2 * linux/drivers/usb/gadget/s3c-hsotg.c
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
12 * S3C USB2.0 High-speed / OtG driver
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/of_platform.h>
33 #include <linux/phy/phy.h>
35 #include <linux/usb/ch9.h>
36 #include <linux/usb/gadget.h>
37 #include <linux/usb/phy.h>
38 #include <linux/platform_data/s3c-hsotg.h>
40 #include "s3c-hsotg.h"
42 static const char * const s3c_hsotg_supply_names
[] = {
43 "vusb_d", /* digital USB supply, 1.2V */
44 "vusb_a", /* analog USB supply, 1.1V */
50 * Unfortunately there seems to be a limit of the amount of data that can
51 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
52 * packets (which practically means 1 packet and 63 bytes of data) when the
55 * This means if we are wanting to move >127 bytes of data, we need to
56 * split the transactions up, but just doing one packet at a time does
57 * not work (this may be an implicit DATA0 PID on first packet of the
58 * transaction) and doing 2 packets is outside the controller's limits.
60 * If we try to lower the MPS size for EP0, then no transfers work properly
61 * for EP0, and the system will fail basic enumeration. As no cause for this
62 * has currently been found, we cannot support any large IN transfers for
65 #define EP0_MPS_LIMIT 64
71 * struct s3c_hsotg_ep - driver endpoint definition.
72 * @ep: The gadget layer representation of the endpoint.
73 * @name: The driver generated name for the endpoint.
74 * @queue: Queue of requests for this endpoint.
75 * @parent: Reference back to the parent device structure.
76 * @req: The current request that the endpoint is processing. This is
77 * used to indicate an request has been loaded onto the endpoint
78 * and has yet to be completed (maybe due to data move, or simply
79 * awaiting an ack from the core all the data has been completed).
80 * @debugfs: File entry for debugfs file for this endpoint.
81 * @lock: State lock to protect contents of endpoint.
82 * @dir_in: Set to true if this endpoint is of the IN direction, which
83 * means that it is sending data to the Host.
84 * @index: The index for the endpoint registers.
85 * @mc: Multi Count - number of transactions per microframe
86 * @interval - Interval for periodic endpoints
87 * @name: The name array passed to the USB core.
88 * @halted: Set if the endpoint has been halted.
89 * @periodic: Set if this is a periodic ep, such as Interrupt
90 * @isochronous: Set if this is a isochronous ep
91 * @sent_zlp: Set if we've sent a zero-length packet.
92 * @total_data: The total number of data bytes done.
93 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
94 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
95 * @last_load: The offset of data for the last start of request.
96 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
98 * This is the driver's state for each registered enpoint, allowing it
99 * to keep track of transactions that need doing. Each endpoint has a
100 * lock to protect the state, to try and avoid using an overall lock
101 * for the host controller as much as possible.
103 * For periodic IN endpoints, we have fifo_size and fifo_load to try
104 * and keep track of the amount of data in the periodic FIFO for each
105 * of these as we don't have a status register that tells us how much
106 * is in each of them. (note, this may actually be useless information
107 * as in shared-fifo mode periodic in acts like a single-frame packet
108 * buffer than a fifo)
110 struct s3c_hsotg_ep
{
112 struct list_head queue
;
113 struct s3c_hsotg
*parent
;
114 struct s3c_hsotg_req
*req
;
115 struct dentry
*debugfs
;
118 unsigned long total_data
;
119 unsigned int size_loaded
;
120 unsigned int last_load
;
121 unsigned int fifo_load
;
122 unsigned short fifo_size
;
124 unsigned char dir_in
;
127 unsigned char interval
;
129 unsigned int halted
:1;
130 unsigned int periodic
:1;
131 unsigned int isochronous
:1;
132 unsigned int sent_zlp
:1;
138 * struct s3c_hsotg - driver state.
139 * @dev: The parent device supplied to the probe function
140 * @driver: USB gadget driver
141 * @phy: The otg phy transceiver structure for phy control.
142 * @uphy: The otg phy transceiver structure for old USB phy control.
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
145 * @regs: The memory area mapped for accessing registers.
146 * @irq: The IRQ number we are using
147 * @supplies: Definition of USB power supplies
148 * @phyif: PHY interface width
149 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
150 * @num_of_eps: Number of available EPs (excluding EP0)
151 * @debug_root: root directrory for debugfs.
152 * @debug_file: main status file for debugfs.
153 * @debug_fifo: FIFO status file for debugfs.
154 * @ep0_reply: Request used for ep0 reply.
155 * @ep0_buff: Buffer for EP0 reply data, if needed.
156 * @ctrl_buff: Buffer for EP0 control requests.
157 * @ctrl_req: Request for EP0 control packets.
158 * @setup: NAK management for EP0 SETUP
159 * @last_rst: Time of last reset
160 * @eps: The endpoints being supplied to the gadget framework
164 struct usb_gadget_driver
*driver
;
166 struct usb_phy
*uphy
;
167 struct s3c_hsotg_plat
*plat
;
175 struct regulator_bulk_data supplies
[ARRAY_SIZE(s3c_hsotg_supply_names
)];
178 unsigned int dedicated_fifos
:1;
179 unsigned char num_of_eps
;
181 struct dentry
*debug_root
;
182 struct dentry
*debug_file
;
183 struct dentry
*debug_fifo
;
185 struct usb_request
*ep0_reply
;
186 struct usb_request
*ctrl_req
;
190 struct usb_gadget gadget
;
192 unsigned long last_rst
;
193 struct s3c_hsotg_ep
*eps
;
197 * struct s3c_hsotg_req - data transfer request
198 * @req: The USB gadget request
199 * @queue: The list of requests for the endpoint this is queued for.
200 * @in_progress: Has already had size/packets written to core
201 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
203 struct s3c_hsotg_req
{
204 struct usb_request req
;
205 struct list_head queue
;
206 unsigned char in_progress
;
207 unsigned char mapped
;
210 /* conversion functions */
211 static inline struct s3c_hsotg_req
*our_req(struct usb_request
*req
)
213 return container_of(req
, struct s3c_hsotg_req
, req
);
216 static inline struct s3c_hsotg_ep
*our_ep(struct usb_ep
*ep
)
218 return container_of(ep
, struct s3c_hsotg_ep
, ep
);
221 static inline struct s3c_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
223 return container_of(gadget
, struct s3c_hsotg
, gadget
);
226 static inline void __orr32(void __iomem
*ptr
, u32 val
)
228 writel(readl(ptr
) | val
, ptr
);
231 static inline void __bic32(void __iomem
*ptr
, u32 val
)
233 writel(readl(ptr
) & ~val
, ptr
);
236 /* forward decleration of functions */
237 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
);
240 * using_dma - return the DMA status of the driver.
241 * @hsotg: The driver state.
243 * Return true if we're using DMA.
245 * Currently, we have the DMA support code worked into everywhere
246 * that needs it, but the AMBA DMA implementation in the hardware can
247 * only DMA from 32bit aligned addresses. This means that gadgets such
248 * as the CDC Ethernet cannot work as they often pass packets which are
251 * Unfortunately the choice to use DMA or not is global to the controller
252 * and seems to be only settable when the controller is being put through
253 * a core reset. This means we either need to fix the gadgets to take
254 * account of DMA alignment, or add bounce buffers (yuerk).
256 * Until this issue is sorted out, we always return 'false'.
258 static inline bool using_dma(struct s3c_hsotg
*hsotg
)
260 return false; /* support is not complete */
264 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
265 * @hsotg: The device state
266 * @ints: A bitmask of the interrupts to enable
268 static void s3c_hsotg_en_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
270 u32 gsintmsk
= readl(hsotg
->regs
+ GINTMSK
);
273 new_gsintmsk
= gsintmsk
| ints
;
275 if (new_gsintmsk
!= gsintmsk
) {
276 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
277 writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
282 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
283 * @hsotg: The device state
284 * @ints: A bitmask of the interrupts to enable
286 static void s3c_hsotg_disable_gsint(struct s3c_hsotg
*hsotg
, u32 ints
)
288 u32 gsintmsk
= readl(hsotg
->regs
+ GINTMSK
);
291 new_gsintmsk
= gsintmsk
& ~ints
;
293 if (new_gsintmsk
!= gsintmsk
)
294 writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
298 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
299 * @hsotg: The device state
300 * @ep: The endpoint index
301 * @dir_in: True if direction is in.
302 * @en: The enable value, true to enable
304 * Set or clear the mask for an individual endpoint's interrupt
307 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg
*hsotg
,
308 unsigned int ep
, unsigned int dir_in
,
318 local_irq_save(flags
);
319 daint
= readl(hsotg
->regs
+ DAINTMSK
);
324 writel(daint
, hsotg
->regs
+ DAINTMSK
);
325 local_irq_restore(flags
);
329 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
330 * @hsotg: The device instance.
332 static void s3c_hsotg_init_fifo(struct s3c_hsotg
*hsotg
)
340 /* set FIFO sizes to 2048/1024 */
342 writel(2048, hsotg
->regs
+ GRXFSIZ
);
343 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
344 GNPTXFSIZ_NPTxFDep(1024),
345 hsotg
->regs
+ GNPTXFSIZ
);
348 * arange all the rest of the TX FIFOs, as some versions of this
349 * block have overlapping default addresses. This also ensures
350 * that if the settings have been changed, then they are set to
354 /* start at the end of the GNPTXFSIZ, rounded up */
359 * currently we allocate TX FIFOs for all possible endpoints,
360 * and assume that they are all the same size.
363 for (ep
= 1; ep
<= 15; ep
++) {
365 val
|= size
<< DPTXFSIZn_DPTxFSize_SHIFT
;
368 writel(val
, hsotg
->regs
+ DPTXFSIZn(ep
));
372 * according to p428 of the design guide, we need to ensure that
373 * all fifos are flushed before continuing
376 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh
|
377 GRSTCTL_RxFFlsh
, hsotg
->regs
+ GRSTCTL
);
379 /* wait until the fifos are both flushed */
382 val
= readl(hsotg
->regs
+ GRSTCTL
);
384 if ((val
& (GRSTCTL_TxFFlsh
| GRSTCTL_RxFFlsh
)) == 0)
387 if (--timeout
== 0) {
389 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
396 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
400 * @ep: USB endpoint to allocate request for.
401 * @flags: Allocation flags
403 * Allocate a new USB request structure appropriate for the specified endpoint
405 static struct usb_request
*s3c_hsotg_ep_alloc_request(struct usb_ep
*ep
,
408 struct s3c_hsotg_req
*req
;
410 req
= kzalloc(sizeof(struct s3c_hsotg_req
), flags
);
414 INIT_LIST_HEAD(&req
->queue
);
420 * is_ep_periodic - return true if the endpoint is in periodic mode.
421 * @hs_ep: The endpoint to query.
423 * Returns true if the endpoint is in periodic mode, meaning it is being
424 * used for an Interrupt or ISO transfer.
426 static inline int is_ep_periodic(struct s3c_hsotg_ep
*hs_ep
)
428 return hs_ep
->periodic
;
432 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
433 * @hsotg: The device state.
434 * @hs_ep: The endpoint for the request
435 * @hs_req: The request being processed.
437 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
438 * of a request to ensure the buffer is ready for access by the caller.
440 static void s3c_hsotg_unmap_dma(struct s3c_hsotg
*hsotg
,
441 struct s3c_hsotg_ep
*hs_ep
,
442 struct s3c_hsotg_req
*hs_req
)
444 struct usb_request
*req
= &hs_req
->req
;
446 /* ignore this if we're not moving any data */
447 if (hs_req
->req
.length
== 0)
450 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
454 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
455 * @hsotg: The controller state.
456 * @hs_ep: The endpoint we're going to write for.
457 * @hs_req: The request to write data for.
459 * This is called when the TxFIFO has some space in it to hold a new
460 * transmission and we have something to give it. The actual setup of
461 * the data size is done elsewhere, so all we have to do is to actually
464 * The return value is zero if there is more space (or nothing was done)
465 * otherwise -ENOSPC is returned if the FIFO space was used up.
467 * This routine is only needed for PIO
469 static int s3c_hsotg_write_fifo(struct s3c_hsotg
*hsotg
,
470 struct s3c_hsotg_ep
*hs_ep
,
471 struct s3c_hsotg_req
*hs_req
)
473 bool periodic
= is_ep_periodic(hs_ep
);
474 u32 gnptxsts
= readl(hsotg
->regs
+ GNPTXSTS
);
475 int buf_pos
= hs_req
->req
.actual
;
476 int to_write
= hs_ep
->size_loaded
;
482 to_write
-= (buf_pos
- hs_ep
->last_load
);
484 /* if there's nothing to write, get out early */
488 if (periodic
&& !hsotg
->dedicated_fifos
) {
489 u32 epsize
= readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
494 * work out how much data was loaded so we can calculate
495 * how much data is left in the fifo.
