PM / sleep: Asynchronous threads for suspend_noirq
[linux/fpc-iii.git] / drivers / usb / gadget / amd5536udc.c
blob41b062eb4de075077d01d9ee9a293e10906cdefd
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
27 /* debug control */
28 /* #define UDC_VERBOSE */
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206"
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/list.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioctl.h>
47 #include <linux/fs.h>
48 #include <linux/dmapool.h>
49 #include <linux/moduleparam.h>
50 #include <linux/device.h>
51 #include <linux/io.h>
52 #include <linux/irq.h>
53 #include <linux/prefetch.h>
55 #include <asm/byteorder.h>
56 #include <asm/unaligned.h>
58 /* gadget stack */
59 #include <linux/usb/ch9.h>
60 #include <linux/usb/gadget.h>
62 /* udc specific */
63 #include "amd5536udc.h"
66 static void udc_tasklet_disconnect(unsigned long);
67 static void empty_req_queue(struct udc_ep *);
68 static int udc_probe(struct udc *dev);
69 static void udc_basic_init(struct udc *dev);
70 static void udc_setup_endpoints(struct udc *dev);
71 static void udc_soft_reset(struct udc *dev);
72 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
73 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
74 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
75 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
76 unsigned long buf_len, gfp_t gfp_flags);
77 static int udc_remote_wakeup(struct udc *dev);
78 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
79 static void udc_pci_remove(struct pci_dev *pdev);
81 /* description */
82 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
83 static const char name[] = "amd5536udc";
85 /* structure to hold endpoint function pointers */
86 static const struct usb_ep_ops udc_ep_ops;
88 /* received setup data */
89 static union udc_setup_data setup_data;
91 /* pointer to device object */
92 static struct udc *udc;
94 /* irq spin lock for soft reset */
95 static DEFINE_SPINLOCK(udc_irq_spinlock);
96 /* stall spin lock */
97 static DEFINE_SPINLOCK(udc_stall_spinlock);
100 * slave mode: pending bytes in rx fifo after nyet,
101 * used if EPIN irq came but no req was available
103 static unsigned int udc_rxfifo_pending;
105 /* count soft resets after suspend to avoid loop */
106 static int soft_reset_occured;
107 static int soft_reset_after_usbreset_occured;
109 /* timer */
110 static struct timer_list udc_timer;
111 static int stop_timer;
113 /* set_rde -- Is used to control enabling of RX DMA. Problem is
114 * that UDC has only one bit (RDE) to enable/disable RX DMA for
115 * all OUT endpoints. So we have to handle race conditions like
116 * when OUT data reaches the fifo but no request was queued yet.
117 * This cannot be solved by letting the RX DMA disabled until a
118 * request gets queued because there may be other OUT packets
119 * in the FIFO (important for not blocking control traffic).
120 * The value of set_rde controls the correspondig timer.
122 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
123 * set_rde 0 == do not touch RDE, do no start the RDE timer
124 * set_rde 1 == timer function will look whether FIFO has data
125 * set_rde 2 == set by timer function to enable RX DMA on next call
127 static int set_rde = -1;
129 static DECLARE_COMPLETION(on_exit);
130 static struct timer_list udc_pollstall_timer;
131 static int stop_pollstall_timer;
132 static DECLARE_COMPLETION(on_pollstall_exit);
134 /* tasklet for usb disconnect */
135 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
136 (unsigned long) &udc);
139 /* endpoint names used for print */
140 static const char ep0_string[] = "ep0in";
141 static const char *const ep_string[] = {
142 ep0_string,
143 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
144 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
145 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
146 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
147 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
148 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
149 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
152 /* DMA usage flag */
153 static bool use_dma = 1;
154 /* packet per buffer dma */
155 static bool use_dma_ppb = 1;
156 /* with per descr. update */
157 static bool use_dma_ppb_du;
158 /* buffer fill mode */
159 static int use_dma_bufferfill_mode;
160 /* full speed only mode */
161 static bool use_fullspeed;
162 /* tx buffer size for high speed */
163 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
165 /* module parameters */
166 module_param(use_dma, bool, S_IRUGO);
167 MODULE_PARM_DESC(use_dma, "true for DMA");
168 module_param(use_dma_ppb, bool, S_IRUGO);
169 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
170 module_param(use_dma_ppb_du, bool, S_IRUGO);
171 MODULE_PARM_DESC(use_dma_ppb_du,
172 "true for DMA in packet per buffer mode with descriptor update");
173 module_param(use_fullspeed, bool, S_IRUGO);
174 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
176 /*---------------------------------------------------------------------------*/
177 /* Prints UDC device registers and endpoint irq registers */
178 static void print_regs(struct udc *dev)
180 DBG(dev, "------- Device registers -------\n");
181 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
182 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
183 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
184 DBG(dev, "\n");
185 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
186 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
187 DBG(dev, "\n");
188 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
189 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
190 DBG(dev, "\n");
191 DBG(dev, "USE DMA = %d\n", use_dma);
192 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
193 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
194 "WITHOUT desc. update)\n");
195 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
196 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
197 DBG(dev, "DMA mode = PPBDU (packet per buffer "
198 "WITH desc. update)\n");
199 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
201 if (use_dma && use_dma_bufferfill_mode) {
202 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
203 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
205 if (!use_dma)
206 dev_info(&dev->pdev->dev, "FIFO mode\n");
207 DBG(dev, "-------------------------------------------------------\n");
210 /* Masks unused interrupts */
211 static int udc_mask_unused_interrupts(struct udc *dev)
213 u32 tmp;
215 /* mask all dev interrupts */
216 tmp = AMD_BIT(UDC_DEVINT_SVC) |
217 AMD_BIT(UDC_DEVINT_ENUM) |
218 AMD_BIT(UDC_DEVINT_US) |
219 AMD_BIT(UDC_DEVINT_UR) |
220 AMD_BIT(UDC_DEVINT_ES) |
221 AMD_BIT(UDC_DEVINT_SI) |
222 AMD_BIT(UDC_DEVINT_SOF)|
223 AMD_BIT(UDC_DEVINT_SC);
224 writel(tmp, &dev->regs->irqmsk);
226 /* mask all ep interrupts */
227 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
229 return 0;
232 /* Enables endpoint 0 interrupts */
233 static int udc_enable_ep0_interrupts(struct udc *dev)
235 u32 tmp;
237 DBG(dev, "udc_enable_ep0_interrupts()\n");
239 /* read irq mask */
240 tmp = readl(&dev->regs->ep_irqmsk);
241 /* enable ep0 irq's */
242 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
243 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
244 writel(tmp, &dev->regs->ep_irqmsk);
246 return 0;
249 /* Enables device interrupts for SET_INTF and SET_CONFIG */
250 static int udc_enable_dev_setup_interrupts(struct udc *dev)
252 u32 tmp;
254 DBG(dev, "enable device interrupts for setup data\n");
256 /* read irq mask */
257 tmp = readl(&dev->regs->irqmsk);
259 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
260 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
261 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
262 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
263 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
264 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
265 writel(tmp, &dev->regs->irqmsk);
267 return 0;
270 /* Calculates fifo start of endpoint based on preceding endpoints */
271 static int udc_set_txfifo_addr(struct udc_ep *ep)
273 struct udc *dev;
274 u32 tmp;
275 int i;
277 if (!ep || !(ep->in))
278 return -EINVAL;
280 dev = ep->dev;
281 ep->txfifo = dev->txfifo;
283 /* traverse ep's */
284 for (i = 0; i < ep->num; i++) {
285 if (dev->ep[i].regs) {
286 /* read fifo size */
287 tmp = readl(&dev->ep[i].regs->bufin_framenum);
288 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
289 ep->txfifo += tmp;
292 return 0;
295 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
296 static u32 cnak_pending;
298 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
300 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
301 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
302 cnak_pending |= 1 << (num);
303 ep->naking = 1;
304 } else
305 cnak_pending = cnak_pending & (~(1 << (num)));
309 /* Enables endpoint, is called by gadget driver */
310 static int
311 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
313 struct udc_ep *ep;
314 struct udc *dev;
315 u32 tmp;
316 unsigned long iflags;
317 u8 udc_csr_epix;
318 unsigned maxpacket;
320 if (!usbep
321 || usbep->name == ep0_string
322 || !desc
323 || desc->bDescriptorType != USB_DT_ENDPOINT)
324 return -EINVAL;
326 ep = container_of(usbep, struct udc_ep, ep);
327 dev = ep->dev;
329 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
331 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
332 return -ESHUTDOWN;
334 spin_lock_irqsave(&dev->lock, iflags);
335 ep->ep.desc = desc;
337 ep->halted = 0;
339 /* set traffic type */
340 tmp = readl(&dev->ep[ep->num].regs->ctl);
341 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
342 writel(tmp, &dev->ep[ep->num].regs->ctl);
344 /* set max packet size */
345 maxpacket = usb_endpoint_maxp(desc);
346 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
347 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
348 ep->ep.maxpacket = maxpacket;
349 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
351 /* IN ep */
352 if (ep->in) {
354 /* ep ix in UDC CSR register space */
355 udc_csr_epix = ep->num;
357 /* set buffer size (tx fifo entries) */
358 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
359 /* double buffering: fifo size = 2 x max packet size */
360 tmp = AMD_ADDBITS(
361 tmp,
362 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
363 / UDC_DWORD_BYTES,
364 UDC_EPIN_BUFF_SIZE);
365 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
367 /* calc. tx fifo base addr */
368 udc_set_txfifo_addr(ep);
370 /* flush fifo */
371 tmp = readl(&ep->regs->ctl);
372 tmp |= AMD_BIT(UDC_EPCTL_F);
373 writel(tmp, &ep->regs->ctl);
375 /* OUT ep */
376 } else {
377 /* ep ix in UDC CSR register space */
378 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
380 /* set max packet size UDC CSR */
381 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
382 tmp = AMD_ADDBITS(tmp, maxpacket,
383 UDC_CSR_NE_MAX_PKT);
384 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
386 if (use_dma && !ep->in) {
387 /* alloc and init BNA dummy request */
