PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / dwc2 / hcd_queue.c
blob9540f7e1e20e5c65cd60b4c5d291d82784331df4
1 /*
2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the functions to manage Queue Heads and Queue
39 * Transfer Descriptors for Host mode
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/io.h>
47 #include <linux/slab.h>
48 #include <linux/usb.h>
50 #include <linux/usb/hcd.h>
51 #include <linux/usb/ch11.h>
53 #include "core.h"
54 #include "hcd.h"
56 /**
57 * dwc2_qh_init() - Initializes a QH structure
59 * @hsotg: The HCD state structure for the DWC OTG controller
60 * @qh: The QH to init
61 * @urb: Holds the information about the device/endpoint needed to initialize
62 * the QH
64 #define SCHEDULE_SLOP 10
65 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
66 struct dwc2_hcd_urb *urb)
68 int dev_speed, hub_addr, hub_port;
69 char *speed, *type;
71 dev_vdbg(hsotg->dev, "%s()\n", __func__);
73 /* Initialize QH */
74 qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
75 qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
77 qh->data_toggle = DWC2_HC_PID_DATA0;
78 qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
79 INIT_LIST_HEAD(&qh->qtd_list);
80 INIT_LIST_HEAD(&qh->qh_list_entry);
82 /* FS/LS Endpoint on HS Hub, NOT virtual root hub */
83 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
85 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
87 if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
88 hub_addr != 0 && hub_addr != 1) {
89 dev_vdbg(hsotg->dev,
90 "QH init: EP %d: TT found at hub addr %d, for port %d\n",
91 dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
92 hub_port);
93 qh->do_split = 1;
96 if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
97 qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
98 /* Compute scheduling parameters once and save them */
99 u32 hprt, prtspd;
101 /* Todo: Account for split transfers in the bus time */
102 int bytecount =
103 dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
105 qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
106 USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
107 qh->ep_type == USB_ENDPOINT_XFER_ISOC,
108 bytecount));
109 /* Start in a slightly future (micro)frame */
110 qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
111 SCHEDULE_SLOP);
112 qh->interval = urb->interval;
113 #if 0
114 /* Increase interrupt polling rate for debugging */
115 if (qh->ep_type == USB_ENDPOINT_XFER_INT)
116 qh->interval = 8;
117 #endif
118 hprt = readl(hsotg->regs + HPRT0);
119 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
120 if (prtspd == HPRT0_SPD_HIGH_SPEED &&
121 (dev_speed == USB_SPEED_LOW ||
122 dev_speed == USB_SPEED_FULL)) {
123 qh->interval *= 8;
124 qh->sched_frame |= 0x7;
125 qh->start_split_frame = qh->sched_frame;
127 dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
130 dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
131 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
132 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
133 dwc2_hcd_get_dev_addr(&urb->pipe_info));
134 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
135 dwc2_hcd_get_ep_num(&urb->pipe_info),
136 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
138 qh->dev_speed = dev_speed;
140 switch (dev_speed) {
141 case USB_SPEED_LOW:
142 speed = "low";
143 break;
144 case USB_SPEED_FULL:
145 speed = "full";
146 break;
147 case USB_SPEED_HIGH:
148 speed = "high";
149 break;
150 default:
151 speed = "?";
152 break;
154 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
156 switch (qh->ep_type) {
157 case USB_ENDPOINT_XFER_ISOC:
158 type = "isochronous";
159 break;
160 case USB_ENDPOINT_XFER_INT:
161 type = "interrupt";
162 break;
163 case USB_ENDPOINT_XFER_CONTROL:
164 type = "control";
165 break;
166 case USB_ENDPOINT_XFER_BULK:
167 type = "bulk";
168 break;
169 default:
170 type = "?";
171 break;
174 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
176 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
177 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
178 qh->usecs);
179 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
180 qh->interval);
185 * dwc2_hcd_qh_create() - Allocates and initializes a QH
187 * @hsotg: The HCD state structure for the DWC OTG controller
188 * @urb: Holds the information about the device/endpoint needed
189 * to initialize the QH
190 * @atomic_alloc: Flag to do atomic allocation if needed
192 * Return: Pointer to the newly allocated QH, or NULL on error
194 static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
195 struct dwc2_hcd_urb *urb,
196 gfp_t mem_flags)
198 struct dwc2_qh *qh;
200 if (!urb->priv)
201 return NULL;
203 /* Allocate memory */
204 qh = kzalloc(sizeof(*qh), mem_flags);
205 if (!qh)
206 return NULL;
208 dwc2_qh_init(hsotg, qh, urb);
210 if (hsotg->core_params->dma_desc_enable > 0 &&
211 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
212 dwc2_hcd_qh_free(hsotg, qh);
213 return NULL;
216 return qh;
220 * dwc2_hcd_qh_free() - Frees the QH
222 * @hsotg: HCD instance
223 * @qh: The QH to free
225 * QH should already be removed from the list. QTD list should already be empty
226 * if called from URB Dequeue.