498 size_left
= DxEPTSIZ_XferSize_GET(epsize
);
501 * if shared fifo, we cannot write anything until the
502 * previous data has been completely sent.
504 if (hs_ep
->fifo_load
!= 0) {
505 s3c_hsotg_en_gsint(hsotg
, GINTSTS_PTxFEmp
);
509 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
511 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
513 /* how much of the data has moved */
514 size_done
= hs_ep
->size_loaded
- size_left
;
516 /* how much data is left in the fifo */
517 can_write
= hs_ep
->fifo_load
- size_done
;
518 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
519 __func__
, can_write
);
521 can_write
= hs_ep
->fifo_size
- can_write
;
522 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
523 __func__
, can_write
);
525 if (can_write
<= 0) {
526 s3c_hsotg_en_gsint(hsotg
, GINTSTS_PTxFEmp
);
529 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
530 can_write
= readl(hsotg
->regs
+ DTXFSTS(hs_ep
->index
));
535 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts
) == 0) {
537 "%s: no queue slots available (0x%08x)\n",
540 s3c_hsotg_en_gsint(hsotg
, GINTSTS_NPTxFEmp
);
544 can_write
= GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts
);
545 can_write
*= 4; /* fifo size is in 32bit quantities. */
548 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
550 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
551 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
554 * limit to 512 bytes of data, it seems at least on the non-periodic
555 * FIFO, requests of >512 cause the endpoint to get stuck with a
556 * fragment of the end of the transfer in it.
558 if (can_write
> 512 && !periodic
)
562 * limit the write to one max-packet size worth of data, but allow
563 * the transfer to return that it did not run out of fifo space
566 if (to_write
> max_transfer
) {
567 to_write
= max_transfer
;
569 /* it's needed only when we do not use dedicated fifos */
570 if (!hsotg
->dedicated_fifos
)
571 s3c_hsotg_en_gsint(hsotg
,
572 periodic
? GINTSTS_PTxFEmp
:
576 /* see if we can write data */
578 if (to_write
> can_write
) {
579 to_write
= can_write
;
580 pkt_round
= to_write
% max_transfer
;
583 * Round the write down to an
584 * exact number of packets.
586 * Note, we do not currently check to see if we can ever
587 * write a full packet or not to the FIFO.
591 to_write
-= pkt_round
;
594 * enable correct FIFO interrupt to alert us when there
598 /* it's needed only when we do not use dedicated fifos */
599 if (!hsotg
->dedicated_fifos
)
600 s3c_hsotg_en_gsint(hsotg
,
601 periodic
? GINTSTS_PTxFEmp
:
605 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
606 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
611 hs_req
->req
.actual
= buf_pos
+ to_write
;
612 hs_ep
->total_data
+= to_write
;
615 hs_ep
->fifo_load
+= to_write
;
617 to_write
= DIV_ROUND_UP(to_write
, 4);
618 data
= hs_req
->req
.buf
+ buf_pos
;
620 writesl(hsotg
->regs
+ EPFIFO(hs_ep
->index
), data
, to_write
);
622 return (to_write
>= can_write
) ? -ENOSPC
: 0;
626 * get_ep_limit - get the maximum data legnth for this endpoint
627 * @hs_ep: The endpoint
629 * Return the maximum data that can be queued in one go on a given endpoint
630 * so that transfers that are too long can be split.
632 static unsigned get_ep_limit(struct s3c_hsotg_ep
*hs_ep
)
634 int index
= hs_ep
->index
;
639 maxsize
= DxEPTSIZ_XferSize_LIMIT
+ 1;
640 maxpkt
= DxEPTSIZ_PktCnt_LIMIT
+ 1;
644 maxpkt
= DIEPTSIZ0_PktCnt_LIMIT
+ 1;
649 /* we made the constant loading easier above by using +1 */
654 * constrain by packet count if maxpkts*pktsize is greater
655 * than the length register size.
658 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
659 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
665 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
666 * @hsotg: The controller state.
667 * @hs_ep: The endpoint to process a request for
668 * @hs_req: The request to start.
669 * @continuing: True if we are doing more for the current request.
671 * Start the given request running by setting the endpoint registers
672 * appropriately, and writing any data to the FIFOs.
674 static void s3c_hsotg_start_req(struct s3c_hsotg
*hsotg
,
675 struct s3c_hsotg_ep
*hs_ep
,
676 struct s3c_hsotg_req
*hs_req
,
679 struct usb_request
*ureq
= &hs_req
->req
;
680 int index
= hs_ep
->index
;
681 int dir_in
= hs_ep
->dir_in
;
691 if (hs_ep
->req
&& !continuing
) {
692 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
695 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
697 "%s: continue different req\n", __func__
);
703 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
704 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
706 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
707 __func__
, readl(hsotg
->regs
+ epctrl_reg
), index
,
708 hs_ep
->dir_in
? "in" : "out");
710 /* If endpoint is stalled, we will restart request later */
711 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
713 if (ctrl
& DxEPCTL_Stall
) {
714 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
718 length
= ureq
->length
- ureq
->actual
;
719 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
720 ureq
->length
, ureq
->actual
);
723 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
724 ureq
->buf
, length
, ureq
->dma
,
725 ureq
->no_interrupt
, ureq
->zero
, ureq
->short_not_ok
);
727 maxreq
= get_ep_limit(hs_ep
);
728 if (length
> maxreq
) {
729 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
731 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
732 __func__
, length
, maxreq
, round
);
734 /* round down to multiple of packets */
742 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
744 packets
= 1; /* send one packet if length is zero. */
746 if (hs_ep
->isochronous
&& length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
747 dev_err(hsotg
->dev
, "req length > maxpacket*mc\n");
751 if (dir_in
&& index
!= 0)
752 if (hs_ep
->isochronous
)
753 epsize
= DxEPTSIZ_MC(packets
);
755 epsize
= DxEPTSIZ_MC(1);
759 if (index
!= 0 && ureq
->zero
) {
761 * test for the packets being exactly right for the
765 if (length
== (packets
* hs_ep
->ep
.maxpacket
))
769 epsize
|= DxEPTSIZ_PktCnt(packets
);
770 epsize
|= DxEPTSIZ_XferSize(length
);
772 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
773 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
775 /* store the request as the current one we're doing */
778 /* write size / packets */
779 writel(epsize
, hsotg
->regs
+ epsize_reg
);
781 if (using_dma(hsotg
) && !continuing
) {
782 unsigned int dma_reg
;
785 * write DMA address to control register, buffer already
786 * synced by s3c_hsotg_ep_queue().
789 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
790 writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
792 dev_dbg(hsotg
->dev
, "%s: 0x%08x => 0x%08x\n",
793 __func__
, ureq
->dma
, dma_reg
);
796 ctrl
|= DxEPCTL_EPEna
; /* ensure ep enabled */
797 ctrl
|= DxEPCTL_USBActEp
;
799 dev_dbg(hsotg
->dev
, "setup req:%d\n", hsotg
->setup
);
801 /* For Setup request do not clear NAK */
802 if (hsotg
->setup
&& index
== 0)
805 ctrl
|= DxEPCTL_CNAK
; /* clear NAK set by core */
808 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
809 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
812 * set these, it seems that DMA support increments past the end
813 * of the packet buffer so we need to calculate the length from
816 hs_ep
->size_loaded
= length
;
817 hs_ep
->last_load
= ureq
->actual
;
819 if (dir_in
&& !using_dma(hsotg
)) {
820 /* set these anyway, we may need them for non-periodic in */
821 hs_ep
->fifo_load
= 0;
823 s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
827 * clear the INTknTXFEmpMsk when we start request, more as a aide
828 * to debugging to see what is going on.
831 writel(DIEPMSK_INTknTXFEmpMsk
,
832 hsotg
->regs
+ DIEPINT(index
));
835 * Note, trying to clear the NAK here causes problems with transmit
836 * on the S3C6400 ending up with the TXFIFO becoming full.
839 /* check ep is enabled */
840 if (!(readl(hsotg
->regs
+ epctrl_reg
) & DxEPCTL_EPEna
))
842 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
843 index
, readl(hsotg
->regs
+ epctrl_reg
));
845 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n",
846 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
848 /* enable ep interrupts */
849 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
853 * s3c_hsotg_map_dma - map the DMA memory being used for the request
854 * @hsotg: The device state.
855 * @hs_ep: The endpoint the request is on.
856 * @req: The request being processed.
858 * We've been asked to queue a request, so ensure that the memory buffer
859 * is correctly setup for DMA. If we've been passed an extant DMA address
860 * then ensure the buffer has been synced to memory. If our buffer has no
861 * DMA memory, then we map the memory and mark our request to allow us to
862 * cleanup on completion.
864 static int s3c_hsotg_map_dma(struct s3c_hsotg
*hsotg
,
865 struct s3c_hsotg_ep
*hs_ep
,
866 struct usb_request
*req
)
868 struct s3c_hsotg_req
*hs_req
= our_req(req
);
871 /* if the length is zero, ignore the DMA data */
872 if (hs_req
->req
.length
== 0)
875 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
882 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
883 __func__
, req
->buf
, req
->length
);
888 static int s3c_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
891 struct s3c_hsotg_req
*hs_req
= our_req(req
);
892 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
893 struct s3c_hsotg
*hs
= hs_ep
->parent
;
896 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
897 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
898 req
->zero
, req
->short_not_ok
);
900 /* initialise status of the request */
901 INIT_LIST_HEAD(&hs_req
->queue
);
903 req
->status
= -EINPROGRESS
;
905 /* if we're using DMA, sync the buffers as necessary */
907 int ret
= s3c_hsotg_map_dma(hs
, hs_ep
, req
);
912 first
= list_empty(&hs_ep
->queue
);
913 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
916 s3c_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
921 static int s3c_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
924 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
925 struct s3c_hsotg
*hs
= hs_ep
->parent
;
926 unsigned long flags
= 0;
929 spin_lock_irqsave(&hs
->lock
, flags
);
930 ret
= s3c_hsotg_ep_queue(ep
, req
, gfp_flags
);
931 spin_unlock_irqrestore(&hs
->lock
, flags
);
936 static void s3c_hsotg_ep_free_request(struct usb_ep
*ep
,
937 struct usb_request
*req
)
939 struct s3c_hsotg_req
*hs_req
= our_req(req
);
945 * s3c_hsotg_complete_oursetup - setup completion callback
946 * @ep: The endpoint the request was on.
947 * @req: The request completed.
949 * Called on completion of any requests the driver itself
950 * submitted that need cleaning up.
952 static void s3c_hsotg_complete_oursetup(struct usb_ep
*ep
,
953 struct usb_request
*req
)
955 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
956 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
958 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
960 s3c_hsotg_ep_free_request(ep
, req
);
964 * ep_from_windex - convert control wIndex value to endpoint
965 * @hsotg: The driver state.
966 * @windex: The control request wIndex field (in host order).
968 * Convert the given wIndex into a pointer to an driver endpoint
969 * structure, or return NULL if it is not a valid endpoint.
971 static struct s3c_hsotg_ep
*ep_from_windex(struct s3c_hsotg
*hsotg
,
974 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[windex
& 0x7F];
975 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
976 int idx
= windex
& 0x7F;
981 if (idx
> hsotg
->num_of_eps
)
984 if (idx
&& ep
->dir_in
!= dir
)
991 * s3c_hsotg_send_reply - send reply to control request
992 * @hsotg: The device state
994 * @buff: Buffer for request
995 * @length: Length of reply.
997 * Create a request and queue it on the given endpoint. This is useful as
998 * an internal method of sending replies to certain control requests, etc.
1000 static int s3c_hsotg_send_reply(struct s3c_hsotg
*hsotg
,
1001 struct s3c_hsotg_ep
*ep
,
1005 struct usb_request
*req
;
1008 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1010 req
= s3c_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1011 hsotg
->ep0_reply
= req
;
1013 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1017 req
->buf
= hsotg
->ep0_buff
;
1018 req
->length
= length
;
1019 req
->zero
= 1; /* always do zero-length final transfer */
1020 req
->complete
= s3c_hsotg_complete_oursetup
;
1023 memcpy(req
->buf
, buff
, length
);
1027 ret
= s3c_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1029 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1037 * s3c_hsotg_process_req_status - process request GET_STATUS
1038 * @hsotg: The device state
1039 * @ctrl: USB control request
1041 static int s3c_hsotg_process_req_status(struct s3c_hsotg
*hsotg
,
1042 struct usb_ctrlrequest
*ctrl
)
1044 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1045 struct s3c_hsotg_ep
*ep
;
1049 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1052 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1056 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1057 case USB_RECIP_DEVICE
:
1058 reply
= cpu_to_le16(0); /* bit 0 => self powered,
1059 * bit 1 => remote wakeup */
1062 case USB_RECIP_INTERFACE
:
1063 /* currently, the data result should be zero */
1064 reply
= cpu_to_le16(0);
1067 case USB_RECIP_ENDPOINT
:
1068 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1072 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1079 if (le16_to_cpu(ctrl
->wLength
) != 2)
1082 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1084 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1091 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
);
1094 * get_ep_head - return the first request on the endpoint
1095 * @hs_ep: The controller endpoint to get
1097 * Get the first request on the endpoint.
