bandwidth) {
1065 if (dbg_perio())
1066 dev_vdbg(hsotg->dev, "Disabling channel\n");
1067 hcchar &= ~HCCHAR_CHENA;
1070 } else {
1071 if (dbg_hc(chan))
1072 dev_vdbg(hsotg->dev, "DMA enabled\n");
1075 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1076 chan->halt_status = halt_status;
1078 if (hcchar & HCCHAR_CHENA) {
1079 if (dbg_hc(chan))
1080 dev_vdbg(hsotg->dev, "Channel enabled\n");
1081 chan->halt_pending = 1;
1082 chan->halt_on_queue = 0;
1083 } else {
1084 if (dbg_hc(chan))
1085 dev_vdbg(hsotg->dev, "Channel disabled\n");
1086 chan->halt_on_queue = 1;
1089 if (dbg_hc(chan)) {
1090 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1091 chan->hc_num);
1092 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1093 hcchar);
1094 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1095 chan->halt_pending);
1096 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1097 chan->halt_on_queue);
1098 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1099 chan->halt_status);
1104 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1106 * @hsotg: Programming view of DWC_otg controller
1107 * @chan: Identifies the host channel to clean up
1109 * This function is normally called after a transfer is done and the host
1110 * channel is being released
1112 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1114 u32 hcintmsk;
1116 chan->xfer_started = 0;
1119 * Clear channel interrupt enables and any unhandled channel interrupt
1120 * conditions
1122 writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1123 hcintmsk = 0xffffffff;
1124 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1125 writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1129 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1130 * which frame a periodic transfer should occur
1132 * @hsotg: Programming view of DWC_otg controller
1133 * @chan: Identifies the host channel to set up and its properties
1134 * @hcchar: Current value of the HCCHAR register for the specified host channel
1136 * This function has no effect on non-periodic transfers
1138 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1139 struct dwc2_host_chan *chan, u32 *hcchar)
1141 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1142 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1143 /* 1 if _next_ frame is odd, 0 if it's even */
1144 if (!(dwc2_hcd_get_frame_number(hsotg) & 0x1))
1145 *hcchar |= HCCHAR_ODDFRM;
1149 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1151 /* Set up the initial PID for the transfer */
1152 if (chan->speed == USB_SPEED_HIGH) {
1153 if (chan->ep_is_in) {
1154 if (chan->multi_count == 1)
1155 chan->data_pid_start = DWC2_HC_PID_DATA0;
1156 else if (chan->multi_count == 2)
1157 chan->data_pid_start = DWC2_HC_PID_DATA1;
1158 else
1159 chan->data_pid_start = DWC2_HC_PID_DATA2;
1160 } else {
1161 if (chan->multi_count == 1)
1162 chan->data_pid_start = DWC2_HC_PID_DATA0;
1163 else
1164 chan->data_pid_start = DWC2_HC_PID_MDATA;
1166 } else {
1167 chan->data_pid_start = DWC2_HC_PID_DATA0;
1172 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1173 * the Host Channel
1175 * @hsotg: Programming view of DWC_otg controller
1176 * @chan: Information needed to initialize the host channel
1178 * This function should only be called in Slave mode. For a channel associated
1179 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1180 * associated with a periodic EP, the periodic Tx FIFO is written.
1182 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1183 * the number of bytes written to the Tx FIFO.
1185 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1186 struct dwc2_host_chan *chan)
1188 u32 i;
1189 u32 remaining_count;
1190 u32 byte_count;
1191 u32 dword_count;
1192 u32 __iomem *data_fifo;
1193 u32 *data_buf = (u32 *)chan->xfer_buf;
1195 if (dbg_hc(chan))
1196 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1198 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1200 remaining_count = chan->xfer_len - chan->xfer_count;
1201 if (remaining_count > chan->max_packet)
1202 byte_count = chan->max_packet;
1203 else
1204 byte_count = remaining_count;
1206 dword_count = (byte_count + 3) / 4;
1208 if (((unsigned long)data_buf & 0x3) == 0) {
1209 /* xfer_buf is DWORD aligned */
1210 for (i = 0; i < dword_count; i++, data_buf++)
1211 writel(*data_buf, data_fifo);
1212 } else {
1213 /* xfer_buf is not DWORD aligned */
1214 for (i = 0; i < dword_count; i++, data_buf++) {
1215 u32 data = data_buf[0] | data_buf[1] << 8 |
1216 data_buf[2] << 16 | data_buf[3] << 24;
1217 writel(data, data_fifo);
1221 chan->xfer_count += byte_count;
1222 chan->xfer_buf += byte_count;
1226 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1227 * channel and starts the transfer
1229 * @hsotg: Programming view of DWC_otg controller
1230 * @chan: Information needed to initialize the host channel. The xfer_len value
1231 * may be reduced to accommodate the max widths of the XferSize and
1232 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1233 * changed to reflect the final xfer_len value.
1235 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1236 * the caller must ensure that there is sufficient space in the request queue
1237 * and Tx Data FIFO.
1239 * For an OUT transfer in Slave mode, it loads a data packet into the
1240 * appropriate FIFO. If necessary, additional data packets are loaded in the
1241 * Host ISR.
1243 * For an IN transfer in Slave mode, a data packet is requested. The data
1244 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1245 * additional data packets are requested in the Host ISR.
1247 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1248 * register along with a packet count of 1 and the channel is enabled. This
1249 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1250 * simply set to 0 since no data transfer occurs in this case.
1252 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1253 * all the information required to perform the subsequent data transfer. In
1254 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1255 * controller performs the entire PING protocol, then starts the data
1256 * transfer.
1258 void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1259 struct dwc2_host_chan *chan)
1261 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1262 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1263 u32 hcchar;
1264 u32 hctsiz = 0;
1265 u16 num_packets;
1267 if (dbg_hc(chan))
1268 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1270 if (chan->do_ping) {
1271 if (hsotg->core_params->dma_enable <= 0) {
1272 if (dbg_hc(chan))
1273 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1274 dwc2_hc_do_ping(hsotg, chan);
1275 chan->xfer_started = 1;
1276 return;
1277 } else {
1278 if (dbg_hc(chan))
1279 dev_vdbg(hsotg->dev, "ping, DMA\n");
1280 hctsiz |= TSIZ_DOPNG;
1284 if (chan->do_split) {
1285 if (dbg_hc(chan))
1286 dev_vdbg(hsotg->dev, "split\n");
1287 num_packets = 1;
1289 if (chan->complete_split && !chan->ep_is_in)
1291 * For CSPLIT OUT Transfer, set the size to 0 so the
1292 * core doesn't expect any data written to the FIFO
1294 chan->xfer_len = 0;
1295 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1296 chan->xfer_len = chan->max_packet;
1297 else if (!chan->ep_is_in && chan->xfer_len > 188)
1298 chan->xfer_len = 188;
1300 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1301 TSIZ_XFERSIZE_MASK;
1302 } else {
1303 if (dbg_hc(chan))
1304 dev_vdbg(hsotg->dev, "no split\n");
1306 * Ensure that the transfer length and packet count will fit
1307 * in the widths allocated for them in the HCTSIZn register
1309 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1310 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1312 * Make sure the transfer size is no larger than one
1313 * (micro)frame's worth of data. (A check was done
1314 * when the periodic transfer was accepted to ensure
1315 * that a (micro)frame's worth of data can be
1316 * programmed into a channel.)