228 * Must NOT be called with interrupt disabled or spinlock held
230 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
232 u32 buf_size;
234 if (hsotg->core_params->dma_desc_enable > 0) {
235 dwc2_hcd_qh_free_ddma(hsotg, qh);
236 } else if (qh->dw_align_buf) {
237 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
238 buf_size = 4096;
239 else
240 buf_size = hsotg->core_params->max_transfer_size;
241 dma_free_coherent(hsotg->dev, buf_size, qh->dw_align_buf,
242 qh->dw_align_buf_dma);
245 kfree(qh);
249 * dwc2_periodic_channel_available() - Checks that a channel is available for a
250 * periodic transfer
252 * @hsotg: The HCD state structure for the DWC OTG controller
254 * Return: 0 if successful, negative error code otherwise
256 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
259 * Currently assuming that there is a dedicated host channel for
260 * each periodic transaction plus at least one host channel for
261 * non-periodic transactions
263 int status;
264 int num_channels;
266 num_channels = hsotg->core_params->host_channels;
267 if (hsotg->periodic_channels + hsotg->non_periodic_channels <
268 num_channels
269 && hsotg->periodic_channels < num_channels - 1) {
270 status = 0;
271 } else {
272 dev_dbg(hsotg->dev,
273 "%s: Total channels: %d, Periodic: %d, "
274 "Non-periodic: %d\n", __func__, num_channels,
275 hsotg->periodic_channels, hsotg->non_periodic_channels);
276 status = -ENOSPC;
279 return status;
283 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
284 * for the specified QH in the periodic schedule
286 * @hsotg: The HCD state structure for the DWC OTG controller
287 * @qh: QH containing periodic bandwidth required
289 * Return: 0 if successful, negative error code otherwise
291 * For simplicity, this calculation assumes that all the transfers in the
292 * periodic schedule may occur in the same (micro)frame
294 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
295 struct dwc2_qh *qh)
297 int status;
298 s16 max_claimed_usecs;
300 status = 0;
302 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
304 * High speed mode
305 * Max periodic usecs is 80% x 125 usec = 100 usec
307 max_claimed_usecs = 100 - qh->usecs;
308 } else {
310 * Full speed mode
311 * Max periodic usecs is 90% x 1000 usec = 900 usec
313 max_claimed_usecs = 900 - qh->usecs;
316 if (hsotg->periodic_usecs > max_claimed_usecs) {
317 dev_err(hsotg->dev,
318 "%s: already claimed usecs %d, required usecs %d\n",
319 __func__, hsotg->periodic_usecs, qh->usecs);
320 status = -ENOSPC;
323 return status;
327 * Microframe scheduler
328 * track the total use in hsotg->frame_usecs
329 * keep each qh use in qh->frame_usecs
330 * when surrendering the qh then donate the time back
332 static const unsigned short max_uframe_usecs[] = {
333 100, 100, 100, 100, 100, 100, 30, 0
336 void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg)
338 int i;
340 for (i = 0; i < 8; i++)
341 hsotg->frame_usecs[i] = max_uframe_usecs[i];
344 static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
346 unsigned short utime = qh->usecs;
347 int i;
349 for (i = 0; i < 8; i++) {
350 /* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */
351 if (utime <= hsotg->frame_usecs[i]) {
352 hsotg->frame_usecs[i] -= utime;
353 qh->frame_usecs[i] += utime;
354 return i;
357 return -ENOSPC;
361 * use this for FS apps that can span multiple uframes
363 static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
365 unsigned short utime = qh->usecs;
366 unsigned short xtime;
367 int t_left;
368 int i;
369 int j;
370 int k;
372 for (i = 0; i < 8; i++) {
373 if (hsotg->frame_usecs[i] <= 0)
374 continue;
377 * we need n consecutive slots so use j as a start slot
378 * j plus j+1 must be enough time (for now)
380 xtime = hsotg->frame_usecs[i];
381 for (j = i + 1; j < 8; j++) {
383 * if we add this frame remaining time to xtime we may
384 * be OK, if not we need to test j for a complete frame
386 if (xtime + hsotg->frame_usecs[j] < utime) {
387 if (hsotg->frame_usecs[j] <
388 max_uframe_usecs[j])
389 continue;
391 if (xtime >= utime) {
392 t_left = utime;
393 for (k = i; k < 8; k++) {
394 t_left -= hsotg->frame_usecs[k];
395 if (t_left <= 0) {
396 qh->frame_usecs[k] +=
397 hsotg->frame_usecs[k]
398 + t_left;
399 hsotg->frame_usecs[k] = -t_left;