1099 static struct s3c_hsotg_req
*get_ep_head(struct s3c_hsotg_ep
*hs_ep
)
1101 if (list_empty(&hs_ep
->queue
))
1104 return list_first_entry(&hs_ep
->queue
, struct s3c_hsotg_req
, queue
);
1108 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1109 * @hsotg: The device state
1110 * @ctrl: USB control request
1112 static int s3c_hsotg_process_req_feature(struct s3c_hsotg
*hsotg
,
1113 struct usb_ctrlrequest
*ctrl
)
1115 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1116 struct s3c_hsotg_req
*hs_req
;
1118 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1119 struct s3c_hsotg_ep
*ep
;
1123 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1124 __func__
, set
? "SET" : "CLEAR");
1126 if (ctrl
->bRequestType
== USB_RECIP_ENDPOINT
) {
1127 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1129 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1130 __func__
, le16_to_cpu(ctrl
->wIndex
));
1134 switch (le16_to_cpu(ctrl
->wValue
)) {
1135 case USB_ENDPOINT_HALT
:
1136 halted
= ep
->halted
;
1138 s3c_hsotg_ep_sethalt(&ep
->ep
, set
);
1140 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1143 "%s: failed to send reply\n", __func__
);
1148 * we have to complete all requests for ep if it was
1149 * halted, and the halt was cleared by CLEAR_FEATURE
1152 if (!set
&& halted
) {
1154 * If we have request in progress,
1160 list_del_init(&hs_req
->queue
);
1161 hs_req
->req
.complete(&ep
->ep
,
1165 /* If we have pending request, then start it */
1166 restart
= !list_empty(&ep
->queue
);
1168 hs_req
= get_ep_head(ep
);
1169 s3c_hsotg_start_req(hsotg
, ep
,
1180 return -ENOENT
; /* currently only deal with endpoint */
1185 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
);
1186 static void s3c_hsotg_disconnect(struct s3c_hsotg
*hsotg
);
1189 * s3c_hsotg_process_control - process a control request
1190 * @hsotg: The device state
1191 * @ctrl: The control request received
1193 * The controller has received the SETUP phase of a control request, and
1194 * needs to work out what to do next (and whether to pass it on to the
1197 static void s3c_hsotg_process_control(struct s3c_hsotg
*hsotg
,
1198 struct usb_ctrlrequest
*ctrl
)
1200 struct s3c_hsotg_ep
*ep0
= &hsotg
->eps
[0];
1206 dev_dbg(hsotg
->dev
, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1207 ctrl
->bRequest
, ctrl
->bRequestType
,
1208 ctrl
->wValue
, ctrl
->wLength
);
1211 * record the direction of the request, for later use when enquing
1215 ep0
->dir_in
= (ctrl
->bRequestType
& USB_DIR_IN
) ? 1 : 0;
1216 dev_dbg(hsotg
->dev
, "ctrl: dir_in=%d\n", ep0
->dir_in
);
1219 * if we've no data with this request, then the last part of the
1220 * transaction is going to implicitly be IN.
1222 if (ctrl
->wLength
== 0)
1225 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1226 switch (ctrl
->bRequest
) {
1227 case USB_REQ_SET_ADDRESS
:
1228 s3c_hsotg_disconnect(hsotg
);
1229 dcfg
= readl(hsotg
->regs
+ DCFG
);
1230 dcfg
&= ~DCFG_DevAddr_MASK
;
1231 dcfg
|= ctrl
->wValue
<< DCFG_DevAddr_SHIFT
;
1232 writel(dcfg
, hsotg
->regs
+ DCFG
);
1234 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1236 ret
= s3c_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1239 case USB_REQ_GET_STATUS
:
1240 ret
= s3c_hsotg_process_req_status(hsotg
, ctrl
);
1243 case USB_REQ_CLEAR_FEATURE
:
1244 case USB_REQ_SET_FEATURE
:
1245 ret
= s3c_hsotg_process_req_feature(hsotg
, ctrl
);
1250 /* as a fallback, try delivering it to the driver to deal with */
1252 if (ret
== 0 && hsotg
->driver
) {
1253 spin_unlock(&hsotg
->lock
);
1254 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1255 spin_lock(&hsotg
->lock
);
1257 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1261 * the request is either unhandlable, or is not formatted correctly
1262 * so respond with a STALL for the status stage to indicate failure.
1269 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1270 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1273 * DxEPCTL_Stall will be cleared by EP once it has
1274 * taken effect, so no need to clear later.
1277 ctrl
= readl(hsotg
->regs
+ reg
);
1278 ctrl
|= DxEPCTL_Stall
;
1279 ctrl
|= DxEPCTL_CNAK
;
1280 writel(ctrl
, hsotg
->regs
+ reg
);
1283 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1284 ctrl
, reg
, readl(hsotg
->regs
+ reg
));
1287 * don't believe we need to anything more to get the EP
1288 * to reply with a STALL packet
1292 * complete won't be called, so we enqueue
1293 * setup request here
1295 s3c_hsotg_enqueue_setup(hsotg
);
1300 * s3c_hsotg_complete_setup - completion of a setup transfer
1301 * @ep: The endpoint the request was on.
1302 * @req: The request completed.
1304 * Called on completion of any requests the driver itself submitted for
1307 static void s3c_hsotg_complete_setup(struct usb_ep
*ep
,
1308 struct usb_request
*req
)
1310 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
1311 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
1313 if (req
->status
< 0) {
1314 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1318 spin_lock(&hsotg
->lock
);
1319 if (req
->actual
== 0)
1320 s3c_hsotg_enqueue_setup(hsotg
);
1322 s3c_hsotg_process_control(hsotg
, req
->buf
);
1323 spin_unlock(&hsotg
->lock
);
1327 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1328 * @hsotg: The device state.
1330 * Enqueue a request on EP0 if necessary to received any SETUP packets
1331 * received from the host.
1333 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg
*hsotg
)
1335 struct usb_request
*req
= hsotg
->ctrl_req
;
1336 struct s3c_hsotg_req
*hs_req
= our_req(req
);
1339 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1343 req
->buf
= hsotg
->ctrl_buff
;
1344 req
->complete
= s3c_hsotg_complete_setup
;
1346 if (!list_empty(&hs_req
->queue
)) {
1347 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1351 hsotg
->eps
[0].dir_in
= 0;
1353 ret
= s3c_hsotg_ep_queue(&hsotg
->eps
[0].ep
, req
, GFP_ATOMIC
);
1355 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1357 * Don't think there's much we can do other than watch the
1364 * s3c_hsotg_complete_request - complete a request given to us
1365 * @hsotg: The device state.
1366 * @hs_ep: The endpoint the request was on.
1367 * @hs_req: The request to complete.
1368 * @result: The result code (0 => Ok, otherwise errno)
1370 * The given request has finished, so call the necessary completion
1371 * if it has one and then look to see if we can start a new request
1374 * Note, expects the ep to already be locked as appropriate.
1376 static void s3c_hsotg_complete_request(struct s3c_hsotg
*hsotg
,
1377 struct s3c_hsotg_ep
*hs_ep
,
1378 struct s3c_hsotg_req
*hs_req
,
1384 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1388 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
1389 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
1392 * only replace the status if we've not already set an error
1393 * from a previous transaction
1396 if (hs_req
->req
.status
== -EINPROGRESS
)
1397 hs_req
->req
.status
= result
;
1400 list_del_init(&hs_req
->queue
);
1402 if (using_dma(hsotg
))
1403 s3c_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
1406 * call the complete request with the locks off, just in case the
1407 * request tries to queue more work for this endpoint.
1410 if (hs_req
->req
.complete
) {
1411 spin_unlock(&hsotg
->lock
);
1412 hs_req
->req
.complete(&hs_ep
->ep
, &hs_req
->req
);
1413 spin_lock(&hsotg
->lock
);
1417 * Look to see if there is anything else to do. Note, the completion
1418 * of the previous request may have caused a new request to be started
1419 * so be careful when doing this.
1422 if (!hs_ep
->req
&& result
>= 0) {
1423 restart
= !list_empty(&hs_ep
->queue
);
1425 hs_req
= get_ep_head(hs_ep
);
1426 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1432 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1433 * @hsotg: The device state.
1434 * @ep_idx: The endpoint index for the data
1435 * @size: The size of data in the fifo, in bytes
1437 * The FIFO status shows there is data to read from the FIFO for a given
1438 * endpoint, so sort out whether we need to read the data into a request
1439 * that has been made for that endpoint.
1441 static void s3c_hsotg_rx_data(struct s3c_hsotg
*hsotg
, int ep_idx
, int size
)
1443 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep_idx
];
1444 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1445 void __iomem
*fifo
= hsotg
->regs
+ EPFIFO(ep_idx
);
1452 u32 epctl
= readl(hsotg
->regs
+ DOEPCTL(ep_idx
));
1455 dev_warn(hsotg
->dev
,
1456 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1457 __func__
, size
, ep_idx
, epctl
);
1459 /* dump the data from the FIFO, we've nothing we can do */
1460 for (ptr
= 0; ptr
< size
; ptr
+= 4)
1467 read_ptr
= hs_req
->req
.actual
;
1468 max_req
= hs_req
->req
.length
- read_ptr
;
1470 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
1471 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
1473 if (to_read
> max_req
) {
1475 * more data appeared than we where willing
1476 * to deal with in this request.
1479 /* currently we don't deal this */
1483 hs_ep
->total_data
+= to_read
;
1484 hs_req
->req
.actual
+= to_read
;
1485 to_read
= DIV_ROUND_UP(to_read
, 4);
1488 * note, we might over-write the buffer end by 3 bytes depending on
1489 * alignment of the data.
1491 readsl(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
1495 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1496 * @hsotg: The device instance
1497 * @req: The request currently on this endpoint
1499 * Generate a zero-length IN packet request for terminating a SETUP
1502 * Note, since we don't write any data to the TxFIFO, then it is
1503 * currently believed that we do not need to wait for any space in
1506 static void s3c_hsotg_send_zlp(struct s3c_hsotg
*hsotg
,
1507 struct s3c_hsotg_req
*req
)
1512 dev_warn(hsotg
->dev
, "%s: no request?\n", __func__
);
1516 if (req
->req
.length
== 0) {
1517 hsotg
->eps
[0].sent_zlp
= 1;
1518 s3c_hsotg_enqueue_setup(hsotg
);
1522 hsotg
->eps
[0].dir_in
= 1;
1523 hsotg
->eps
[0].sent_zlp
= 1;
1525 dev_dbg(hsotg
->dev
, "sending zero-length packet\n");
1527 /* issue a zero-sized packet to terminate this */
1528 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1529 DxEPTSIZ_XferSize(0), hsotg
->regs
+ DIEPTSIZ(0));
1531 ctrl
= readl(hsotg
->regs
+ DIEPCTL0
);
1532 ctrl
|= DxEPCTL_CNAK
; /* clear NAK set by core */
1533 ctrl
|= DxEPCTL_EPEna
; /* ensure ep enabled */
1534 ctrl
|= DxEPCTL_USBActEp
;
1535 writel(ctrl
, hsotg
->regs
+ DIEPCTL0
);
1539 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1540 * @hsotg: The device instance
1541 * @epnum: The endpoint received from
1542 * @was_setup: Set if processing a SetupDone event.
1544 * The RXFIFO has delivered an OutDone event, which means that the data
1545 * transfer for an OUT endpoint has been completed, either by a short
1546 * packet or by the finish of a transfer.
1548 static void s3c_hsotg_handle_outdone(struct s3c_hsotg
*hsotg
,
1549 int epnum
, bool was_setup
)
1551 u32 epsize
= readl(hsotg
->regs
+ DOEPTSIZ(epnum
));
1552 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[epnum
];
1553 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1554 struct usb_request
*req
= &hs_req
->req
;
1555 unsigned size_left
= DxEPTSIZ_XferSize_GET(epsize
);
1559 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
1563 if (using_dma(hsotg
)) {
1567 * Calculate the size of the transfer by checking how much
1568 * is left in the endpoint size register and then working it
1569 * out from the amount we loaded for the transfer.
1571 * We need to do this as DMA pointers are always 32bit aligned
1572 * so may overshoot/undershoot the transfer.
1575 size_done
= hs_ep
->size_loaded
- size_left
;
1576 size_done
+= hs_ep
->last_load
;
1578 req
->actual
= size_done
;
1581 /* if there is more request to do, schedule new transfer */
1582 if (req
->actual
< req
->length
&& size_left
== 0) {
1583 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1585 } else if (epnum
== 0) {
1587 * After was_setup = 1 =>
1588 * set CNAK for non Setup requests
1590 hsotg
->setup
= was_setup
? 0 : 1;
1593 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
1594 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
1595 __func__
, req
->actual
, req
->length
);
1598 * todo - what should we return here? there's no one else
1599 * even bothering to check the status.