388 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
389 ep->bna_occurred = 0;
392 if (ep->num != UDC_EP0OUT_IX)
393 dev->data_ep_enabled = 1;
396 /* set ep values */
397 tmp = readl(&dev->csr->ne[udc_csr_epix]);
398 /* max packet */
399 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
400 /* ep number */
401 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
402 /* ep direction */
403 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
404 /* ep type */
405 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
406 /* ep config */
407 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
408 /* ep interface */
409 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
410 /* ep alt */
411 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
412 /* write reg */
413 writel(tmp, &dev->csr->ne[udc_csr_epix]);
415 /* enable ep irq */
416 tmp = readl(&dev->regs->ep_irqmsk);
417 tmp &= AMD_UNMASK_BIT(ep->num);
418 writel(tmp, &dev->regs->ep_irqmsk);
421 * clear NAK by writing CNAK
422 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
424 if (!use_dma || ep->in) {
425 tmp = readl(&ep->regs->ctl);
426 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
427 writel(tmp, &ep->regs->ctl);
428 ep->naking = 0;
429 UDC_QUEUE_CNAK(ep, ep->num);
431 tmp = desc->bEndpointAddress;
432 DBG(dev, "%s enabled\n", usbep->name);
434 spin_unlock_irqrestore(&dev->lock, iflags);
435 return 0;
438 /* Resets endpoint */
439 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
441 u32 tmp;
443 VDBG(ep->dev, "ep-%d reset\n", ep->num);
444 ep->ep.desc = NULL;
445 ep->ep.ops = &udc_ep_ops;
446 INIT_LIST_HEAD(&ep->queue);
448 usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
449 /* set NAK */
450 tmp = readl(&ep->regs->ctl);
451 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
452 writel(tmp, &ep->regs->ctl);
453 ep->naking = 1;
455 /* disable interrupt */
456 tmp = readl(&regs->ep_irqmsk);
457 tmp |= AMD_BIT(ep->num);
458 writel(tmp, &regs->ep_irqmsk);
460 if (ep->in) {
461 /* unset P and IN bit of potential former DMA */
462 tmp = readl(&ep->regs->ctl);
463 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
464 writel(tmp, &ep->regs->ctl);
466 tmp = readl(&ep->regs->sts);
467 tmp |= AMD_BIT(UDC_EPSTS_IN);
468 writel(tmp, &ep->regs->sts);
470 /* flush the fifo */
471 tmp = readl(&ep->regs->ctl);
472 tmp |= AMD_BIT(UDC_EPCTL_F);
473 writel(tmp, &ep->regs->ctl);
476 /* reset desc pointer */
477 writel(0, &ep->regs->desptr);
480 /* Disables endpoint, is called by gadget driver */
481 static int udc_ep_disable(struct usb_ep *usbep)
483 struct udc_ep *ep = NULL;
484 unsigned long iflags;
486 if (!usbep)
487 return -EINVAL;
489 ep = container_of(usbep, struct udc_ep, ep);
490 if (usbep->name == ep0_string || !ep->ep.desc)
491 return -EINVAL;
493 DBG(ep->dev, "Disable ep-%d\n", ep->num);
495 spin_lock_irqsave(&ep->dev->lock, iflags);
496 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
497 empty_req_queue(ep);
498 ep_init(ep->dev->regs, ep);
499 spin_unlock_irqrestore(&ep->dev->lock, iflags);
501 return 0;
504 /* Allocates request packet, called by gadget driver */
505 static struct usb_request *
506 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
508 struct udc_request *req;
509 struct udc_data_dma *dma_desc;
510 struct udc_ep *ep;
512 if (!usbep)
513 return NULL;
515 ep = container_of(usbep, struct udc_ep, ep);
517 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
518 req = kzalloc(sizeof(struct udc_request), gfp);
519 if (!req)
520 return NULL;
522 req->req.dma = DMA_DONT_USE;
523 INIT_LIST_HEAD(&req->queue);
525 if (ep->dma) {
526 /* ep0 in requests are allocated from data pool here */
527 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
528 &req->td_phys);
529 if (!dma_desc) {
530 kfree(req);
531 return NULL;
534 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
535 "td_phys = %lx\n",
536 req, dma_desc,
537 (unsigned long)req->td_phys);
538 /* prevent from using desc. - set HOST BUSY */
539 dma_desc->status = AMD_ADDBITS(dma_desc->status,
540 UDC_DMA_STP_STS_BS_HOST_BUSY,
541 UDC_DMA_STP_STS_BS);
542 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
543 req->td_data = dma_desc;
544 req->td_data_last = NULL;
545 req->chain_len = 1;
548 return &req->req;
551 /* Frees request packet, called by gadget driver */
552 static void
553 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
555 struct udc_ep *ep;
556 struct udc_request *req;
558 if (!usbep || !usbreq)
559 return;
561 ep = container_of(usbep, struct udc_ep, ep);
562 req = container_of(usbreq, struct udc_request, req);
563 VDBG(ep->dev, "free_req req=%p\n", req);
564 BUG_ON(!list_empty(&req->queue));
565 if (req->td_data) {
566 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
568 /* free dma chain if created */
569 if (req->chain_len > 1)
570 udc_free_dma_chain(ep->dev, req);
572 pci_pool_free(ep->dev->data_requests, req->td_data,
573 req->td_phys);
575 kfree(req);
578 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
579 static void udc_init_bna_dummy(struct udc_request *req)
581 if (req) {
582 /* set last bit */
583 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
584 /* set next pointer to itself */
585 req->td_data->next = req->td_phys;
586 /* set HOST BUSY */
587 req->td_data->status
588 = AMD_ADDBITS(req->td_data->status,
589 UDC_DMA_STP_STS_BS_DMA_DONE,
590 UDC_DMA_STP_STS_BS);
591 #ifdef UDC_VERBOSE
592 pr_debug("bna desc = %p, sts = %08x\n",
593 req->td_data, req->td_data->status);
594 #endif
598 /* Allocate BNA dummy descriptor */
599 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
601 struct udc_request *req = NULL;
602 struct usb_request *_req = NULL;
604 /* alloc the dummy request */
605 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
606 if (_req) {
607 req = container_of(_req, struct udc_request, req);
608 ep->bna_dummy_req = req;
609 udc_init_bna_dummy(req);
611 return req;
614 /* Write data to TX fifo for IN packets */
615 static void
616 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
618 u8 *req_buf;
619 u32 *buf;
620 int i, j;
621 unsigned bytes = 0;
622 unsigned remaining = 0;
624 if (!req || !ep)
625 return;
627 req_buf = req->buf + req->actual;
628 prefetch(req_buf);
629 remaining = req->length - req->actual;
631 buf = (u32 *) req_buf;
633 bytes = ep->ep.maxpacket;
634 if (bytes > remaining)
635 bytes = remaining;
637 /* dwords first */
638 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
639 writel(*(buf + i), ep->txfifo);
641 /* remaining bytes must be written by byte access */
642 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
643 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
644 ep->txfifo);
647 /* dummy write confirm */
648 writel(0, &ep->regs->confirm);
651 /* Read dwords from RX fifo for OUT transfers */
652 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
654 int i;
656 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
658 for (i = 0; i < dwords; i++)
659 *(buf + i) = readl(dev->rxfifo);
660 return 0;
663 /* Read bytes from RX fifo for OUT transfers */
664 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
666 int i, j;
667 u32 tmp;
669 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
671 /* dwords first */
672 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
673 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
675 /* remaining bytes must be read by byte access */
676 if (bytes % UDC_DWORD_BYTES) {
677 tmp = readl(dev->rxfifo);
678 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
679 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
680 tmp = tmp >> UDC_BITS_PER_BYTE;
684 return 0;
687 /* Read data from RX fifo for OUT transfers */
688 static int
689 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
691 u8 *buf;
692 unsigned buf_space;
693 unsigned bytes = 0;
694 unsigned finished = 0;
696 /* received number bytes */
697 bytes = readl(&ep->regs->sts);
698 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
700 buf_space = req->req.length - req->req.actual;
701 buf = req->req.buf + req->req.actual;
702 if (bytes > buf_space) {
703 if ((buf_space % ep->ep.maxpacket) != 0) {
704 DBG(ep->dev,
705 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
706 ep->ep.name, bytes, buf_space);
707 req->req.status = -EOVERFLOW;
709 bytes = buf_space;
711 req->req.actual += bytes;
713 /* last packet ? */
714 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
715 || ((req->req.actual == req->req.length) && !req->req.zero))
716 finished = 1;
718 /* read rx fifo bytes */
719 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
720 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
722 return finished;
725 /* create/re-init a DMA descriptor or a DMA descriptor chain */
726 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
728 int retval = 0;
729 u32 tmp;
731 VDBG(ep->dev, "prep_dma\n");
732 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
733 ep->num, req->td_data);
735 /* set buffer pointer */
736 req->td_data->bufptr = req->req.dma;
738 /* set last bit */
739 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
741 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
742 if (use_dma_ppb) {
744 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
745 if (retval != 0) {
746 if (retval == -ENOMEM)
747 DBG(ep->dev, "Out of DMA memory\n");
748 return retval;
750 if (ep->in) {
751 if (req->req.length == ep->ep.maxpacket) {
752 /* write tx bytes */
753 req->td_data->status =
754 AMD_ADDBITS(req->td_data->status,
755 ep->ep.maxpacket,
756 UDC_DMA_IN_STS_TXBYTES);
763 if (ep->in) {
764 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
765 "maxpacket=%d ep%d\n",
766 use_dma_ppb, req->req.length,
767 ep->ep.maxpacket, ep->num);
769 * if bytes < max packet then tx bytes must
770 * be written in packet per buffer mode
772 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
773 || ep->num == UDC_EP0OUT_IX
774 || ep->num == UDC_EP0IN_IX) {
775 /* write tx bytes */
776 req->td_data->status =
777 AMD_ADDBITS(req->td_data->status,
778 req->req.length,
779 UDC_DMA_IN_STS_TXBYTES);
780 /* reset frame num */
781 req->td_data->status =
782 AMD_ADDBITS(req->td_data->status,
784 UDC_DMA_IN_STS_FRAMENUM);
786 /* set HOST BUSY */
787 req->td_data->status =
788 AMD_ADDBITS(req->td_data->status,
789 UDC_DMA_STP_STS_BS_HOST_BUSY,
790 UDC_DMA_STP_STS_BS);
791 } else {
792 VDBG(ep->dev, "OUT set host ready\n");
793 /* set HOST READY */
794 req->td_data->status =
795 AMD_ADDBITS(req->td_data->status,
796 UDC_DMA_STP_STS_BS_HOST_READY,
797 UDC_DMA_STP_STS_BS);
800 /* clear NAK by writing CNAK */
801 if (ep->naking) {
802 tmp = readl(&ep->regs->ctl);
803 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
804 writel(tmp, &ep->regs->ctl);
805 ep->naking = 0;
806 UDC_QUEUE_CNAK(ep, ep->num);
811 return retval;
814 /* Completes request packet ... caller MUST hold lock */
815 static void
816 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
817 __releases(ep->dev->lock)
818 __acquires(ep->dev->lock)
820 struct udc *dev;
821 unsigned halted;
823 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
825 dev = ep->dev;
826 /* unmap DMA */