400 return i;
401 } else {
402 qh->frame_usecs[k] +=
403 hsotg->frame_usecs[k];
404 hsotg->frame_usecs[k] = 0;
408 /* add the frame time to x time */
409 xtime += hsotg->frame_usecs[j];
410 /* we must have a fully available next frame or break */
411 if (xtime < utime &&
412 hsotg->frame_usecs[j] == max_uframe_usecs[j])
413 continue;
416 return -ENOSPC;
419 static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
421 int ret;
423 if (qh->dev_speed == USB_SPEED_HIGH) {
424 /* if this is a hs transaction we need a full frame */
425 ret = dwc2_find_single_uframe(hsotg, qh);
426 } else {
428 * if this is a fs transaction we may need a sequence
429 * of frames
431 ret = dwc2_find_multi_uframe(hsotg, qh);
433 return ret;
437 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
438 * host channel is large enough to handle the maximum data transfer in a single
439 * (micro)frame for a periodic transfer
441 * @hsotg: The HCD state structure for the DWC OTG controller
442 * @qh: QH for a periodic endpoint
444 * Return: 0 if successful, negative error code otherwise
446 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
447 struct dwc2_qh *qh)
449 u32 max_xfer_size;
450 u32 max_channel_xfer_size;
451 int status = 0;
453 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
454 max_channel_xfer_size = hsotg->core_params->max_transfer_size;
456 if (max_xfer_size > max_channel_xfer_size) {
457 dev_err(hsotg->dev,
458 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
459 __func__, max_xfer_size, max_channel_xfer_size);
460 status = -ENOSPC;
463 return status;
467 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
468 * the periodic schedule
470 * @hsotg: The HCD state structure for the DWC OTG controller
471 * @qh: QH for the periodic transfer. The QH should already contain the
472 * scheduling information.
474 * Return: 0 if successful, negative error code otherwise
476 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
478 int status;
480 if (hsotg->core_params->uframe_sched > 0) {
481 int frame = -1;
483 status = dwc2_find_uframe(hsotg, qh);
484 if (status == 0)
485 frame = 7;
486 else if (status > 0)
487 frame = status - 1;
489 /* Set the new frame up */
490 if (frame >= 0) {
491 qh->sched_frame &= ~0x7;
492 qh->sched_frame |= (frame & 7);
495 if (status > 0)
496 status = 0;
497 } else {
498 status = dwc2_periodic_channel_available(hsotg);
499 if (status) {
500 dev_info(hsotg->dev,
501 "%s: No host channel available for periodic transfer\n",
502 __func__);
503 return status;
506 status = dwc2_check_periodic_bandwidth(hsotg, qh);
509 if (status) {
510 dev_dbg(hsotg->dev,
511 "%s: Insufficient periodic bandwidth for periodic transfer\n",
512 __func__);
513 return status;
516 status = dwc2_check_max_xfer_size(hsotg, qh);
517 if (status) {
518 dev_dbg(hsotg->dev,
519 "%s: Channel max transfer size too small for periodic transfer\n",
520 __func__);
521 return status;
524 if (hsotg->core_params->dma_desc_enable > 0)
525 /* Don't rely on SOF and start in ready schedule */
526 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
527 else
528 /* Always start in inactive schedule */
529 list_add_tail(&qh->qh_list_entry,
530 &hsotg->periodic_sched_inactive);
532 if (hsotg->core_params->uframe_sched <= 0)
533 /* Reserve periodic channel */
534 hsotg->periodic_channels++;
536 /* Update claimed usecs per (micro)frame */
537 hsotg->periodic_usecs += qh->usecs;
539 return status;
543 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
544 * from the periodic schedule
546 * @hsotg: The HCD state structure for the DWC OTG controller
547 * @qh: QH for the periodic transfer
549 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
550 struct dwc2_qh *qh)
552 int i;
554 list_del_init(&qh->qh_list_entry);
556 /* Update claimed usecs per (micro)frame */
557 hsotg->periodic_usecs -= qh->usecs;
559 if (hsotg->core_params->uframe_sched > 0) {
560 for (i = 0; i < 8; i++) {
561 hsotg->frame_usecs[i] += qh->frame_usecs[i];
562 qh->frame_usecs[i] = 0;
564 } else {
565 /* Release periodic channel reservation */
566 hsotg->periodic_channels--;
571 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
572 * schedule if it is not already in the schedule. If the QH is already in
573 * the schedule, no action is taken.