1605 * Condition req->complete != s3c_hsotg_complete_setup says:
1606 * send ZLP when we have an asynchronous request from gadget
1608 if (!was_setup
&& req
->complete
!= s3c_hsotg_complete_setup
)
1609 s3c_hsotg_send_zlp(hsotg
, hs_req
);
1612 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
1616 * s3c_hsotg_read_frameno - read current frame number
1617 * @hsotg: The device instance
1619 * Return the current frame number
1621 static u32
s3c_hsotg_read_frameno(struct s3c_hsotg
*hsotg
)
1625 dsts
= readl(hsotg
->regs
+ DSTS
);
1626 dsts
&= DSTS_SOFFN_MASK
;
1627 dsts
>>= DSTS_SOFFN_SHIFT
;
1633 * s3c_hsotg_handle_rx - RX FIFO has data
1634 * @hsotg: The device instance
1636 * The IRQ handler has detected that the RX FIFO has some data in it
1637 * that requires processing, so find out what is in there and do the
1640 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1641 * chunks, so if you have x packets received on an endpoint you'll get x
1642 * FIFO events delivered, each with a packet's worth of data in it.
1644 * When using DMA, we should not be processing events from the RXFIFO
1645 * as the actual data should be sent to the memory directly and we turn
1646 * on the completion interrupts to get notifications of transfer completion.
1648 static void s3c_hsotg_handle_rx(struct s3c_hsotg
*hsotg
)
1650 u32 grxstsr
= readl(hsotg
->regs
+ GRXSTSP
);
1651 u32 epnum
, status
, size
;
1653 WARN_ON(using_dma(hsotg
));
1655 epnum
= grxstsr
& GRXSTS_EPNum_MASK
;
1656 status
= grxstsr
& GRXSTS_PktSts_MASK
;
1658 size
= grxstsr
& GRXSTS_ByteCnt_MASK
;
1659 size
>>= GRXSTS_ByteCnt_SHIFT
;
1662 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1663 __func__
, grxstsr
, size
, epnum
);
1665 #define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1667 switch (status
>> GRXSTS_PktSts_SHIFT
) {
1668 case __status(GRXSTS_PktSts_GlobalOutNAK
):
1669 dev_dbg(hsotg
->dev
, "GlobalOutNAK\n");
1672 case __status(GRXSTS_PktSts_OutDone
):
1673 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
1674 s3c_hsotg_read_frameno(hsotg
));
1676 if (!using_dma(hsotg
))
1677 s3c_hsotg_handle_outdone(hsotg
, epnum
, false);
1680 case __status(GRXSTS_PktSts_SetupDone
):
1682 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1683 s3c_hsotg_read_frameno(hsotg
),
1684 readl(hsotg
->regs
+ DOEPCTL(0)));
1686 s3c_hsotg_handle_outdone(hsotg
, epnum
, true);
1689 case __status(GRXSTS_PktSts_OutRX
):
1690 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1693 case __status(GRXSTS_PktSts_SetupRX
):
1695 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1696 s3c_hsotg_read_frameno(hsotg
),
1697 readl(hsotg
->regs
+ DOEPCTL(0)));
1699 s3c_hsotg_rx_data(hsotg
, epnum
, size
);
1703 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
1706 s3c_hsotg_dump(hsotg
);
1712 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1713 * @mps: The maximum packet size in bytes.
1715 static u32
s3c_hsotg_ep0_mps(unsigned int mps
)
1719 return D0EPCTL_MPS_64
;
1721 return D0EPCTL_MPS_32
;
1723 return D0EPCTL_MPS_16
;
1725 return D0EPCTL_MPS_8
;
1728 /* bad max packet size, warn and return invalid result */
1734 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1735 * @hsotg: The driver state.
1736 * @ep: The index number of the endpoint
1737 * @mps: The maximum packet size in bytes
1739 * Configure the maximum packet size for the given endpoint, updating
1740 * the hardware control registers to reflect this.
1742 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg
*hsotg
,
1743 unsigned int ep
, unsigned int mps
)
1745 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[ep
];
1746 void __iomem
*regs
= hsotg
->regs
;
1752 /* EP0 is a special case */
1753 mpsval
= s3c_hsotg_ep0_mps(mps
);
1756 hs_ep
->ep
.maxpacket
= mps
;
1759 mpsval
= mps
& DxEPCTL_MPS_MASK
;
1762 mcval
= ((mps
>> 11) & 0x3) + 1;
1766 hs_ep
->ep
.maxpacket
= mpsval
;
1770 * update both the in and out endpoint controldir_ registers, even
1771 * if one of the directions may not be in use.
1774 reg
= readl(regs
+ DIEPCTL(ep
));
1775 reg
&= ~DxEPCTL_MPS_MASK
;
1777 writel(reg
, regs
+ DIEPCTL(ep
));
1780 reg
= readl(regs
+ DOEPCTL(ep
));
1781 reg
&= ~DxEPCTL_MPS_MASK
;
1783 writel(reg
, regs
+ DOEPCTL(ep
));
1789 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
1793 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1794 * @hsotg: The driver state
1795 * @idx: The index for the endpoint (0..15)
1797 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg
*hsotg
, unsigned int idx
)
1802 writel(GRSTCTL_TxFNum(idx
) | GRSTCTL_TxFFlsh
,
1803 hsotg
->regs
+ GRSTCTL
);
1805 /* wait until the fifo is flushed */
1809 val
= readl(hsotg
->regs
+ GRSTCTL
);
1811 if ((val
& (GRSTCTL_TxFFlsh
)) == 0)
1814 if (--timeout
== 0) {
1816 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1825 * s3c_hsotg_trytx - check to see if anything needs transmitting
1826 * @hsotg: The driver state
1827 * @hs_ep: The driver endpoint to check.
1829 * Check to see if there is a request that has data to send, and if so
1830 * make an attempt to write data into the FIFO.
1832 static int s3c_hsotg_trytx(struct s3c_hsotg
*hsotg
,
1833 struct s3c_hsotg_ep
*hs_ep
)
1835 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1837 if (!hs_ep
->dir_in
|| !hs_req
) {
1839 * if request is not enqueued, we disable interrupts
1840 * for endpoints, excepting ep0
1842 if (hs_ep
->index
!= 0)
1843 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
1848 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
1849 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
1851 return s3c_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1858 * s3c_hsotg_complete_in - complete IN transfer
1859 * @hsotg: The device state.
1860 * @hs_ep: The endpoint that has just completed.
1862 * An IN transfer has been completed, update the transfer's state and then
1863 * call the relevant completion routines.
1865 static void s3c_hsotg_complete_in(struct s3c_hsotg
*hsotg
,
1866 struct s3c_hsotg_ep
*hs_ep
)
1868 struct s3c_hsotg_req
*hs_req
= hs_ep
->req
;
1869 u32 epsize
= readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
1870 int size_left
, size_done
;
1873 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
1877 /* Finish ZLP handling for IN EP0 transactions */
1878 if (hsotg
->eps
[0].sent_zlp
) {
1879 dev_dbg(hsotg
->dev
, "zlp packet received\n");
1880 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
1885 * Calculate the size of the transfer by checking how much is left
1886 * in the endpoint size register and then working it out from
1887 * the amount we loaded for the transfer.
1889 * We do this even for DMA, as the transfer may have incremented
1890 * past the end of the buffer (DMA transfers are always 32bit
1894 size_left
= DxEPTSIZ_XferSize_GET(epsize
);
1896 size_done
= hs_ep
->size_loaded
- size_left
;
1897 size_done
+= hs_ep
->last_load
;
1899 if (hs_req
->req
.actual
!= size_done
)
1900 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
1901 __func__
, hs_req
->req
.actual
, size_done
);
1903 hs_req
->req
.actual
= size_done
;
1904 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
1905 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
1908 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1909 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1910 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1911 * inform the host that no more data is available.
1912 * The state of req.zero member is checked to be sure that the value to
1913 * send is smaller than wValue expected from host.
1914 * Check req.length to NOT send another ZLP when the current one is
1915 * under completion (the one for which this completion has been called).
1917 if (hs_req
->req
.length
&& hs_ep
->index
== 0 && hs_req
->req
.zero
&&
1918 hs_req
->req
.length
== hs_req
->req
.actual
&&
1919 !(hs_req
->req
.length
% hs_ep
->ep
.maxpacket
)) {
1921 dev_dbg(hsotg
->dev
, "ep0 zlp IN packet sent\n");
1922 s3c_hsotg_send_zlp(hsotg
, hs_req
);
1927 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
1928 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
1929 s3c_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
1931 s3c_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
1935 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1936 * @hsotg: The driver state
1937 * @idx: The index for the endpoint (0..15)
1938 * @dir_in: Set if this is an IN endpoint
1940 * Process and clear any interrupt pending for an individual endpoint
1942 static void s3c_hsotg_epint(struct s3c_hsotg
*hsotg
, unsigned int idx
,
1945 struct s3c_hsotg_ep
*hs_ep
= &hsotg
->eps
[idx
];
1946 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
1947 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
1948 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
1952 ints
= readl(hsotg
->regs
+ epint_reg
);
1953 ctrl
= readl(hsotg
->regs
+ epctl_reg
);
1955 /* Clear endpoint interrupts */
1956 writel(ints
, hsotg
->regs
+ epint_reg
);
1958 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1959 __func__
, idx
, dir_in
? "in" : "out", ints
);
1961 if (ints
& DxEPINT_XferCompl
) {
1962 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1) {
1963 if (ctrl
& DxEPCTL_EOFrNum
)
1964 ctrl
|= DxEPCTL_SetEvenFr
;
1966 ctrl
|= DxEPCTL_SetOddFr
;
1967 writel(ctrl
, hsotg
->regs
+ epctl_reg
);
1971 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1972 __func__
, readl(hsotg
->regs
+ epctl_reg
),
1973 readl(hsotg
->regs
+ epsiz_reg
));
1976 * we get OutDone from the FIFO, so we only need to look
1977 * at completing IN requests here
1980 s3c_hsotg_complete_in(hsotg
, hs_ep
);
1982 if (idx
== 0 && !hs_ep
->req
)
1983 s3c_hsotg_enqueue_setup(hsotg
);
1984 } else if (using_dma(hsotg
)) {
1986 * We're using DMA, we need to fire an OutDone here
1987 * as we ignore the RXFIFO.
1990 s3c_hsotg_handle_outdone(hsotg
, idx
, false);
1994 if (ints
& DxEPINT_EPDisbld
) {
1995 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
1998 int epctl
= readl(hsotg
->regs
+ epctl_reg
);
2000 s3c_hsotg_txfifo_flush(hsotg
, idx
);
2002 if ((epctl
& DxEPCTL_Stall
) &&
2003 (epctl
& DxEPCTL_EPType_Bulk
)) {
2004 int dctl
= readl(hsotg
->regs
+ DCTL
);
2006 dctl
|= DCTL_CGNPInNAK
;
2007 writel(dctl
, hsotg
->regs
+ DCTL
);
2012 if (ints
& DxEPINT_AHBErr
)
2013 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
2015 if (ints
& DxEPINT_Setup
) { /* Setup or Timeout */
2016 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
2018 if (using_dma(hsotg
) && idx
== 0) {
2020 * this is the notification we've received a
2021 * setup packet. In non-DMA mode we'd get this
2022 * from the RXFIFO, instead we need to process
2029 s3c_hsotg_handle_outdone(hsotg
, 0, true);
2033 if (ints
& DxEPINT_Back2BackSetup
)
2034 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
2036 if (dir_in
&& !hs_ep
->isochronous
) {
2037 /* not sure if this is important, but we'll clear it anyway */
2038 if (ints
& DIEPMSK_INTknTXFEmpMsk
) {
2039 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
2043 /* this probably means something bad is happening */
2044 if (ints
& DIEPMSK_INTknEPMisMsk
) {
2045 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
2049 /* FIFO has space or is empty (see GAHBCFG) */
2050 if (hsotg
->dedicated_fifos
&&
2051 ints
& DIEPMSK_TxFIFOEmpty
) {
2052 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
2054 if (!using_dma(hsotg
))
2055 s3c_hsotg_trytx(hsotg
, hs_ep
);
2061 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2062 * @hsotg: The device state.
2064 * Handle updating the device settings after the enumeration phase has
2067 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg
*hsotg
)
2069 u32 dsts
= readl(hsotg
->regs
+ DSTS
);
2070 int ep0_mps
= 0, ep_mps
;
2073 * This should signal the finish of the enumeration phase
2074 * of the USB handshaking, so we should now know what rate
2078 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
2081 * note, since we're limited by the size of transfer on EP0, and
2082 * it seems IN transfers must be a even number of packets we do
2083 * not advertise a 64byte MPS on EP0.