827 if (ep->dma)
828 usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
830 halted = ep->halted;
831 ep->halted = 1;
833 /* set new status if pending */
834 if (req->req.status == -EINPROGRESS)
835 req->req.status = sts;
837 /* remove from ep queue */
838 list_del_init(&req->queue);
840 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
841 &req->req, req->req.length, ep->ep.name, sts);
843 spin_unlock(&dev->lock);
844 req->req.complete(&ep->ep, &req->req);
845 spin_lock(&dev->lock);
846 ep->halted = halted;
849 /* frees pci pool descriptors of a DMA chain */
850 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
853 int ret_val = 0;
854 struct udc_data_dma *td;
855 struct udc_data_dma *td_last = NULL;
856 unsigned int i;
858 DBG(dev, "free chain req = %p\n", req);
860 /* do not free first desc., will be done by free for request */
861 td_last = req->td_data;
862 td = phys_to_virt(td_last->next);
864 for (i = 1; i < req->chain_len; i++) {
866 pci_pool_free(dev->data_requests, td,
867 (dma_addr_t) td_last->next);
868 td_last = td;
869 td = phys_to_virt(td_last->next);
872 return ret_val;
875 /* Iterates to the end of a DMA chain and returns last descriptor */
876 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
878 struct udc_data_dma *td;
880 td = req->td_data;
881 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
882 td = phys_to_virt(td->next);
884 return td;
888 /* Iterates to the end of a DMA chain and counts bytes received */
889 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
891 struct udc_data_dma *td;
892 u32 count;
894 td = req->td_data;
895 /* received number bytes */
896 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
898 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
899 td = phys_to_virt(td->next);
900 /* received number bytes */
901 if (td) {
902 count += AMD_GETBITS(td->status,
903 UDC_DMA_OUT_STS_RXBYTES);
907 return count;
911 /* Creates or re-inits a DMA chain */
912 static int udc_create_dma_chain(
913 struct udc_ep *ep,
914 struct udc_request *req,
915 unsigned long buf_len, gfp_t gfp_flags
918 unsigned long bytes = req->req.length;
919 unsigned int i;
920 dma_addr_t dma_addr;
921 struct udc_data_dma *td = NULL;
922 struct udc_data_dma *last = NULL;
923 unsigned long txbytes;
924 unsigned create_new_chain = 0;
925 unsigned len;
927 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
928 bytes, buf_len);
929 dma_addr = DMA_DONT_USE;
931 /* unset L bit in first desc for OUT */
932 if (!ep->in)
933 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
935 /* alloc only new desc's if not already available */
936 len = req->req.length / ep->ep.maxpacket;
937 if (req->req.length % ep->ep.maxpacket)
938 len++;
940 if (len > req->chain_len) {
941 /* shorter chain already allocated before */
942 if (req->chain_len > 1)
943 udc_free_dma_chain(ep->dev, req);
944 req->chain_len = len;
945 create_new_chain = 1;
948 td = req->td_data;
949 /* gen. required number of descriptors and buffers */
950 for (i = buf_len; i < bytes; i += buf_len) {
951 /* create or determine next desc. */
952 if (create_new_chain) {
954 td = pci_pool_alloc(ep->dev->data_requests,
955 gfp_flags, &dma_addr);
956 if (!td)
957 return -ENOMEM;
959 td->status = 0;
960 } else if (i == buf_len) {
961 /* first td */
962 td = (struct udc_data_dma *) phys_to_virt(
963 req->td_data->next);
964 td->status = 0;
965 } else {
966 td = (struct udc_data_dma *) phys_to_virt(last->next);
967 td->status = 0;
971 if (td)
972 td->bufptr = req->req.dma + i; /* assign buffer */
973 else
974 break;
976 /* short packet ? */
977 if ((bytes - i) >= buf_len) {
978 txbytes = buf_len;
979 } else {
980 /* short packet */
981 txbytes = bytes - i;
984 /* link td and assign tx bytes */
985 if (i == buf_len) {
986 if (create_new_chain)
987 req->td_data->next = dma_addr;
989 else
990 req->td_data->next = virt_to_phys(td);
992 /* write tx bytes */
993 if (ep->in) {
994 /* first desc */
995 req->td_data->status =
996 AMD_ADDBITS(req->td_data->status,
997 ep->ep.maxpacket,
998 UDC_DMA_IN_STS_TXBYTES);
999 /* second desc */
1000 td->status = AMD_ADDBITS(td->status,
1001 txbytes,
1002 UDC_DMA_IN_STS_TXBYTES);
1004 } else {
1005 if (create_new_chain)
1006 last->next = dma_addr;
1008 else
1009 last->next = virt_to_phys(td);
1011 if (ep->in) {
1012 /* write tx bytes */
1013 td->status = AMD_ADDBITS(td->status,
1014 txbytes,
1015 UDC_DMA_IN_STS_TXBYTES);
1018 last = td;
1020 /* set last bit */
1021 if (td) {
1022 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1023 /* last desc. points to itself */
1024 req->td_data_last = td;
1027 return 0;
1030 /* Enabling RX DMA */
1031 static void udc_set_rde(struct udc *dev)
1033 u32 tmp;
1035 VDBG(dev, "udc_set_rde()\n");
1036 /* stop RDE timer */
1037 if (timer_pending(&udc_timer)) {
1038 set_rde = 0;
1039 mod_timer(&udc_timer, jiffies - 1);
1041 /* set RDE */
1042 tmp = readl(&dev->regs->ctl);
1043 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1044 writel(tmp, &dev->regs->ctl);
1047 /* Queues a request packet, called by gadget driver */
1048 static int
1049 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1051 int retval = 0;
1052 u8 open_rxfifo = 0;
1053 unsigned long iflags;
1054 struct udc_ep *ep;
1055 struct udc_request *req;
1056 struct udc *dev;
1057 u32 tmp;
1059 /* check the inputs */
1060 req = container_of(usbreq, struct udc_request, req);
1062 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1063 || !list_empty(&req->queue))
1064 return -EINVAL;
1066 ep = container_of(usbep, struct udc_ep, ep);
1067 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1068 return -EINVAL;
1070 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1071 dev = ep->dev;
1073 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1074 return -ESHUTDOWN;
1076 /* map dma (usually done before) */
1077 if (ep->dma) {
1078 VDBG(dev, "DMA map req %p\n", req);
1079 retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1080 if (retval)
1081 return retval;
1084 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1085 usbep->name, usbreq, usbreq->length,
1086 req->td_data, usbreq->buf);
1088 spin_lock_irqsave(&dev->lock, iflags);
1089 usbreq->actual = 0;
1090 usbreq->status = -EINPROGRESS;
1091 req->dma_done = 0;
1093 /* on empty queue just do first transfer */
1094 if (list_empty(&ep->queue)) {
1095 /* zlp */
1096 if (usbreq->length == 0) {
1097 /* IN zlp's are handled by hardware */
1098 complete_req(ep, req, 0);
1099 VDBG(dev, "%s: zlp\n", ep->ep.name);
1101 * if set_config or set_intf is waiting for ack by zlp
1102 * then set CSR_DONE
1104 if (dev->set_cfg_not_acked) {
1105 tmp = readl(&dev->regs->ctl);
1106 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1107 writel(tmp, &dev->regs->ctl);
1108 dev->set_cfg_not_acked = 0;
1110 /* setup command is ACK'ed now by zlp */
1111 if (dev->waiting_zlp_ack_ep0in) {
1112 /* clear NAK by writing CNAK in EP0_IN */
1113 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1114 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1115 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1116 dev->ep[UDC_EP0IN_IX].naking = 0;
1117 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1118 UDC_EP0IN_IX);
1119 dev->waiting_zlp_ack_ep0in = 0;
1121 goto finished;
1123 if (ep->dma) {
1124 retval = prep_dma(ep, req, GFP_ATOMIC);
1125 if (retval != 0)
1126 goto finished;
1127 /* write desc pointer to enable DMA */
1128 if (ep->in) {
1129 /* set HOST READY */
1130 req->td_data->status =
1131 AMD_ADDBITS(req->td_data->status,
1132 UDC_DMA_IN_STS_BS_HOST_READY,
1133 UDC_DMA_IN_STS_BS);
1136 /* disabled rx dma while descriptor update */
1137 if (!ep->in) {
1138 /* stop RDE timer */
1139 if (timer_pending(&udc_timer)) {
1140 set_rde = 0;
1141 mod_timer(&udc_timer, jiffies - 1);
1143 /* clear RDE */
1144 tmp = readl(&dev->regs->ctl);
1145 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1146 writel(tmp, &dev->regs->ctl);
1147 open_rxfifo = 1;
1150 * if BNA occurred then let BNA dummy desc.
1151 * point to current desc.
1153 if (ep->bna_occurred) {
1154 VDBG(dev, "copy to BNA dummy desc.\n");
1155 memcpy(ep->bna_dummy_req->td_data,
1156 req->td_data,
1157 sizeof(struct udc_data_dma));
1160 /* write desc pointer */
1161 writel(req->td_phys, &ep->regs->desptr);
1163 /* clear NAK by writing CNAK */
1164 if (ep->naking) {
1165 tmp = readl(&ep->regs->ctl);
1166 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1167 writel(tmp, &ep->regs->ctl);
1168 ep->naking = 0;
1169 UDC_QUEUE_CNAK(ep, ep->num);
1172 if (ep->in) {
1173 /* enable ep irq */
1174 tmp = readl(&dev->regs->ep_irqmsk);
1175 tmp &= AMD_UNMASK_BIT(ep->num);
1176 writel(tmp, &dev->regs->ep_irqmsk);
1178 } else if (ep->in) {
1179 /* enable ep irq */
1180 tmp = readl(&dev->regs->ep_irqmsk);
1181 tmp &= AMD_UNMASK_BIT(ep->num);
1182 writel(tmp, &dev->regs->ep_irqmsk);
1185 } else if (ep->dma) {
1188 * prep_dma not used for OUT ep's, this is not possible
1189 * for PPB modes, because of chain creation reasons
1191 if (ep->in) {
1192 retval = prep_dma(ep, req, GFP_ATOMIC);
1193 if (retval != 0)
1194 goto finished;
1197 VDBG(dev, "list_add\n");
1198 /* add request to ep queue */
1199 if (req) {
1201 list_add_tail(&req->queue, &ep->queue);
1203 /* open rxfifo if out data queued */
1204 if (open_rxfifo) {
1205 /* enable DMA */
1206 req->dma_going = 1;
1207 udc_set_rde(dev);
1208 if (ep->num != UDC_EP0OUT_IX)
1209 dev->data_ep_queued = 1;
1211 /* stop OUT naking */
1212 if (!ep->in) {
1213 if (!use_dma && udc_rxfifo_pending) {
1214 DBG(dev, "udc_queue(): pending bytes in "
1215 "rxfifo after nyet\n");
1217 * read pending bytes afer nyet:
1218 * referring to isr
1220 if (udc_rxfifo_read(ep, req)) {
1221 /* finish */
1222 complete_req(ep, req, 0);
1224 udc_rxfifo_pending = 0;
1230 finished:
1231 spin_unlock_irqrestore(&dev->lock, iflags);
1232 return retval;
1235 /* Empty request queue of an endpoint; caller holds spinlock */
1236 static void empty_req_queue(struct udc_ep *ep)
1238 struct udc_request *req;
1240 ep->halted = 1;
1241 while (!list_empty(&ep->queue)) {
1242 req = list_entry(ep->queue.next,
1243 struct udc_request,
1244 queue);
1245 complete_req(ep, req, -ESHUTDOWN);
1249 /* Dequeues a request packet, called by gadget driver */
1250 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1252 struct udc_ep *ep;
1253 struct udc_request *req;
1254 unsigned halted;
1255 unsigned long iflags;
1257 ep = container_of(usbep, struct udc_ep, ep);
1258 if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259 && ep->num != UDC_EP0OUT_IX)))
1260 return -EINVAL;
1262 req = container_of(usbreq, struct udc_request, req);
1264 spin_lock_irqsave(&ep->dev->lock, iflags);
1265 halted = ep->halted;
1266 ep->halted = 1;
1267 /* request in processing or next one */
1268 if (ep->queue.next == &req->queue) {
1269 if (ep->dma && req->dma_going) {
1270 if (ep->in)
1271 ep->cancel_transfer = 1;
1272 else {
1273 u32 tmp;
1274 u32 dma_sts;
1275 /* stop potential receive DMA */
1276 tmp = readl(&udc->regs->ctl);
1277 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278 &udc->regs->ctl);
1280 * Cancel transfer later in ISR
1281 * if descriptor was touched.