1318 u32 max_periodic_len =
1319 chan->multi_count * chan->max_packet;
1321 if (chan->xfer_len > max_periodic_len)
1322 chan->xfer_len = max_periodic_len;
1323 } else if (chan->xfer_len > max_hc_xfer_size) {
1325 * Make sure that xfer_len is a multiple of max packet
1326 * size
1328 chan->xfer_len =
1329 max_hc_xfer_size - chan->max_packet + 1;
1332 if (chan->xfer_len > 0) {
1333 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1334 chan->max_packet;
1335 if (num_packets > max_hc_pkt_count) {
1336 num_packets = max_hc_pkt_count;
1337 chan->xfer_len = num_packets * chan->max_packet;
1339 } else {
1340 /* Need 1 packet for transfer length of 0 */
1341 num_packets = 1;
1344 if (chan->ep_is_in)
1346 * Always program an integral # of max packets for IN
1347 * transfers
1349 chan->xfer_len = num_packets * chan->max_packet;
1351 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1352 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1354 * Make sure that the multi_count field matches the
1355 * actual transfer length
1357 chan->multi_count = num_packets;
1359 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1360 dwc2_set_pid_isoc(chan);
1362 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1363 TSIZ_XFERSIZE_MASK;
1366 chan->start_pkt_count = num_packets;
1367 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1368 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1369 TSIZ_SC_MC_PID_MASK;
1370 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1371 if (dbg_hc(chan)) {
1372 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1373 hctsiz, chan->hc_num);
1375 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1376 chan->hc_num);
1377 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1378 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1379 TSIZ_XFERSIZE_SHIFT);
1380 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1381 (hctsiz & TSIZ_PKTCNT_MASK) >>
1382 TSIZ_PKTCNT_SHIFT);
1383 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1384 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1385 TSIZ_SC_MC_PID_SHIFT);
1388 if (hsotg->core_params->dma_enable > 0) {
1389 dma_addr_t dma_addr;
1391 if (chan->align_buf) {
1392 if (dbg_hc(chan))
1393 dev_vdbg(hsotg->dev, "align_buf\n");
1394 dma_addr = chan->align_buf;
1395 } else {
1396 dma_addr = chan->xfer_dma;
1398 writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1399 if (dbg_hc(chan))
1400 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1401 (unsigned long)dma_addr, chan->hc_num);
1404 /* Start the split */
1405 if (chan->do_split) {
1406 u32 hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
1408 hcsplt |= HCSPLT_SPLTENA;
1409 writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1412 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1413 hcchar &= ~HCCHAR_MULTICNT_MASK;
1414 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1415 HCCHAR_MULTICNT_MASK;
1416 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1418 if (hcchar & HCCHAR_CHDIS)
1419 dev_warn(hsotg->dev,
1420 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1421 __func__, chan->hc_num, hcchar);
1423 /* Set host channel enable after all other setup is complete */
1424 hcchar |= HCCHAR_CHENA;
1425 hcchar &= ~HCCHAR_CHDIS;
1427 if (dbg_hc(chan))
1428 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1429 (hcchar & HCCHAR_MULTICNT_MASK) >>
1430 HCCHAR_MULTICNT_SHIFT);
1432 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1433 if (dbg_hc(chan))
1434 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1435 chan->hc_num);
1437 chan->xfer_started = 1;
1438 chan->requests++;
1440 if (hsotg->core_params->dma_enable <= 0 &&
1441 !chan->ep_is_in && chan->xfer_len > 0)
1442 /* Load OUT packet into the appropriate Tx FIFO */
1443 dwc2_hc_write_packet(hsotg, chan);
1447 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1448 * host channel and starts the transfer in Descriptor DMA mode
1450 * @hsotg: Programming view of DWC_otg controller
1451 * @chan: Information needed to initialize the host channel
1453 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1454 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1455 * with micro-frame bitmap.
1457 * Initializes HCDMA register with descriptor list address and CTD value then
1458 * starts the transfer via enabling the channel.
1460 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1461 struct dwc2_host_chan *chan)
1463 u32 hcchar;
1464 u32 hc_dma;
1465 u32 hctsiz = 0;
1467 if (chan->do_ping)
1468 hctsiz |= TSIZ_DOPNG;
1470 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1471 dwc2_set_pid_isoc(chan);
1473 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1474 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1475 TSIZ_SC_MC_PID_MASK;
1477 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1478 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1480 /* Non-zero only for high-speed interrupt endpoints */
1481 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1483 if (dbg_hc(chan)) {
1484 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1485 chan->hc_num);
1486 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1487 chan->data_pid_start);
1488 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1491 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1493 hc_dma = (u32)chan->desc_list_addr & HCDMA_DMA_ADDR_MASK;
1495 /* Always start from first descriptor */
1496 hc_dma &= ~HCDMA_CTD_MASK;
1497 writel(hc_dma, hsotg->regs + HCDMA(chan->hc_num));
1498 if (dbg_hc(chan))
1499 dev_vdbg(hsotg->dev, "Wrote %08x to HCDMA(%d)\n",
1500 hc_dma, chan->hc_num);
1502 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1503 hcchar &= ~HCCHAR_MULTICNT_MASK;
1504 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1505 HCCHAR_MULTICNT_MASK;
1507 if (hcchar & HCCHAR_CHDIS)
1508 dev_warn(hsotg->dev,
1509 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1510 __func__, chan->hc_num, hcchar);
1512 /* Set host channel enable after all other setup is complete */
1513 hcchar |= HCCHAR_CHENA;
1514 hcchar &= ~HCCHAR_CHDIS;
1516 if (dbg_hc(chan))
1517 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1518 (hcchar & HCCHAR_MULTICNT_MASK) >>
1519 HCCHAR_MULTICNT_SHIFT);
1521 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1522 if (dbg_hc(chan))
1523 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1524 chan->hc_num);
1526 chan->xfer_started = 1;
1527 chan->requests++;
1531 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1532 * a previous call to dwc2_hc_start_transfer()
1534 * @hsotg: Programming view of DWC_otg controller
1535 * @chan: Information needed to initialize the host channel
1537 * The caller must ensure there is sufficient space in the request queue and Tx
1538 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1539 * the controller acts autonomously to complete transfers programmed to a host
1540 * channel.
1542 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1543 * if there is any data remaining to be queued. For an IN transfer, another
1544 * data packet is always requested. For the SETUP phase of a control transfer,
1545 * this function does nothing.
1547 * Return: 1 if a new request is queued, 0 if no more requests are required
1548 * for this transfer
1550 int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1551 struct dwc2_host_chan *chan)
1553 if (dbg_hc(chan))
1554 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1555 chan->hc_num);
1557 if (chan->do_split)
1558 /* SPLITs always queue just once per channel */
1559 return 0;
1561 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1562 /* SETUPs are queued only once since they can't be NAK'd */
1563 return 0;
1565 if (chan->ep_is_in) {
1567 * Always queue another request for other IN transfers. If
1568 * back-to-back INs are issued and NAKs are received for both,
1569 * the driver may still be processing the first NAK when the
1570 * second NAK is received. When the interrupt handler clears
1571 * the NAK interrupt for the first NAK, the second NAK will
1572 * not be seen. So we can't depend on the NAK interrupt
1573 * handler to requeue a NAK'd request. Instead, IN requests
1574 * are issued each time this function is called. When the
1575 * transfer completes, the extra requests for the channel will
1576 * be flushed.
1578 u32 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1580 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1581 hcchar |= HCCHAR_CHENA;
1582 hcchar &= ~HCCHAR_CHDIS;
1583 if (dbg_hc(chan))
1584 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1585 hcchar);
1586 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1587 chan->requests++;
1588 return 1;
1591 /* OUT transfers */
1593 if (chan->xfer_count < chan->xfer_len) {
1594 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1595 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1596 u32 hcchar = readl(hsotg->regs +
1597 HCCHAR(chan->hc_num));
1599 dwc2_hc_set_even_odd_frame(hsotg, chan,
1600 &hcchar);
1603 /* Load OUT packet into the appropriate Tx FIFO */
1604 dwc2_hc_write_packet(hsotg, chan);
1605 chan->requests++;
1606 return 1;
1609 return 0;
1613 * dwc2_hc_do_ping() - Starts a PING transfer
1615 * @hsotg: Programming view of DWC_otg controller
1616 * @chan: Information needed to initialize the host channel
1618 * This function should only be called in Slave mode. The Do Ping bit is set in
1619 * the HCTSIZ register, then the channel is enabled.