2086 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2087 switch (dsts
& DSTS_EnumSpd_MASK
) {
2088 case DSTS_EnumSpd_FS
:
2089 case DSTS_EnumSpd_FS48
:
2090 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
2091 ep0_mps
= EP0_MPS_LIMIT
;
2095 case DSTS_EnumSpd_HS
:
2096 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
2097 ep0_mps
= EP0_MPS_LIMIT
;
2101 case DSTS_EnumSpd_LS
:
2102 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
2104 * note, we don't actually support LS in this driver at the
2105 * moment, and the documentation seems to imply that it isn't
2106 * supported by the PHYs on some of the devices.
2110 dev_info(hsotg
->dev
, "new device is %s\n",
2111 usb_speed_string(hsotg
->gadget
.speed
));
2114 * we should now know the maximum packet size for an
2115 * endpoint, so set the endpoints to a default value.
2120 s3c_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
);
2121 for (i
= 1; i
< hsotg
->num_of_eps
; i
++)
2122 s3c_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
);
2125 /* ensure after enumeration our EP0 is active */
2127 s3c_hsotg_enqueue_setup(hsotg
);
2129 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2130 readl(hsotg
->regs
+ DIEPCTL0
),
2131 readl(hsotg
->regs
+ DOEPCTL0
));
2135 * kill_all_requests - remove all requests from the endpoint's queue
2136 * @hsotg: The device state.
2137 * @ep: The endpoint the requests may be on.
2138 * @result: The result code to use.
2139 * @force: Force removal of any current requests
2141 * Go through the requests on the given endpoint and mark them
2142 * completed with the given result code.
2144 static void kill_all_requests(struct s3c_hsotg
*hsotg
,
2145 struct s3c_hsotg_ep
*ep
,
2146 int result
, bool force
)
2148 struct s3c_hsotg_req
*req
, *treq
;
2150 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2152 * currently, we can't do much about an already
2153 * running request on an in endpoint
2156 if (ep
->req
== req
&& ep
->dir_in
&& !force
)
2159 s3c_hsotg_complete_request(hsotg
, ep
, req
,
2162 if(hsotg
->dedicated_fifos
)
2163 if ((readl(hsotg
->regs
+ DTXFSTS(ep
->index
)) & 0xffff) * 4 < 3072)
2164 s3c_hsotg_txfifo_flush(hsotg
, ep
->index
);
2167 #define call_gadget(_hs, _entry) \
2169 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2170 (_hs)->driver && (_hs)->driver->_entry) { \
2171 spin_unlock(&_hs->lock); \
2172 (_hs)->driver->_entry(&(_hs)->gadget); \
2173 spin_lock(&_hs->lock); \
2178 * s3c_hsotg_disconnect - disconnect service
2179 * @hsotg: The device state.
2181 * The device has been disconnected. Remove all current
2182 * transactions and signal the gadget driver that this
2185 static void s3c_hsotg_disconnect(struct s3c_hsotg
*hsotg
)
2189 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++)
2190 kill_all_requests(hsotg
, &hsotg
->eps
[ep
], -ESHUTDOWN
, true);
2192 call_gadget(hsotg
, disconnect
);
2196 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2197 * @hsotg: The device state:
2198 * @periodic: True if this is a periodic FIFO interrupt
2200 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg
*hsotg
, bool periodic
)
2202 struct s3c_hsotg_ep
*ep
;
2205 /* look through for any more data to transmit */
2207 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
2208 ep
= &hsotg
->eps
[epno
];
2213 if ((periodic
&& !ep
->periodic
) ||
2214 (!periodic
&& ep
->periodic
))
2217 ret
= s3c_hsotg_trytx(hsotg
, ep
);
2223 /* IRQ flags which will trigger a retry around the IRQ loop */
2224 #define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2229 * s3c_hsotg_corereset - issue softreset to the core
2230 * @hsotg: The device state
2232 * Issue a soft reset to the core, and await the core finishing it.
2234 static int s3c_hsotg_corereset(struct s3c_hsotg
*hsotg
)
2239 dev_dbg(hsotg
->dev
, "resetting core\n");
2241 /* issue soft reset */
2242 writel(GRSTCTL_CSftRst
, hsotg
->regs
+ GRSTCTL
);
2246 grstctl
= readl(hsotg
->regs
+ GRSTCTL
);
2247 } while ((grstctl
& GRSTCTL_CSftRst
) && timeout
-- > 0);
2249 if (grstctl
& GRSTCTL_CSftRst
) {
2250 dev_err(hsotg
->dev
, "Failed to get CSftRst asserted\n");
2257 u32 grstctl
= readl(hsotg
->regs
+ GRSTCTL
);
2259 if (timeout
-- < 0) {
2260 dev_info(hsotg
->dev
,
2261 "%s: reset failed, GRSTCTL=%08x\n",
2266 if (!(grstctl
& GRSTCTL_AHBIdle
))
2269 break; /* reset done */
2272 dev_dbg(hsotg
->dev
, "reset successful\n");
2277 * s3c_hsotg_core_init - issue softreset to the core
2278 * @hsotg: The device state
2280 * Issue a soft reset to the core, and await the core finishing it.
2282 static void s3c_hsotg_core_init(struct s3c_hsotg
*hsotg
)
2284 s3c_hsotg_corereset(hsotg
);
2287 * we must now enable ep0 ready for host detection and then
2288 * set configuration.
2291 /* set the PLL on, remove the HNP/SRP and set the PHY */
2292 writel(hsotg
->phyif
| GUSBCFG_TOutCal(7) |
2293 (0x5 << 10), hsotg
->regs
+ GUSBCFG
);
2295 s3c_hsotg_init_fifo(hsotg
);
2297 __orr32(hsotg
->regs
+ DCTL
, DCTL_SftDiscon
);
2299 writel(1 << 18 | DCFG_DevSpd_HS
, hsotg
->regs
+ DCFG
);
2301 /* Clear any pending OTG interrupts */
2302 writel(0xffffffff, hsotg
->regs
+ GOTGINT
);
2304 /* Clear any pending interrupts */
2305 writel(0xffffffff, hsotg
->regs
+ GINTSTS
);
2307 writel(GINTSTS_ErlySusp
| GINTSTS_SessReqInt
|
2308 GINTSTS_GOUTNakEff
| GINTSTS_GINNakEff
|
2309 GINTSTS_ConIDStsChng
| GINTSTS_USBRst
|
2310 GINTSTS_EnumDone
| GINTSTS_OTGInt
|
2311 GINTSTS_USBSusp
| GINTSTS_WkUpInt
,
2312 hsotg
->regs
+ GINTMSK
);
2314 if (using_dma(hsotg
))
2315 writel(GAHBCFG_GlblIntrEn
| GAHBCFG_DMAEn
|
2316 GAHBCFG_HBstLen_Incr4
,
2317 hsotg
->regs
+ GAHBCFG
);
2319 writel(((hsotg
->dedicated_fifos
) ? (GAHBCFG_NPTxFEmpLvl
|
2320 GAHBCFG_PTxFEmpLvl
) : 0) |
2322 hsotg
->regs
+ GAHBCFG
);
2325 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2326 * when we have no data to transfer. Otherwise we get being flooded by
2330 writel(((hsotg
->dedicated_fifos
) ? DIEPMSK_TxFIFOEmpty
|
2331 DIEPMSK_INTknTXFEmpMsk
: 0) |
2332 DIEPMSK_EPDisbldMsk
| DIEPMSK_XferComplMsk
|
2333 DIEPMSK_TimeOUTMsk
| DIEPMSK_AHBErrMsk
|
2334 DIEPMSK_INTknEPMisMsk
,
2335 hsotg
->regs
+ DIEPMSK
);
2338 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2339 * DMA mode we may need this.
2341 writel((using_dma(hsotg
) ? (DIEPMSK_XferComplMsk
|
2342 DIEPMSK_TimeOUTMsk
) : 0) |
2343 DOEPMSK_EPDisbldMsk
| DOEPMSK_AHBErrMsk
|
2345 hsotg
->regs
+ DOEPMSK
);
2347 writel(0, hsotg
->regs
+ DAINTMSK
);
2349 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2350 readl(hsotg
->regs
+ DIEPCTL0
),
2351 readl(hsotg
->regs
+ DOEPCTL0
));
2353 /* enable in and out endpoint interrupts */
2354 s3c_hsotg_en_gsint(hsotg
, GINTSTS_OEPInt
| GINTSTS_IEPInt
);
2357 * Enable the RXFIFO when in slave mode, as this is how we collect
2358 * the data. In DMA mode, we get events from the FIFO but also
2359 * things we cannot process, so do not use it.
2361 if (!using_dma(hsotg
))
2362 s3c_hsotg_en_gsint(hsotg
, GINTSTS_RxFLvl
);
2364 /* Enable interrupts for EP0 in and out */
2365 s3c_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
2366 s3c_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
2368 __orr32(hsotg
->regs
+ DCTL
, DCTL_PWROnPrgDone
);
2369 udelay(10); /* see openiboot */
2370 __bic32(hsotg
->regs
+ DCTL
, DCTL_PWROnPrgDone
);
2372 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", readl(hsotg
->regs
+ DCTL
));
2375 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2376 * writing to the EPCTL register..
2379 /* set to read 1 8byte packet */
2380 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2381 DxEPTSIZ_XferSize(8), hsotg
->regs
+ DOEPTSIZ0
);
2383 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2384 DxEPCTL_CNAK
| DxEPCTL_EPEna
|
2386 hsotg
->regs
+ DOEPCTL0
);
2388 /* enable, but don't activate EP0in */
2389 writel(s3c_hsotg_ep0_mps(hsotg
->eps
[0].ep
.maxpacket
) |
2390 DxEPCTL_USBActEp
, hsotg
->regs
+ DIEPCTL0
);
2392 s3c_hsotg_enqueue_setup(hsotg
);
2394 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2395 readl(hsotg
->regs
+ DIEPCTL0
),
2396 readl(hsotg
->regs
+ DOEPCTL0
));
2398 /* clear global NAKs */
2399 writel(DCTL_CGOUTNak
| DCTL_CGNPInNAK
,
2400 hsotg
->regs
+ DCTL
);
2402 /* must be at-least 3ms to allow bus to see disconnect */
2405 /* remove the soft-disconnect and let's go */
2406 __bic32(hsotg
->regs
+ DCTL
, DCTL_SftDiscon
);
2410 * s3c_hsotg_irq - handle device interrupt
2411 * @irq: The IRQ number triggered
2412 * @pw: The pw value when registered the handler.