1283 dma_sts = AMD_GETBITS(req->td_data->status,
1284 UDC_DMA_OUT_STS_BS);
1285 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286 ep->cancel_transfer = 1;
1287 else {
1288 udc_init_bna_dummy(ep->req);
1289 writel(ep->bna_dummy_req->td_phys,
1290 &ep->regs->desptr);
1292 writel(tmp, &udc->regs->ctl);
1296 complete_req(ep, req, -ECONNRESET);
1297 ep->halted = halted;
1299 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300 return 0;
1303 /* Halt or clear halt of endpoint */
1304 static int
1305 udc_set_halt(struct usb_ep *usbep, int halt)
1307 struct udc_ep *ep;
1308 u32 tmp;
1309 unsigned long iflags;
1310 int retval = 0;
1312 if (!usbep)
1313 return -EINVAL;
1315 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1317 ep = container_of(usbep, struct udc_ep, ep);
1318 if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319 return -EINVAL;
1320 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321 return -ESHUTDOWN;
1323 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324 /* halt or clear halt */
1325 if (halt) {
1326 if (ep->num == 0)
1327 ep->dev->stall_ep0in = 1;
1328 else {
1330 * set STALL
1331 * rxfifo empty not taken into acount
1333 tmp = readl(&ep->regs->ctl);
1334 tmp |= AMD_BIT(UDC_EPCTL_S);
1335 writel(tmp, &ep->regs->ctl);
1336 ep->halted = 1;
1338 /* setup poll timer */
1339 if (!timer_pending(&udc_pollstall_timer)) {
1340 udc_pollstall_timer.expires = jiffies +
1341 HZ * UDC_POLLSTALL_TIMER_USECONDS
1342 / (1000 * 1000);
1343 if (!stop_pollstall_timer) {
1344 DBG(ep->dev, "start polltimer\n");
1345 add_timer(&udc_pollstall_timer);
1349 } else {
1350 /* ep is halted by set_halt() before */
1351 if (ep->halted) {
1352 tmp = readl(&ep->regs->ctl);
1353 /* clear stall bit */
1354 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355 /* clear NAK by writing CNAK */
1356 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357 writel(tmp, &ep->regs->ctl);
1358 ep->halted = 0;
1359 UDC_QUEUE_CNAK(ep, ep->num);
1362 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363 return retval;
1366 /* gadget interface */
1367 static const struct usb_ep_ops udc_ep_ops = {
1368 .enable = udc_ep_enable,
1369 .disable = udc_ep_disable,
1371 .alloc_request = udc_alloc_request,
1372 .free_request = udc_free_request,
1374 .queue = udc_queue,
1375 .dequeue = udc_dequeue,
1377 .set_halt = udc_set_halt,
1378 /* fifo ops not implemented */
1381 /*-------------------------------------------------------------------------*/
1383 /* Get frame counter (not implemented) */
1384 static int udc_get_frame(struct usb_gadget *gadget)
1386 return -EOPNOTSUPP;
1389 /* Remote wakeup gadget interface */
1390 static int udc_wakeup(struct usb_gadget *gadget)
1392 struct udc *dev;
1394 if (!gadget)
1395 return -EINVAL;
1396 dev = container_of(gadget, struct udc, gadget);
1397 udc_remote_wakeup(dev);
1399 return 0;
1402 static int amd5536_udc_start(struct usb_gadget *g,
1403 struct usb_gadget_driver *driver);
1404 static int amd5536_udc_stop(struct usb_gadget *g,
1405 struct usb_gadget_driver *driver);
1406 /* gadget operations */
1407 static const struct usb_gadget_ops udc_ops = {
1408 .wakeup = udc_wakeup,
1409 .get_frame = udc_get_frame,
1410 .udc_start = amd5536_udc_start,
1411 .udc_stop = amd5536_udc_stop,
1414 /* Setups endpoint parameters, adds endpoints to linked list */
1415 static void make_ep_lists(struct udc *dev)
1417 /* make gadget ep lists */
1418 INIT_LIST_HEAD(&dev->gadget.ep_list);
1419 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1420 &dev->gadget.ep_list);
1421 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1422 &dev->gadget.ep_list);
1423 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1424 &dev->gadget.ep_list);
1426 /* fifo config */
1427 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1428 if (dev->gadget.speed == USB_SPEED_FULL)
1429 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1430 else if (dev->gadget.speed == USB_SPEED_HIGH)
1431 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1432 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1435 /* init registers at driver load time */
1436 static int startup_registers(struct udc *dev)
1438 u32 tmp;
1440 /* init controller by soft reset */
1441 udc_soft_reset(dev);
1443 /* mask not needed interrupts */
1444 udc_mask_unused_interrupts(dev);
1446 /* put into initial config */
1447 udc_basic_init(dev);
1448 /* link up all endpoints */
1449 udc_setup_endpoints(dev);
1451 /* program speed */
1452 tmp = readl(&dev->regs->cfg);
1453 if (use_fullspeed)
1454 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1455 else
1456 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1457 writel(tmp, &dev->regs->cfg);
1459 return 0;
1462 /* Inits UDC context */
1463 static void udc_basic_init(struct udc *dev)
1465 u32 tmp;
1467 DBG(dev, "udc_basic_init()\n");
1469 dev->gadget.speed = USB_SPEED_UNKNOWN;
1471 /* stop RDE timer */
1472 if (timer_pending(&udc_timer)) {
1473 set_rde = 0;
1474 mod_timer(&udc_timer, jiffies - 1);
1476 /* stop poll stall timer */
1477 if (timer_pending(&udc_pollstall_timer))
1478 mod_timer(&udc_pollstall_timer, jiffies - 1);
1479 /* disable DMA */
1480 tmp = readl(&dev->regs->ctl);
1481 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1482 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1483 writel(tmp, &dev->regs->ctl);
1485 /* enable dynamic CSR programming */
1486 tmp = readl(&dev->regs->cfg);
1487 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1488 /* set self powered */
1489 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1490 /* set remote wakeupable */
1491 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1492 writel(tmp, &dev->regs->cfg);
1494 make_ep_lists(dev);
1496 dev->data_ep_enabled = 0;
1497 dev->data_ep_queued = 0;
1500 /* Sets initial endpoint parameters */
1501 static void udc_setup_endpoints(struct udc *dev)
1503 struct udc_ep *ep;
1504 u32 tmp;
1505 u32 reg;
1507 DBG(dev, "udc_setup_endpoints()\n");
1509 /* read enum speed */
1510 tmp = readl(&dev->regs->sts);
1511 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1512 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1513 dev->gadget.speed = USB_SPEED_HIGH;
1514 else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1515 dev->gadget.speed = USB_SPEED_FULL;
1517 /* set basic ep parameters */
1518 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1519 ep = &dev->ep[tmp];
1520 ep->dev = dev;
1521 ep->ep.name = ep_string[tmp];
1522 ep->num = tmp;
1523 /* txfifo size is calculated at enable time */
1524 ep->txfifo = dev->txfifo;
1526 /* fifo size */
1527 if (tmp < UDC_EPIN_NUM) {
1528 ep->fifo_depth = UDC_TXFIFO_SIZE;
1529 ep->in = 1;
1530 } else {
1531 ep->fifo_depth = UDC_RXFIFO_SIZE;
1532 ep->in = 0;
1535 ep->regs = &dev->ep_regs[tmp];
1537 * ep will be reset only if ep was not enabled before to avoid
1538 * disabling ep interrupts when ENUM interrupt occurs but ep is
1539 * not enabled by gadget driver
1541 if (!ep->ep.desc)
1542 ep_init(dev->regs, ep);
1544 if (use_dma) {
1546 * ep->dma is not really used, just to indicate that
1547 * DMA is active: remove this
1548 * dma regs = dev control regs
1550 ep->dma = &dev->regs->ctl;
1552 /* nak OUT endpoints until enable - not for ep0 */
1553 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1554 && tmp > UDC_EPIN_NUM) {
1555 /* set NAK */
1556 reg = readl(&dev->ep[tmp].regs->ctl);
1557 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1558 writel(reg, &dev->ep[tmp].regs->ctl);
1559 dev->ep[tmp].naking = 1;
1564 /* EP0 max packet */
1565 if (dev->gadget.speed == USB_SPEED_FULL) {
1566 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1567 UDC_FS_EP0IN_MAX_PKT_SIZE);
1568 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1569 UDC_FS_EP0OUT_MAX_PKT_SIZE);
1570 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1571 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1572 UDC_EP0IN_MAX_PKT_SIZE);
1573 usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1574 UDC_EP0OUT_MAX_PKT_SIZE);
1578 * with suspend bug workaround, ep0 params for gadget driver
1579 * are set at gadget driver bind() call
1581 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1582 dev->ep[UDC_EP0IN_IX].halted = 0;
1583 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1585 /* init cfg/alt/int */
1586 dev->cur_config = 0;
1587 dev->cur_intf = 0;
1588 dev->cur_alt = 0;
1591 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1592 static void usb_connect(struct udc *dev)
1595 dev_info(&dev->pdev->dev, "USB Connect\n");
1597 dev->connected = 1;
1599 /* put into initial config */
1600 udc_basic_init(dev);
1602 /* enable device setup interrupts */
1603 udc_enable_dev_setup_interrupts(dev);
1607 * Calls gadget with disconnect event and resets the UDC and makes
1608 * initial bringup to be ready for ep0 events
1610 static void usb_disconnect(struct udc *dev)
1613 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1615 dev->connected = 0;
1617 /* mask interrupts */
1618 udc_mask_unused_interrupts(dev);
1620 /* REVISIT there doesn't seem to be a point to having this
1621 * talk to a tasklet ... do it directly, we already hold
1622 * the spinlock needed to process the disconnect.
1625 tasklet_schedule(&disconnect_tasklet);
1628 /* Tasklet for disconnect to be outside of interrupt context */
1629 static void udc_tasklet_disconnect(unsigned long par)
1631 struct udc *dev = (struct udc *)(*((struct udc **) par));
1632 u32 tmp;
1634 DBG(dev, "Tasklet disconnect\n");
1635 spin_lock_irq(&dev->lock);
1637 if (dev->driver) {
1638 spin_unlock(&dev->lock);
1639 dev->driver->disconnect(&dev->gadget);
1640 spin_lock(&dev->lock);
1642 /* empty queues */
1643 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1644 empty_req_queue(&dev->ep[tmp]);
1648 /* disable ep0 */
1649 ep_init(dev->regs,
1650 &dev->ep[UDC_EP0IN_IX]);
1653 if (!soft_reset_occured) {
1654 /* init controller by soft reset */
1655 udc_soft_reset(dev);
1656 soft_reset_occured++;
1659 /* re-enable dev interrupts */
1660 udc_enable_dev_setup_interrupts(dev);
1661 /* back to full speed ? */
1662 if (use_fullspeed) {
1663 tmp = readl(&dev->regs->cfg);
1664 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1665 writel(tmp, &dev->regs->cfg);
1668 spin_unlock_irq(&dev->lock);
1671 /* Reset the UDC core */
1672 static void udc_soft_reset(struct udc *dev)
1674 unsigned long flags;
1676 DBG(dev, "Soft reset\n");
1678 * reset possible waiting interrupts, because int.
1679 * status is lost after soft reset,
1680 * ep int. status reset
1682 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1683 /* device int. status reset */
1684 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1686 spin_lock_irqsave(&udc_irq_spinlock, flags);
1687 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1688 readl(&dev->regs->cfg);
1689 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1693 /* RDE timer callback to set RDE bit */
1694 static void udc_timer_function(unsigned long v)
1696 u32 tmp;
1698 spin_lock_irq(&udc_irq_spinlock);
1700 if (set_rde > 0) {
1702 * open the fifo if fifo was filled on last timer call
1703 * conditionally
1705 if (set_rde > 1) {
1706 /* set RDE to receive setup data */
1707 tmp = readl(&udc->regs->ctl);
1708 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1709 writel(tmp, &udc->regs->ctl);
1710 set_rde = -1;
1711 } else if (readl(&udc->regs->sts)
1712 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1714 * if fifo empty setup polling, do not just
1715 * open the fifo
1717 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1718 if (!stop_timer)
1719 add_timer(&udc_timer);
1720 } else {
1722 * fifo contains data now, setup timer for opening
1723 * the fifo when timer expires to be able to receive
1724 * setup packets, when data packets gets queued by
1725 * gadget layer then timer will forced to expire with
1726 * set_rde=0 (RDE is set in udc_queue())
1728 set_rde++;
1729 /* debug: lhadmot_timer_start = 221070 */
1730 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1731 if (!stop_timer)
1732 add_timer(&udc_timer);
1735 } else
1736 set_rde = -1; /* RDE was set by udc_queue() */
1737 spin_unlock_irq(&udc_irq_spinlock);
1738 if (stop_timer)
1739 complete(&on_exit);
1743 /* Handle halt state, used in stall poll timer */
1744 static void udc_handle_halt_state(struct udc_ep *ep)
1746 u32 tmp;
1747 /* set stall as long not halted */
1748 if (ep->halted == 1) {
1749 tmp = readl(&ep->regs->ctl);
1750 /* STALL cleared ? */
1751 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1753 * FIXME: MSC spec requires that stall remains
1754 * even on receivng of CLEAR_FEATURE HALT. So
1755 * we would set STALL again here to be compliant.