1621 void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1623 u32 hcchar;
1624 u32 hctsiz;
1626 if (dbg_hc(chan))
1627 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1628 chan->hc_num);
1631 hctsiz = TSIZ_DOPNG;
1632 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1633 writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1635 hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
1636 hcchar |= HCCHAR_CHENA;
1637 hcchar &= ~HCCHAR_CHDIS;
1638 writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1642 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
1643 * the HFIR register according to PHY type and speed
1645 * @hsotg: Programming view of DWC_otg controller
1647 * NOTE: The caller can modify the value of the HFIR register only after the
1648 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
1649 * has been set
1651 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
1653 u32 usbcfg;
1654 u32 hprt0;
1655 int clock = 60; /* default value */
1657 usbcfg = readl(hsotg->regs + GUSBCFG);
1658 hprt0 = readl(hsotg->regs + HPRT0);
1660 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
1661 !(usbcfg & GUSBCFG_PHYIF16))
1662 clock = 60;
1663 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
1664 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
1665 clock = 48;
1666 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1667 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
1668 clock = 30;
1669 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1670 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
1671 clock = 60;
1672 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
1673 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
1674 clock = 48;
1675 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
1676 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
1677 clock = 48;
1678 if ((usbcfg & GUSBCFG_PHYSEL) &&
1679 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
1680 clock = 48;
1682 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
1683 /* High speed case */
1684 return 125 * clock;
1685 else
1686 /* FS/LS case */
1687 return 1000 * clock;
1691 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
1692 * buffer
1694 * @core_if: Programming view of DWC_otg controller
1695 * @dest: Destination buffer for the packet
1696 * @bytes: Number of bytes to copy to the destination
1698 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
1700 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
1701 u32 *data_buf = (u32 *)dest;
1702 int word_count = (bytes + 3) / 4;
1703 int i;
1706 * Todo: Account for the case where dest is not dword aligned. This
1707 * requires reading data from the FIFO into a u32 temp buffer, then
1708 * moving it into the data buffer.
1711 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
1713 for (i = 0; i < word_count; i++, data_buf++)
1714 *data_buf = readl(fifo);
1718 * dwc2_dump_host_registers() - Prints the host registers
1720 * @hsotg: Programming view of DWC_otg controller
1722 * NOTE: This function will be removed once the peripheral controller code
1723 * is integrated and the driver is stable
1725 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg)
1727 #ifdef DEBUG
1728 u32 __iomem *addr;
1729 int i;
1731 dev_dbg(hsotg->dev, "Host Global Registers\n");
1732 addr = hsotg->regs + HCFG;
1733 dev_dbg(hsotg->dev, "HCFG @0x%08lX : 0x%08X\n",
1734 (unsigned long)addr, readl(addr));
1735 addr = hsotg->regs + HFIR;
1736 dev_dbg(hsotg->dev, "HFIR @0x%08lX : 0x%08X\n",
1737 (unsigned long)addr, readl(addr));
1738 addr = hsotg->regs + HFNUM;
1739 dev_dbg(hsotg->dev, "HFNUM @0x%08lX : 0x%08X\n",
1740 (unsigned long)addr, readl(addr));
1741 addr = hsotg->regs + HPTXSTS;
1742 dev_dbg(hsotg->dev, "HPTXSTS @0x%08lX : 0x%08X\n",
1743 (unsigned long)addr, readl(addr));
1744 addr = hsotg->regs + HAINT;
1745 dev_dbg(hsotg->dev, "HAINT @0x%08lX : 0x%08X\n",
1746 (unsigned long)addr, readl(addr));
1747 addr = hsotg->regs + HAINTMSK;
1748 dev_dbg(hsotg->dev, "HAINTMSK @0x%08lX : 0x%08X\n",
1749 (unsigned long)addr, readl(addr));
1750 if (hsotg->core_params->dma_desc_enable > 0) {
1751 addr = hsotg->regs + HFLBADDR;
1752 dev_dbg(hsotg->dev, "HFLBADDR @0x%08lX : 0x%08X\n",
1753 (unsigned long)addr, readl(addr));
1756 addr = hsotg->regs + HPRT0;
1757 dev_dbg(hsotg->dev, "HPRT0 @0x%08lX : 0x%08X\n",
1758 (unsigned long)addr, readl(addr));
1760 for (i = 0; i < hsotg->core_params->host_channels; i++) {
1761 dev_dbg(hsotg->dev, "Host Channel %d Specific Registers\n", i);
1762 addr = hsotg->regs + HCCHAR(i);
1763 dev_dbg(hsotg->dev, "HCCHAR @0x%08lX : 0x%08X\n",
1764 (unsigned long)addr, readl(addr));
1765 addr = hsotg->regs + HCSPLT(i);
1766 dev_dbg(hsotg->dev, "HCSPLT @0x%08lX : 0x%08X\n",
1767 (unsigned long)addr, readl(addr));
1768 addr = hsotg->regs + HCINT(i);
1769 dev_dbg(hsotg->dev, "HCINT @0x%08lX : 0x%08X\n",
1770 (unsigned long)addr, readl(addr));
1771 addr = hsotg->regs + HCINTMSK(i);
1772 dev_dbg(hsotg->dev, "HCINTMSK @0x%08lX : 0x%08X\n",
1773 (unsigned long)addr, readl(addr));
1774 addr = hsotg->regs + HCTSIZ(i);
1775 dev_dbg(hsotg->dev, "HCTSIZ @0x%08lX : 0x%08X\n",
1776 (unsigned long)addr, readl(addr));
1777 addr = hsotg->regs + HCDMA(i);
1778 dev_dbg(hsotg->dev, "HCDMA @0x%08lX : 0x%08X\n",
1779 (unsigned long)addr, readl(addr));
1780 if (hsotg->core_params->dma_desc_enable > 0) {
1781 addr = hsotg->regs + HCDMAB(i);
1782 dev_dbg(hsotg->dev, "HCDMAB @0x%08lX : 0x%08X\n",
1783 (unsigned long)addr, readl(addr));
1786 #endif
1790 * dwc2_dump_global_registers() - Prints the core global registers
1792 * @hsotg: Programming view of DWC_otg controller
1794 * NOTE: This function will be removed once the peripheral controller code
1795 * is integrated and the driver is stable
1797 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg)
1799 #ifdef DEBUG
1800 u32 __iomem *addr;
1802 dev_dbg(hsotg->dev, "Core Global Registers\n");
1803 addr = hsotg->regs + GOTGCTL;
1804 dev_dbg(hsotg->dev, "GOTGCTL @0x%08lX : 0x%08X\n",
1805 (unsigned long)addr, readl(addr));
1806 addr = hsotg->regs + GOTGINT;
1807 dev_dbg(hsotg->dev, "GOTGINT @0x%08lX : 0x%08X\n",
1808 (unsigned long)addr, readl(addr));
1809 addr = hsotg->regs + GAHBCFG;
1810 dev_dbg(hsotg->dev, "GAHBCFG @0x%08lX : 0x%08X\n",
1811 (unsigned long)addr, readl(addr));
1812 addr = hsotg->regs + GUSBCFG;
1813 dev_dbg(hsotg->dev, "GUSBCFG @0x%08lX : 0x%08X\n",
1814 (unsigned long)addr, readl(addr));
1815 addr = hsotg->regs + GRSTCTL;