2414 static irqreturn_t
s3c_hsotg_irq(int irq
, void *pw
)
2416 struct s3c_hsotg
*hsotg
= pw
;
2417 int retry_count
= 8;
2421 spin_lock(&hsotg
->lock
);
2423 gintsts
= readl(hsotg
->regs
+ GINTSTS
);
2424 gintmsk
= readl(hsotg
->regs
+ GINTMSK
);
2426 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
2427 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
2431 if (gintsts
& GINTSTS_OTGInt
) {
2432 u32 otgint
= readl(hsotg
->regs
+ GOTGINT
);
2434 dev_info(hsotg
->dev
, "OTGInt: %08x\n", otgint
);
2436 writel(otgint
, hsotg
->regs
+ GOTGINT
);
2439 if (gintsts
& GINTSTS_SessReqInt
) {
2440 dev_dbg(hsotg
->dev
, "%s: SessReqInt\n", __func__
);
2441 writel(GINTSTS_SessReqInt
, hsotg
->regs
+ GINTSTS
);
2444 if (gintsts
& GINTSTS_EnumDone
) {
2445 writel(GINTSTS_EnumDone
, hsotg
->regs
+ GINTSTS
);
2447 s3c_hsotg_irq_enumdone(hsotg
);
2450 if (gintsts
& GINTSTS_ConIDStsChng
) {
2451 dev_dbg(hsotg
->dev
, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2452 readl(hsotg
->regs
+ DSTS
),
2453 readl(hsotg
->regs
+ GOTGCTL
));
2455 writel(GINTSTS_ConIDStsChng
, hsotg
->regs
+ GINTSTS
);
2458 if (gintsts
& (GINTSTS_OEPInt
| GINTSTS_IEPInt
)) {
2459 u32 daint
= readl(hsotg
->regs
+ DAINT
);
2460 u32 daintmsk
= readl(hsotg
->regs
+ DAINTMSK
);
2461 u32 daint_out
, daint_in
;
2465 daint_out
= daint
>> DAINT_OutEP_SHIFT
;
2466 daint_in
= daint
& ~(daint_out
<< DAINT_OutEP_SHIFT
);
2468 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
2470 for (ep
= 0; ep
< 15 && daint_out
; ep
++, daint_out
>>= 1) {
2472 s3c_hsotg_epint(hsotg
, ep
, 0);
2475 for (ep
= 0; ep
< 15 && daint_in
; ep
++, daint_in
>>= 1) {
2477 s3c_hsotg_epint(hsotg
, ep
, 1);
2481 if (gintsts
& GINTSTS_USBRst
) {
2483 u32 usb_status
= readl(hsotg
->regs
+ GOTGCTL
);
2485 dev_info(hsotg
->dev
, "%s: USBRst\n", __func__
);
2486 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
2487 readl(hsotg
->regs
+ GNPTXSTS
));
2489 writel(GINTSTS_USBRst
, hsotg
->regs
+ GINTSTS
);
2491 if (usb_status
& GOTGCTL_BSESVLD
) {
2492 if (time_after(jiffies
, hsotg
->last_rst
+
2493 msecs_to_jiffies(200))) {
2495 kill_all_requests(hsotg
, &hsotg
->eps
[0],
2498 s3c_hsotg_core_init(hsotg
);
2499 hsotg
->last_rst
= jiffies
;
2504 /* check both FIFOs */
2506 if (gintsts
& GINTSTS_NPTxFEmp
) {
2507 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
2510 * Disable the interrupt to stop it happening again
2511 * unless one of these endpoint routines decides that
2512 * it needs re-enabling
2515 s3c_hsotg_disable_gsint(hsotg
, GINTSTS_NPTxFEmp
);
2516 s3c_hsotg_irq_fifoempty(hsotg
, false);
2519 if (gintsts
& GINTSTS_PTxFEmp
) {
2520 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
2522 /* See note in GINTSTS_NPTxFEmp */
2524 s3c_hsotg_disable_gsint(hsotg
, GINTSTS_PTxFEmp
);
2525 s3c_hsotg_irq_fifoempty(hsotg
, true);
2528 if (gintsts
& GINTSTS_RxFLvl
) {
2530 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2531 * we need to retry s3c_hsotg_handle_rx if this is still
2535 s3c_hsotg_handle_rx(hsotg
);
2538 if (gintsts
& GINTSTS_ModeMis
) {
2539 dev_warn(hsotg
->dev
, "warning, mode mismatch triggered\n");
2540 writel(GINTSTS_ModeMis
, hsotg
->regs
+ GINTSTS
);
2543 if (gintsts
& GINTSTS_USBSusp
) {
2544 dev_info(hsotg
->dev
, "GINTSTS_USBSusp\n");
2545 writel(GINTSTS_USBSusp
, hsotg
->regs
+ GINTSTS
);
2547 call_gadget(hsotg
, suspend
);
2550 if (gintsts
& GINTSTS_WkUpInt
) {
2551 dev_info(hsotg
->dev
, "GINTSTS_WkUpIn\n");
2552 writel(GINTSTS_WkUpInt
, hsotg
->regs
+ GINTSTS
);
2554 call_gadget(hsotg
, resume
);
2557 if (gintsts
& GINTSTS_ErlySusp
) {
2558 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
2559 writel(GINTSTS_ErlySusp
, hsotg
->regs
+ GINTSTS
);
2563 * these next two seem to crop-up occasionally causing the core
2564 * to shutdown the USB transfer, so try clearing them and logging
2568 if (gintsts
& GINTSTS_GOUTNakEff
) {
2569 dev_info(hsotg
->dev
, "GOUTNakEff triggered\n");
2571 writel(DCTL_CGOUTNak
, hsotg
->regs
+ DCTL
);
2573 s3c_hsotg_dump(hsotg
);
2576 if (gintsts
& GINTSTS_GINNakEff
) {
2577 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
2579 writel(DCTL_CGNPInNAK
, hsotg
->regs
+ DCTL
);
2581 s3c_hsotg_dump(hsotg
);
2585 * if we've had fifo events, we should try and go around the
2586 * loop again to see if there's any point in returning yet.
2589 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
2592 spin_unlock(&hsotg
->lock
);
2598 * s3c_hsotg_ep_enable - enable the given endpoint
2599 * @ep: The USB endpint to configure
2600 * @desc: The USB endpoint descriptor to configure with.
2602 * This is called from the USB gadget code's usb_ep_enable().
2604 static int s3c_hsotg_ep_enable(struct usb_ep
*ep
,
2605 const struct usb_endpoint_descriptor
*desc
)
2607 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2608 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2609 unsigned long flags
;
2610 int index
= hs_ep
->index
;
2618 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2619 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
2620 desc
->wMaxPacketSize
, desc
->bInterval
);
2622 /* not to be called for EP0 */
2623 WARN_ON(index
== 0);
2625 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
2626 if (dir_in
!= hs_ep
->dir_in
) {
2627 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
2631 mps
= usb_endpoint_maxp(desc
);
2633 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2635 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2636 epctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2638 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2639 __func__
, epctrl
, epctrl_reg
);
2641 spin_lock_irqsave(&hsotg
->lock
, flags
);
2643 epctrl
&= ~(DxEPCTL_EPType_MASK
| DxEPCTL_MPS_MASK
);
2644 epctrl
|= DxEPCTL_MPS(mps
);
2647 * mark the endpoint as active, otherwise the core may ignore
2648 * transactions entirely for this endpoint
2650 epctrl
|= DxEPCTL_USBActEp
;
2653 * set the NAK status on the endpoint, otherwise we might try and
2654 * do something with data that we've yet got a request to process
2655 * since the RXFIFO will take data for an endpoint even if the
2656 * size register hasn't been set.
2659 epctrl
|= DxEPCTL_SNAK
;
2661 /* update the endpoint state */
2662 s3c_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
);
2664 /* default, set to non-periodic */
2665 hs_ep
->isochronous
= 0;
2666 hs_ep
->periodic
= 0;
2668 hs_ep
->interval
= desc
->bInterval
;
2670 if (hs_ep
->interval
> 1 && hs_ep
->mc
> 1)
2671 dev_err(hsotg
->dev
, "MC > 1 when interval is not 1\n");
2673 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
2674 case USB_ENDPOINT_XFER_ISOC
:
2675 epctrl
|= DxEPCTL_EPType_Iso
;
2676 epctrl
|= DxEPCTL_SetEvenFr
;
2677 hs_ep
->isochronous
= 1;
2679 hs_ep
->periodic
= 1;
2682 case USB_ENDPOINT_XFER_BULK
:
2683 epctrl
|= DxEPCTL_EPType_Bulk
;
2686 case USB_ENDPOINT_XFER_INT
:
2689 * Allocate our TxFNum by simply using the index
2690 * of the endpoint for the moment. We could do
2691 * something better if the host indicates how
2692 * many FIFOs we are expecting to use.
2695 hs_ep
->periodic
= 1;
2696 epctrl
|= DxEPCTL_TxFNum(index
);
2699 epctrl
|= DxEPCTL_EPType_Intterupt
;
2702 case USB_ENDPOINT_XFER_CONTROL
:
2703 epctrl
|= DxEPCTL_EPType_Control
;
2708 * if the hardware has dedicated fifos, we must give each IN EP
2709 * a unique tx-fifo even if it is non-periodic.
2711 if (dir_in
&& hsotg
->dedicated_fifos
)
2712 epctrl
|= DxEPCTL_TxFNum(index
);
2714 /* for non control endpoints, set PID to D0 */
2716 epctrl
|= DxEPCTL_SetD0PID
;
2718 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
2721 writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
2722 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
2723 __func__
, readl(hsotg
->regs
+ epctrl_reg
));
2725 /* enable the endpoint interrupt */
2726 s3c_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
2728 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2733 * s3c_hsotg_ep_disable - disable given endpoint
2734 * @ep: The endpoint to disable.
2736 static int s3c_hsotg_ep_disable(struct usb_ep
*ep
)
2738 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2739 struct s3c_hsotg
*hsotg
= hs_ep
->parent
;
2740 int dir_in
= hs_ep
->dir_in
;
2741 int index
= hs_ep
->index
;
2742 unsigned long flags
;
2746 dev_info(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
2748 if (ep
== &hsotg
->eps
[0].ep
) {
2749 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
2753 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2755 spin_lock_irqsave(&hsotg
->lock
, flags
);
2756 /* terminate all requests with shutdown */
2757 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
, false);
2760 ctrl
= readl(hsotg
->regs
+ epctrl_reg
);
2761 ctrl
&= ~DxEPCTL_EPEna
;
2762 ctrl
&= ~DxEPCTL_USBActEp
;
2763 ctrl
|= DxEPCTL_SNAK
;
2765 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
2766 writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
2768 /* disable endpoint interrupts */
2769 s3c_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
2771 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
2776 * on_list - check request is on the given endpoint
2777 * @ep: The endpoint to check.
2778 * @test: The request to test if it is on the endpoint.
2780 static bool on_list(struct s3c_hsotg_ep
*ep
, struct s3c_hsotg_req
*test
)
2782 struct s3c_hsotg_req
*req
, *treq
;
2784 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
2793 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2794 * @ep: The endpoint to dequeue.
2795 * @req: The request to be removed from a queue.
2797 static int s3c_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
2799 struct s3c_hsotg_req
*hs_req
= our_req(req
);
2800 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2801 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2802 unsigned long flags
;
2804 dev_info(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
2806 spin_lock_irqsave(&hs
->lock
, flags
);
2808 if (!on_list(hs_ep
, hs_req
)) {
2809 spin_unlock_irqrestore(&hs
->lock
, flags
);
2813 s3c_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
2814 spin_unlock_irqrestore(&hs
->lock
, flags
);
2820 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2821 * @ep: The endpoint to set halt.
2822 * @value: Set or unset the halt.
2824 static int s3c_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
)
2826 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2827 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2828 int index
= hs_ep
->index
;
2833 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
2835 /* write both IN and OUT control registers */
2837 epreg
= DIEPCTL(index
);
2838 epctl
= readl(hs
->regs
+ epreg
);
2841 epctl
|= DxEPCTL_Stall
+ DxEPCTL_SNAK
;
2842 if (epctl
& DxEPCTL_EPEna
)
2843 epctl
|= DxEPCTL_EPDis
;
2845 epctl
&= ~DxEPCTL_Stall
;
2846 xfertype
= epctl
& DxEPCTL_EPType_MASK
;
2847 if (xfertype
== DxEPCTL_EPType_Bulk
||
2848 xfertype
== DxEPCTL_EPType_Intterupt
)
2849 epctl
|= DxEPCTL_SetD0PID
;
2852 writel(epctl
, hs
->regs
+ epreg
);
2854 epreg
= DOEPCTL(index
);
2855 epctl
= readl(hs
->regs
+ epreg
);
2858 epctl
|= DxEPCTL_Stall
;
2860 epctl
&= ~DxEPCTL_Stall
;
2861 xfertype
= epctl
& DxEPCTL_EPType_MASK
;
2862 if (xfertype
== DxEPCTL_EPType_Bulk
||
2863 xfertype
== DxEPCTL_EPType_Intterupt
)
2864 epctl
|= DxEPCTL_SetD0PID
;
2867 writel(epctl
, hs
->regs
+ epreg
);
2869 hs_ep
->halted
= value
;
2875 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2876 * @ep: The endpoint to set halt.
2877 * @value: Set or unset the halt.