1756 * But with current mass storage drivers this does
1757 * not work (would produce endless host retries).
1758 * So we clear halt on CLEAR_FEATURE.
1760 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1761 tmp |= AMD_BIT(UDC_EPCTL_S);
1762 writel(tmp, &ep->regs->ctl);*/
1764 /* clear NAK by writing CNAK */
1765 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1766 writel(tmp, &ep->regs->ctl);
1767 ep->halted = 0;
1768 UDC_QUEUE_CNAK(ep, ep->num);
1773 /* Stall timer callback to poll S bit and set it again after */
1774 static void udc_pollstall_timer_function(unsigned long v)
1776 struct udc_ep *ep;
1777 int halted = 0;
1779 spin_lock_irq(&udc_stall_spinlock);
1781 * only one IN and OUT endpoints are handled
1782 * IN poll stall
1784 ep = &udc->ep[UDC_EPIN_IX];
1785 udc_handle_halt_state(ep);
1786 if (ep->halted)
1787 halted = 1;
1788 /* OUT poll stall */
1789 ep = &udc->ep[UDC_EPOUT_IX];
1790 udc_handle_halt_state(ep);
1791 if (ep->halted)
1792 halted = 1;
1794 /* setup timer again when still halted */
1795 if (!stop_pollstall_timer && halted) {
1796 udc_pollstall_timer.expires = jiffies +
1797 HZ * UDC_POLLSTALL_TIMER_USECONDS
1798 / (1000 * 1000);
1799 add_timer(&udc_pollstall_timer);
1801 spin_unlock_irq(&udc_stall_spinlock);
1803 if (stop_pollstall_timer)
1804 complete(&on_pollstall_exit);
1807 /* Inits endpoint 0 so that SETUP packets are processed */
1808 static void activate_control_endpoints(struct udc *dev)
1810 u32 tmp;
1812 DBG(dev, "activate_control_endpoints\n");
1814 /* flush fifo */
1815 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1816 tmp |= AMD_BIT(UDC_EPCTL_F);
1817 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1819 /* set ep0 directions */
1820 dev->ep[UDC_EP0IN_IX].in = 1;
1821 dev->ep[UDC_EP0OUT_IX].in = 0;
1823 /* set buffer size (tx fifo entries) of EP0_IN */
1824 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1825 if (dev->gadget.speed == USB_SPEED_FULL)
1826 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1827 UDC_EPIN_BUFF_SIZE);
1828 else if (dev->gadget.speed == USB_SPEED_HIGH)
1829 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1830 UDC_EPIN_BUFF_SIZE);
1831 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1833 /* set max packet size of EP0_IN */
1834 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1835 if (dev->gadget.speed == USB_SPEED_FULL)
1836 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1837 UDC_EP_MAX_PKT_SIZE);
1838 else if (dev->gadget.speed == USB_SPEED_HIGH)
1839 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1840 UDC_EP_MAX_PKT_SIZE);
1841 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1843 /* set max packet size of EP0_OUT */
1844 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1845 if (dev->gadget.speed == USB_SPEED_FULL)
1846 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1847 UDC_EP_MAX_PKT_SIZE);
1848 else if (dev->gadget.speed == USB_SPEED_HIGH)
1849 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1850 UDC_EP_MAX_PKT_SIZE);
1851 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1853 /* set max packet size of EP0 in UDC CSR */
1854 tmp = readl(&dev->csr->ne[0]);
1855 if (dev->gadget.speed == USB_SPEED_FULL)
1856 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1857 UDC_CSR_NE_MAX_PKT);
1858 else if (dev->gadget.speed == USB_SPEED_HIGH)
1859 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1860 UDC_CSR_NE_MAX_PKT);
1861 writel(tmp, &dev->csr->ne[0]);
1863 if (use_dma) {
1864 dev->ep[UDC_EP0OUT_IX].td->status |=
1865 AMD_BIT(UDC_DMA_OUT_STS_L);
1866 /* write dma desc address */
1867 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1868 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1869 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1870 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1871 /* stop RDE timer */
1872 if (timer_pending(&udc_timer)) {
1873 set_rde = 0;
1874 mod_timer(&udc_timer, jiffies - 1);
1876 /* stop pollstall timer */
1877 if (timer_pending(&udc_pollstall_timer))
1878 mod_timer(&udc_pollstall_timer, jiffies - 1);
1879 /* enable DMA */
1880 tmp = readl(&dev->regs->ctl);
1881 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1882 | AMD_BIT(UDC_DEVCTL_RDE)
1883 | AMD_BIT(UDC_DEVCTL_TDE);
1884 if (use_dma_bufferfill_mode)
1885 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1886 else if (use_dma_ppb_du)
1887 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1888 writel(tmp, &dev->regs->ctl);
1891 /* clear NAK by writing CNAK for EP0IN */
1892 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1893 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1894 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1895 dev->ep[UDC_EP0IN_IX].naking = 0;
1896 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1898 /* clear NAK by writing CNAK for EP0OUT */
1899 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1900 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1901 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1902 dev->ep[UDC_EP0OUT_IX].naking = 0;
1903 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1906 /* Make endpoint 0 ready for control traffic */
1907 static int setup_ep0(struct udc *dev)
1909 activate_control_endpoints(dev);
1910 /* enable ep0 interrupts */
1911 udc_enable_ep0_interrupts(dev);
1912 /* enable device setup interrupts */
1913 udc_enable_dev_setup_interrupts(dev);
1915 return 0;
1918 /* Called by gadget driver to register itself */
1919 static int amd5536_udc_start(struct usb_gadget *g,
1920 struct usb_gadget_driver *driver)
1922 struct udc *dev = to_amd5536_udc(g);
1923 u32 tmp;
1925 driver->driver.bus = NULL;
1926 dev->driver = driver;
1928 /* Some gadget drivers use both ep0 directions.
1929 * NOTE: to gadget driver, ep0 is just one endpoint...
1931 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1932 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1934 /* get ready for ep0 traffic */
1935 setup_ep0(dev);
1937 /* clear SD */
1938 tmp = readl(&dev->regs->ctl);
1939 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1940 writel(tmp, &dev->regs->ctl);
1942 usb_connect(dev);
1944 return 0;
1947 /* shutdown requests and disconnect from gadget */
1948 static void
1949 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1950 __releases(dev->lock)
1951 __acquires(dev->lock)
1953 int tmp;
1955 /* empty queues and init hardware */
1956 udc_basic_init(dev);
1958 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1959 empty_req_queue(&dev->ep[tmp]);
1961 udc_setup_endpoints(dev);
1964 /* Called by gadget driver to unregister itself */
1965 static int amd5536_udc_stop(struct usb_gadget *g,
1966 struct usb_gadget_driver *driver)
1968 struct udc *dev = to_amd5536_udc(g);
1969 unsigned long flags;
1970 u32 tmp;
1972 spin_lock_irqsave(&dev->lock, flags);
1973 udc_mask_unused_interrupts(dev);
1974 shutdown(dev, driver);
1975 spin_unlock_irqrestore(&dev->lock, flags);
1977 dev->driver = NULL;
1979 /* set SD */
1980 tmp = readl(&dev->regs->ctl);
1981 tmp |= AMD_BIT(UDC_DEVCTL_SD);
1982 writel(tmp, &dev->regs->ctl);
1984 return 0;
1987 /* Clear pending NAK bits */
1988 static void udc_process_cnak_queue(struct udc *dev)
1990 u32 tmp;
1991 u32 reg;
1993 /* check epin's */
1994 DBG(dev, "CNAK pending queue processing\n");
1995 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
1996 if (cnak_pending & (1 << tmp)) {
1997 DBG(dev, "CNAK pending for ep%d\n", tmp);
1998 /* clear NAK by writing CNAK */
1999 reg = readl(&dev->ep[tmp].regs->ctl);
2000 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2001 writel(reg, &dev->ep[tmp].regs->ctl);
2002 dev->ep[tmp].naking = 0;
2003 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2006 /* ... and ep0out */
2007 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2008 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2009 /* clear NAK by writing CNAK */
2010 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2011 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2012 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2013 dev->ep[UDC_EP0OUT_IX].naking = 0;
2014 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2015 dev->ep[UDC_EP0OUT_IX].num);
2019 /* Enabling RX DMA after setup packet */
2020 static void udc_ep0_set_rde(struct udc *dev)
2022 if (use_dma) {
2024 * only enable RXDMA when no data endpoint enabled
2025 * or data is queued
2027 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2028 udc_set_rde(dev);
2029 } else {
2031 * setup timer for enabling RDE (to not enable
2032 * RXFIFO DMA for data endpoints to early)
2034 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2035 udc_timer.expires =
2036 jiffies + HZ/UDC_RDE_TIMER_DIV;
2037 set_rde = 1;
2038 if (!stop_timer)
2039 add_timer(&udc_timer);
2046 /* Interrupt handler for data OUT traffic */
2047 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2049 irqreturn_t ret_val = IRQ_NONE;
2050 u32 tmp;
2051 struct udc_ep *ep;
2052 struct udc_request *req;
2053 unsigned int count;
2054 struct udc_data_dma *td = NULL;
2055 unsigned dma_done;
2057 VDBG(dev, "ep%d irq\n", ep_ix);
2058 ep = &dev->ep[ep_ix];
2060 tmp = readl(&ep->regs->sts);
2061 if (use_dma) {
2062 /* BNA event ? */
2063 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2064 DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2065 ep->num, readl(&ep->regs->desptr));
2066 /* clear BNA */
2067 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2068 if (!ep->cancel_transfer)
2069 ep->bna_occurred = 1;
2070 else
2071 ep->cancel_transfer = 0;
2072 ret_val = IRQ_HANDLED;
2073 goto finished;
2076 /* HE event ? */
2077 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2078 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2080 /* clear HE */
2081 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2082 ret_val = IRQ_HANDLED;
2083 goto finished;
2086 if (!list_empty(&ep->queue)) {
2088 /* next request */
2089 req = list_entry(ep->queue.next,
2090 struct udc_request, queue);
2091 } else {
2092 req = NULL;
2093 udc_rxfifo_pending = 1;
2095 VDBG(dev, "req = %p\n", req);
2096 /* fifo mode */
2097 if (!use_dma) {
2099 /* read fifo */
2100 if (req && udc_rxfifo_read(ep, req)) {
2101 ret_val = IRQ_HANDLED;
2103 /* finish */
2104 complete_req(ep, req, 0);
2105 /* next request */
2106 if (!list_empty(&ep->queue) && !ep->halted) {
2107 req = list_entry(ep->queue.next,
2108 struct udc_request, queue);
2109 } else
2110 req = NULL;
2113 /* DMA */
2114 } else if (!ep->cancel_transfer && req != NULL) {
2115 ret_val = IRQ_HANDLED;
2117 /* check for DMA done */
2118 if (!use_dma_ppb) {
2119 dma_done = AMD_GETBITS(req->td_data->status,
2120 UDC_DMA_OUT_STS_BS);
2121 /* packet per buffer mode - rx bytes */
2122 } else {
2124 * if BNA occurred then recover desc. from
2125 * BNA dummy desc.