1816 dev_dbg(hsotg->dev, "GRSTCTL @0x%08lX : 0x%08X\n",
1817 (unsigned long)addr, readl(addr));
1818 addr = hsotg->regs + GINTSTS;
1819 dev_dbg(hsotg->dev, "GINTSTS @0x%08lX : 0x%08X\n",
1820 (unsigned long)addr, readl(addr));
1821 addr = hsotg->regs + GINTMSK;
1822 dev_dbg(hsotg->dev, "GINTMSK @0x%08lX : 0x%08X\n",
1823 (unsigned long)addr, readl(addr));
1824 addr = hsotg->regs + GRXSTSR;
1825 dev_dbg(hsotg->dev, "GRXSTSR @0x%08lX : 0x%08X\n",
1826 (unsigned long)addr, readl(addr));
1827 addr = hsotg->regs + GRXFSIZ;
1828 dev_dbg(hsotg->dev, "GRXFSIZ @0x%08lX : 0x%08X\n",
1829 (unsigned long)addr, readl(addr));
1830 addr = hsotg->regs + GNPTXFSIZ;
1831 dev_dbg(hsotg->dev, "GNPTXFSIZ @0x%08lX : 0x%08X\n",
1832 (unsigned long)addr, readl(addr));
1833 addr = hsotg->regs + GNPTXSTS;
1834 dev_dbg(hsotg->dev, "GNPTXSTS @0x%08lX : 0x%08X\n",
1835 (unsigned long)addr, readl(addr));
1836 addr = hsotg->regs + GI2CCTL;
1837 dev_dbg(hsotg->dev, "GI2CCTL @0x%08lX : 0x%08X\n",
1838 (unsigned long)addr, readl(addr));
1839 addr = hsotg->regs + GPVNDCTL;
1840 dev_dbg(hsotg->dev, "GPVNDCTL @0x%08lX : 0x%08X\n",
1841 (unsigned long)addr, readl(addr));
1842 addr = hsotg->regs + GGPIO;
1843 dev_dbg(hsotg->dev, "GGPIO @0x%08lX : 0x%08X\n",
1844 (unsigned long)addr, readl(addr));
1845 addr = hsotg->regs + GUID;
1846 dev_dbg(hsotg->dev, "GUID @0x%08lX : 0x%08X\n",
1847 (unsigned long)addr, readl(addr));
1848 addr = hsotg->regs + GSNPSID;
1849 dev_dbg(hsotg->dev, "GSNPSID @0x%08lX : 0x%08X\n",
1850 (unsigned long)addr, readl(addr));
1851 addr = hsotg->regs + GHWCFG1;
1852 dev_dbg(hsotg->dev, "GHWCFG1 @0x%08lX : 0x%08X\n",
1853 (unsigned long)addr, readl(addr));
1854 addr = hsotg->regs + GHWCFG2;
1855 dev_dbg(hsotg->dev, "GHWCFG2 @0x%08lX : 0x%08X\n",
1856 (unsigned long)addr, readl(addr));
1857 addr = hsotg->regs + GHWCFG3;
1858 dev_dbg(hsotg->dev, "GHWCFG3 @0x%08lX : 0x%08X\n",
1859 (unsigned long)addr, readl(addr));
1860 addr = hsotg->regs + GHWCFG4;
1861 dev_dbg(hsotg->dev, "GHWCFG4 @0x%08lX : 0x%08X\n",
1862 (unsigned long)addr, readl(addr));
1863 addr = hsotg->regs + GLPMCFG;
1864 dev_dbg(hsotg->dev, "GLPMCFG @0x%08lX : 0x%08X\n",
1865 (unsigned long)addr, readl(addr));
1866 addr = hsotg->regs + GPWRDN;
1867 dev_dbg(hsotg->dev, "GPWRDN @0x%08lX : 0x%08X\n",
1868 (unsigned long)addr, readl(addr));
1869 addr = hsotg->regs + GDFIFOCFG;
1870 dev_dbg(hsotg->dev, "GDFIFOCFG @0x%08lX : 0x%08X\n",
1871 (unsigned long)addr, readl(addr));
1872 addr = hsotg->regs + HPTXFSIZ;
1873 dev_dbg(hsotg->dev, "HPTXFSIZ @0x%08lX : 0x%08X\n",
1874 (unsigned long)addr, readl(addr));
1876 addr = hsotg->regs + PCGCTL;
1877 dev_dbg(hsotg->dev, "PCGCTL @0x%08lX : 0x%08X\n",
1878 (unsigned long)addr, readl(addr));
1879 #endif
1883 * dwc2_flush_tx_fifo() - Flushes a Tx FIFO
1885 * @hsotg: Programming view of DWC_otg controller
1886 * @num: Tx FIFO to flush
1888 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num)
1890 u32 greset;
1891 int count = 0;
1893 dev_vdbg(hsotg->dev, "Flush Tx FIFO %d\n", num);
1895 greset = GRSTCTL_TXFFLSH;
1896 greset |= num << GRSTCTL_TXFNUM_SHIFT & GRSTCTL_TXFNUM_MASK;
1897 writel(greset, hsotg->regs + GRSTCTL);
1899 do {
1900 greset = readl(hsotg->regs + GRSTCTL);
1901 if (++count > 10000) {
1902 dev_warn(hsotg->dev,
1903 "%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
1904 __func__, greset,
1905 readl(hsotg->regs + GNPTXSTS));
1906 break;
1908 udelay(1);
1909 } while (greset & GRSTCTL_TXFFLSH);
1911 /* Wait for at least 3 PHY Clocks */
1912 udelay(1);
1916 * dwc2_flush_rx_fifo() - Flushes the Rx FIFO
1918 * @hsotg: Programming view of DWC_otg controller
1920 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg)
1922 u32 greset;
1923 int count = 0;
1925 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1927 greset = GRSTCTL_RXFFLSH;
1928 writel(greset, hsotg->regs + GRSTCTL);
1930 do {
1931 greset = readl(hsotg->regs + GRSTCTL);
1932 if (++count > 10000) {
1933 dev_warn(hsotg->dev, "%s() HANG! GRSTCTL=%0x\n",
1934 __func__, greset);
1935 break;
1937 udelay(1);
1938 } while (greset & GRSTCTL_RXFFLSH);
1940 /* Wait for at least 3 PHY Clocks */
1941 udelay(1);
1944 #define DWC2_OUT_OF_BOUNDS(a, b, c) ((a) < (b) || (a) > (c))
1946 /* Parameter access functions */
1947 void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val)
1949 int valid = 1;
1951 switch (val) {
1952 case DWC2_CAP_PARAM_HNP_SRP_CAPABLE:
1953 if (hsotg->hw_params.op_mode != GHWCFG2_OP_MODE_HNP_SRP_CAPABLE)
1954 valid = 0;
1955 break;
1956 case DWC2_CAP_PARAM_SRP_ONLY_CAPABLE:
1957 switch (hsotg->hw_params.op_mode) {
1958 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
1959 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
1960 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
1961 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
1962 break;
1963 default:
1964 valid = 0;
1965 break;
1967 break;
1968 case DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE:
1969 /* always valid */
1970 break;
1971 default:
1972 valid = 0;
1973 break;
1976 if (!valid) {
1977 if (val >= 0)
1978 dev_err(hsotg->dev,
1979 "%d invalid for otg_cap parameter. Check HW configuration.\n",
1980 val);
1981 switch (hsotg->hw_params.op_mode) {
1982 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
1983 val = DWC2_CAP_PARAM_HNP_SRP_CAPABLE;
1984 break;
1985 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
1986 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
1987 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
1988 val = DWC2_CAP_PARAM_SRP_ONLY_CAPABLE;
1989 break;
1990 default:
1991 val = DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE;
1992 break;
1994 dev_dbg(hsotg->dev, "Setting otg_cap to %d\n", val);
1997 hsotg->core_params->otg_cap = val;
2000 void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val)
2002 int valid = 1;
2004 if (val > 0 && hsotg->hw_params.arch == GHWCFG2_SLAVE_ONLY_ARCH)
2005 valid = 0;
2006 if (val < 0)
2007 valid = 0;
2009 if (!valid) {
2010 if (val >= 0)
2011 dev_err(hsotg->dev,
2012 "%d invalid for dma_enable parameter. Check HW configuration.\n",
2013 val);
2014 val = hsotg->hw_params.arch != GHWCFG2_SLAVE_ONLY_ARCH;
2015 dev_dbg(hsotg->dev, "Setting dma_enable to %d\n", val);
2018 hsotg->core_params->dma_enable = val;
2021 void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val)
2023 int valid = 1;
2025 if (val > 0 && (hsotg->core_params->dma_enable <= 0 ||
2026 !hsotg->hw_params.dma_desc_enable))
2027 valid = 0;
2028 if (val < 0)