2879 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
2881 struct s3c_hsotg_ep
*hs_ep
= our_ep(ep
);
2882 struct s3c_hsotg
*hs
= hs_ep
->parent
;
2883 unsigned long flags
= 0;
2886 spin_lock_irqsave(&hs
->lock
, flags
);
2887 ret
= s3c_hsotg_ep_sethalt(ep
, value
);
2888 spin_unlock_irqrestore(&hs
->lock
, flags
);
2893 static struct usb_ep_ops s3c_hsotg_ep_ops
= {
2894 .enable
= s3c_hsotg_ep_enable
,
2895 .disable
= s3c_hsotg_ep_disable
,
2896 .alloc_request
= s3c_hsotg_ep_alloc_request
,
2897 .free_request
= s3c_hsotg_ep_free_request
,
2898 .queue
= s3c_hsotg_ep_queue_lock
,
2899 .dequeue
= s3c_hsotg_ep_dequeue
,
2900 .set_halt
= s3c_hsotg_ep_sethalt_lock
,
2901 /* note, don't believe we have any call for the fifo routines */
2905 * s3c_hsotg_phy_enable - enable platform phy dev
2906 * @hsotg: The driver state
2908 * A wrapper for platform code responsible for controlling
2909 * low-level USB code
2911 static void s3c_hsotg_phy_enable(struct s3c_hsotg
*hsotg
)
2913 struct platform_device
*pdev
= to_platform_device(hsotg
->dev
);
2915 dev_dbg(hsotg
->dev
, "pdev 0x%p\n", pdev
);
2918 phy_init(hsotg
->phy
);
2919 phy_power_on(hsotg
->phy
);
2920 } else if (hsotg
->uphy
)
2921 usb_phy_init(hsotg
->uphy
);
2922 else if (hsotg
->plat
->phy_init
)
2923 hsotg
->plat
->phy_init(pdev
, hsotg
->plat
->phy_type
);
2927 * s3c_hsotg_phy_disable - disable platform phy dev
2928 * @hsotg: The driver state
2930 * A wrapper for platform code responsible for controlling
2931 * low-level USB code
2933 static void s3c_hsotg_phy_disable(struct s3c_hsotg
*hsotg
)
2935 struct platform_device
*pdev
= to_platform_device(hsotg
->dev
);
2938 phy_power_off(hsotg
->phy
);
2939 phy_exit(hsotg
->phy
);
2940 } else if (hsotg
->uphy
)
2941 usb_phy_shutdown(hsotg
->uphy
);
2942 else if (hsotg
->plat
->phy_exit
)
2943 hsotg
->plat
->phy_exit(pdev
, hsotg
->plat
->phy_type
);
2947 * s3c_hsotg_init - initalize the usb core
2948 * @hsotg: The driver state
2950 static void s3c_hsotg_init(struct s3c_hsotg
*hsotg
)
2952 /* unmask subset of endpoint interrupts */
2954 writel(DIEPMSK_TimeOUTMsk
| DIEPMSK_AHBErrMsk
|
2955 DIEPMSK_EPDisbldMsk
| DIEPMSK_XferComplMsk
,
2956 hsotg
->regs
+ DIEPMSK
);
2958 writel(DOEPMSK_SetupMsk
| DOEPMSK_AHBErrMsk
|
2959 DOEPMSK_EPDisbldMsk
| DOEPMSK_XferComplMsk
,
2960 hsotg
->regs
+ DOEPMSK
);
2962 writel(0, hsotg
->regs
+ DAINTMSK
);
2964 /* Be in disconnected state until gadget is registered */
2965 __orr32(hsotg
->regs
+ DCTL
, DCTL_SftDiscon
);
2968 /* post global nak until we're ready */
2969 writel(DCTL_SGNPInNAK
| DCTL_SGOUTNak
,
2970 hsotg
->regs
+ DCTL
);
2975 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2976 readl(hsotg
->regs
+ GRXFSIZ
),
2977 readl(hsotg
->regs
+ GNPTXFSIZ
));
2979 s3c_hsotg_init_fifo(hsotg
);
2981 /* set the PLL on, remove the HNP/SRP and set the PHY */
2982 writel(GUSBCFG_PHYIf16
| GUSBCFG_TOutCal(7) | (0x5 << 10),
2983 hsotg
->regs
+ GUSBCFG
);
2985 writel(using_dma(hsotg
) ? GAHBCFG_DMAEn
: 0x0,
2986 hsotg
->regs
+ GAHBCFG
);
2990 * s3c_hsotg_udc_start - prepare the udc for work
2991 * @gadget: The usb gadget state
2992 * @driver: The usb gadget driver
2994 * Perform initialization to prepare udc device and driver
2997 static int s3c_hsotg_udc_start(struct usb_gadget
*gadget
,
2998 struct usb_gadget_driver
*driver
)
3000 struct s3c_hsotg
*hsotg
= to_hsotg(gadget
);
3004 pr_err("%s: called with no device\n", __func__
);
3009 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
3013 if (driver
->max_speed
< USB_SPEED_FULL
)
3014 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
3016 if (!driver
->setup
) {
3017 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
3021 WARN_ON(hsotg
->driver
);
3023 driver
->driver
.bus
= NULL
;
3024 hsotg
->driver
= driver
;
3025 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
3026 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
3028 ret
= regulator_bulk_enable(ARRAY_SIZE(hsotg
->supplies
),
3031 dev_err(hsotg
->dev
, "failed to enable supplies: %d\n", ret
);
3035 hsotg
->last_rst
= jiffies
;
3036 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
3040 hsotg
->driver
= NULL
;
3045 * s3c_hsotg_udc_stop - stop the udc
3046 * @gadget: The usb gadget state
3047 * @driver: The usb gadget driver
3049 * Stop udc hw block and stay tunned for future transmissions
3051 static int s3c_hsotg_udc_stop(struct usb_gadget
*gadget
,
3052 struct usb_gadget_driver
*driver
)
3054 struct s3c_hsotg
*hsotg
= to_hsotg(gadget
);
3055 unsigned long flags
= 0;
3061 /* all endpoints should be shutdown */
3062 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++)
3063 s3c_hsotg_ep_disable(&hsotg
->eps
[ep
].ep
);
3065 spin_lock_irqsave(&hsotg
->lock
, flags
);
3067 s3c_hsotg_phy_disable(hsotg
);
3070 hsotg
->driver
= NULL
;
3072 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
3074 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3076 regulator_bulk_disable(ARRAY_SIZE(hsotg
->supplies
), hsotg
->supplies
);
3082 * s3c_hsotg_gadget_getframe - read the frame number
3083 * @gadget: The usb gadget state
3085 * Read the {micro} frame number
3087 static int s3c_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
3089 return s3c_hsotg_read_frameno(to_hsotg(gadget
));
3093 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3094 * @gadget: The usb gadget state
3095 * @is_on: Current state of the USB PHY
3097 * Connect/Disconnect the USB PHY pullup
3099 static int s3c_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
3101 struct s3c_hsotg
*hsotg
= to_hsotg(gadget
);
3102 unsigned long flags
= 0;
3104 dev_dbg(hsotg
->dev
, "%s: is_in: %d\n", __func__
, is_on
);
3106 spin_lock_irqsave(&hsotg
->lock
, flags
);
3108 s3c_hsotg_phy_enable(hsotg
);
3109 s3c_hsotg_core_init(hsotg
);
3111 s3c_hsotg_disconnect(hsotg
);
3112 s3c_hsotg_phy_disable(hsotg
);
3115 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
3116 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3121 static const struct usb_gadget_ops s3c_hsotg_gadget_ops
= {
3122 .get_frame
= s3c_hsotg_gadget_getframe
,
3123 .udc_start
= s3c_hsotg_udc_start
,
3124 .udc_stop
= s3c_hsotg_udc_stop
,
3125 .pullup
= s3c_hsotg_pullup
,
3129 * s3c_hsotg_initep - initialise a single endpoint
3130 * @hsotg: The device state.
3131 * @hs_ep: The endpoint to be initialised.
3132 * @epnum: The endpoint number
3134 * Initialise the given endpoint (as part of the probe and device state
3135 * creation) to give to the gadget driver. Setup the endpoint name, any
3136 * direction information and other state that may be required.
3138 static void s3c_hsotg_initep(struct s3c_hsotg
*hsotg
,
3139 struct s3c_hsotg_ep
*hs_ep
,
3147 else if ((epnum
% 2) == 0) {
3154 hs_ep
->index
= epnum
;
3156 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
3158 INIT_LIST_HEAD(&hs_ep
->queue
);
3159 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
3161 /* add to the list of endpoints known by the gadget driver */
3163 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
3165 hs_ep
->parent
= hsotg
;
3166 hs_ep
->ep
.name
= hs_ep
->name
;
3167 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, epnum
? 1024 : EP0_MPS_LIMIT
);
3168 hs_ep
->ep
.ops
= &s3c_hsotg_ep_ops
;
3171 * Read the FIFO size for the Periodic TX FIFO, even if we're
3172 * an OUT endpoint, we may as well do this if in future the
3173 * code is changed to make each endpoint's direction changeable.
3176 ptxfifo
= readl(hsotg
->regs
+ DPTXFSIZn(epnum
));
3177 hs_ep
->fifo_size
= DPTXFSIZn_DPTxFSize_GET(ptxfifo
) * 4;
3180 * if we're using dma, we need to set the next-endpoint pointer
3181 * to be something valid.
3184 if (using_dma(hsotg
)) {
3185 u32 next
= DxEPCTL_NextEp((epnum
+ 1) % 15);
3186 writel(next
, hsotg
->regs
+ DIEPCTL(epnum
));
3187 writel(next
, hsotg
->regs
+ DOEPCTL(epnum
));
3192 * s3c_hsotg_hw_cfg - read HW configuration registers
3193 * @param: The device state
3195 * Read the USB core HW configuration registers
3197 static void s3c_hsotg_hw_cfg(struct s3c_hsotg
*hsotg
)
3200 /* check hardware configuration */
3202 cfg2
= readl(hsotg
->regs
+ 0x48);
3203 hsotg
->num_of_eps
= (cfg2
>> 10) & 0xF;
3205 dev_info(hsotg
->dev
, "EPs:%d\n", hsotg
->num_of_eps
);
3207 cfg4
= readl(hsotg
->regs
+ 0x50);
3208 hsotg
->dedicated_fifos
= (cfg4
>> 25) & 1;
3210 dev_info(hsotg
->dev
, "%s fifos\n",
3211 hsotg
->dedicated_fifos
? "dedicated" : "shared");
3215 * s3c_hsotg_dump - dump state of the udc
3216 * @param: The device state
3218 static void s3c_hsotg_dump(struct s3c_hsotg
*hsotg
)
3221 struct device
*dev
= hsotg
->dev
;
3222 void __iomem
*regs
= hsotg
->regs
;
3226 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3227 readl(regs
+ DCFG
), readl(regs
+ DCTL
),
3228 readl(regs
+ DIEPMSK
));
3230 dev_info(dev
, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3231 readl(regs
+ GAHBCFG
), readl(regs
+ 0x44));
3233 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3234 readl(regs
+ GRXFSIZ
), readl(regs
+ GNPTXFSIZ
));
3236 /* show periodic fifo settings */
3238 for (idx
= 1; idx
<= 15; idx
++) {
3239 val
= readl(regs
+ DPTXFSIZn(idx
));
3240 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
3241 val
>> DPTXFSIZn_DPTxFSize_SHIFT
,
3242 val
& DPTXFSIZn_DPTxFStAddr_MASK
);
3245 for (idx
= 0; idx
< 15; idx
++) {
3247 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
3248 readl(regs
+ DIEPCTL(idx
)),
3249 readl(regs
+ DIEPTSIZ(idx
)),
3250 readl(regs
+ DIEPDMA(idx
)));
3252 val
= readl(regs
+ DOEPCTL(idx
));
3254 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3255 idx
, readl(regs
+ DOEPCTL(idx
)),
3256 readl(regs
+ DOEPTSIZ(idx
)),
3257 readl(regs
+ DOEPDMA(idx
)));
3261 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3262 readl(regs
+ DVBUSDIS
), readl(regs
+ DVBUSPULSE
));
3267 * state_show - debugfs: show overall driver and device state.
3268 * @seq: The seq file to write to.
3269 * @v: Unused parameter.
3271 * This debugfs entry shows the overall state of the hardware and
3272 * some general information about each of the endpoints available
3275 static int state_show(struct seq_file
*seq
, void *v
)
3277 struct s3c_hsotg
*hsotg
= seq
->private;
3278 void __iomem
*regs
= hsotg
->regs
;
3281 seq_printf(seq
, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3284 readl(regs
+ DSTS
));
3286 seq_printf(seq
, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3287 readl(regs
+ DIEPMSK
), readl(regs
+ DOEPMSK
));
3289 seq_printf(seq
, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3290 readl(regs
+ GINTMSK
),
3291 readl(regs
+ GINTSTS
));
3293 seq_printf(seq
, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3294 readl(regs
+ DAINTMSK
),
3295 readl(regs
+ DAINT
));
3297 seq_printf(seq
, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3298 readl(regs
+ GNPTXSTS
),
3299 readl(regs
+ GRXSTSR
));
3301 seq_puts(seq
, "\nEndpoint status:\n");
3303 for (idx
= 0; idx
< 15; idx
++) {
3306 in
= readl(regs
+ DIEPCTL(idx
));
3307 out
= readl(regs
+ DOEPCTL(idx
));
3309 seq_printf(seq
, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3312 in
= readl(regs
+ DIEPTSIZ(idx
));
3313 out
= readl(regs
+ DOEPTSIZ(idx
));
3315 seq_printf(seq
, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3318 seq_puts(seq
, "\n");
3324 static int state_open(struct inode
*inode
, struct file
*file
)
3326 return single_open(file
, state_show
, inode
->i_private
);
3329 static const struct file_operations state_fops
= {
3330 .owner
= THIS_MODULE
,
3333 .llseek
= seq_lseek
,
3334 .release
= single_release
,
3338 * fifo_show - debugfs: show the fifo information
3339 * @seq: The seq_file to write data to.
3340 * @v: Unused parameter.
3342 * Show the FIFO information for the overall fifo and all the
3343 * periodic transmission FIFOs.