2127 if (ep->bna_occurred) {
2128 VDBG(dev, "Recover desc. from BNA dummy\n");
2129 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2130 sizeof(struct udc_data_dma));
2131 ep->bna_occurred = 0;
2132 udc_init_bna_dummy(ep->req);
2134 td = udc_get_last_dma_desc(req);
2135 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2137 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2138 /* buffer fill mode - rx bytes */
2139 if (!use_dma_ppb) {
2140 /* received number bytes */
2141 count = AMD_GETBITS(req->td_data->status,
2142 UDC_DMA_OUT_STS_RXBYTES);
2143 VDBG(dev, "rx bytes=%u\n", count);
2144 /* packet per buffer mode - rx bytes */
2145 } else {
2146 VDBG(dev, "req->td_data=%p\n", req->td_data);
2147 VDBG(dev, "last desc = %p\n", td);
2148 /* received number bytes */
2149 if (use_dma_ppb_du) {
2150 /* every desc. counts bytes */
2151 count = udc_get_ppbdu_rxbytes(req);
2152 } else {
2153 /* last desc. counts bytes */
2154 count = AMD_GETBITS(td->status,
2155 UDC_DMA_OUT_STS_RXBYTES);
2156 if (!count && req->req.length
2157 == UDC_DMA_MAXPACKET) {
2159 * on 64k packets the RXBYTES
2160 * field is zero
2162 count = UDC_DMA_MAXPACKET;
2165 VDBG(dev, "last desc rx bytes=%u\n", count);
2168 tmp = req->req.length - req->req.actual;
2169 if (count > tmp) {
2170 if ((tmp % ep->ep.maxpacket) != 0) {
2171 DBG(dev, "%s: rx %db, space=%db\n",
2172 ep->ep.name, count, tmp);
2173 req->req.status = -EOVERFLOW;
2175 count = tmp;
2177 req->req.actual += count;
2178 req->dma_going = 0;
2179 /* complete request */
2180 complete_req(ep, req, 0);
2182 /* next request */
2183 if (!list_empty(&ep->queue) && !ep->halted) {
2184 req = list_entry(ep->queue.next,
2185 struct udc_request,
2186 queue);
2188 * DMA may be already started by udc_queue()
2189 * called by gadget drivers completion
2190 * routine. This happens when queue
2191 * holds one request only.
2193 if (req->dma_going == 0) {
2194 /* next dma */
2195 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2196 goto finished;
2197 /* write desc pointer */
2198 writel(req->td_phys,
2199 &ep->regs->desptr);
2200 req->dma_going = 1;
2201 /* enable DMA */
2202 udc_set_rde(dev);
2204 } else {
2206 * implant BNA dummy descriptor to allow
2207 * RXFIFO opening by RDE
2209 if (ep->bna_dummy_req) {
2210 /* write desc pointer */
2211 writel(ep->bna_dummy_req->td_phys,
2212 &ep->regs->desptr);
2213 ep->bna_occurred = 0;
2217 * schedule timer for setting RDE if queue
2218 * remains empty to allow ep0 packets pass
2219 * through
2221 if (set_rde != 0
2222 && !timer_pending(&udc_timer)) {
2223 udc_timer.expires =
2224 jiffies
2225 + HZ*UDC_RDE_TIMER_SECONDS;
2226 set_rde = 1;
2227 if (!stop_timer)
2228 add_timer(&udc_timer);
2230 if (ep->num != UDC_EP0OUT_IX)
2231 dev->data_ep_queued = 0;
2234 } else {
2236 * RX DMA must be reenabled for each desc in PPBDU mode
2237 * and must be enabled for PPBNDU mode in case of BNA
2239 udc_set_rde(dev);
2242 } else if (ep->cancel_transfer) {
2243 ret_val = IRQ_HANDLED;
2244 ep->cancel_transfer = 0;
2247 /* check pending CNAKS */
2248 if (cnak_pending) {
2249 /* CNAk processing when rxfifo empty only */
2250 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2251 udc_process_cnak_queue(dev);
2254 /* clear OUT bits in ep status */
2255 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2256 finished:
2257 return ret_val;
2260 /* Interrupt handler for data IN traffic */
2261 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2263 irqreturn_t ret_val = IRQ_NONE;
2264 u32 tmp;
2265 u32 epsts;
2266 struct udc_ep *ep;
2267 struct udc_request *req;
2268 struct udc_data_dma *td;
2269 unsigned dma_done;
2270 unsigned len;
2272 ep = &dev->ep[ep_ix];
2274 epsts = readl(&ep->regs->sts);
2275 if (use_dma) {
2276 /* BNA ? */
2277 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2278 dev_err(&dev->pdev->dev,
2279 "BNA ep%din occurred - DESPTR = %08lx\n",
2280 ep->num,
2281 (unsigned long) readl(&ep->regs->desptr));
2283 /* clear BNA */
2284 writel(epsts, &ep->regs->sts);
2285 ret_val = IRQ_HANDLED;
2286 goto finished;
2289 /* HE event ? */
2290 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2291 dev_err(&dev->pdev->dev,
2292 "HE ep%dn occurred - DESPTR = %08lx\n",
2293 ep->num, (unsigned long) readl(&ep->regs->desptr));
2295 /* clear HE */
2296 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2297 ret_val = IRQ_HANDLED;
2298 goto finished;
2301 /* DMA completion */
2302 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2303 VDBG(dev, "TDC set- completion\n");
2304 ret_val = IRQ_HANDLED;
2305 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2306 req = list_entry(ep->queue.next,
2307 struct udc_request, queue);
2309 * length bytes transferred
2310 * check dma done of last desc. in PPBDU mode
2312 if (use_dma_ppb_du) {
2313 td = udc_get_last_dma_desc(req);
2314 if (td) {
2315 dma_done =
2316 AMD_GETBITS(td->status,
2317 UDC_DMA_IN_STS_BS);
2318 /* don't care DMA done */
2319 req->req.actual = req->req.length;
2321 } else {
2322 /* assume all bytes transferred */
2323 req->req.actual = req->req.length;
2326 if (req->req.actual == req->req.length) {
2327 /* complete req */
2328 complete_req(ep, req, 0);
2329 req->dma_going = 0;
2330 /* further request available ? */
2331 if (list_empty(&ep->queue)) {
2332 /* disable interrupt */
2333 tmp = readl(&dev->regs->ep_irqmsk);
2334 tmp |= AMD_BIT(ep->num);
2335 writel(tmp, &dev->regs->ep_irqmsk);
2339 ep->cancel_transfer = 0;
2343 * status reg has IN bit set and TDC not set (if TDC was handled,
2344 * IN must not be handled (UDC defect) ?
2346 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2347 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2348 ret_val = IRQ_HANDLED;
2349 if (!list_empty(&ep->queue)) {
2350 /* next request */
2351 req = list_entry(ep->queue.next,
2352 struct udc_request, queue);
2353 /* FIFO mode */
2354 if (!use_dma) {
2355 /* write fifo */
2356 udc_txfifo_write(ep, &req->req);
2357 len = req->req.length - req->req.actual;
2358 if (len > ep->ep.maxpacket)
2359 len = ep->ep.maxpacket;
2360 req->req.actual += len;
2361 if (req->req.actual == req->req.length
2362 || (len != ep->ep.maxpacket)) {
2363 /* complete req */
2364 complete_req(ep, req, 0);
2366 /* DMA */
2367 } else if (req && !req->dma_going) {
2368 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2369 req, req->td_data);
2370 if (req->td_data) {
2372 req->dma_going = 1;
2375 * unset L bit of first desc.
2376 * for chain
2378 if (use_dma_ppb && req->req.length >
2379 ep->ep.maxpacket) {
2380 req->td_data->status &=
2381 AMD_CLEAR_BIT(
2382 UDC_DMA_IN_STS_L);
2385 /* write desc pointer */
2386 writel(req->td_phys, &ep->regs->desptr);
2388 /* set HOST READY */
2389 req->td_data->status =
2390 AMD_ADDBITS(
2391 req->td_data->status,
2392 UDC_DMA_IN_STS_BS_HOST_READY,
2393 UDC_DMA_IN_STS_BS);
2395 /* set poll demand bit */
2396 tmp = readl(&ep->regs->ctl);
2397 tmp |= AMD_BIT(UDC_EPCTL_P);
2398 writel(tmp, &ep->regs->ctl);
2402 } else if (!use_dma && ep->in) {
2403 /* disable interrupt */
2404 tmp = readl(
2405 &dev->regs->ep_irqmsk);
2406 tmp |= AMD_BIT(ep->num);
2407 writel(tmp,
2408 &dev->regs->ep_irqmsk);
2411 /* clear status bits */
2412 writel(epsts, &ep->regs->sts);
2414 finished:
2415 return ret_val;
2419 /* Interrupt handler for Control OUT traffic */
2420 static irqreturn_t udc_control_out_isr(struct udc *dev)
2421 __releases(dev->lock)
2422 __acquires(dev->lock)
2424 irqreturn_t ret_val = IRQ_NONE;
2425 u32 tmp;
2426 int setup_supported;
2427 u32 count;
2428 int set = 0;
2429 struct udc_ep *ep;
2430 struct udc_ep *ep_tmp;
2432 ep = &dev->ep[UDC_EP0OUT_IX];
2434 /* clear irq */
2435 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2437 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2438 /* check BNA and clear if set */
2439 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2440 VDBG(dev, "ep0: BNA set\n");
2441 writel(AMD_BIT(UDC_EPSTS_BNA),
2442 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2443 ep->bna_occurred = 1;
2444 ret_val = IRQ_HANDLED;
2445 goto finished;
2448 /* type of data: SETUP or DATA 0 bytes */
2449 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2450 VDBG(dev, "data_typ = %x\n", tmp);
2452 /* setup data */
2453 if (tmp == UDC_EPSTS_OUT_SETUP) {
2454 ret_val = IRQ_HANDLED;
2456 ep->dev->stall_ep0in = 0;
2457 dev->waiting_zlp_ack_ep0in = 0;
2459 /* set NAK for EP0_IN */
2460 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2461 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2462 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2463 dev->ep[UDC_EP0IN_IX].naking = 1;
2464 /* get setup data */
2465 if (use_dma) {
2467 /* clear OUT bits in ep status */
2468 writel(UDC_EPSTS_OUT_CLEAR,
2469 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2471 setup_data.data[0] =
2472 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2473 setup_data.data[1] =
2474 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2475 /* set HOST READY */
2476 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2477 UDC_DMA_STP_STS_BS_HOST_READY;
2478 } else {
2479 /* read fifo */
2480 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2483 /* determine direction of control data */
2484 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2485 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2486 /* enable RDE */
2487 udc_ep0_set_rde(dev);
2488 set = 0;
2489 } else {
2490 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2492 * implant BNA dummy descriptor to allow RXFIFO opening
2493 * by RDE
2495 if (ep->bna_dummy_req) {
2496 /* write desc pointer */
2497 writel(ep->bna_dummy_req->td_phys,
2498 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2499 ep->bna_occurred = 0;
2502 set = 1;
2503 dev->ep[UDC_EP0OUT_IX].naking = 1;
2505 * setup timer for enabling RDE (to not enable
2506 * RXFIFO DMA for data to early)
2508 set_rde = 1;
2509 if (!timer_pending(&udc_timer)) {
2510 udc_timer.expires = jiffies +
2511 HZ/UDC_RDE_TIMER_DIV;
2512 if (!stop_timer)
2513 add_timer(&udc_timer);
2518 * mass storage reset must be processed here because
2519 * next packet may be a CLEAR_FEATURE HALT which would not
2520 * clear the stall bit when no STALL handshake was received
2521 * before (autostall can cause this)
2523 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2524 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2525 DBG(dev, "MSC Reset\n");
2527 * clear stall bits
2528 * only one IN and OUT endpoints are handled
2530 ep_tmp = &udc->ep[UDC_EPIN_IX];
2531 udc_set_halt(&ep_tmp->ep, 0);
2532 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2533 udc_set_halt(&ep_tmp->ep, 0);
2536 /* call gadget with setup data received */
2537 spin_unlock(&dev->lock);
2538 setup_supported = dev->driver->setup(&dev->gadget,
2539 &setup_data.request);
2540 spin_lock(&dev->lock);
2542 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2543 /* ep0 in returns data (not zlp) on IN phase */