575 * @hsotg: The HCD state structure for the DWC OTG controller
576 * @qh: The QH to add
578 * Return: 0 if successful, negative error code otherwise
580 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
582 int status;
583 u32 intr_mask;
585 if (dbg_qh(qh))
586 dev_vdbg(hsotg->dev, "%s()\n", __func__);
588 if (!list_empty(&qh->qh_list_entry))
589 /* QH already in a schedule */
590 return 0;
592 /* Add the new QH to the appropriate schedule */
593 if (dwc2_qh_is_non_per(qh)) {
594 /* Always start in inactive schedule */
595 list_add_tail(&qh->qh_list_entry,
596 &hsotg->non_periodic_sched_inactive);
597 return 0;
600 status = dwc2_schedule_periodic(hsotg, qh);
601 if (status)
602 return status;
603 if (!hsotg->periodic_qh_count) {
604 intr_mask = readl(hsotg->regs + GINTMSK);
605 intr_mask |= GINTSTS_SOF;
606 writel(intr_mask, hsotg->regs + GINTMSK);
608 hsotg->periodic_qh_count++;
610 return 0;
614 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
615 * schedule. Memory is not freed.
617 * @hsotg: The HCD state structure
618 * @qh: QH to remove from schedule
620 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
622 u32 intr_mask;
624 dev_vdbg(hsotg->dev, "%s()\n", __func__);
626 if (list_empty(&qh->qh_list_entry))
627 /* QH is not in a schedule */
628 return;
630 if (dwc2_qh_is_non_per(qh)) {
631 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
632 hsotg->non_periodic_qh_ptr =
633 hsotg->non_periodic_qh_ptr->next;
634 list_del_init(&qh->qh_list_entry);
635 return;
638 dwc2_deschedule_periodic(hsotg, qh);
639 hsotg->periodic_qh_count--;
640 if (!hsotg->periodic_qh_count) {
641 intr_mask = readl(hsotg->regs + GINTMSK);
642 intr_mask &= ~GINTSTS_SOF;
643 writel(intr_mask, hsotg->regs + GINTMSK);
648 * Schedule the next continuing periodic split transfer
650 static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
651 struct dwc2_qh *qh, u16 frame_number,
652 int sched_next_periodic_split)
654 u16 incr;
656 if (sched_next_periodic_split) {
657 qh->sched_frame = frame_number;
658 incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
659 if (dwc2_frame_num_le(frame_number, incr)) {
661 * Allow one frame to elapse after start split
662 * microframe before scheduling complete split, but
663 * DON'T if we are doing the next start split in the
664 * same frame for an ISOC out
666 if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
667 qh->ep_is_in != 0) {
668 qh->sched_frame =
669 dwc2_frame_num_inc(qh->sched_frame, 1);
672 } else {
673 qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
674 qh->interval);
675 if (dwc2_frame_num_le(qh->sched_frame, frame_number))
676 qh->sched_frame = frame_number;
677 qh->sched_frame |= 0x7;
678 qh->start_split_frame = qh->sched_frame;
683 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
684 * non-periodic schedule. The QH is added to the inactive non-periodic
685 * schedule if any QTDs are still attached to the QH.