2029 valid = 0;
2031 if (!valid) {
2032 if (val >= 0)
2033 dev_err(hsotg->dev,
2034 "%d invalid for dma_desc_enable parameter. Check HW configuration.\n",
2035 val);
2036 val = (hsotg->core_params->dma_enable > 0 &&
2037 hsotg->hw_params.dma_desc_enable);
2038 dev_dbg(hsotg->dev, "Setting dma_desc_enable to %d\n", val);
2041 hsotg->core_params->dma_desc_enable = val;
2044 void dwc2_set_param_host_support_fs_ls_low_power(struct dwc2_hsotg *hsotg,
2045 int val)
2047 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2048 if (val >= 0) {
2049 dev_err(hsotg->dev,
2050 "Wrong value for host_support_fs_low_power\n");
2051 dev_err(hsotg->dev,
2052 "host_support_fs_low_power must be 0 or 1\n");
2054 val = 0;
2055 dev_dbg(hsotg->dev,
2056 "Setting host_support_fs_low_power to %d\n", val);
2059 hsotg->core_params->host_support_fs_ls_low_power = val;
2062 void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg, int val)
2064 int valid = 1;
2066 if (val > 0 && !hsotg->hw_params.enable_dynamic_fifo)
2067 valid = 0;
2068 if (val < 0)
2069 valid = 0;
2071 if (!valid) {
2072 if (val >= 0)
2073 dev_err(hsotg->dev,
2074 "%d invalid for enable_dynamic_fifo parameter. Check HW configuration.\n",
2075 val);
2076 val = hsotg->hw_params.enable_dynamic_fifo;
2077 dev_dbg(hsotg->dev, "Setting enable_dynamic_fifo to %d\n", val);
2080 hsotg->core_params->enable_dynamic_fifo = val;
2083 void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2085 int valid = 1;
2087 if (val < 16 || val > hsotg->hw_params.host_rx_fifo_size)
2088 valid = 0;
2090 if (!valid) {
2091 if (val >= 0)
2092 dev_err(hsotg->dev,
2093 "%d invalid for host_rx_fifo_size. Check HW configuration.\n",
2094 val);
2095 val = hsotg->hw_params.host_rx_fifo_size;
2096 dev_dbg(hsotg->dev, "Setting host_rx_fifo_size to %d\n", val);
2099 hsotg->core_params->host_rx_fifo_size = val;
2102 void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2104 int valid = 1;
2106 if (val < 16 || val > hsotg->hw_params.host_nperio_tx_fifo_size)
2107 valid = 0;
2109 if (!valid) {
2110 if (val >= 0)
2111 dev_err(hsotg->dev,
2112 "%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
2113 val);
2114 val = hsotg->hw_params.host_nperio_tx_fifo_size;
2115 dev_dbg(hsotg->dev, "Setting host_nperio_tx_fifo_size to %d\n",
2116 val);
2119 hsotg->core_params->host_nperio_tx_fifo_size = val;
2122 void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg, int val)
2124 int valid = 1;
2126 if (val < 16 || val > hsotg->hw_params.host_perio_tx_fifo_size)
2127 valid = 0;
2129 if (!valid) {
2130 if (val >= 0)
2131 dev_err(hsotg->dev,
2132 "%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
2133 val);
2134 val = hsotg->hw_params.host_perio_tx_fifo_size;
2135 dev_dbg(hsotg->dev, "Setting host_perio_tx_fifo_size to %d\n",
2136 val);
2139 hsotg->core_params->host_perio_tx_fifo_size = val;
2142 void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val)
2144 int valid = 1;
2146 if (val < 2047 || val > hsotg->hw_params.max_transfer_size)
2147 valid = 0;
2149 if (!valid) {
2150 if (val >= 0)
2151 dev_err(hsotg->dev,
2152 "%d invalid for max_transfer_size. Check HW configuration.\n",
2153 val);
2154 val = hsotg->hw_params.max_transfer_size;
2155 dev_dbg(hsotg->dev, "Setting max_transfer_size to %d\n", val);
2158 hsotg->core_params->max_transfer_size = val;
2161 void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val)
2163 int valid = 1;
2165 if (val < 15 || val > hsotg->hw_params.max_packet_count)
2166 valid = 0;
2168 if (!valid) {
2169 if (val >= 0)
2170 dev_err(hsotg->dev,
2171 "%d invalid for max_packet_count. Check HW configuration.\n",
2172 val);
2173 val = hsotg->hw_params.max_packet_count;
2174 dev_dbg(hsotg->dev, "Setting max_packet_count to %d\n", val);
2177 hsotg->core_params->max_packet_count = val;
2180 void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val)
2182 int valid = 1;
2184 if (val < 1 || val > hsotg->hw_params.host_channels)
2185 valid = 0;
2187 if (!valid) {
2188 if (val >= 0)
2189 dev_err(hsotg->dev,
2190 "%d invalid for host_channels. Check HW configuration.\n",
2191 val);
2192 val = hsotg->hw_params.host_channels;
2193 dev_dbg(hsotg->dev, "Setting host_channels to %d\n", val);
2196 hsotg->core_params->host_channels = val;
2199 void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val)
2201 int valid = 0;
2202 u32 hs_phy_type, fs_phy_type;
2204 if (DWC2_OUT_OF_BOUNDS(val, DWC2_PHY_TYPE_PARAM_FS,
2205 DWC2_PHY_TYPE_PARAM_ULPI)) {
2206 if (val >= 0) {
2207 dev_err(hsotg->dev, "Wrong value for phy_type\n");
2208 dev_err(hsotg->dev, "phy_type must be 0, 1 or 2\n");
2211 valid = 0;
2214 hs_phy_type = hsotg->hw_params.hs_phy_type;
2215 fs_phy_type = hsotg->hw_params.fs_phy_type;
2216 if (val == DWC2_PHY_TYPE_PARAM_UTMI &&
2217 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2218 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2219 valid = 1;
2220 else if (val == DWC2_PHY_TYPE_PARAM_ULPI &&
2221 (hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI ||
2222 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI))
2223 valid = 1;
2224 else if (val == DWC2_PHY_TYPE_PARAM_FS &&
2225 fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
2226 valid = 1;
2228 if (!valid) {
2229 if (val >= 0)
2230 dev_err(hsotg->dev,
2231 "%d invalid for phy_type. Check HW configuration.\n",
2232 val);
2233 val = DWC2_PHY_TYPE_PARAM_FS;
2234 if (hs_phy_type != GHWCFG2_HS_PHY_TYPE_NOT_SUPPORTED) {
2235 if (hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI ||
2236 hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI_ULPI)
2237 val = DWC2_PHY_TYPE_PARAM_UTMI;
2238 else
2239 val = DWC2_PHY_TYPE_PARAM_ULPI;
2241 dev_dbg(hsotg->dev, "Setting phy_type to %d\n", val);
2244 hsotg->core_params->phy_type = val;
2247 static int dwc2_get_param_phy_type(struct dwc2_hsotg *hsotg)
2249 return hsotg->core_params->phy_type;
2252 void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val)
2254 int valid = 1;
2256 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2257 if (val >= 0) {
2258 dev_err(hsotg->dev, "Wrong value for speed parameter\n");
2259 dev_err(hsotg->dev, "max_speed parameter must be 0 or 1\n");
2261 valid = 0;
2264 if (val == DWC2_SPEED_PARAM_HIGH &&
2265 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2266 valid = 0;
2268 if (!valid) {
2269 if (val >= 0)
2270 dev_err(hsotg->dev,
2271 "%d invalid for speed parameter. Check HW configuration.\n",
2272 val);
2273 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS ?