2544 if (setup_supported >= 0 && setup_supported <
2545 UDC_EP0IN_MAXPACKET) {
2546 /* clear NAK by writing CNAK in EP0_IN */
2547 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2548 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2549 dev->ep[UDC_EP0IN_IX].naking = 0;
2550 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2552 /* if unsupported request then stall */
2553 } else if (setup_supported < 0) {
2554 tmp |= AMD_BIT(UDC_EPCTL_S);
2555 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2556 } else
2557 dev->waiting_zlp_ack_ep0in = 1;
2560 /* clear NAK by writing CNAK in EP0_OUT */
2561 if (!set) {
2562 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2563 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2564 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2565 dev->ep[UDC_EP0OUT_IX].naking = 0;
2566 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2569 if (!use_dma) {
2570 /* clear OUT bits in ep status */
2571 writel(UDC_EPSTS_OUT_CLEAR,
2572 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2575 /* data packet 0 bytes */
2576 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2577 /* clear OUT bits in ep status */
2578 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2580 /* get setup data: only 0 packet */
2581 if (use_dma) {
2582 /* no req if 0 packet, just reactivate */
2583 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2584 VDBG(dev, "ZLP\n");
2586 /* set HOST READY */
2587 dev->ep[UDC_EP0OUT_IX].td->status =
2588 AMD_ADDBITS(
2589 dev->ep[UDC_EP0OUT_IX].td->status,
2590 UDC_DMA_OUT_STS_BS_HOST_READY,
2591 UDC_DMA_OUT_STS_BS);
2592 /* enable RDE */
2593 udc_ep0_set_rde(dev);
2594 ret_val = IRQ_HANDLED;
2596 } else {
2597 /* control write */
2598 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2599 /* re-program desc. pointer for possible ZLPs */
2600 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2601 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2602 /* enable RDE */
2603 udc_ep0_set_rde(dev);
2605 } else {
2607 /* received number bytes */
2608 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2609 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2610 /* out data for fifo mode not working */
2611 count = 0;
2613 /* 0 packet or real data ? */
2614 if (count != 0) {
2615 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2616 } else {
2617 /* dummy read confirm */
2618 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2619 ret_val = IRQ_HANDLED;
2624 /* check pending CNAKS */
2625 if (cnak_pending) {
2626 /* CNAk processing when rxfifo empty only */
2627 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2628 udc_process_cnak_queue(dev);
2631 finished:
2632 return ret_val;
2635 /* Interrupt handler for Control IN traffic */
2636 static irqreturn_t udc_control_in_isr(struct udc *dev)
2638 irqreturn_t ret_val = IRQ_NONE;
2639 u32 tmp;
2640 struct udc_ep *ep;
2641 struct udc_request *req;
2642 unsigned len;
2644 ep = &dev->ep[UDC_EP0IN_IX];
2646 /* clear irq */
2647 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2649 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2650 /* DMA completion */
2651 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2652 VDBG(dev, "isr: TDC clear\n");
2653 ret_val = IRQ_HANDLED;
2655 /* clear TDC bit */
2656 writel(AMD_BIT(UDC_EPSTS_TDC),
2657 &dev->ep[UDC_EP0IN_IX].regs->sts);
2659 /* status reg has IN bit set ? */
2660 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2661 ret_val = IRQ_HANDLED;
2663 if (ep->dma) {
2664 /* clear IN bit */
2665 writel(AMD_BIT(UDC_EPSTS_IN),
2666 &dev->ep[UDC_EP0IN_IX].regs->sts);
2668 if (dev->stall_ep0in) {
2669 DBG(dev, "stall ep0in\n");
2670 /* halt ep0in */
2671 tmp = readl(&ep->regs->ctl);
2672 tmp |= AMD_BIT(UDC_EPCTL_S);
2673 writel(tmp, &ep->regs->ctl);
2674 } else {
2675 if (!list_empty(&ep->queue)) {
2676 /* next request */
2677 req = list_entry(ep->queue.next,
2678 struct udc_request, queue);
2680 if (ep->dma) {
2681 /* write desc pointer */
2682 writel(req->td_phys, &ep->regs->desptr);
2683 /* set HOST READY */
2684 req->td_data->status =
2685 AMD_ADDBITS(
2686 req->td_data->status,
2687 UDC_DMA_STP_STS_BS_HOST_READY,
2688 UDC_DMA_STP_STS_BS);
2690 /* set poll demand bit */
2691 tmp =
2692 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2693 tmp |= AMD_BIT(UDC_EPCTL_P);
2694 writel(tmp,
2695 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2697 /* all bytes will be transferred */
2698 req->req.actual = req->req.length;
2700 /* complete req */
2701 complete_req(ep, req, 0);
2703 } else {
2704 /* write fifo */
2705 udc_txfifo_write(ep, &req->req);
2707 /* lengh bytes transferred */
2708 len = req->req.length - req->req.actual;
2709 if (len > ep->ep.maxpacket)
2710 len = ep->ep.maxpacket;
2712 req->req.actual += len;
2713 if (req->req.actual == req->req.length
2714 || (len != ep->ep.maxpacket)) {
2715 /* complete req */
2716 complete_req(ep, req, 0);
2722 ep->halted = 0;
2723 dev->stall_ep0in = 0;
2724 if (!ep->dma) {
2725 /* clear IN bit */
2726 writel(AMD_BIT(UDC_EPSTS_IN),
2727 &dev->ep[UDC_EP0IN_IX].regs->sts);
2731 return ret_val;
2735 /* Interrupt handler for global device events */
2736 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2737 __releases(dev->lock)
2738 __acquires(dev->lock)
2740 irqreturn_t ret_val = IRQ_NONE;
2741 u32 tmp;
2742 u32 cfg;
2743 struct udc_ep *ep;
2744 u16 i;
2745 u8 udc_csr_epix;
2747 /* SET_CONFIG irq ? */
2748 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2749 ret_val = IRQ_HANDLED;
2751 /* read config value */
2752 tmp = readl(&dev->regs->sts);
2753 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2754 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2755 dev->cur_config = cfg;
2756 dev->set_cfg_not_acked = 1;
2758 /* make usb request for gadget driver */
2759 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2760 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2761 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2763 /* programm the NE registers */
2764 for (i = 0; i < UDC_EP_NUM; i++) {
2765 ep = &dev->ep[i];
2766 if (ep->in) {
2768 /* ep ix in UDC CSR register space */
2769 udc_csr_epix = ep->num;
2772 /* OUT ep */
2773 } else {
2774 /* ep ix in UDC CSR register space */
2775 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2778 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2779 /* ep cfg */
2780 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2781 UDC_CSR_NE_CFG);
2782 /* write reg */
2783 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2785 /* clear stall bits */
2786 ep->halted = 0;
2787 tmp = readl(&ep->regs->ctl);
2788 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2789 writel(tmp, &ep->regs->ctl);
2791 /* call gadget zero with setup data received */
2792 spin_unlock(&dev->lock);
2793 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2794 spin_lock(&dev->lock);
2796 } /* SET_INTERFACE ? */
2797 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2798 ret_val = IRQ_HANDLED;
2800 dev->set_cfg_not_acked = 1;
2801 /* read interface and alt setting values */
2802 tmp = readl(&dev->regs->sts);
2803 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2804 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2806 /* make usb request for gadget driver */
2807 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2808 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2809 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2810 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2811 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2813 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2814 dev->cur_alt, dev->cur_intf);
2816 /* programm the NE registers */
2817 for (i = 0; i < UDC_EP_NUM; i++) {
2818 ep = &dev->ep[i];
2819 if (ep->in) {
2821 /* ep ix in UDC CSR register space */
2822 udc_csr_epix = ep->num;
2825 /* OUT ep */
2826 } else {
2827 /* ep ix in UDC CSR register space */
2828 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2831 /* UDC CSR reg */
2832 /* set ep values */
2833 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2834 /* ep interface */
2835 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2836 UDC_CSR_NE_INTF);
2837 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2838 /* ep alt */
2839 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2840 UDC_CSR_NE_ALT);
2841 /* write reg */
2842 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2844 /* clear stall bits */
2845 ep->halted = 0;
2846 tmp = readl(&ep->regs->ctl);
2847 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2848 writel(tmp, &ep->regs->ctl);
2851 /* call gadget zero with setup data received */
2852 spin_unlock(&dev->lock);
2853 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2854 spin_lock(&dev->lock);
2856 } /* USB reset */
2857 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2858 DBG(dev, "USB Reset interrupt\n");
2859 ret_val = IRQ_HANDLED;
2861 /* allow soft reset when suspend occurs */
2862 soft_reset_occured = 0;
2864 dev->waiting_zlp_ack_ep0in = 0;
2865 dev->set_cfg_not_acked = 0;
2867 /* mask not needed interrupts */
2868 udc_mask_unused_interrupts(dev);
2870 /* call gadget to resume and reset configs etc. */
2871 spin_unlock(&dev->lock);
2872 if (dev->sys_suspended && dev->driver->resume) {
2873 dev->driver->resume(&dev->gadget);
2874 dev->sys_suspended = 0;
2876 dev->driver->disconnect(&dev->gadget);
2877 spin_lock(&dev->lock);
2879 /* disable ep0 to empty req queue */
2880 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2881 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2883 /* soft reset when rxfifo not empty */
2884 tmp = readl(&dev->regs->sts);
2885 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2886 && !soft_reset_after_usbreset_occured) {
2887 udc_soft_reset(dev);
2888 soft_reset_after_usbreset_occured++;
2892 * DMA reset to kill potential old DMA hw hang,
2893 * POLL bit is already reset by ep_init() through
2894 * disconnect()
2896 DBG(dev, "DMA machine reset\n");
2897 tmp = readl(&dev->regs->cfg);
2898 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2899 writel(tmp, &dev->regs->cfg);
2901 /* put into initial config */
2902 udc_basic_init(dev);
2904 /* enable device setup interrupts */
2905 udc_enable_dev_setup_interrupts(dev);
2907 /* enable suspend interrupt */
2908 tmp = readl(&dev->regs->irqmsk);
2909 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2910 writel(tmp, &dev->regs->irqmsk);
2912 } /* USB suspend */
2913 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2914 DBG(dev, "USB Suspend interrupt\n");
2915 ret_val = IRQ_HANDLED;
2916 if (dev->driver->suspend) {
2917 spin_unlock(&dev->lock);
2918 dev->sys_suspended = 1;
2919 dev->driver->suspend(&dev->gadget);
2920 spin_lock(&dev->lock);
2922 } /* new speed ? */
2923 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2924 DBG(dev, "ENUM interrupt\n");