687 * For periodic QHs, the QH is removed from the periodic queued schedule. If
688 * there are any QTDs still attached to the QH, the QH is added to either the
689 * periodic inactive schedule or the periodic ready schedule and its next
690 * scheduled frame is calculated. The QH is placed in the ready schedule if
691 * the scheduled frame has been reached already. Otherwise it's placed in the
692 * inactive schedule. If there are no QTDs attached to the QH, the QH is
693 * completely removed from the periodic schedule.
695 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
696 int sched_next_periodic_split)
698 u16 frame_number;
700 if (dbg_qh(qh))
701 dev_vdbg(hsotg->dev, "%s()\n", __func__);
703 if (dwc2_qh_is_non_per(qh)) {
704 dwc2_hcd_qh_unlink(hsotg, qh);
705 if (!list_empty(&qh->qtd_list))
706 /* Add back to inactive non-periodic schedule */
707 dwc2_hcd_qh_add(hsotg, qh);
708 return;
711 frame_number = dwc2_hcd_get_frame_number(hsotg);
713 if (qh->do_split) {
714 dwc2_sched_periodic_split(hsotg, qh, frame_number,
715 sched_next_periodic_split);
716 } else {
717 qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
718 qh->interval);
719 if (dwc2_frame_num_le(qh->sched_frame, frame_number))
720 qh->sched_frame = frame_number;
723 if (list_empty(&qh->qtd_list)) {
724 dwc2_hcd_qh_unlink(hsotg, qh);
725 return;
728 * Remove from periodic_sched_queued and move to
729 * appropriate queue
731 if ((hsotg->core_params->uframe_sched > 0 &&
732 dwc2_frame_num_le(qh->sched_frame, frame_number)) ||
733 (hsotg->core_params->uframe_sched <= 0 &&
734 qh->sched_frame == frame_number))
735 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
736 else
737 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive);
741 * dwc2_hcd_qtd_init() - Initializes a QTD structure
743 * @qtd: The QTD to initialize
744 * @urb: The associated URB
746 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
748 qtd->urb = urb;
749 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
750 USB_ENDPOINT_XFER_CONTROL) {
752 * The only time the QTD data toggle is used is on the data
753 * phase of control transfers. This phase always starts with
754 * DATA1.
756 qtd->data_toggle = DWC2_HC_PID_DATA1;
757 qtd->control_phase = DWC2_CONTROL_SETUP;
760 /* Start split */
761 qtd->complete_split = 0;
762 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
763 qtd->isoc_split_offset = 0;
764 qtd->in_process = 0;
766 /* Store the qtd ptr in the urb to reference the QTD */
767 urb->qtd = qtd;
771 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
773 * @hsotg: The DWC HCD structure
774 * @qtd: The QTD to add
775 * @qh: Out parameter to return queue head
776 * @atomic_alloc: Flag to do atomic alloc if needed
778 * Return: 0 if successful, negative error code otherwise
780 * Finds the correct QH to place the QTD into. If it does not find a QH, it
781 * will create a new QH. If the QH to which the QTD is added is not currently
782 * scheduled, it is placed into the proper schedule based on its EP type.
784 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
785 struct dwc2_qh **qh, gfp_t mem_flags)
787 struct dwc2_hcd_urb *urb = qtd->urb;
788 unsigned long flags;
789 int allocated = 0;
790 int retval;
793 * Get the QH which holds the QTD-list to insert to. Create QH if it
794 * doesn't exist.
796 if (*qh == NULL) {
797 *qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
798 if (*qh == NULL)
799 return -ENOMEM;
800 allocated = 1;
803 spin_lock_irqsave(&hsotg->lock, flags);
805 retval = dwc2_hcd_qh_add(hsotg, *qh);
806 if (retval)
807 goto fail;
809 qtd->qh = *qh;
810 list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
811 spin_unlock_irqrestore(&hsotg->lock, flags);
813 return 0;
815 fail:
816 if (allocated) {
817 struct dwc2_qtd *qtd2, *qtd2_tmp;
818 struct dwc2_qh *qh_tmp = *qh;
820 *qh = NULL;
821 dwc2_hcd_qh_unlink(hsotg, qh_tmp);
823 /* Free each QTD in the QH's QTD list */
824 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
825 qtd_list_entry)
826 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
828 spin_unlock_irqrestore(&hsotg->lock, flags);
829 dwc2_hcd_qh_free(hsotg, qh_tmp);
830 } else {
831 spin_unlock_irqrestore(&hsotg->lock, flags);
834 return retval;