3345 static int fifo_show(struct seq_file
*seq
, void *v
)
3347 struct s3c_hsotg
*hsotg
= seq
->private;
3348 void __iomem
*regs
= hsotg
->regs
;
3352 seq_puts(seq
, "Non-periodic FIFOs:\n");
3353 seq_printf(seq
, "RXFIFO: Size %d\n", readl(regs
+ GRXFSIZ
));
3355 val
= readl(regs
+ GNPTXFSIZ
);
3356 seq_printf(seq
, "NPTXFIFO: Size %d, Start 0x%08x\n",
3357 val
>> GNPTXFSIZ_NPTxFDep_SHIFT
,
3358 val
& GNPTXFSIZ_NPTxFStAddr_MASK
);
3360 seq_puts(seq
, "\nPeriodic TXFIFOs:\n");
3362 for (idx
= 1; idx
<= 15; idx
++) {
3363 val
= readl(regs
+ DPTXFSIZn(idx
));
3365 seq_printf(seq
, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx
,
3366 val
>> DPTXFSIZn_DPTxFSize_SHIFT
,
3367 val
& DPTXFSIZn_DPTxFStAddr_MASK
);
3373 static int fifo_open(struct inode
*inode
, struct file
*file
)
3375 return single_open(file
, fifo_show
, inode
->i_private
);
3378 static const struct file_operations fifo_fops
= {
3379 .owner
= THIS_MODULE
,
3382 .llseek
= seq_lseek
,
3383 .release
= single_release
,
3387 static const char *decode_direction(int is_in
)
3389 return is_in
? "in" : "out";
3393 * ep_show - debugfs: show the state of an endpoint.
3394 * @seq: The seq_file to write data to.
3395 * @v: Unused parameter.
3397 * This debugfs entry shows the state of the given endpoint (one is
3398 * registered for each available).
3400 static int ep_show(struct seq_file
*seq
, void *v
)
3402 struct s3c_hsotg_ep
*ep
= seq
->private;
3403 struct s3c_hsotg
*hsotg
= ep
->parent
;
3404 struct s3c_hsotg_req
*req
;
3405 void __iomem
*regs
= hsotg
->regs
;
3406 int index
= ep
->index
;
3407 int show_limit
= 15;
3408 unsigned long flags
;
3410 seq_printf(seq
, "Endpoint index %d, named %s, dir %s:\n",
3411 ep
->index
, ep
->ep
.name
, decode_direction(ep
->dir_in
));
3413 /* first show the register state */
3415 seq_printf(seq
, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3416 readl(regs
+ DIEPCTL(index
)),
3417 readl(regs
+ DOEPCTL(index
)));
3419 seq_printf(seq
, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3420 readl(regs
+ DIEPDMA(index
)),
3421 readl(regs
+ DOEPDMA(index
)));
3423 seq_printf(seq
, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3424 readl(regs
+ DIEPINT(index
)),
3425 readl(regs
+ DOEPINT(index
)));
3427 seq_printf(seq
, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3428 readl(regs
+ DIEPTSIZ(index
)),
3429 readl(regs
+ DOEPTSIZ(index
)));
3431 seq_puts(seq
, "\n");
3432 seq_printf(seq
, "mps %d\n", ep
->ep
.maxpacket
);
3433 seq_printf(seq
, "total_data=%ld\n", ep
->total_data
);
3435 seq_printf(seq
, "request list (%p,%p):\n",
3436 ep
->queue
.next
, ep
->queue
.prev
);
3438 spin_lock_irqsave(&hsotg
->lock
, flags
);
3440 list_for_each_entry(req
, &ep
->queue
, queue
) {
3441 if (--show_limit
< 0) {
3442 seq_puts(seq
, "not showing more requests...\n");
3446 seq_printf(seq
, "%c req %p: %d bytes @%p, ",
3447 req
== ep
->req
? '*' : ' ',
3448 req
, req
->req
.length
, req
->req
.buf
);
3449 seq_printf(seq
, "%d done, res %d\n",
3450 req
->req
.actual
, req
->req
.status
);
3453 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3458 static int ep_open(struct inode
*inode
, struct file
*file
)
3460 return single_open(file
, ep_show
, inode
->i_private
);
3463 static const struct file_operations ep_fops
= {
3464 .owner
= THIS_MODULE
,
3467 .llseek
= seq_lseek
,
3468 .release
= single_release
,
3472 * s3c_hsotg_create_debug - create debugfs directory and files
3473 * @hsotg: The driver state
3475 * Create the debugfs files to allow the user to get information
3476 * about the state of the system. The directory name is created
3477 * with the same name as the device itself, in case we end up
3478 * with multiple blocks in future systems.
3480 static void s3c_hsotg_create_debug(struct s3c_hsotg
*hsotg
)
3482 struct dentry
*root
;
3485 root
= debugfs_create_dir(dev_name(hsotg
->dev
), NULL
);
3486 hsotg
->debug_root
= root
;
3488 dev_err(hsotg
->dev
, "cannot create debug root\n");
3492 /* create general state file */
3494 hsotg
->debug_file
= debugfs_create_file("state", 0444, root
,
3495 hsotg
, &state_fops
);
3497 if (IS_ERR(hsotg
->debug_file
))
3498 dev_err(hsotg
->dev
, "%s: failed to create state\n", __func__
);
3500 hsotg
->debug_fifo
= debugfs_create_file("fifo", 0444, root
,
3503 if (IS_ERR(hsotg
->debug_fifo
))
3504 dev_err(hsotg
->dev
, "%s: failed to create fifo\n", __func__
);
3506 /* create one file for each endpoint */
3508 for (epidx
= 0; epidx
< hsotg
->num_of_eps
; epidx
++) {
3509 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3511 ep
->debugfs
= debugfs_create_file(ep
->name
, 0444,
3512 root
, ep
, &ep_fops
);
3514 if (IS_ERR(ep
->debugfs
))
3515 dev_err(hsotg
->dev
, "failed to create %s debug file\n",
3521 * s3c_hsotg_delete_debug - cleanup debugfs entries
3522 * @hsotg: The driver state
3524 * Cleanup (remove) the debugfs files for use on module exit.
3526 static void s3c_hsotg_delete_debug(struct s3c_hsotg
*hsotg
)
3530 for (epidx
= 0; epidx
< hsotg
->num_of_eps
; epidx
++) {
3531 struct s3c_hsotg_ep
*ep
= &hsotg
->eps
[epidx
];
3532 debugfs_remove(ep
->debugfs
);
3535 debugfs_remove(hsotg
->debug_file
);
3536 debugfs_remove(hsotg
->debug_fifo
);
3537 debugfs_remove(hsotg
->debug_root
);
3541 * s3c_hsotg_probe - probe function for hsotg driver
3542 * @pdev: The platform information for the driver
3545 static int s3c_hsotg_probe(struct platform_device
*pdev
)
3547 struct s3c_hsotg_plat
*plat
= dev_get_platdata(&pdev
->dev
);
3549 struct usb_phy
*uphy
;
3550 struct device
*dev
= &pdev
->dev
;
3551 struct s3c_hsotg_ep
*eps
;
3552 struct s3c_hsotg
*hsotg
;
3553 struct resource
*res
;
3558 hsotg
= devm_kzalloc(&pdev
->dev
, sizeof(struct s3c_hsotg
), GFP_KERNEL
);
3560 dev_err(dev
, "cannot get memory\n");
3565 * Attempt to find a generic PHY, then look for an old style
3566 * USB PHY, finally fall back to pdata
3568 phy
= devm_phy_get(&pdev
->dev
, "usb2-phy");
3570 uphy
= devm_usb_get_phy(dev
, USB_PHY_TYPE_USB2
);
3572 /* Fallback for pdata */
3573 plat
= dev_get_platdata(&pdev
->dev
);
3576 "no platform data or transceiver defined\n");
3577 return -EPROBE_DEFER
;
3587 hsotg
->clk
= devm_clk_get(&pdev
->dev
, "otg");
3588 if (IS_ERR(hsotg
->clk
)) {
3589 dev_err(dev
, "cannot get otg clock\n");
3590 return PTR_ERR(hsotg
->clk
);
3593 platform_set_drvdata(pdev
, hsotg
);
3595 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3597 hsotg
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
3598 if (IS_ERR(hsotg
->regs
)) {
3599 ret
= PTR_ERR(hsotg
->regs
);
3603 ret
= platform_get_irq(pdev
, 0);
3605 dev_err(dev
, "cannot find IRQ\n");
3609 spin_lock_init(&hsotg
->lock
);
3613 ret
= devm_request_irq(&pdev
->dev
, hsotg
->irq
, s3c_hsotg_irq
, 0,
3614 dev_name(dev
), hsotg
);
3616 dev_err(dev
, "cannot claim IRQ\n");
3620 dev_info(dev
, "regs %p, irq %d\n", hsotg
->regs
, hsotg
->irq
);
3622 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
3623 hsotg
->gadget
.ops
= &s3c_hsotg_gadget_ops
;
3624 hsotg
->gadget
.name
= dev_name(dev
);
3626 /* reset the system */
3628 clk_prepare_enable(hsotg
->clk
);
3632 for (i
= 0; i
< ARRAY_SIZE(hsotg
->supplies
); i
++)
3633 hsotg
->supplies
[i
].supply
= s3c_hsotg_supply_names
[i
];
3635 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(hsotg
->supplies
),
3638 dev_err(dev
, "failed to request supplies: %d\n", ret
);
3642 ret
= regulator_bulk_enable(ARRAY_SIZE(hsotg
->supplies
),
3646 dev_err(hsotg
->dev
, "failed to enable supplies: %d\n", ret
);
3650 /* Set default UTMI width */
3651 hsotg
->phyif
= GUSBCFG_PHYIf16
;
3654 * If using the generic PHY framework, check if the PHY bus
3655 * width is 8-bit and set the phyif appropriately.
3657 if (hsotg
->phy
&& (phy_get_bus_width(phy
) == 8))
3658 hsotg
->phyif
= GUSBCFG_PHYIf8
;
3661 phy_init(hsotg
->phy
);
3663 /* usb phy enable */
3664 s3c_hsotg_phy_enable(hsotg
);
3666 s3c_hsotg_corereset(hsotg
);
3667 s3c_hsotg_init(hsotg
);
3668 s3c_hsotg_hw_cfg(hsotg
);
3670 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3672 if (hsotg
->num_of_eps
== 0) {
3673 dev_err(dev
, "wrong number of EPs (zero)\n");
3678 eps
= kcalloc(hsotg
->num_of_eps
+ 1, sizeof(struct s3c_hsotg_ep
),
3681 dev_err(dev
, "cannot get memory\n");
3688 /* setup endpoint information */
3690 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
3691 hsotg
->gadget
.ep0
= &hsotg
->eps
[0].ep
;
3693 /* allocate EP0 request */
3695 hsotg
->ctrl_req
= s3c_hsotg_ep_alloc_request(&hsotg
->eps
[0].ep
,
3697 if (!hsotg
->ctrl_req
) {
3698 dev_err(dev
, "failed to allocate ctrl req\n");
3703 /* initialise the endpoints now the core has been initialised */
3704 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++)
3705 s3c_hsotg_initep(hsotg
, &hsotg
->eps
[epnum
], epnum
);
3707 /* disable power and clock */
3709 ret
= regulator_bulk_disable(ARRAY_SIZE(hsotg
->supplies
),
3712 dev_err(hsotg
->dev
, "failed to disable supplies: %d\n", ret
);
3716 s3c_hsotg_phy_disable(hsotg
);
3718 ret
= usb_add_gadget_udc(&pdev
->dev
, &hsotg
->gadget
);
3722 s3c_hsotg_create_debug(hsotg
);
3724 s3c_hsotg_dump(hsotg
);
3731 s3c_hsotg_phy_disable(hsotg
);
3733 clk_disable_unprepare(hsotg
->clk
);
3739 * s3c_hsotg_remove - remove function for hsotg driver
3740 * @pdev: The platform information for the driver
3742 static int s3c_hsotg_remove(struct platform_device
*pdev
)
3744 struct s3c_hsotg
*hsotg
= platform_get_drvdata(pdev
);
3746 usb_del_gadget_udc(&hsotg
->gadget
);
3748 s3c_hsotg_delete_debug(hsotg
);
3750 if (hsotg
->driver
) {
3751 /* should have been done already by driver model core */
3752 usb_gadget_unregister_driver(hsotg
->driver
);
3755 s3c_hsotg_phy_disable(hsotg
);
3757 phy_exit(hsotg
->phy
);
3758 clk_disable_unprepare(hsotg
->clk
);
3764 #define s3c_hsotg_suspend NULL
3765 #define s3c_hsotg_resume NULL
3769 static const struct of_device_id s3c_hsotg_of_ids
[] = {
3770 { .compatible
= "samsung,s3c6400-hsotg", },
3771 { .compatible
= "snps,dwc2", },
3774 MODULE_DEVICE_TABLE(of
, s3c_hsotg_of_ids
);
3777 static struct platform_driver s3c_hsotg_driver
= {
3779 .name
= "s3c-hsotg",
3780 .owner
= THIS_MODULE
,
3781 .of_match_table
= of_match_ptr(s3c_hsotg_of_ids
),
3783 .probe
= s3c_hsotg_probe
,
3784 .remove
= s3c_hsotg_remove
,
3785 .suspend
= s3c_hsotg_suspend
,
3786 .resume
= s3c_hsotg_resume
,
3789 module_platform_driver(s3c_hsotg_driver
);
3791 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3792 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3793 MODULE_LICENSE("GPL");
3794 MODULE_ALIAS("platform:s3c-hsotg");