2274 DWC2_SPEED_PARAM_FULL : DWC2_SPEED_PARAM_HIGH;
2275 dev_dbg(hsotg->dev, "Setting speed to %d\n", val);
2278 hsotg->core_params->speed = val;
2281 void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg, int val)
2283 int valid = 1;
2285 if (DWC2_OUT_OF_BOUNDS(val, DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ,
2286 DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
2287 if (val >= 0) {
2288 dev_err(hsotg->dev,
2289 "Wrong value for host_ls_low_power_phy_clk parameter\n");
2290 dev_err(hsotg->dev,
2291 "host_ls_low_power_phy_clk must be 0 or 1\n");
2293 valid = 0;
2296 if (val == DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ &&
2297 dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS)
2298 valid = 0;
2300 if (!valid) {
2301 if (val >= 0)
2302 dev_err(hsotg->dev,
2303 "%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
2304 val);
2305 val = dwc2_get_param_phy_type(hsotg) == DWC2_PHY_TYPE_PARAM_FS
2306 ? DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ
2307 : DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
2308 dev_dbg(hsotg->dev, "Setting host_ls_low_power_phy_clk to %d\n",
2309 val);
2312 hsotg->core_params->host_ls_low_power_phy_clk = val;
2315 void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val)
2317 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2318 if (val >= 0) {
2319 dev_err(hsotg->dev, "Wrong value for phy_ulpi_ddr\n");
2320 dev_err(hsotg->dev, "phy_upli_ddr must be 0 or 1\n");
2322 val = 0;
2323 dev_dbg(hsotg->dev, "Setting phy_upli_ddr to %d\n", val);
2326 hsotg->core_params->phy_ulpi_ddr = val;
2329 void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val)
2331 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2332 if (val >= 0) {
2333 dev_err(hsotg->dev,
2334 "Wrong value for phy_ulpi_ext_vbus\n");
2335 dev_err(hsotg->dev,
2336 "phy_ulpi_ext_vbus must be 0 or 1\n");
2338 val = 0;
2339 dev_dbg(hsotg->dev, "Setting phy_ulpi_ext_vbus to %d\n", val);
2342 hsotg->core_params->phy_ulpi_ext_vbus = val;
2345 void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val)
2347 int valid = 0;
2349 switch (hsotg->hw_params.utmi_phy_data_width) {
2350 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8:
2351 valid = (val == 8);
2352 break;
2353 case GHWCFG4_UTMI_PHY_DATA_WIDTH_16:
2354 valid = (val == 16);
2355 break;
2356 case GHWCFG4_UTMI_PHY_DATA_WIDTH_8_OR_16:
2357 valid = (val == 8 || val == 16);
2358 break;
2361 if (!valid) {
2362 if (val >= 0) {
2363 dev_err(hsotg->dev,
2364 "%d invalid for phy_utmi_width. Check HW configuration.\n",
2365 val);
2367 val = (hsotg->hw_params.utmi_phy_data_width ==
2368 GHWCFG4_UTMI_PHY_DATA_WIDTH_8) ? 8 : 16;
2369 dev_dbg(hsotg->dev, "Setting phy_utmi_width to %d\n", val);
2372 hsotg->core_params->phy_utmi_width = val;
2375 void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val)
2377 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2378 if (val >= 0) {
2379 dev_err(hsotg->dev, "Wrong value for ulpi_fs_ls\n");
2380 dev_err(hsotg->dev, "ulpi_fs_ls must be 0 or 1\n");
2382 val = 0;
2383 dev_dbg(hsotg->dev, "Setting ulpi_fs_ls to %d\n", val);
2386 hsotg->core_params->ulpi_fs_ls = val;
2389 void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val)
2391 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2392 if (val >= 0) {
2393 dev_err(hsotg->dev, "Wrong value for ts_dline\n");
2394 dev_err(hsotg->dev, "ts_dline must be 0 or 1\n");
2396 val = 0;
2397 dev_dbg(hsotg->dev, "Setting ts_dline to %d\n", val);
2400 hsotg->core_params->ts_dline = val;
2403 void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val)
2405 int valid = 1;
2407 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2408 if (val >= 0) {
2409 dev_err(hsotg->dev, "Wrong value for i2c_enable\n");
2410 dev_err(hsotg->dev, "i2c_enable must be 0 or 1\n");
2413 valid = 0;
2416 if (val == 1 && !(hsotg->hw_params.i2c_enable))
2417 valid = 0;
2419 if (!valid) {
2420 if (val >= 0)
2421 dev_err(hsotg->dev,
2422 "%d invalid for i2c_enable. Check HW configuration.\n",
2423 val);
2424 val = hsotg->hw_params.i2c_enable;
2425 dev_dbg(hsotg->dev, "Setting i2c_enable to %d\n", val);
2428 hsotg->core_params->i2c_enable = val;
2431 void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg, int val)
2433 int valid = 1;
2435 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2436 if (val >= 0) {
2437 dev_err(hsotg->dev,
2438 "Wrong value for en_multiple_tx_fifo,\n");
2439 dev_err(hsotg->dev,
2440 "en_multiple_tx_fifo must be 0 or 1\n");
2442 valid = 0;
2445 if (val == 1 && !hsotg->hw_params.en_multiple_tx_fifo)
2446 valid = 0;
2448 if (!valid) {
2449 if (val >= 0)
2450 dev_err(hsotg->dev,
2451 "%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
2452 val);
2453 val = hsotg->hw_params.en_multiple_tx_fifo;
2454 dev_dbg(hsotg->dev, "Setting en_multiple_tx_fifo to %d\n", val);
2457 hsotg->core_params->en_multiple_tx_fifo = val;
2460 void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val)
2462 int valid = 1;
2464 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2465 if (val >= 0) {
2466 dev_err(hsotg->dev,
2467 "'%d' invalid for parameter reload_ctl\n", val);
2468 dev_err(hsotg->dev, "reload_ctl must be 0 or 1\n");
2470 valid = 0;
2473 if (val == 1 && hsotg->hw_params.snpsid < DWC2_CORE_REV_2_92a)
2474 valid = 0;
2476 if (!valid) {
2477 if (val >= 0)
2478 dev_err(hsotg->dev,
2479 "%d invalid for parameter reload_ctl. Check HW configuration.\n",
2480 val);
2481 val = hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_92a;
2482 dev_dbg(hsotg->dev, "Setting reload_ctl to %d\n", val);
2485 hsotg->core_params->reload_ctl = val;
2488 void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val)
2490 if (val != -1)
2491 hsotg->core_params->ahbcfg = val;
2492 else
2493 hsotg->core_params->ahbcfg = GAHBCFG_HBSTLEN_INCR4 <<
2494 GAHBCFG_HBSTLEN_SHIFT;
2497 void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val)
2499 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2500 if (val >= 0) {
2501 dev_err(hsotg->dev,
2502 "'%d' invalid for parameter otg_ver\n", val);
2503 dev_err(hsotg->dev,
2504 "otg_ver must be 0 (for OTG 1.3 support) or 1 (for OTG 2.0 support)\n");
2506 val = 0;
2507 dev_dbg(hsotg->dev, "Setting otg_ver to %d\n", val);
2510 hsotg->core_params->otg_ver = val;
2513 static void dwc2_set_param_uframe_sched(struct dwc2_hsotg *hsotg, int val)
2515 if (DWC2_OUT_OF_BOUNDS(val, 0, 1)) {
2516 if (val >= 0) {
2517 dev_err(hsotg->dev,
2518 "'%d' invalid for parameter uframe_sched\n",
2519 val);
2520 dev_err(hsotg->dev, "uframe_sched must be 0 or 1\n");
2522 val = 1;
2523 dev_dbg(hsotg->dev, "Setting uframe_sched to %d\n", val);
2526 hsotg->core_params->uframe_sched = val;
2530 * This function is called during module intialization to pass module parameters
2531 * for the DWC_otg core.