2925 ret_val = IRQ_HANDLED;
2926 soft_reset_after_usbreset_occured = 0;
2928 /* disable ep0 to empty req queue */
2929 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2930 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2932 /* link up all endpoints */
2933 udc_setup_endpoints(dev);
2934 dev_info(&dev->pdev->dev, "Connect: %s\n",
2935 usb_speed_string(dev->gadget.speed));
2937 /* init ep 0 */
2938 activate_control_endpoints(dev);
2940 /* enable ep0 interrupts */
2941 udc_enable_ep0_interrupts(dev);
2943 /* session valid change interrupt */
2944 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2945 DBG(dev, "USB SVC interrupt\n");
2946 ret_val = IRQ_HANDLED;
2948 /* check that session is not valid to detect disconnect */
2949 tmp = readl(&dev->regs->sts);
2950 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2951 /* disable suspend interrupt */
2952 tmp = readl(&dev->regs->irqmsk);
2953 tmp |= AMD_BIT(UDC_DEVINT_US);
2954 writel(tmp, &dev->regs->irqmsk);
2955 DBG(dev, "USB Disconnect (session valid low)\n");
2956 /* cleanup on disconnect */
2957 usb_disconnect(udc);
2962 return ret_val;
2965 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2966 static irqreturn_t udc_irq(int irq, void *pdev)
2968 struct udc *dev = pdev;
2969 u32 reg;
2970 u16 i;
2971 u32 ep_irq;
2972 irqreturn_t ret_val = IRQ_NONE;
2974 spin_lock(&dev->lock);
2976 /* check for ep irq */
2977 reg = readl(&dev->regs->ep_irqsts);
2978 if (reg) {
2979 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2980 ret_val |= udc_control_out_isr(dev);
2981 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2982 ret_val |= udc_control_in_isr(dev);
2985 * data endpoint
2986 * iterate ep's
2988 for (i = 1; i < UDC_EP_NUM; i++) {
2989 ep_irq = 1 << i;
2990 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2991 continue;
2993 /* clear irq status */
2994 writel(ep_irq, &dev->regs->ep_irqsts);
2996 /* irq for out ep ? */
2997 if (i > UDC_EPIN_NUM)
2998 ret_val |= udc_data_out_isr(dev, i);
2999 else
3000 ret_val |= udc_data_in_isr(dev, i);
3006 /* check for dev irq */
3007 reg = readl(&dev->regs->irqsts);
3008 if (reg) {
3009 /* clear irq */
3010 writel(reg, &dev->regs->irqsts);
3011 ret_val |= udc_dev_isr(dev, reg);
3015 spin_unlock(&dev->lock);
3016 return ret_val;
3019 /* Tears down device */
3020 static void gadget_release(struct device *pdev)
3022 struct amd5536udc *dev = dev_get_drvdata(pdev);
3023 kfree(dev);
3026 /* Cleanup on device remove */
3027 static void udc_remove(struct udc *dev)
3029 /* remove timer */
3030 stop_timer++;
3031 if (timer_pending(&udc_timer))
3032 wait_for_completion(&on_exit);
3033 if (udc_timer.data)
3034 del_timer_sync(&udc_timer);
3035 /* remove pollstall timer */
3036 stop_pollstall_timer++;
3037 if (timer_pending(&udc_pollstall_timer))
3038 wait_for_completion(&on_pollstall_exit);
3039 if (udc_pollstall_timer.data)
3040 del_timer_sync(&udc_pollstall_timer);
3041 udc = NULL;
3044 /* Reset all pci context */
3045 static void udc_pci_remove(struct pci_dev *pdev)
3047 struct udc *dev;
3049 dev = pci_get_drvdata(pdev);
3051 usb_del_gadget_udc(&udc->gadget);
3052 /* gadget driver must not be registered */
3053 BUG_ON(dev->driver != NULL);
3055 /* dma pool cleanup */
3056 if (dev->data_requests)
3057 pci_pool_destroy(dev->data_requests);
3059 if (dev->stp_requests) {
3060 /* cleanup DMA desc's for ep0in */
3061 pci_pool_free(dev->stp_requests,
3062 dev->ep[UDC_EP0OUT_IX].td_stp,
3063 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3064 pci_pool_free(dev->stp_requests,
3065 dev->ep[UDC_EP0OUT_IX].td,
3066 dev->ep[UDC_EP0OUT_IX].td_phys);
3068 pci_pool_destroy(dev->stp_requests);
3071 /* reset controller */
3072 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3073 if (dev->irq_registered)
3074 free_irq(pdev->irq, dev);
3075 if (dev->regs)
3076 iounmap(dev->regs);
3077 if (dev->mem_region)
3078 release_mem_region(pci_resource_start(pdev, 0),
3079 pci_resource_len(pdev, 0));
3080 if (dev->active)
3081 pci_disable_device(pdev);
3083 udc_remove(dev);
3086 /* create dma pools on init */
3087 static int init_dma_pools(struct udc *dev)
3089 struct udc_stp_dma *td_stp;
3090 struct udc_data_dma *td_data;
3091 int retval;
3093 /* consistent DMA mode setting ? */
3094 if (use_dma_ppb) {
3095 use_dma_bufferfill_mode = 0;
3096 } else {
3097 use_dma_ppb_du = 0;
3098 use_dma_bufferfill_mode = 1;
3101 /* DMA setup */
3102 dev->data_requests = dma_pool_create("data_requests", NULL,
3103 sizeof(struct udc_data_dma), 0, 0);
3104 if (!dev->data_requests) {
3105 DBG(dev, "can't get request data pool\n");
3106 retval = -ENOMEM;
3107 goto finished;
3110 /* EP0 in dma regs = dev control regs */
3111 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3113 /* dma desc for setup data */
3114 dev->stp_requests = dma_pool_create("setup requests", NULL,
3115 sizeof(struct udc_stp_dma), 0, 0);
3116 if (!dev->stp_requests) {
3117 DBG(dev, "can't get stp request pool\n");
3118 retval = -ENOMEM;
3119 goto finished;
3121 /* setup */
3122 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3123 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3124 if (td_stp == NULL) {
3125 retval = -ENOMEM;
3126 goto finished;
3128 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3130 /* data: 0 packets !? */
3131 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3132 &dev->ep[UDC_EP0OUT_IX].td_phys);
3133 if (td_data == NULL) {
3134 retval = -ENOMEM;
3135 goto finished;
3137 dev->ep[UDC_EP0OUT_IX].td = td_data;
3138 return 0;
3140 finished:
3141 return retval;
3144 /* Called by pci bus driver to init pci context */
3145 static int udc_pci_probe(
3146 struct pci_dev *pdev,
3147 const struct pci_device_id *id
3150 struct udc *dev;
3151 unsigned long resource;
3152 unsigned long len;
3153 int retval = 0;
3155 /* one udc only */
3156 if (udc) {
3157 dev_dbg(&pdev->dev, "already probed\n");
3158 return -EBUSY;
3161 /* init */
3162 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3163 if (!dev) {
3164 retval = -ENOMEM;
3165 goto finished;
3168 /* pci setup */
3169 if (pci_enable_device(pdev) < 0) {
3170 kfree(dev);
3171 dev = NULL;
3172 retval = -ENODEV;
3173 goto finished;
3175 dev->active = 1;
3177 /* PCI resource allocation */
3178 resource = pci_resource_start(pdev, 0);
3179 len = pci_resource_len(pdev, 0);
3181 if (!request_mem_region(resource, len, name)) {
3182 dev_dbg(&pdev->dev, "pci device used already\n");
3183 kfree(dev);
3184 dev = NULL;
3185 retval = -EBUSY;
3186 goto finished;
3188 dev->mem_region = 1;
3190 dev->virt_addr = ioremap_nocache(resource, len);
3191 if (dev->virt_addr == NULL) {
3192 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3193 kfree(dev);
3194 dev = NULL;
3195 retval = -EFAULT;
3196 goto finished;
3199 if (!pdev->irq) {
3200 dev_err(&pdev->dev, "irq not set\n");
3201 kfree(dev);
3202 dev = NULL;
3203 retval = -ENODEV;
3204 goto finished;
3207 spin_lock_init(&dev->lock);
3208 /* udc csr registers base */
3209 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3210 /* dev registers base */
3211 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3212 /* ep registers base */
3213 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3214 /* fifo's base */
3215 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3216 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3218 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3219 dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3220 kfree(dev);
3221 dev = NULL;
3222 retval = -EBUSY;
3223 goto finished;
3225 dev->irq_registered = 1;
3227 pci_set_drvdata(pdev, dev);
3229 /* chip revision for Hs AMD5536 */
3230 dev->chiprev = pdev->revision;
3232 pci_set_master(pdev);
3233 pci_try_set_mwi(pdev);
3235 /* init dma pools */
3236 if (use_dma) {
3237 retval = init_dma_pools(dev);
3238 if (retval != 0)
3239 goto finished;
3242 dev->phys_addr = resource;
3243 dev->irq = pdev->irq;
3244 dev->pdev = pdev;
3246 /* general probing */
3247 if (udc_probe(dev) == 0)
3248 return 0;
3250 finished:
3251 if (dev)
3252 udc_pci_remove(pdev);
3253 return retval;
3256 /* general probe */
3257 static int udc_probe(struct udc *dev)
3259 char tmp[128];
3260 u32 reg;
3261 int retval;
3263 /* mark timer as not initialized */
3264 udc_timer.data = 0;
3265 udc_pollstall_timer.data = 0;
3267 /* device struct setup */
3268 dev->gadget.ops = &udc_ops;
3270 dev_set_name(&dev->gadget.dev, "gadget");
3271 dev->gadget.name = name;
3272 dev->gadget.max_speed = USB_SPEED_HIGH;
3274 /* init registers, interrupts, ... */
3275 startup_registers(dev);
3277 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3279 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3280 dev_info(&dev->pdev->dev,
3281 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3282 tmp, dev->phys_addr, dev->chiprev,
3283 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3284 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3285 if (dev->chiprev == UDC_HSA0_REV) {
3286 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3287 retval = -ENODEV;
3288 goto finished;
3290 dev_info(&dev->pdev->dev,
3291 "driver version: %s(for Geode5536 B1)\n", tmp);
3292 udc = dev;
3294 retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
3295 gadget_release);
3296 if (retval)
3297 goto finished;
3299 /* timer init */
3300 init_timer(&udc_timer);
3301 udc_timer.function = udc_timer_function;
3302 udc_timer.data = 1;
3303 /* timer pollstall init */
3304 init_timer(&udc_pollstall_timer);
3305 udc_pollstall_timer.function = udc_pollstall_timer_function;
3306 udc_pollstall_timer.data = 1;
3308 /* set SD */
3309 reg = readl(&dev->regs->ctl);
3310 reg |= AMD_BIT(UDC_DEVCTL_SD);
3311 writel(reg, &dev->regs->ctl);
3313 /* print dev register info */
3314 print_regs(dev);
3316 return 0;
3318 finished:
3319 return retval;
3322 /* Initiates a remote wakeup */
3323 static int udc_remote_wakeup(struct udc *dev)
3325 unsigned long flags;
3326 u32 tmp;
3328 DBG(dev, "UDC initiates remote wakeup\n");
3330 spin_lock_irqsave(&dev->lock, flags);
3332 tmp = readl(&dev->regs->ctl);
3333 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3334 writel(tmp, &dev->regs->ctl);
3335 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3336 writel(tmp, &dev->regs->ctl);
3338 spin_unlock_irqrestore(&dev->lock, flags);
3339 return 0;
3342 /* PCI device parameters */
3343 static const struct pci_device_id pci_id[] = {
3345 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3346 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3347 .class_mask = 0xffffffff,
3351 MODULE_DEVICE_TABLE(pci, pci_id);
3353 /* PCI functions */
3354 static struct pci_driver udc_pci_driver = {
3355 .name = (char *) name,
3356 .id_table = pci_id,
3357 .probe = udc_pci_probe,
3358 .remove = udc_pci_remove,
3361 module_pci_driver(udc_pci_driver);
3363 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3364 MODULE_AUTHOR("Thomas Dahlmann");
3365 MODULE_LICENSE("GPL");