2533 void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
2534 const struct dwc2_core_params *params)
2536 dev_dbg(hsotg->dev, "%s()\n", __func__);
2538 dwc2_set_param_otg_cap(hsotg, params->otg_cap);
2539 dwc2_set_param_dma_enable(hsotg, params->dma_enable);
2540 dwc2_set_param_dma_desc_enable(hsotg, params->dma_desc_enable);
2541 dwc2_set_param_host_support_fs_ls_low_power(hsotg,
2542 params->host_support_fs_ls_low_power);
2543 dwc2_set_param_enable_dynamic_fifo(hsotg,
2544 params->enable_dynamic_fifo);
2545 dwc2_set_param_host_rx_fifo_size(hsotg,
2546 params->host_rx_fifo_size);
2547 dwc2_set_param_host_nperio_tx_fifo_size(hsotg,
2548 params->host_nperio_tx_fifo_size);
2549 dwc2_set_param_host_perio_tx_fifo_size(hsotg,
2550 params->host_perio_tx_fifo_size);
2551 dwc2_set_param_max_transfer_size(hsotg,
2552 params->max_transfer_size);
2553 dwc2_set_param_max_packet_count(hsotg,
2554 params->max_packet_count);
2555 dwc2_set_param_host_channels(hsotg, params->host_channels);
2556 dwc2_set_param_phy_type(hsotg, params->phy_type);
2557 dwc2_set_param_speed(hsotg, params->speed);
2558 dwc2_set_param_host_ls_low_power_phy_clk(hsotg,
2559 params->host_ls_low_power_phy_clk);
2560 dwc2_set_param_phy_ulpi_ddr(hsotg, params->phy_ulpi_ddr);
2561 dwc2_set_param_phy_ulpi_ext_vbus(hsotg,
2562 params->phy_ulpi_ext_vbus);
2563 dwc2_set_param_phy_utmi_width(hsotg, params->phy_utmi_width);
2564 dwc2_set_param_ulpi_fs_ls(hsotg, params->ulpi_fs_ls);
2565 dwc2_set_param_ts_dline(hsotg, params->ts_dline);
2566 dwc2_set_param_i2c_enable(hsotg, params->i2c_enable);
2567 dwc2_set_param_en_multiple_tx_fifo(hsotg,
2568 params->en_multiple_tx_fifo);
2569 dwc2_set_param_reload_ctl(hsotg, params->reload_ctl);
2570 dwc2_set_param_ahbcfg(hsotg, params->ahbcfg);
2571 dwc2_set_param_otg_ver(hsotg, params->otg_ver);
2572 dwc2_set_param_uframe_sched(hsotg, params->uframe_sched);
2576 * During device initialization, read various hardware configuration
2577 * registers and interpret the contents.
2579 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg)
2581 struct dwc2_hw_params *hw = &hsotg->hw_params;
2582 unsigned width;
2583 u32 hwcfg1, hwcfg2, hwcfg3, hwcfg4;
2584 u32 hptxfsiz, grxfsiz, gnptxfsiz;
2585 u32 gusbcfg;
2588 * Attempt to ensure this device is really a DWC_otg Controller.
2589 * Read and verify the GSNPSID register contents. The value should be
2590 * 0x45f42xxx or 0x45f43xxx, which corresponds to either "OT2" or "OT3",
2591 * as in "OTG version 2.xx" or "OTG version 3.xx".
2593 hw->snpsid = readl(hsotg->regs + GSNPSID);
2594 if ((hw->snpsid & 0xfffff000) != 0x4f542000 &&
2595 (hw->snpsid & 0xfffff000) != 0x4f543000) {
2596 dev_err(hsotg->dev, "Bad value for GSNPSID: 0x%08x\n",
2597 hw->snpsid);
2598 return -ENODEV;
2601 dev_dbg(hsotg->dev, "Core Release: %1x.%1x%1x%1x (snpsid=%x)\n",
2602 hw->snpsid >> 12 & 0xf, hw->snpsid >> 8 & 0xf,
2603 hw->snpsid >> 4 & 0xf, hw->snpsid & 0xf, hw->snpsid);
2605 hwcfg1 = readl(hsotg->regs + GHWCFG1);
2606 hwcfg2 = readl(hsotg->regs + GHWCFG2);
2607 hwcfg3 = readl(hsotg->regs + GHWCFG3);
2608 hwcfg4 = readl(hsotg->regs + GHWCFG4);
2609 gnptxfsiz = readl(hsotg->regs + GNPTXFSIZ);
2610 grxfsiz = readl(hsotg->regs + GRXFSIZ);
2612 dev_dbg(hsotg->dev, "hwcfg1=%08x\n", hwcfg1);
2613 dev_dbg(hsotg->dev, "hwcfg2=%08x\n", hwcfg2);
2614 dev_dbg(hsotg->dev, "hwcfg3=%08x\n", hwcfg3);
2615 dev_dbg(hsotg->dev, "hwcfg4=%08x\n", hwcfg4);
2616 dev_dbg(hsotg->dev, "gnptxfsiz=%08x\n", gnptxfsiz);
2617 dev_dbg(hsotg->dev, "grxfsiz=%08x\n", grxfsiz);
2619 /* Force host mode to get HPTXFSIZ exact power on value */
2620 gusbcfg = readl(hsotg->regs + GUSBCFG);
2621 gusbcfg |= GUSBCFG_FORCEHOSTMODE;
2622 writel(gusbcfg, hsotg->regs + GUSBCFG);
2623 usleep_range(100000, 150000);
2625 hptxfsiz = readl(hsotg->regs + HPTXFSIZ);
2626 dev_dbg(hsotg->dev, "hptxfsiz=%08x\n", hptxfsiz);
2627 gusbcfg = readl(hsotg->regs + GUSBCFG);
2628 gusbcfg &= ~GUSBCFG_FORCEHOSTMODE;
2629 writel(gusbcfg, hsotg->regs + GUSBCFG);
2630 usleep_range(100000, 150000);
2632 /* hwcfg2 */
2633 hw->op_mode = (hwcfg2 & GHWCFG2_OP_MODE_MASK) >>
2634 GHWCFG2_OP_MODE_SHIFT;
2635 hw->arch = (hwcfg2 & GHWCFG2_ARCHITECTURE_MASK) >>
2636 GHWCFG2_ARCHITECTURE_SHIFT;
2637 hw->enable_dynamic_fifo = !!(hwcfg2 & GHWCFG2_DYNAMIC_FIFO);
2638 hw->host_channels = 1 + ((hwcfg2 & GHWCFG2_NUM_HOST_CHAN_MASK) >>
2639 GHWCFG2_NUM_HOST_CHAN_SHIFT);
2640 hw->hs_phy_type = (hwcfg2 & GHWCFG2_HS_PHY_TYPE_MASK) >>
2641 GHWCFG2_HS_PHY_TYPE_SHIFT;
2642 hw->fs_phy_type = (hwcfg2 & GHWCFG2_FS_PHY_TYPE_MASK) >>
2643 GHWCFG2_FS_PHY_TYPE_SHIFT;
2644 hw->num_dev_ep = (hwcfg2 & GHWCFG2_NUM_DEV_EP_MASK) >>
2645 GHWCFG2_NUM_DEV_EP_SHIFT;
2646 hw->nperio_tx_q_depth =
2647 (hwcfg2 & GHWCFG2_NONPERIO_TX_Q_DEPTH_MASK) >>
2648 GHWCFG2_NONPERIO_TX_Q_DEPTH_SHIFT << 1;
2649 hw->host_perio_tx_q_depth =
2650 (hwcfg2 & GHWCFG2_HOST_PERIO_TX_Q_DEPTH_MASK) >>
2651 GHWCFG2_HOST_PERIO_TX_Q_DEPTH_SHIFT << 1;
2652 hw->dev_token_q_depth =
2653 (hwcfg2 & GHWCFG2_DEV_TOKEN_Q_DEPTH_MASK) >>
2654 GHWCFG2_DEV_TOKEN_Q_DEPTH_SHIFT;
2656 /* hwcfg3 */
2657 width = (hwcfg3 & GHWCFG3_XFER_SIZE_CNTR_WIDTH_MASK) >>
2658 GHWCFG3_XFER_SIZE_CNTR_WIDTH_SHIFT;
2659 hw->max_transfer_size = (1 << (width + 11)) - 1;
2660 width = (hwcfg3 & GHWCFG3_PACKET_SIZE_CNTR_WIDTH_MASK) >>
2661 GHWCFG3_PACKET_SIZE_CNTR_WIDTH_SHIFT;
2662 hw->max_packet_count = (1 << (width + 4)) - 1;
2663 hw->i2c_enable = !!(hwcfg3 & GHWCFG3_I2C);
2664 hw->total_fifo_size = (hwcfg3 & GHWCFG3_DFIFO_DEPTH_MASK) >>
2665 GHWCFG3_DFIFO_DEPTH_SHIFT;
2667 /* hwcfg4 */
2668 hw->en_multiple_tx_fifo = !!(hwcfg4 & GHWCFG4_DED_FIFO_EN);
2669 hw->num_dev_perio_in_ep = (hwcfg4 & GHWCFG4_NUM_DEV_PERIO_IN_EP_MASK) >>
2670 GHWCFG4_NUM_DEV_PERIO_IN_EP_SHIFT;
2671 hw->dma_desc_enable = !!(hwcfg4 & GHWCFG4_DESC_DMA);
2672 hw->power_optimized = !!(hwcfg4 & GHWCFG4_POWER_OPTIMIZ);
2673 hw->utmi_phy_data_width = (hwcfg4 & GHWCFG4_UTMI_PHY_DATA_WIDTH_MASK) >>
2674 GHWCFG4_UTMI_PHY_DATA_WIDTH_SHIFT;
2676 /* fifo sizes */
2677 hw->host_rx_fifo_size = (grxfsiz & GRXFSIZ_DEPTH_MASK) >>
2678 GRXFSIZ_DEPTH_SHIFT;
2679 hw->host_nperio_tx_fifo_size = (gnptxfsiz & FIFOSIZE_DEPTH_MASK) >>
2680 FIFOSIZE_DEPTH_SHIFT;
2681 hw->host_perio_tx_fifo_size = (hptxfsiz & FIFOSIZE_DEPTH_MASK) >>
2682 FIFOSIZE_DEPTH_SHIFT;
2684 dev_dbg(hsotg->dev, "Detected values from hardware:\n");
2685 dev_dbg(hsotg->dev, " op_mode=%d\n",
2686 hw->op_mode);
2687 dev_dbg(hsotg->dev, " arch=%d\n",
2688 hw->arch);
2689 dev_dbg(hsotg->dev, " dma_desc_enable=%d\n",
2690 hw->dma_desc_enable);
2691 dev_dbg(hsotg->dev, " power_optimized=%d\n",
2692 hw->power_optimized);
2693 dev_dbg(hsotg->dev, " i2c_enable=%d\n",
2694 hw->i2c_enable);
2695 dev_dbg(hsotg->dev, " hs_phy_type=%d\n",
2696 hw->hs_phy_type);
2697 dev_dbg(hsotg->dev, " fs_phy_type=%d\n",
2698 hw->fs_phy_type);
2699 dev_dbg(hsotg->dev, " utmi_phy_data_wdith=%d\n",
2700 hw->utmi_phy_data_width);
2701 dev_dbg(hsotg->dev, " num_dev_ep=%d\n",
2702 hw->num_dev_ep);
2703 dev_dbg(hsotg->dev, " num_dev_perio_in_ep=%d\n",
2704 hw->num_dev_perio_in_ep);
2705 dev_dbg(hsotg->dev, " host_channels=%d\n",
2706 hw->host_channels);
2707 dev_dbg(hsotg->dev, " max_transfer_size=%d\n",
2708 hw->max_transfer_size);
2709 dev_dbg(hsotg->dev, " max_packet_count=%d\n",
2710 hw->max_packet_count);
2711 dev_dbg(hsotg->dev, " nperio_tx_q_depth=0x%0x\n",
2712 hw->nperio_tx_q_depth);
2713 dev_dbg(hsotg->dev, " host_perio_tx_q_depth=0x%0x\n",
2714 hw->host_perio_tx_q_depth);
2715 dev_dbg(hsotg->dev, " dev_token_q_depth=0x%0x\n",
2716 hw->dev_token_q_depth);
2717 dev_dbg(hsotg->dev, " enable_dynamic_fifo=%d\n",
2718 hw->enable_dynamic_fifo);
2719 dev_dbg(hsotg->dev, " en_multiple_tx_fifo=%d\n",
2720 hw->en_multiple_tx_fifo);
2721 dev_dbg(hsotg->dev, " total_fifo_size=%d\n",
2722 hw->total_fifo_size);
2723 dev_dbg(hsotg->dev, " host_rx_fifo_size=%d\n",
2724 hw->host_rx_fifo_size);
2725 dev_dbg(hsotg->dev, " host_nperio_tx_fifo_size=%d\n",
2726 hw->host_nperio_tx_fifo_size);
2727 dev_dbg(hsotg->dev, " host_perio_tx_fifo_size=%d\n",
2728 hw->host_perio_tx_fifo_size);
2729 dev_dbg(hsotg->dev, "\n");
2731 return 0;
2734 u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg)
2736 return hsotg->core_params->otg_ver == 1 ? 0x0200 : 0x0103;
2739 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg)
2741 if (readl(hsotg->regs + GSNPSID) == 0xffffffff)
2742 return false;
2743 else
2744 return true;
2748 * dwc2_enable_global_interrupts() - Enables the controller's Global
2749 * Interrupt in the AHB Config register
2751 * @hsotg: Programming view of DWC_otg controller
2753 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hsotg)
2755 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
2757 ahbcfg |= GAHBCFG_GLBL_INTR_EN;
2758 writel(ahbcfg, hsotg->regs + GAHBCFG);
2762 * dwc2_disable_global_interrupts() - Disables the controller's Global
2763 * Interrupt in the AHB Config register
2765 * @hsotg: Programming view of DWC_otg controller
2767 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hsotg)
2769 u32 ahbcfg = readl(hsotg->regs + GAHBCFG);
2771 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
2772 writel(ahbcfg, hsotg->regs + GAHBCFG);
2775 MODULE_DESCRIPTION("DESIGNWARE HS OTG Core");
2776 MODULE_AUTHOR("Synopsys, Inc.");
2777 MODULE_LICENSE("Dual BSD/GPL");